C. J. Salter (N.R.A.O., Tucson)

July 1985
Page

1. Continuum Observing at Millimeter Wavelengths 3
2. The Emerson, Klein, and Haslam Algorithm 4
3. Preparing and Making Observations 7
4. Data Analysis: General Remarks 9
5. A Suggested Standard Path for Data Reduction 11
6. Calibration 14
7. Concluding Remarks 16
Appendix A Data Formats 19
Appendix B Dictionary of Tasks 32

Foreword

This document describes the continuum mapping system at the 12-m telescope. It should be used in conjunction with the Observers' Reference Manual (in preparation) for a complete view of planning observations, data taking and analysis.

The system described here owes its existence to the contributions of many people. Outside N.R.A.O., Darrel Emerson, Glyn Haslam and Uli Klein must be particularly thanked. They not only devised the dual-beam restoration technique, but most generously supplied software, documentation and advice. In Tucson, Stuart Shaklan wrote large parts of the software, while Betty Stobie gave invaluable assistance with all "aspects computorial" (and will, poor soul, inherit this part of the system.) John Payne, Paul Rhodes and their merry men leaned over backwards (as well as sideways) to provide the best possible continuum observing system. Phil Jewell and Mark Gordon were the "perfect guinea pigs" in testing the complete system and made many valuable comments and suggestions. Bob Brown provided continual encouragement and made available telescope test time (but why did it always rain, Bob?). Jennifer Neighbours is thanked for typing this manual.

1. Continuum Observing at Millimeter Wavelengths

At radio wavelengths, the single-dish observer grapples with the problem of detecting and mapping weak signals in the presence of both receiver noise and varying receiver drifts. For $\lambda>3 \mathrm{~cm}$, the effects of the terrestrial atmosphere is usually only a minor irritation. However, at millimeter wavelengths the atmosphere can absorb one half, or more, of the power incident from a radio source, while radiating a large and variable quantity of power itself.

Even in the finest possible observing weather conditions, atmospheric emission makes it impossible to use the traditional radio techniques of total power, or load-switching, observations with the N.R.A.O. $12-\mathrm{m}$ telescope. For some years, observers have used a technique of "beam-switching" at these high frequencies. The system takes the power difference between two feeds separated in the telescope focal plane. One feed can be positioned on the radio source of interest, while the other provides a reference signal from "blank sky". Apart from giving similar intensities for both signal and reference phases, the technique provides a high degree of rejection of the atmospheric emission, which is similar in the two angularly-nearby beams. Until the late 1970's beam-switching of this form was used exclusively to study sources whose sizes were less than the angular separation of the two beams. For larger sources, emission from different areas of the source contribute simultaneously to the power received in each beam. This results in a complicated image (see Fig. 2) that cannot be interpreted directly.

However, Emerson, Klein and Haslam (Astron. Astrophys., 76, 92, 1979) demonstrated that a simple algorithm exists for reconstructing the brightness distribution of such sources, as if they had been observed with a single beam. It is this algorithm that is used by the present continuum mapping system in analyzing data from the $12-m$ telescope.
2. The Emerson, Klein and Haslam Algorithm

A detailed description of the algorithm can be found in both Emerson et al (see above) and Klein (Diplomarbeit, University of Bonn, 1978; in German). Only a brief outline will be included here, highlighting points of relevance to the $12-\mathrm{m}$ system.

At wavelengths around $\lambda 3 \mathrm{~cm}$, the effects of atmospheric emission overwhelm the importance of atmospheric absorption. At millimeter wavelengths, both must be taken into account if accurate intensity calibration is to be achieved. While the beams of a dual-beam observation diverge in the far-field of the antenna, there is a high degree of overlap in the near-field, and hence within the atmosphere. Taking the power difference between the two beams largely subtracts the atmospheric emjssion. Even then, it should be noted, only the best possible observing weather is suitable for making successful millimeter-wave continuum observations. This is especially true at either $\lambda 1.3$ or 0.8 mm . The far-field limit of a telescope of diameter D is at $D^{2} / 2 \lambda$. For the $12-\mathrm{m}$ telescope this represents a distance of 24 km at $\lambda 3 \mathrm{~mm}$ wavelength, while most atmospheric emission originates below heights of $2-3 \mathrm{~km}$. At the $12-\mathrm{m}$ telescope the two beam directions

SATURN AT 84.2 (:HZ, DUAL-BEAM MAP

Fig. 1.

M17 AT 94.2 GHZ. DLIAL-BEAM MAP

Fig. 2.
are obtained by rocking the subreflector (often called "nutating") between two fixed positions. The separation of these positions can be varied from zero up to about 5 arcmin. Typically, recommended beam separations are $4 \operatorname{arcmin}$ at $\lambda 3 \mathrm{~mm}$ and 2 arcmin at $\lambda 1 \mathrm{~mm}$.

If the object is smaller than the beam separation, Fig. 1 , the images from the two beams are distinct and the observer can either map just one image, using the other beam as a reference signal, or use a "shift and subtract" method to obtain his result.

