
12 METER MILLIMETER WAVE TELESCOPE

MEMO No.
NATIONAL RADIO ASTRONOMY OBSERVATORY

Tucson, Arizona

INTEROFFICE MEMORANDUM

TO: 12 m Memo Series

FROM: T.K. White and P. R. Jewell

DATE: August 6, 1991

SUBJECT: Fourier Transforms of 12 m Structural Tilt Measurements

This is a follow-up to 12 m Memo No. 247 (July 9, 1991) by P. R. Jewell and T. K.
White on 12 m Structural Tilt Measurements (STM).

The discrete Fourier transforms (DFT) of certain data sets from the memo of July 9
were computed by the program £o u r ie r . c. The theory behind f o u r ie r . c and a listing of
the program are given in the Appendix of this report. The DFT program computes the
amplitudes and phases of the DFT of a data function. From the amplitude of the frequency
points in the Fourier domain, one can see what trigonometric (cosine) terms may be present
in the tilt curves.

This report contains the plots of the DFT amplitudes and phases for several "data
functions" from the STM report. The equations in the Figure Captions below give the cosine
amplitudes and phases of each DFT of the tilt data. In each equation, "A" represents the
azimuth angle in degrees, the amplitude coefficient is in units of arcseconds, and the phase
offset is in degrees. The amplitude at zero frequency corresponds to twice the absolute value
of the "DC” offset; the phase at zero frequency is not plotted because it has no physical
significance.

Figure 1 — Tilts Above Az Bearing, 20 June 91 (corresponds to Fig. 1 in STM report):

13.8*cos(A-119.1) + 1.1 *cos(2*A-170.4) + 0.7-cos(4*A+28.2)

Figure 2 — DFT of Pedestal Tilts, below the azimuth bearing at the south position, 26
June 91 (from Fig. 3 of STM report):

0.92*cos(A+112) + 6.36*cos(2-A-157.7) + 0.66*cos(4-A+24.9)

Figure 3 — DFT of Pedestal Tilts {S pos.\ 6 July 78 (from Fig. 4 of STM):

1.36*cos(A+178.9) + 4.95«cos(2.A+19.6) + 1.33*cos(4.A-170.3)

DFTs of 12 m Structural Tilt Measurements Page 2

Figure 4 -

Figure 5 -

Figure 6 -

Figure 7 —

Figure 8 —

Figure 9 —

Figure 10 -

Figure 11 -

DFT of Pedestal Tilts, 16 May 89 (from Fig. 5 of STM, west position):

0.95*cos(A-99.7) + 4.15*cos(2.A+5.82)

DFT of Pedestal Tilts, 16 May 89 (north position):

1.2»cos(A+154.8) + 4.6»cos(2«A-157.8) + 0.6*cos(4«A+45)

DFT of Pedestal Tilts, 16 May 89 {east position):

0.92»cos(A+82) + 3.75*cos(2*A+5.28)

DFT of Pedestal Tilts, 16 May 89 {south position)'.

0.99*cos(A+175.18) + 5.8 l*cos(2*A-159.47) + 1.05*cos(4.A+11.36)

DFT of Tilts of Inductosyn Box, 20 June 91 (from Fig. 6 of STM)

2.09*cos(A+1.44) + 2.94.cos(2*A-148.22)

DFT of Pedestal Floor Tilts, 20 June 91 (from Fig. 8 of STM)

2.45*cos(A+8.44)

DFT of East Yoke Arm Tilts, 15 May 89 (from Fig. 9 of STM) {perp. pos.):

14.5*cos(A-132.12) + 0.84*cos(2*A-179.01)

DFT of East Yoke Arm Tilts, 15 May 89, (|| pos.):

13.95*cos(A+l 39.38) + 1.43-cos(2.A+113.94) + 0.89*cos(4.A-29.66)

DFTs of 12 m Structural Tilt Measurements Page 3

APPENDIX

fo u r ie r . c and Discrete Fourier Transform Theory

f o u r ie r . c computes the discrete Fourier transform (DFT) of a set of up to 256 data
points. We chose to use a DFT rather than a fast Fourier transform (FFT) because in this
application we are usually transforming a small number of data points that are not usually an
integral power of 2. The DFT at each frequency is computed by:

N_1 r r /
W - E /W cos 27ra__

where f(t) is the "data function" with N data points.

