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HOLOGRAPHIC ANTENNA MEASUREMENTS:

FURTHER TECHNICAL CONSIDERATIONS 

Larry R. D'Addario

Summary

In a recent report (Moore 1982), Craig Moore discusses determining the 

surface errors of the new NRAO 12-meter antenna by interferometry of a CW signal 

from a satellite. The reader is referred to that report for necessary background. 

The present report provides some analysis of the signal processing for such a 

scheme. This leads to a formula for the signal-to-noise ratio of the individual 

measurements which is slightly different from that assumed by Moore (his 

equation (2)). Furthermore, when the measurements are combined to form am 

image of the aperture field and the phase of this field Image is used to estimate 

the surface errors, we find an expression for the noise in the latter estimates 

which agrees with the formula of Scott and Ryle (1977) only in the special case 

where all measurements have the same noise variance. Use of the on-axis noise 

in Scott and Ryle's formula (Moore's equation (3)) leads to an overestimate 

of the SNR requirement.

In addition, we enumerate some considerations other than random noise 

which affect the accuracy of the measurements. Choice of the type of detector 

is considered briefly. The dynamic range requirement is analyzed in some detail, 

and the use of ALC loops is discussed. A digital cross correlator without ALC 

is recommended, and the number of bits needed to satisfy the dynamic range 

requirement is calculated.
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I* Noise in a Correlation Receiver with Monochromatic Signals 

In this section, we determine the effect of receiver noise on a single 

measurement.

We model the receiver as shown in Fig. la, where the signals s^t) and 

s2(t) are multiplied and low-pass filtered. Let the signals be

s1 (t) - V1cos(2Trf0t) + nx (t)

s2(t) - V2cos(2irf0t +<j>)+ n2(t)

where n^ and ^  are independent Gaussian random processes such that

<n^> ■ <n2> 88 0

(1)

(2)

(3)

(A)

and with power spectra as illustrated in Fig. lb. (Here we take B < fQ , but 

the analysis for baseband signals leads to the same final result.) Then the 

multiplier output is

x(t) « s^t) s2(t)

" V1V2 cos(2irf0j:) Cos(2irf0t + 0) + ni(t) n2(t)

+ Vi n2(t) cos(2irf0t) + V2 n ^ t )  cos(27rfQt + <f>). (5)

N.LD
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(a)

Fig. 1 : (a) Correlation receiver model,
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(b)

(b) Power spectral density of 
receiver noise n^Ct).



Let X - <y(t)> be the "signal" and let o - (<y2(t)> - it) 2 be the "rms 
noise, where y(t) is the output of the LPF. The obtain o, we calculate the 

power spectrum of y(t); this is easily obtained from the power spectrum of 

x(t), which we now compute:

Sx (f) - F.T.{<x(t) x(t + t )>} (6)

where F.T.{ } denotes the Fourier transform with respect to t ,

Sx (f) - F.T.{ < [hV^y2 cos* + hV-p2 cos(4irf0t + <j>) + n1 (t)n2(t)

+ V1n2(t)cos 2irf0t + V2n1 (t) cos(2Trf0t + $)]

x t ^ c o s *  + h V ^ c o s  (4irf0t + 4irf0x + <J>)

+ nx (t + t) n2(t + t) + V ^ C t  + t) cos(2irf0t + 2TrfQx)

+ V2n ^ (t  + t ) cos(27rf0t  + ♦)] > }

■ F.T. ik V1 2V22cos2<j) + ^  V12V22cos4irf0T + Pjl(t)p2(t)

2 9
+ V1 P2 T̂)cos(2Tr̂ oT) + V2 Pi(T)cos2^foT } (7)

where p^Cx) ** <n^(t)n^(t + x)>, i ■ 1 or 2. The Fourier transform of each term 

may be evaluated by Inspection, given the simple form of the noise power spectra, 

recalling that the transform of a product is the convolution of the transforms. 

The result, illustrated in Fig. 2, is

sx(f) - I v j 2^  c o s %  6(f) + i  V1 2V22[6(f - 2f0) + «(f + 2f0)]

+  kTsl kTs2B tri(f/B) [£trl(f/B) + ± tri((f - 2f0)/B) ]

+ f  Vl2fcTs2 rect(f/B) + 2 V22kTsl rect(f/B) (8)

-5-
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Fig. 2: Power spectral density of multiplier output signal x(t).

Now let the LPF have an ideal rectangular passband of width W. Then

W

<y2> = j sy(f)df = J sx(f)df
—00

-w

4 vi2v22c0s2* + W(kT8lkTs2B + vl2kTs2 + v22kTsl)

and (from (5))

X ■ <x> = <y> = j  V^coSil)

so

- V <y2> ■ x2 = V W(kT3lkTs2B + Vl2kTs2 + V22kTsl)

(9)

(10)
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1 2
For identical receivers we can let Ts^ ■ m NQ/k; putting * -j for the 

carrier powers then gives

(11)

and

W[Ng2B + 2N0 (CX + C2)]
COS(j) . (12)

If the term dominates the denominator (as it will for the on-axis measurement 

if is the main reflector signal power), then

This may be compared with Craig Moore's equation (2) for integrating time x » 1/2W. 