When the source is more extended that the beam separation, Fig. 2, a more sophisticated analysis technique is required. Let us suppose that our map has been made from a raster of scans, with the telescope scanning along the direction defined by the separation of the beams. At the $12-\mathrm{m}$ telescope the beams are separated in azimuth to give the best possible "weather rejection". The transformation from an az-el frame to an R.A.-dec frame is made during the analysis.

Following Emerson et al, we consider what effect the dual-beam observing has had on our maps. Suppose that the two beams have identical polar diagrams. If, Figs. 3 i) - iii), S is the true source intensity distribution, B is the polar diagram of a single beam, and D is the "dual-beam function", (consisting of two δ-functions spaced by the beam separation), then I, the resulting dual-beam response, Fig. 3 iv), is

$$
I=S * B * D
$$

(Where * denotes convolution, and x denotes multiplication)

Fig. 3. Schematic representation of a true source brightness distribution $S(i)$, the single beam B (ii), the dual-beam function D (iii) and the dual-beam $D \cdot B$ (iv) with the amplitudes β of the respective Fourier transform representations $s, b, d, d \times b$ shown in (v)-(viii). The scales are arbitrary

However, we wish to obtain the equivalent single-beam response, P, given by

$$
P=S * B
$$

Denoting the Fourier transforms of these quantities by lower-case letters, Figs. 3 v) - viii), we have

$$
\mathrm{p}=\mathrm{s} \times \mathrm{b}
$$

and
$i=s \times b \times d=p x d$

Thus,
$p=i x(1 / d)$
and
$P=I * G$
where G is the Fourier transform of (1/d), see Fig. 4.
We see that convolving the scans of our map with the function G of Fig. 4 will restore the equivalent single-beam observation. Note that G is made up of δ-functions spaced by the angular separation of the two beams. The effects of the convolution with G on the signal-to-noise ratio as a function of spatial frequency, and details of the handling of finite sampling, are to be found in Emerson et al (1979) and Klein (1978).

In practice, a number of factors affect the application of the method. Firstly, the cancellation of atmospheric emission is always less than 100%, both due to less-than-complete overlap of the two beams within the atmosphere and fluctuations in the emission more rapid than the frequency of switching between the beams. Smaller beam separations cancel the atmospheric emission more completely, although as wide a separation as possible is desired to maximize the signal-to-noise ratio when mapping a large field (see below). If the weather is too choppy, it is probably

Fig. 4.
time to consider spectroscopy! Secondly, the polar diagrams of the two beams can differ at low levels due to coma lobes or the beams may have slightly different gains. These differences, along with uncertainties in the separation-geometry of the two beams, can be the limiting factors on the dynamic range obtained for strong sources. The present implementation of the method permits a correction for the effect on the astronomical results of differing beam gains. Thirdly, the noise level increases for fields whose dimensions are many times the beam separation (see below).

The dynamic range of the final map can be improved by making several coverages of the source at different sidereal intervals, (and hence parallactic angles), and then combining the restored images. This will also reduce the variations of signal-to-noise ratio as a function of spatial frequency.

The intrinsic noise ripple on a dual-beam map following restoration can be approximated (in the case of perfect cancellation of atmospheric emission) to
where, τ is the integration time per point in the final map.
β is the bandwidth
and $\quad n$ is the total scan length in units of the beam separation.

3. Preparing and Making Observations

In planning observations, a number of factors should be borne in mind when deciding how to programme your observations. You
will be making a raster in azimuth and elevation and must allow for the necessary extra scan length to accommodate the two beams, as well as the region of interest. A simple and safe way when choosing the size of region to map is to pick a square field size that would cover adequately the largest dimension of the source if observing with a single beam. Allow sufficient zerolevel at the edges of the field. Add the separation of the two beams to the azimuth scan length. Choose a sampling interval (grid size) that is no greater than about (H.P.B.W. / 2.5).

When deciding on the total integration time needed to achieve your mapping objective, bear equation (7) in mind. You will usually get better results if the integration time per point, τ, is obtained via several maps (Say N), giving an integration time per map per point of τ / N. Remember, however, that for technical reasons the $12-\mathrm{m}$ telescope acquires data at present by stepping between adjacent sampling points, rather than by continuous scanning. Thus, there is 1 to 1.5 sec dead-time between each integration and it is impractical to shorten the individual integration time too much. A sensible compromise is probably 4-10 sec per map per point.

Detailed instructions for commanding the telescope to make an azimuth-elevation map (currently known as 360 and 361 LOAD) are to be found in the continuum section of the Observers' Reference Manual (soon to be obtainable from the Friend of the Telescope). Here we will just stress the importance of making sure that a suitable pointing correction has to be applied in azimuth to bring
the nominal pointing zero to a point midway between the two beams. Be sure to make sufficient atmospheric tips (TPTIP or SPTIP) to allow for variations in atmospheric absorption with time. At frequencies where a noise source is available (currently $\lambda 3 \mathrm{~mm}$), frequent CALIBRATES should be performed.