This relation gives us the sinusoids that make up the data function. This is because
to compute the transform at a given frequency (a), all the data points are multiplied by a
cosine and a sine of that same frequency. If the data function does not contain a sinusoid of
the given frequency, then the transform tends to sum to zero at that frequency. We adopt the
convention that the sinusoids are expressed as

co s(A T .f-e),

where N is an integer and positive 9 represents a positive phase offset.

In f o u r ie r . c the real components of the transform are stored in the even-numbered
elements of an array, and the imaginary components are stored in the odd-numbered
elements.

The subroutine amp computes the amplitudes of the transform

, (3)

where R9 is the real component of F(a), and la is the imaginary component.

For our purposes, the second half of the amplitudes is just a mirror of the first half,
excluding frequency point number zero. Here’s why:

] ♦ / sin 2 ^ . 1 (X)

DFTs of 12 m Structural Tilt Measurements Page 4

F(N-<j) - £ m Icos (li^Z Z L t) * i sin (2 * i± ^ /)]
t-o I N N J

- E /(*) fcos (2,r- ^ /) + /sin (2 t - ^ *)1" F (_c7)t-o I N N J

(4)

but the amplitude of (-a)

(5)

The definition for the phase of the transform is

$(cr) - tan-l («)

For example, consider the case of a pure ”1-6" cosinusoid of amplitude a and phase
90°, such that

a *cos(9 - 90) - a * s in (0) . (7)

In this case, the first frequency point in the Fourier domain is given by

**0) - E asin(r) jcos 2̂7r-^ j + i sin j (8)

so that

N-1 { >
" E a sin(0 cos | 2 t _ I -

t-o [N J
0, (9)

and

/i - E asin2(0 - £ w , t-o z
(10)

where N data points complete one period of sin(9). Thus, as expected, the amplitude is given

DFTs of 12 m Structural Tilt Measurements Page 5

by

(11)

and the phase is given by

(12)

To be considered significant, the amplitude (given by the subroutine amp) must be
above the noise level. Phases for frequency points with negligible amplitudes may be ignored.
To illustrate further, assume frequency points one and two have significant amplitudes; that
is, our data set contains significant sin(0) and sin (2*6) functions. If phaz gives 135° for the
phase of frequency point number one and 170° for the phase of frequency point number two,
then the data set contains a cosinusoid of the form:

As long as the sinusoids in the data set trace an integer number of cycles and the data
points are evenly spaced in the Htimett domain, there is no need for windowing the data.
However, if needed, windowing can be turned on during run time.

fo u r ie r . c assumes an input file consisting of two columns of data. The first column
presumably contains the abscissas for the ordinates in the second column. In any case, the
first column (the first field in each row) is ignored, and the second column is taken to be the
data set to be Fourier transformed. The input file is read one line at a time, and the second
field of each line is formatted as a double precision number.

A listing of f o u r ie r . c follows. The authors thank D. T. Emerson for help with
Fourier transform theory.

a • cos (0 - 135°) + a • cos (2 • 6 - 170°)
s a* sin (© - 45°) + a • sin (2 • 0 - 80°)

(13)

KS/nc

/* Fourier.c computes the discrete Fourier transform (DFT) of a set of up to 256
data points. The number of data points need not be an integral pover of 2.
The subroutine "amp” computes the amplitudes of the transform. For
our purposes the second half of the amplitudes is just a mirror of
the first half, excluding frequency point number zero. The
subroutine "phaz" computes the phases of the transform.
For instance, if "phaz" gives -90 for frequency point number 2,
then the original data set contains a cos(2*theta+90) curve. This
assumes that the amplitude at frequency point 2 is significant, i.e.,
above the noise level. Phases for frequency points with negligible
amplitudes are meaningless.

As long as the sinusoids in the data set trace an integer number
of cycles and the data points are evenly spaced in the "time" domain,
there is no need for windowing the data. However, if needed, windowing
can be turned on during run time.

