12 METER MILLIMETER WAVE TELESCOPE
 MEMO No.

National Radio Astronomy Observatory
Tucson, Arizona
November 21, 1983

Memorandum

TO: \quad 12-m Memo Series
FROM: M. A. Gordon and R. J. Howard

SUBJECT: RMS Surface Accuracy and Zero-Frequency Efficiency

I. Introduction

Over the last few weeks, Rick Howard has measured the aperture efficiency of the $12-m$ telescope, at prime focus, at 2 wavelengths. Because the feeds were scaled versions of each other, the illumination functions were identical. In these circumstances, we can use the 2 measurements to calculate the RMS surface accuracy (weighted by this illumination taper) independent of the zero-frequency efficiency, n_{0}, of the reflector.
II. Theory

If the surface errors of a parabolic reflector are randomly distributed over the surface, then Ruze (1952) gives the aperture efficiency η at a wavelength λ to be

$$
\begin{equation*}
n=n_{0} \exp -\left(\frac{4 \pi \delta}{\lambda}\right)^{2} \tag{1}
\end{equation*}
$$

where δ is the RMS surface error.
The measurement of aperture efficiency at 2 different wavelengths allows us to eliminate n_{0}, giving

$$
\begin{equation*}
\frac{n_{1}}{n_{2}}=\exp \left[\left(\frac{4 \pi \delta}{\lambda_{2}}\right)^{2}-\left(\frac{4 \pi \delta}{\lambda_{1}}\right)^{2}\right] \tag{2}
\end{equation*}
$$

$$
-2-
$$

The RMS surface error is then

$$
\begin{equation*}
\delta=\frac{c}{4 \pi}\left(f_{2}^{2}-f_{1}^{2}\right)^{-\frac{1}{2}}\left(\ln \frac{\eta_{1}}{n_{2}}\right)^{\frac{1}{2}}, \tag{3}
\end{equation*}
$$

where we've replaced wavelength with frequency for mathematical convenience.

Because measurements of aperture efficiencies η have substantial uncertainties σ, we calculate the indirect error on δ caused by propagation of the measurement uncertainties. This error is given by the standard rule

$$
\begin{equation*}
\Delta \delta=\left[\left(\frac{\partial \delta}{\partial n_{1}}\right)^{2} \cdot \sigma_{1}^{2}+\left(\frac{\partial \delta}{\partial n_{2}}\right)^{2} \cdot \sigma_{2}^{2}\right]^{\frac{1}{2}} \tag{4}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\Delta \delta=\frac{\delta}{2}\left[\left(\frac{\sigma_{1}}{n_{1}}\right)^{2}+\left(\frac{\sigma_{2}}{n_{2}}\right)^{2}\right]^{\frac{1}{2}} \cdot\left(\ln \frac{n_{1}}{n_{2}}\right)^{-1} . \tag{5}
\end{equation*}
$$

Having calculated the RMS error by equations (3) and (5), we can calculate the zero-frequency aperture efficiency from equation (1).

$$
\begin{equation*}
n_{0}=n \exp \left(\frac{4 \pi \delta}{\lambda}\right)^{2} \tag{6}
\end{equation*}
$$

where the indirect error Δn_{0} can be calculated from an equation similar to (4) to be

$$
\begin{equation*}
\Delta n_{0}=\frac{n_{0}}{n} \quad \Delta n \tag{7}
\end{equation*}
$$

where we consider only the error contribution η in applying equation (4) because it has the largest effect.
III. Data

f	λ	η	σ^{*}
90.0 GHz	3.33 mm	0.48	0.03
223.2	1.34	0.19	0.03

* 2σ is maximum uncertainty in η, including errors in calibration, atmospheric extinction, and flux of Venus.
IV. Results

Substitution of the data above into the appropriate equations gives

$$
\begin{aligned}
\delta \pm \Delta \delta & =112.4 \pm 10.3 \mu \mathrm{~m} \\
& =110 \pm 10
\end{aligned}
$$

and

$$
\begin{aligned}
n_{0} \pm \Delta n_{0} & =0.575 \pm 0.036 \\
& =0.57 \pm 0.04,
\end{aligned}
$$

where the underlined values reflect the number of significant figures permitted by the measurements.

Ruze, J. 1952, MIT Research Laboratory of Electronics, Tech. Report 248.