At least one calibration source should be mapped per day. The most accurate flux density calibration is achieved if a similar sized area is covered to that chosen for programme sources. The ideal calibration source should be strong, with angular diameter much less than the telescope H.P.B.W. and of known, or predictable, flux density. With the present receivers at $\lambda 3 \mathrm{~mm}$, Saturn is close to this ideal, while Venus and Jupiter are worthy of consideration. The situation at $\lambda 1 \mathrm{~mm}$ is less satisfactory, but Saturn, or Mars (with subsidiary calibration to the brighter planets), could be reasonable choices. Again, despite larger angular diameters, Jupiter and Venus can be used. Sufficient "five-point" measurements of standard sources over a wide elevation range should be obtained. These are used both to determine the best telescope pointing for off-line analysis and to look for possible gain-elevation effects.
4. Data Analysis: General Remarks

The data reduction system for making restored, R.A.-dec maps from $12-\mathrm{m}$ telescope data consists of a set of stand-alone analysis programs that lean heavily on the NOD2 programme library (Haslam, Astron. Astrophys. Suppl., 15, 333, 1974). As an example, Fig. 5 shows a single az-el, dual-beam coverage of the HII region,

Orion A, the restored az-el map and the result of combining 3 such maps transformed into R.A.-dec (Gordon, Jewell, Kaftan-Kassim and Salter) .

A limited number of post-processing options are available and a plot package can be used with the Zeta pen-plotter in Tucson. Maps can be written to magnetic tape and transported in either NOD2-internal, ASCII or FITS format. The FITS to NOD2 interface can be used to transfer $12-\mathrm{m}$ telescope maps to an AIPS environment, or to transfer a FITS map made elsewhere into NOD2 format. Observatories currently supporting NOD2 include MPIFR (Bonn), IRAM (Grenoble and Granada), CSIRO (Parkes and Epping), Nobeyama, Bologna, Jodrell Bank and TIFR (Bangalore).

The mapping-data analysis programs are used via the Tucson CONDAR programs. They are available interactively to CONDR1 and CONDR2 users through the VMS SPAWN facility. At the end of each operation, control is returned to CONDAK. A11 maps, both intermediate and final versions, are stored on the main disk as files with extensions .NOD . Users are advised to stick to a rigorous naming policy for files to avoid confusion. Default names are suggested in the next section. The user should clear the disk of his files before leaving the mountain or town, having first prepared a magnetic tape of the images he wishes to export.

Maps can be made at the telescope as soon as an observation is complete. This is useful as a first-look. However, observers may prefer to make their final, calibrated maps off-line at the Tucson office later. If this is the case, they should arrange

ORION A AT 84. 2 GHZ, DLUAL-BEAM MAP.

Fig. 5 i)

ORION AT 84. 2 GiL, RESTORED MAP.

Fig. 5 ii)

with the telescope staff to have the appropriate Pops Data File (PDFL.DAT) transferred to tape or disk for transport to Tucson.

In respect of the basic data reduction package, there is one point of which the observer should be aware, even though it is essentially transparent. Before transformation from the az-el frame into R.A.-dec, each map grid has an associated grid of sidereal times that is used in making the transformation. These sidereal times can be listed via the task MLIST, but should be otherwise hidden.
5. A Suggested Standard Path for Data Reduction

In this section we will describe the simplest possible passage from raw telescope data to a calibrated R.A.-dec map. Program sources and calibration sources need somewhat different processing. The processing is detailed in this section and the calibration process is described in Section 6. The format for NOD2 maps is given in Appendix A, while Appendix B describes each of the available tasks in alphabetical order.

The basic flow described here has proved sufficient for almost all cases to date. Suggested names for the files produced by each task are given. Proceed as follows, reducing calibration sources first,
i) Examine each scan as the telescope completes it using the POPS procedure M (see CONDAR manual). This can reveal problems ranging from observer errors in setting up the map to the onset of bad weather or receiver malfunctions.
ii) Gather together the calibration data you wish to use in making the map. This step can be bypassed altogether if you are
having a "quick-look" or are prepared to accept the values of noise-source cals, atmospheric opacity and telescope pointing that were used by the PDP11/40 during the observation. If, however, you wish to update the noise-source calibration (\#C or \#CP) or atmospheric opacity, tabulate the local sidereal times and values of relevant measurements made before and after the observation. The task MAKMAP will apply a linear interpolation using these values across the observation.

If you wish to correct for an elevation-dependent pointing error, prepare the file FIVEPT.DAT on disk in the relevant VAX-user area using the EDT editor. The file FIVEPT.DAT has the format,

Beam Separation (arcsec)
Elevation (decimal degs), Az offset (arcs), El offset (arcs)
(repeat, one line per five-point measurement)
-999 (end of pointing data f1ag)
If more than one set of pointing data apply (for example if the two receiver channels have different pointing and you wish to analyze them via a single call to MAKMAP), the extra sets of pointing data should follow on after each -999, in the same file FIVEPT.DAT. See Appendix B for a description of entering the data in FIVEPT.DAT into MAKMAP. The az and el offsets are the revised thumbwheel values printed at the bottom right of the output of