Fourier.c assumes an input file consisting of tw? columns of data.
The first column presumably contains the abscissas for the ordinates in the
second column. In any case, the first column (the first field in each row)
is ignored, and the second column is taken to be the data set to be Fourier
transformed. The input is formatted. The input file is read one line at
a time, and the first two fields of each line are formatted as doubles. */

#include <stdio.h>
#include <math.h>
#include <ctype.h>
#define MAXARRAY 512
#def ine MAXLINLEN 256
#define SWAP(a,b) tempr*(a); (a)=(b); (b)*tempr
mainO

double data[MAXARRAY];
double tempr;/* temporary storage for swap */
double win, arg; /* used in window function */
char *windat; /*window data— yes or no*/
double ft[MAXARRAY]. sum[MAXARRAY]; /*the transform(s) is/are stored in

one or both of these*/
int nptss0; /^number of ponts in the data set*/
int c; /*loop counter*/double num; /*dummy variable for first column of input file*/
FILE *datfil; /*pointer to input file*/
char line[MAXLINLEN],datfilename[MAXLINLEN]; /*input buffer*/
char *cp; /*for lexical analysis of input */
printf("\nEnter name of input file:\n");
scanf("%s",datfilename);
if ((datfil * fopen(datfilename,"r")) NULL)

printf("Can't read data file %a— exiting.\n".datfilename);
exit(l);

>

for (c*0; c<MAXARRAY; C + +) /* initializing */
{ data[c] * 0.0;

sum[c] * 0.0;
ft[c] * 0.0;

>

while (fgetsdine,MAXLINLEN,datfil))
{ /* primitive lexical analysis--mostly to bloww of header lines*/

for(cp * 4rline[0]; *cp; cp++)

if (isspace(*cp))
continue;

if (isalpha(*cp))
break;

if (isdigit(*cp) || (*cp ** •-’))
sscanf(line,"%lf %lf",&num,&data[npts]) ; npts++;

break;
>

>
printf("\nWindow the data (y/n) ?\n");
scanf ("7.8'Mine);
windat * irline Coj ;
il ((toupper(*windat)) ==* ’Y*)

for (c=0; c<npts; C + +) /*window the data*/
arg = (c-0.5*(npts-1)) / (0.5*(npts+l));
win a 1.0 - arg*arg;
dataCc] * data[c]*win;

>
four(data,sum.npts); /* Fourier transform the data */
for (c=0; c<npts/2; C + +) /* shift the data to counter the */

SWAP(data[c],data[npts/2+c]); /* effects of the windowing the data */
for (c=0; c<npts; C + +) /*window the shifted data*/

arg * (c-0.5*(npts-l)) / (0.5*(npts+l));
win » 1.0 - arg*arg;
data[c] 3 data[c]*win;

>
four(data,ft,npts); /* Fourier transform the shifted data */
for (c»0; c<2*npts; c++) /* avg. the results with previous DFT */

ft[c] * (sumCc] + ft[c])/2;
>
else /*don*t window the data*/

four(data,ft,npts) ;
amp(ft,npts);
phaz(ft.npts);

{

amp(avgft,npts)
double avgft[]; /* the result of a fourier transform */
int npts;

double aCMAXARRAY]; /* the amplitude at each frequency point */
int k;
FILE *ampfil; /*points to the amplitudes output file*/
char ampf ilname [MAXLINLEN] ;
for (k*0; k<MAXARRAY; k++)

a[k] = 0.0;
printf("\n/enter name of output file for amplitudes:\n");
scanf("^s",ampfilname);
if ((ampfil ■ fopen(ampfIlname,"w”)) « NULL)
 ̂ printf("Can't open amplitude file %b— going on to phases.\n",ampfilname);
else

for (ka0; k<npts; k++)

a[k] = (sqrt((avgft[2*k] * avgft[2*k])
+ (avgft[2*k+l] * avglt[2*k+l]))) / (npts/2);

fprint!(ampfil, "%d %5.8f\n",k,a[k]);
>

phaz(avgft,npt a)
double avglt [];
int' npt s;

int h;
double ph[MAXARRAY]; /* phase at each frequency point */
FILE *phasfil;
char phasfilname[MAXLINLEN];
for (h=0; h<MAXARRAY; h++)

ph[h] 3 0.0;
print!("\n/enter name of output file for phases:\n");
scanf("fts" .phasfilname) ;
if ((phasfil * f open (phasf ilname, "w")) *** NULL)

printf("Can't open phases file %s--exiting.\nw.phasfilname);
exit(1);