His expression gives the square of the SNR. In addition we find that the SNR 

depends on the carrier to noise density ratio of the weaker signal C2/Nq , where 

he has the geometric mean of the two signals. This is significant.

Here we calculate, starting from elementary considerations, the noise in 

a map of the aperture field made from measurements of the type contemplated.

It iwll be necessary to make some simplifying assumptions about how the map is 

computed.

A. Some simple antenna theory.

(ignoring polarization) and monochromatic signals. Extention to wide bandwidths 

would be straightforward, but is unnecessary here.

(13)

II. Noise Analysis of the Mapping Scheme

We will describe the antenna using scalar diffraction theory
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Select a reference plane (in principle arbitrary) in which the antenna 

aperture is defined, and let (&,m) be direction cosines with respect to the 

normal to this plane. Then a uniform plane wave from direction (£,m) with 

electric field amplitude EQ in the aperture plane produces an open circuit 

voltage at the antenna terminals given by

V - Eq hU,m) (14)

where h(H,m) is the complex effective length of the antenna (Sinclair 1950).

If the antenna is made to transmit by applying a current source of amplitude It 

to the terminals, then from reciprocity it can be shown that the far field 

distribution is a superposition of plane waves having amplitudes per unit solid 

angle

e(£,m) = -Q2t h(&,m), (15)

where ZQ “V^ o / eQ *8 t*ie free space impedance and X is the wavelength. A 

fundamental theorem which is the basis of the present project is that the

Since the available power received is

sfc ly | 2 - i V f e  lEr !2 A e* 

where Ra is the real part of the terminal impedance and A^ is the effective 

area, comparison with (14) shows that Ae and h are related by

Although effective area seems to be more familiar to radio astronomers than 

effective length, the latter is more appropriate when considering interferometers.
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aperture plane field when transmitting is the Fourier transform of e(Jl,m), 

which from (15) is proportional to h(£,m), which in turn can be determined in 

the receiving mode via (14). Combining these gives

Ea (x,y ) - | |  e-J2,r(ix + » y ) A  dm (16)

Jl2+m2<l

for the aperture field that would be produced by current It. Since It is arbitrary, 

we consider from now on the normalized quantity

x2
F x̂,y) = Ea(x »y)‘ (17)

B. The Measurements

We have available a reference antenna whose effective length 

function hr (£,m) is known. Its response to a plane wave is

Vr “ V r(t.-) (18)

and the cross-correlation of the reference and test antennas* outputs is

W r " IEo 12 l»U*m) hr (£,m). (19)

Let M^ $e a measurement of the cross correlation (19) in the 

presence of noise:

2 *
\  = 1*0 1 hr + Ek (20)

where is a zero-mem error. Let there be K measurements (k=l,...,K) at 

various U,m), preferibly on a rectangular grid. Our task is to estimate F(x,y) 

from these measurements.
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The best linear estimator must be of the form

F(x,y)

K

k-1

Mi,

lEo|2h r*<*k»ink>

sj2ir(*kx + mky)/A w
(21)

where {W^} are weights which may be adjusted to control the errors and the 

resolution. Using (16) and (17), it is easily shown that

F(x,y) = F(x,y)**b(x,y) + 6(x,y) (22)

where

and

K

b(x,y) - Y, + ”ky)/X

k=l

(23)

<6(x,y)> = 0 .

The latter follows from <ek> * 0. If, in addition, * 0 for all k + JL

(uncorrelated errors), we find that

(24)

K

<62>
I
k=l

W.

4 k 2>  • (25)

Note that (25) shows that the variance of the error in the estimated aperture 

field is independent of aperture position (x,y).
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C. Noise Analysis

One way to assign the weights in (21) is to consider (21) to be 

a discrete approximation to (16):

K

f (s,y) = y  + w *  i U m

k-i v i  - *k 2 - \ 2

so that » AjtAm/~Vl - _ ^ 2  an<j £ m # Here we assume a

rectangular grid of spacing A£,Am. For small £^,mj^ the square root factor may 

be dropped. Then, from (25), the variance of F is

2 K
<62> - 1 M A m

E

O k2>
1 1 ; T7- — —  • <27>

o
] > —  
I k- 1

To evaluate the effect of this noise, consider measurement of 

an ideal circular aperture with uniform illumination, so that

r
h(0,0)F(x,y) -

<

's.