CONDAR procedure F .
iii) Make the basic dual-beam map from the raster of scans in PDFL.DAT using the task MAKMAP. (Suggested filename is XXXXRAW, where XXXX is an identifier chosen by the user of from one to six letters.) The operation of MAKMAP, and all other tasks, is described in Appendix B.
iv) Look at the dual-beam map on the graphics terminal using task TOOLKIT. If necessary, edit bad points in the map within TOOLKIT. If you have performed any editing, output the map before exiting TOOLKIT (suggested filename XXXXMOD).
v) If the source is a calibrator, make two-dimensional Gaussfits to the map with task AZELFIT. See Section 6 to find how these fits are used in the calibration process.
vi) The task RESTOR converts the dual-beam map into the equivalent single-beam representation (suggested filename XXXXRES). Three numbers defining the dual-beam geometry (separation, angle and gain ratio) are entered to permit the restoration. If the source is a calibrator you can stop at this stage and follow the procedure described in Section 6.
vii) Run task SETBASE (suggested filename XXXXBAS) to take out small gradients along the scan that can be introduced during the restoration process. The scaling from raw map units into (say) mK of effective brightness temperature can be performed by this task, using the results of the intensity calibration.
viii) The task CONVERT transforms the az-el maps into R.A.-dec coordinates. Following transformation, it discards the
now-redundant, sidereal time information. CONVERT can stack together several az-el maps into a single R.A.-dec map, or add a further az-el map into an existing R.A.-dec map made by CONVERT. The maps are stacked with weighting that is inversely proportional to the square of the effective system temperature.
ix) If the resultant map seems acceptable when examined by TOOLKIT, you can proceed with post-processing, making publication-quality plots and saving the final images on magnetic tape.
6. Calibration
i) The Dual-Beam Parameters

The parameters describing the dual-beam geometry needed by RESTOR are obtained from Gaussfits (via task AZELFIT) to the dual-beam map of a calibration source produced by MAKMAP. These parameters are,
a) The separation of the positive and negative beams in arcmin.
b) The angle, in degrees, that the line joining the two beams makes with the horizontal (ideally 0°). This is measured anticlockwise with azimuth increasing to the right.
c) The ratio of the beam gains in the sense left hand beam to right (with azimuth increasing to the right). If the left hand beam is the negative beam (the current $12-\mathrm{m}$ situation), then the ratio of the gains is conventionally taken to be negative. If you get the
sign of the ratio wrong, the restored map will be the negative of your expectations (i.e. the sources become holes!).

ii) The Brightness Calibration

The most convenient units in which to calibrate the intensity scale of a $12-\mathrm{m}$ telescope map seems to be mK of full-beam effective brightness temperature. The calibration from map units (mu) into mK can be obtained in two ways. As the second method is only strictly applicable to calibration via a point source (while often millimeter-wave calibration will use the finite-sized planets), it is recommended as a cross-check and for determination of full-beam solid angle.

Method 1: Look up the total flux density of your calibrating source, or compute its total flux density for the observing epoch if it is a planet. We will call this $\mathrm{S}_{\text {TOT }}$.

Once RESTOR has been run on the calibrating source, integrate the restored map of the source using FLUX. Tell the program that the units are $m K$ even though they are not (i.e. enter 0.001 into FLUX when asked for the scaling factor from mu into degrees K)! FLUX will tell you that the flux density of the source is $\mathrm{S}_{\text {COMP }}$ •

The conversion factor from mu into mK (effective full-beam brightness temp.) is then

$$
\frac{\mathrm{S}_{\mathrm{TOT}}}{\mathrm{~S}_{\mathrm{COMP}}} \mathrm{mK} / \mathrm{mu}
$$

Method 2: (Applicable only to point sources)
Once RESTOR has been run on your calibrating source, integrate the restored map using the task CALFLUX which will give the result ($A_{C A L}$) in units of mu.steradians.

Make a Gaussfit to the map with AZELFIT and note the peak intensjty of the source ($I_{\text {CAL }}$) in units of mu. The full-beam solid angle of the telescope, $\int l_{B}$, is given by,

$$
S l_{B}=\frac{{ }^{A_{C A L}}}{I_{C A L}} \text { steradians }
$$

Applying the Rayleigh-Jeans approximation (as we are calibrating in effective brightness temperature), for a point source the ratio of flux density to full-beam brightness temperature (S/T) is given by,

$$
\frac{\mathrm{S}}{\mathrm{~T}}=\frac{2 \mathrm{k} \Omega l_{\mathrm{B}}}{\lambda^{2}}=\mathrm{g} \text { (say) }
$$

and

$$
\mathrm{g}=\frac{2.76 \times 10^{9} \Omega_{\mathrm{B}}(\text { ster })}{\lambda_{\mathrm{mm}}^{2}} \mathrm{Jy} / \mathrm{K} \quad(\text { or } \mathrm{mJy} / \mathrm{mK})
$$

Now, if the calibrating point source has a flux density of Sp in mJy , its effective full-beam brightness temperature will be $S p / g$ in $m K$, and the scale factor is $S p /\left(g I_{C A L}\right)$ $\mathrm{mK} / \mathrm{mu}$.

