National Radio Astronomy Observatory
Tucson, Arizona
January 24, 1983

MEMORANDUM

TO: J. Payne, J. Findlay
FROM: R. Howard
SUBJECT: 12M Radiometric Measurements After Panels Adjusted to Take Out Main Error in Reference Jig

Prime focus measurements were made at 3.3 mm (Jan. 15 and Jan. 19) and at 1.33 mm (Jan. 19 and Jan. 22) after the panels had been reset to correct for the main errors in the reference jig. Table I summarizes the results.

Table 1. Prime Focus Measurements

Wavelength (mm)	HPBW $(\mathrm{AZ} / \mathrm{EL})$	Width of Focus Curve at Half Power (λ)	Aperture Efficiency
3.3	$70 / 70$	2.0	.38
1.33	$28 / 31$	2.2	.10

The focus curve is now symmetric and close to theoretical at both 3 mm and 1 mm . Figure 1 is the focus curve at 3.3 mm . Figure 2 is a map of the beam at 3.3 mm . The sidelobes levels are $\sim 3 \mathrm{~dB}$ lower than the previous measurements. They are also lower than the old 36^{\prime} sidelobes at 3 mm by about $3-\mathrm{dB}$. Figure 2 is a map of the beam at 1.3 mm . It also looks fairly clean but may be a little asymmetric. This was also observed when averaging all of the FIVE POINT pointing measurements together (see Table 1). The 1.33 mm HPBW numbers have been corrected for beam broadening due to Jupiter $\left(S D=16^{\pi}\right)$. The measured aperture efficiencies at 1.33 mm and 3.3 mm imply a RMS surface tolerance of $134 \mu \mathrm{M}$ with $\eta_{0}=.49$. If the design goal of $70 \mu \mathrm{M}$ can be reached; the aperture efficiency at 1.33 mm should be $\sim .32$.
3.3nA FOCUS CURVE ON

TUPITER

1.33 MA MAP ON TUPITER