9 , t < D/2X
tt(D/2X)

(28)

0, r > D/2X

« 2 %
where r « (xz + y ) and D is the aperture diameter. Although the phase of F 

is zero, the phase of F has rms value

y < s 2>/2
~ • (2 9 )
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o
provided <6^> is small. The inferred error in reflector surface position is 

then

Az * X
4ir

A&Am tt(D/2X)
4tt"\/2 |Eq |2 |hr | |h(0,0) | £ <“!>

k-1

* AHAm 
4ir V 2  <Mq > £ <v>

k=*l

A£Am D2 

X<Mo>
(30)

where a^y is the rms of the measurement errors, <Mq> is the expected value of 

the on-axis measurement (even if this point is not actually measured) and we have 

taken the reference antenna pattern hr to be constant. If we desire a resolution 

of A in the aperture plane, then K _> (D/A) 2 points must be sampled. The sampling 

theorem requires A£,Am <_ A/D. Taking equality in both cases (although this 

would allow serious aliasing) gives

Az
XD

16 V I A* SNR
(31)

where SNR * <H0>/o^y • Apart from the numerical factor, this agrees with the 

formula of Scott and Ryle (1977). But in their case, the source is assumed 

weak, so that is ^^e same for all measurements and SNR can be interpreted

as the on-axis signal to noise ratio; whereas in the general case, we see that 

SNR should be interpreted as the ratio of on-axis signal to rms average noise over 

all measurements. Scott and Ryle have 4tt = 12.57 where we have I6V 2" = 22.62.*

They dropped a factor of 4/ir in the ratio of resolution element area to dish 

area, and they missed a factor of ’V"2" because only the phase component of the 

noise is significant.
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Fig. 3: Noise in a single measurement vs. distance off axis, for a uniformly 
illuminated main reflector and broad—beamwidth reference antenna (see 
eqn. (11)). Relative signal and noise powers from Moore (1982).

of distance off axis, based on equation (11). The dashed lines a^, o^» and 0£ 

show the contributions of the first, second, and third terms, respectively. A 

uniform circular aperture is assumed, so that

usual Bessel junction. In the plot, the relative strengths of the three terms 

are based on Table I of Moore (1982) with 10 kHz bandwidth. Although no 

allowance has been made for the variation of reference antenna gain with p, this 

variation has also been dropped from (30) and (31), so there should be little 

effect on the final result.

Figure 3 is a plot of the single-measurement noise as a function

(32)
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I have evaluated for various sampling parameters, assuming 

uniform illumination of the main reflector; the results are given in Table A. 

Also given are the corresponding SNR and integrating time needed to achieve 

Az - 20 ym, again using parameters from Moore's Table I.

TABLE A : Noise and Integrating Time Requirements

SAMPLING
INTERVAL RESOLUTION

TOTAL NUMBER 
OF SAMPLES

For 12-m Telescope Parameters*
Az=20 ym

AJtD/X D/A K=(A£*A/X) “ 2 <W° o M0/aAV ô̂ °o t ,ms K t ,s

1.0 25 625 .046 442 20.3 3.7 2.31

50 2,500 .027 884 23.9 5.1 12.8

100 10,000 .020 1,768 35.4 11.2 112.

0.75 25 1,000 .047 331 15.6 2.2 2.2

50 4,000 .028 663 18.6 3.1 12.4

100 16,000 .020 1,326 26.5 6.3 101.

0.5 25 2,500 .047 221 10.4 1.0 2.5

50 10,000 .028 442 12.4 1.4 14.0

100 40,000 .020 884 17.7 2.8 112.

X =* 8 mm, D = 12 m, signal and noise powers from Table I of Moore (1982) .
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III. Accuracy Considerations Other Than Random Noise

Without discussing them in detail, I list here some factors which could 

affect the accuracy of the final result and which will at least have to be 

considered in the data processing.

1. Variation of received power due to satellite transmitter changes, 

satellite pointing errors, atmospheric effects, and changes in receiver gains.

2. Inaccuracy in our knowledge of the reference antenna’s beam.

3. Errors in the cross-correlator, such as saturation.

4. Pointing errors in the antenna under test.

5. Variations in the aperture of the antenna under test during the 

measurements (for example, due to motion of the satellite over a significant 

elevation range during the measurements).

One aspect of item 3 will be considered in the next section.

By using careful observing strategies, it should be possible to minimize 

the effects of items 1, 2, and 5 to whatever extent is required. Item 4 is 

potentially a problem; obviously, the pointing accuracy must be much better 

than X/D, but we need to measure the surface to much better than X. A careful 

analysis is needed but has not yet been done.