7. Concluding Remarks

The present $12-m$ telescope continuum mapping system, as
described in this document, is complete within itself but should not be considered as an end-point. Much additional software, especially post-processing aspects, can be easily provided and already exists at other observatories using NOD2 (see The Hitch-Hikers Guide to NOD2, M.P.I.F.R., Bonn).

A number of new hardware features will improve the continuum mapping potential of the $12-\mathrm{m}$. Firstly, the new generation of receivers, now under development, should provide vastly improved sensitivity. Also, a digital continuum back-end will be available within the next few months giving much greater accuracy and flexibility in data acquisition and processing. Hand-in-hand with this back-end will come a continuous gain calibration method which will greatly improve the certainty of the data calibration. A fast beam-switcher located at the telescope vertex is also to be introduced. This will allow beam-switching at rates of up to 100 Hz and give improved blanking between phases, more time on source and better sensitivity by reducing ' $1 / f^{\prime}$ noise.

A number of possible developments exist for the longer term. Emerson et al demonstrated that the ideal high frequency system should have not a dual-beam, but triple-beam, capability. The advantages of also developing a focal-plane array do not need to be spelled out. Finally, the present system maps only the total intensity of celestial sources. The possibility of measuring the polarization properties of the emission would add much to the astronomical potential of the system.

A new control system is planned for the telescope, to be
-18-
installed in 1987. It is hoped that telescope scanning, rather than stepping, will then be possible. This would raise the data-taking efficiency of the telescope enormously, an important factor in view of the anticipated high sensitivity receivers.

Appendix A

Data Formats

i) Raw Scan Data Format

The scans, as fresh from the telescope, are in POPS CONTINUUM MAPPING format. These scans are stored in the file PDFL. DAT, are accessible to the CONDAR routines and are used by the task MAKMAP. All maps are scanned in azimuth-elevation from lower left corner to top right corner. The current format is as follows,

Integer ITWE	Real TWH	Double DTWH	Type	Contents	Units
	1		R*4	Scan Identification Number	
3-8			I*2	Source Name (12)	
9-18			I*2	Obsr. Initials (4)	
				Opr. Initials (4)	
19			I*2	Channel Number	
20			I*2	\# Blocks for this	
				Scan	
		6	R*8	Modified Julian Date from 1 Jan 1950	
25			I*2	Month	
26			I*2	Day	
27			I*2	Year	
28			I*2	Not Used	
	15		R*4	LST of scan start	Rad
	16		R*4	UT of scan start	Rad
33			J*2	Telescope	
34			I*2	Type of Observing	
35			I*2	Scan Type	
36			I*2	Number of Points	
37			I*2	START	
38			I*2	STOP	
39			I*2	Number of Columns (Grid points per row)	
40			I*2	Number of Rows	
	21		R*4	Total No. of Channels	
	22-23		R*4	Not Used	
	24		R*4	Scan Time	Sec
	25		R*4	Not Used	
	26		R*4	Integration Time/ Point	Sec
	27		R*4	\% Efficiency	\%/100
	28		R*4	Azimuth Offset (Thumbwheel)	Sec Arc
	29		R*4	Elevation Offset (Thumbwheel)	Sec Arc
	30		$\mathrm{R} * 4$	Telescope Azimuth at Scan Start	Rad
	31		$\mathrm{R} * 4$	```Telescope Elevation at Scan Start```	Rad
	32		K*4	Focus Offset (Fø)	mm
	33		R*4	Not Used	
	34		R*4	Zenith Attenuation (ATTN)	\%/100
	35		$\mathrm{R} * 4$	Tracking Tolerance (TOL)	Sec Arc
	36		R*4	Not Used	
	37		R*4	Not Used	

Integer ITWH	$\begin{aligned} & \text { Real } \\ & \text { TWH } \end{aligned}$	Double DTWH	Type	Contents	Units
	38		R*4	Grid Point Separation	Sec Arc
	38		R*4	HP	Sec Arc
	40		R*4	Not Used	
	41		R*4	Az . offset of scan start from field centre (real angle, without thumbwheels)	Sec Arc
	42		R*4	E1. offset from field centre (without thumbwheels)	Sec Arc
	43-44		R*4	Reference Offsets	Sec Arc
	45		R*4	\#C (Switched-power noise tube counts)	
	46		R*4	\#CP (Total-power noise tube counts)	
	47		R*4	Map Centre RA (epoch)	Rad
	48		R*4	Map Centre DEC (epoch)	
	49		R*4	```TC (noise tube temp.)```	Deg K
	50		R*4	System Temperature	Deg K
	51		R*4	Not Used	
	52		R*4	Not Used	
	53		R*4	Bandwidth	MHz
	54-99		R*4	Not Used	
	100		R*4	\#ROW (number of the current map row starting from 1)	
	101		R*4	NROW (total number of rows in the full grid)	
	102		R*4	Map centre RA(1950)	Rad
	103		R*4	Map centre DEC(1950)	Rad
	104-125		R*4	Not Used	
	126		R*4	Wavelength	mm
	127		$\mathrm{R} * 4$	Ambient Temperature	Deg C
	128		R*4	Elevation Axle Temp.	Deg C
	129-224		R*4	Data Values	Deg K
	225-384		R*4	Mean LST of data values	Rad

ii) NOD2 Scan Format
Within the task MAKMAP the raw POPS scans are corrected for gain calibration and atmospheric attenuation variations. They are also regridded for pointing errors and filtered to remove "non-astronomical" Fourier components, before being combined to produce the raw map. For part of this operation the scans are put into NOD2 scan format. Although the average user will not need to know this format, it is included here for completeness. The format is compatible with that of general NOD2 documents (see Appendix A iii).

