12 METER MILLIMETER WAVE TELESCOPE MEMO No.

National Radio Astronomy Observatory Tucson, Arizona

November 21, 1983

Memorandum

TO: 12-m Memo Series

FROM: M. A. Gordon and R. J. Howard

SUBJECT: RMS Surface Accuracy and Zero-Frequency Efficiency

I. Introduction

Over the last few weeks, Rick Howard has measured the aperture efficiency of the 12-m telescope, at prime focus, at 2 wavelengths. Because the feeds were scaled versions of each other, the illumination functions were identical. In these circumstances, we can use the 2 measurements to calculate the RMS surface accuracy (weighted by this illumination taper) independent of the zero-frequency efficiency, η_0 , of the reflector.

II. Theory

If the surface errors of a parabolic reflector are randomly distributed over the surface, then Ruze (1952) gives the aperture efficiency η at a wavelength λ to be

$$\eta = \eta_0 \exp \left(\frac{4\pi\delta}{\lambda}\right)^2 . \tag{1}$$

where δ is the RMS surface error.

The measurement of aperture efficiency at 2 different wavelengths allows us to eliminate η_0 , giving

$$\frac{n_1}{n_2} = \exp \left[\left(\frac{4\pi\delta}{\lambda_2} \right)^2 - \left(\frac{4\pi\delta}{\lambda_1} \right)^2 \right] .$$
 (2)

The RMS surface error is then

$$\delta = \frac{c}{4\pi} \left(f_2^2 - f_1^2 \right)^{-l_2} \left(\ln \frac{\eta_1}{\eta_2} \right)^{l_2} , \qquad (3)$$

where we've replaced wavelength with frequency for mathematical convenience.

Because measurements of aperture efficiencies η have substantial uncertainties σ , we calculate the indirect error on δ caused by propagation of the measurement uncertainties. This error is given by the standard rule

$$\Delta \delta = \left[\left(\frac{\partial \delta}{\partial \eta_1} \right)^2 \cdot \sigma_1^2 + \left(\frac{\partial \delta}{\partial \eta_2} \right)^2 \cdot \sigma_2^2 \right]^{\frac{1}{2}}, \quad (4)$$

which gives

$$\Delta \delta = \frac{\delta}{2} \left[\left(\frac{\sigma_1}{\eta_1} \right)^2 + \left(\frac{\sigma_2}{\eta_2} \right)^2 \right]^{\frac{1}{2}} \cdot \left(\frac{n_1}{\eta_2} \right)^{-1} \cdot (5)$$

Having calculated the RMS error by equations (3) and (5), we can calculate the zero-frequency aperture efficiency from equation (1).

$$\eta_{o} = \eta \exp\left(\frac{4\pi\delta}{\lambda}\right)^{2}, \qquad (6)$$

where the indirect error $\Delta \eta_0$ can be calculated from an equation similar to (4) to be

$$\Delta n_{0} = \frac{n_{0}}{n} \Delta n$$
 (7)

where we consider only the error contribution η in applying equation (4) because it has the largest effect.

III. Data

f	λ	n	σ*
90.0 GHz	3.33mm	0.48	0.03
223.2	1.34	0.19	0.03

^{*} 2σ is maximum uncertainty in η , including errors in calibration, atmospheric extinction, and flux of Venus.

IV. <u>Results</u>

Substitution of the data above into the appropriate equations gives

$$\delta \pm \Delta \delta = 112.4 \pm 10.3 \ \mu m$$

= 110 ± 10 ,

and

$$n_0 \pm \Delta n_0 = 0.575 \pm 0.036$$

= 0.57 ± 0.04,

where the underlined values reflect the number of significant figures permitted by the measurements.

Ruze, J. 1952, MIT Research Laboratory of Electronics, Tech. Report 248.