>for (h=l; h<npts; h++)
{

ph[h] *180/3.1415927* atan2(avgft[2*h+l].avgft[2*h]);
fprintf(phasfil, n%d %5.8f\n",h,ph[h]);

{

four(data,ft,npts)
/* fourO returns (in the array ft[]) the discrete fourier transform (DFT) of

the data set in the array data[]. The data is assumed to be real. The
transform is complex (except for special types of data functions) and is
stored in the array ft []. Real components are stored in even-numbered
array elements and imaginary components are stored in odd-numbered
elements. */

double data[];
double ft[];
int npts; /* number of points in the data array */

int i,j;
for (i»0; KMAXARRAY; i++) /* initializing */

ft[i] 3 0.0;
for (i=0; i<(2*npts); i +* 2)
< for (j=0; J<npts; j++)

/* real component */
ft[i] +* data[j]*cos(3.14159*(double)(j*i)/(double) npts);
/* imaginary */
ftCi+1] +* data[j]*sin(3.14159*(double) (j*i)/(double) npts);

>
>

>

ph
as

es

am
pl

itu
de

s

10
0

0
10

0
0

10

DFT of Tilts Above Az Bearing, 20 June '91

oCN

0 20 40 60

frequency

DFT of Tilts Above Az Bearing, 20 June '91

frequency

ph
as

es

am
pl

itu
de

s
10

0
0

10
0

0
5

DFT of Pedestal Tilts, June 26 '91

I
i t

, - I - I . I i

' “

- -

- -

- -

- -

- -

- -

f
:

*
I

- -

- -

- -

- -

3

A J \

: t ■

I - -• 1 i 1 i 1

0 2 0 4 0 6 0

frequency

DFT of Pedestal Tilts, June 26 '91

frequency

\ - \ 6 . 2 .

DFT of Pedestal Tilts (south pos.), 6 July '78

frequency

DFT of Pedestal Tilts (south pos.), 6 July '78

frequency

ph
as

es

am
pl

itu
de

s

DFT of Pedestal Tilts (west pos.)» May '89

frequency

DFT of Pedestal Tilts (west pos.), 16 May '89

frequency

T m g -

DFT of Pedestal Tilts (north pos.), 16 May '89

frequency

DFT of Pedestal Tilts (north pos.), 16 May '89

frequency

T i s . s -

DFT of Pedestal Tilts (east pos.)» 16 May '89

frequency

DFT of Pedestal Tilts (east pos.), 1 6 May '89

frequency

DFT of Pedestal Tilts (south pos.), 16 May '89

frequency

DFT of Pedestal Tilts (south pos.), 1 6 May '89

frequency

DFT of Tilts of Inductosyn Box 20 June '91

DFT of Tilts of Inductosyn Box 20 June '91

w<u
too

JZ
CL

frequency

H g . *

ph
as

es

am
pl

itu
de

s
10

0
0

10
0

0
1

DFT of Pedestal Floor Tilts, 20 June '91

frequency

DFT of Tilts of Pedestal Floor, 20 June '91

frequency

" F l G> .

DFT of East Yoke Arm Tilts (perp. pos.) 15 May '91

m

CO<uT>D

If)

o - it* *-*)fr-
J--- 1--- 1--- 1--- 1__ I__ I__I I I I I ■

, , y ■

I I I I I

0 10 20

frequency

30

DFT of East Yoke Arm Tilts (perp. pos.), 15 May '91

frequency

t - i G . t o

DFT of East Yoke Arm Tilts (parallel pos.). 15 May '91

(0<u■oD
~CL
E

frequency

DFT of East Yoke Arm Tilts (parallel pos.), 15 May '91

w<l>(0
o

frequency

H g >. i l

DISTRIBUTION:

12 m Memo Series File

Tucson:
D. Chase
D. Emerson
T. Folkers
R. Freund
M. Gordon
J. Kingsley
J. Lamb
J. Payne

Charlottesville:
R. Brown
L. King

Socorro:
C. Janes
P. Napier
C. Wade

Others:
B. L. Ulich (Kaman Aerospace)