The one dimensional array, SCAN, has the following six types of information stored in it. (Page references are to the NOD2 Manual. The values set in the elements of SCAN by MAKMAP are given in parentheses.)

Type of information

1) Length of space declared for array SCAN.
2) Organizational parameters.
3) Progress word (see subroutine STORY Page B 2.2)
4) The identifying title. This is compatible with routines TPEAD and TPRINT (see Page B 2.1)
5) Parameters associated with the data.
6) The tabular scan data.
where
where
then
also

Where stored

```
SCAN (1)
```

SCAN (2) to SCAN(6)
SCAN (7)
SCAN (8) to SCAN(25)
SCAN (26) to SCAN (I-1)
$I=\operatorname{SCAN}$ (2)
SCAN (I) to SCAN(J)
IPOINTS=SCAN (3)
ICHANS=SCAN (4)
$\mathrm{J}=$ IPOINTS*ICHANS $+\mathrm{I}-1$
J=MSIZE (SCAN)

The organizational parameters are:
SCAN(1) This is the length of the array SCAN as declared by a dimension statement at the top of the job. It is used by MAPOUT and MAPIN when SCAN is transferred to or from mass storage and core. It is checked to prevent overwriting.

SCAN(2) This contains the address of the first data location of the first tabular scan channel. $\quad(S C A N(2)=200$ in MAKMAP)

SCAN(3) This contains the number of tabular points contained in each channel. (SCAN (3) $=\operatorname{ITWH}(39)$)

SCAN (4) This contains the number of channels stored in the tabular scan array. $(\operatorname{SCAN}(4)=5)$

SCAN(5) This is the type number of scan data for tabular scans. $15.0<\operatorname{SCAN}(5)<20.0$. These are defined as:
A tabular Azimuth scan with positive sense $=16.0$
A tabular Azimuth scan with negative sense $=17.0$
A tabular Elevation scan with positive sense $=18.0$
A tabular Elevation scan with negative sense $=19.0$
$(\operatorname{SCAN}(5)=16)$
SCAN (6) This is the dummy value that has been placed in empty or faulty data elements. $\operatorname{SCAN}(6)=0.0$ means that all dummy tests will be overlooked. $\quad(\operatorname{SCAN}(6)=-999999.5)$
$\operatorname{SCAN}(7) \quad$ This is the progress code word, see routines TREAD (Page B 2.1) and STORY (Page B 2.2) (Initially SCAN(7) is zeroed.)

SCAN (8-25)	The identifying title is chosen by the user and can be read in by subroutine TREAD or generated by subroutine RENAME. This title is printed by many library subroutines to identify the analysis data. The title is stored in SCAN(8) to SCAN (25). (Title is a copy of ITWH(3) to ITWH (18) $\operatorname{SCAN}(24)=$ Date of running MAKMAP SCAN (25) = Usertag)
Astronomical Parameters for tabular scans:	
SCAN (26)	Epoch of observation in years. $(\operatorname{SCAN}(26)=1950 .+\operatorname{DTWH}(6) / 365.25)$
SCAN (27)	Frequency of observation in MHz . (Frequency is negated for az-el scans)
SCAN (28)	Latitude of observatory in degrees. $(\operatorname{SCAN}(28)=31.95333)$
SCAN (29)	Azimuth offset of start of scan (real angle). (In degrees relative to map centre)
SCAN (30)	Elevation offset of start of scan. (In degrees relative to map centre)
SCAN (31)	Coordinate code. $\quad(\operatorname{SCAN}(31)=21)$
SCAN (32-40)	9 Element transformation matrix from the coordinate system of the map to RA,Dec epoch 1950.0. (see AMAP (31-40), for definitions of SCAN(31-40)) (Matrix to RA,Dec(1950) for map centre)
SCAN (41)	Initial $1 / 2$ power longitude beamwidth in degrees on the equator of the coordinate system. (Entered by observer in MAKMAP)
SCAN (42)	Initial $1 / 2$ power latitude beamwidth on the equator of the coordinate system. (= SCAN(41))
SCAN (43)	Current $1 / 2$ power longitude beamwidth (=SCAN (41))
SCAN (44)	Current $1 / 2$ power latitude beamwidth (=SCAN(41))
SCAN (45)	The longitude tabular interval between points in degrees. $(\operatorname{SCAN}(45)=\operatorname{TWH}(38) / 3600)$
SCAN (46)	The latitude tabular interval between pojnts in degrees. $(\operatorname{SCAN}(46)=\operatorname{SCAN}(45))$