IV. Dynamic Range Requirement

It is a general property of Fourier transforms that large dynamic range 

in one domain corresponds to high precision in the other domain. Thus, in 

Fourier synthesis telescopes, large dynamic range in the map requires the 

absence of systematic errors in the measurements; but, for objects having high 

contrast (where large dynamic range is desired), the required accuracy need 

only be achieved over a small range of measured values.
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In the holography problem, the situation is reversed; the aperture field 

distribution shows only small variations, leading to a large range of values 

in the measurement domain. The dynamic range of the measurements then determines 

the precision with which the aperture field can be estimated.

Suppose we wish to be able to detect variations in aperture field phase of 

2ttAz /X, corresponding to surface position error Az/2. If a is the amplitude 

of a sinusoidal variation at spatial frequency (£,m) , then the corresponding 

measurement in the (&,m) direction must have an error less than (2ttoi/X)M0 , 

where MQ is the on-axis measurement. Note that the measurement is of the voltage 

pattern of the antenna, so the required dynamic range in decibles is 

20 log(2*rra/X). *

However, the dynamic range requirement is somewhat mitigated by the following 

considerations. For a circular reflector antenna, the aperture field can be 

taken to be zero outside a circle of the antenna’s diameter, D. The field is 

then determined by samples of its Fourier transform on a square grid of spacing 

X/D (see Figure 4). The ideal antenna has a uniform aperture field (or one 

smoothly tapered in radius), and it may be reasonable to assume that the actual 

antenna differs only slightly from this. The transform of the ideal aperture 

is then small at all sample points except (£,m) - (0,0). If no effort is made 

to measure the central point accurately (or if it is not measured at all), the 

dynamic range required for the remaining points is greatly reduced. In practice, 

some oversampling is desirable and some margin must be allowed for the antenna 

being further from ideal than expected.

For the 12-m telescope, let Az = 20 ym, X = 8 mm; then dynamic range 36 dB 

is needed.
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Fig. 4: Illustration of sampling grid relative to antenna pattern. Since
many samples fall near zeros of the pattern, 0a« can be much smaller 
than Oq •

For the ideal, uniform aperture the antenna pattern is given by (32). 

With Nyquist sampling, ignoring the central point reduces the dynamic range 

requirement by a factor of

With a more conservative sampling internal of 0.8 X/D, the reduction is

h(.8X/D) J (0.8ir)  
-------------------------i .  „  ---------------------------------------  .  3 9 3  ( _ 8 # 1  d B ) #

h(0) 0.4ir

If the central point is measured inaccurately or not at all, there are 

two effects on the aperture field map: a d.c. offset due to the error in the 

zero-spatial-frequency term itself; and a complex scale error due to the unknown
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scale of the other terms relative to the zero frequency one. Neither of these 

has any effect on determination of the quantity of primary interest; namely the 

variation of phase across the aperture.

However, there could be some difficulty if the satellite power varies 

significantly during the measurements and it is desired to return to the central 

point periodically to check this. To ensure sufficient dynamic range in that 

case, it would be desirable to include a 6 to 10 dB attenuator in the signal 

channel which could be switched in or out under computer control. Although 

not essential, it would be good to know accurately the complex gain change when 

this switch is thrown.

V. ALC or Not?

The advantage of ALC in one or both channels is that it reduces the 

dynamic range required of the cross-multiplier. The dynamic range requirement 

is then shifted to square law detectors ahead of the ALC loop, or to measurements 

of the settings of the ALC loop attenuators. There seems to be no advantage 

to the use of ALC unless the latter measurements can be made more accurately 

than the cross-product measurement without ALC. In addition, it is necessary 

that the ALC loop attenuator not introduce any significant phase shift.

If the required dynamic range is > 30 dB, as seems to be the case, it will 

be difficult to achieve with analog circuitry. ALC would probably be used on 

both channels, and careful calibration of the ALC attenuators might succeed in 

determining the signal powers to sufficient accuracy. On the other hand, at 

the bandwidth contemplated for this receiver (_< 10 kHz), it is easily feasible 

to achieve the required dynamic range with digital circuitry. Quantization to
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8 bits (256 levels) should be sufficient, and devices for 8-bit A to D conversion 

and 8 x 8 bit multiplication are readily available for operation at the required 

rates. Finer quantization is also possible (see next section).

A digital cross correlator without ALC is therefore recommended.

VI. Quantization

K—1
The voltage dynamic range of a signed, K-bit quantizer is 2 if 3-level 

quantization of the weakest signals is adequate; or 2K“L if 2L+*-l levels are 

kept for the weakest signals. Taking L ■ 2 (7 levels), we have

2K-2 (IiAZj-I
A

or

K ^  2-log2(2TTAZ/A),

where no special allowance has been made for the central point. In view of

the argument of the last section, a safety factor of 2 to 3 is therefore included.
*

Again using Az - 20 ym and X ■ 8 mm gives K >_ 7.99 bits. Allowing saturation 

of the on-axis point reduces the requirement to 6 or 7 bits.
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