SCAN (47)	Long 1 The starting longitude of the scan. $(\operatorname{SCAN}(47)=\operatorname{SCAN}(29))$
SCAN (48)	Lat 1 The starting latitude of the scan. $(\operatorname{SCAN}(48)=\operatorname{SCAN}(30))$
SCAN (49)	Long 2 The ending longitude of the scan. $\begin{aligned} & (\operatorname{SCAN}(49)=\operatorname{SCAN}(47)+(\operatorname{SCAN}(3)-1) \\ & * \operatorname{SCAN}(45)) \end{aligned}$
SCAN (50)	Lat 2 The ending latitude of the scan. $(\operatorname{SCAN}(50)=\operatorname{SCAN}(48))$
	All above angles are in degrees.
SCAN (51)	Not used.
SCAN (52)	```The scan identifying number . (SCAN(52) = TWH(1))```
SCAN (53)	Not used.
SCAN (54)	Not used.
SCAN (55)	```Start gain The calibration normalising factor at the start of the scan. (SCAN (55) = 1)```
SCAN (56)	Stop gain The calibration normalising factor at the end of the scan. The scans are normalised by dividing each point by a linear interpolation start gain and stop gain. $(\operatorname{SCAN}(56)=1)$
SCAN (57)	Start base The base-level to be subtracted from the scan start.
SCAN (58)	```Stop base The base-level to be subtracted from the scan end. The base-levels are subtracted at each point by linear interpolation after normalisation. (SCAN (57) = SCAN (58) = 0)```
SCAN (59-79)	Not used.
SCAN (80)	Integration time per point in secs ($=$ TWH(26))
SCAN (81)	\% Efficiency in \%/100 (= TWH (27))
$\operatorname{SCAN}(82)$	Azimuth Thumbwheel in arcsec ($=$ TWH (28))
SCAN (83)	Elevation Thumbwheel in arcsec (= TWH (29))

SCAN (84)	Focus Offset in mm (= TWH (32))
SCAN (85)	Zenith attenuation in \%/100 (= TWH (34))
SCAN (86)	Tracking tolerance in arcsec (= TWH (35))
SCAN (87)	\#C (switched power noise tube counts) (= TWH (45))
SCAN (88)	\#CP (total power noise tube counts) (= TWH (46))
SCAN (89)	RA (Epoch) of map centre in degs ($=\operatorname{TWH}(47) * 180 / \pi)$
SCAN (90)	DEC (Epoch) of map centre in degs ($=\operatorname{TWH}(48) * 180 / \pi)$
$\operatorname{SCAN}(91)$	TC (noise tube temp.) in K (= TWH (49))
SCAN (92)	Bandwidth in MHz (= TWH (53))
SCAN (93)	Ambient temperature in ${ }^{\circ} \mathrm{C}(=\mathrm{TWH}(127)$)
SCAN (94)	Total no. of rows in full grid, NROW (= TWH(101))
SCAN (95)	No. of current map row starting from 1, \#ROW (= TWH (100))
SCAN (96)	Azimuth offset of scan start from field centre. (Real angle, without thumbwheels) (= TWH(41))
SCAN (97)	Elevation offset of scan from field centre. (without thumbwheels) (= TWH(42))
SCAN (98)	Receiver temperature in $\mathrm{K}, \mathrm{T}_{\mathrm{RX}}$ (Entered by observer in MAKMAP)

The Data:

The first data element is in $\operatorname{SCAN}(\mathrm{K})$ where $K=S C A N(2)$. The tabular scan data is held in SCAN (4) tabular channels. Each tabular channel has SCAN(3) points. The data runs from the lowest azimuth to the highest azimuth.

Channe1 1 Contains the local sidereal time associated with each point.
Channel 2 Not used.
Channel 3 Not used.

Channe1 4 Contains the astronomical signal for each point in scan.
Channe1 5 Not used.
iii) NOD2 Map Format

The maps made by MAKMAP, and processed by subsequent routines, are in NOD2 map format. This is very similar to the format detailed in Appendix A ii). Again, page references are to the NOD2 Manual. The grid of local sidereal times associated with the az-el maps is an identical NOD2 array, having an 1.s.t. in the corresponding position of each associated data value.

The data is assumed to be tabulated on a two dimensional rectangular grid of points. For this data to be compatible with the routines of the library, the grid of numbers is packed into a one-dimensional data array along with an identifying title and associated parameters.

This one-dimensional array, AMAP, has the following six types of information stored in it.

Type of information

1) Length of space declared for AMAP.
2) Organisational parameters.
3) Progress word (see subroutine STORY).
4) The identifying title.
5) Parameters associated with the data.
6) The data.

Where Stored

> AMAP (1)

AMAP (2) to AMAP (6)
AMAP (7)
AMAP (8) to AMAP (25)
AMAP (26) to AMAP (I-1)
where $\quad I=\operatorname{AMAP}$ (2)
AMAP (I) to AMAP(J)
where $\quad J=I-I+$ COLUMNS*ROWS
i.e. $\quad J=I-1+L * M$
$\mathrm{L}=$ AMAP (3)
$M=\operatorname{AMAP}(4)$

The organisational parameters are:
AMAP (1) This is the length of the array AMAP as declared at the top of the job. AMAP (1) is used by several routines for array bound checking purposes.

AMAP (2) This is the array address of the first data location. (AMAP (2) $=101$ from MAKMAP)

AMAP(3) This is the number of columns in the two-dimensional distribution.

AMAP (4) This is the number of rows in the two-dimensional distribution.

AMAP(5) This is the type number of the data. At the present time the following types of data are catered for:

Type of data:

AMAP (5)
A two-dimensicnal distribution of brightness.
A two-dimensional distribution of normalised brightness
2
preserving weight. (Normalised quantity.weight +0.5)
A two-dimensional distribution of unnormalised brightness
in the form: (unnormalised quantity.weight +0.5)
A two-dimensional distribution of weights (see subroutine MADD P 5.1).
Type of data, cont'd.:
A set of many one-dimensional distributions, i.e., tabulated
scans packed together where AMAP(3) gives the length of
each scan, and AMAP(4) the number of scans. The units
digit of the code word has the same meaning as for
types l-3.

Data Associated Parameters:

The parameters associated with the data can be of any number and stored in the correct section of the array $\operatorname{AMAP}(26)$ to $\operatorname{AMAP}(I)$ where $I=\operatorname{AMAP}(2)-1$ in any order the user chooses. The exceptions to this are the astronomical processing routines and the case history routine STORY (see page B 2.2). These routines assume the data parameters have the following order and meaning:

AMAP(26) Epoch of observation, 1.e. 1971.6.
AMAP (27) Frequency of observation in MHz. (Frequency is negated for Az-El maps.)

AMAP(28) Latitude of observatory in degrees.
AMAP (29) Longitude of $\operatorname{AMAP}(1,1)$ in degrees.
AMAP(30) Latitude of $\operatorname{AMAP}(1,1)$ in degrees.

AMAP (31)	Coordinate code (see MSETUP, COMBIN, MRETAB, and SMOOTH - type 23 convolution, parameter ICOORD page P 3.9).
AMAP ($32-40$)	9 Element transformation matrix from the coordinate system of the map to RA,DEC epoch 1950. (See DANGLE page M 9.1 and VECMAT page M 11.1 for vector and matrix definitions. $\operatorname{AMAP}(32-40)=\operatorname{AMAT}(1-9))$.
AMAP (41)	Initial $1 / 2$ power longitude beamwidth on the equator of the coordinate system in degrees.
AMAP (42)	Initial $1 / 2$ power latitude beamwidth on the equator of the coordinate system in degrees.
AMAP (43)	Current $1 / 2$ power longitude beamwidth on the equator of the coordinate system in degrees.
AMAP (44)	Current $1 / 2$ power latitude beamwidth on the equator of the coordinate system in degrees.
AMAP (45)	The longitude separation of the grid points on the equator of the coordinate system in degrees.
AMAP (46)	The latitude separation of the grid points in degrees.
AMAP (47)	Initial temperature scale factor.
AMAP (48)	Initial temperature scale zero ($\mathrm{K}^{\text {) }}$.
ANAP (49)	Current temperature scale factor.
AMAP (50)	Current temperature scale zero (K) .
$\begin{aligned} & \text { In the } \\ & \operatorname{AMAP}(51) \text { to } \end{aligned}$	urrent implementation at N.R.A.O. (Tucson), the locations AP (99) contain the following parameters.
AMAP ($51-79$)	Not Used.
AMiAP (80-98)	Direct copy of SCAN (80-98) for the first scan of the map.
AMAP (99)	Normalised effective signal-to-noise ratio, R, used by CONVERT to weight the map when combining it with other data. CONVERT gives the map a weight of $\operatorname{AMAP}(99) * \operatorname{AMAP}(99) * \operatorname{AMAP}(80)$

$$
R=\frac{300 \cdot e^{-\tau \cdot \sec Z}}{T_{R X}\left(1+\frac{T_{A M B}}{T_{R X}}\left(1-\varepsilon_{\ell} e^{-\tau \cdot \sec Z}\right)\right)}
$$

where $\quad \tau$ is the zenith attenuation
Z is the zenith angle of the central scan
$T_{R X}$ is the receiver temp. in K
$\mathrm{T}_{\text {AMB }}$ is the ambient temp. in K
ε_{ℓ} is the coupling coefficient to the sky (assumed to be 0.85)

The factor of 300 is to normalise R close to unity.

The Data:

The data for arrays of type number 1-3 are values at points in a two-dimensional rectangular grid. In the one-dimensional array AMAP the data is stored by row. The convention adopted is such that the first elements of data are the bottom row of the grid from left to right, and the last elements are the top row from left to right.

In a type 1 array $(\operatorname{AMAP}(5)=1.0)$ the data has a pure value. In type 2 and 3 the data is of the form: value.weight, where 0.5 is defined to be zero weight and the weights lie in the range $1.0>$ weight >0.0, i.e. 57.3 represents a value of 57.0 (normalised if type=2, unnormalised if type=3) with weight -0.2.

Appendix B

Dictionary of Tasks:
Those NOD2 tasks currently available to users through CONDAR are listed alphabetically in this Appendix, along with an example of the operation of each.

One feature of NOD2 of which the user should be aware is that a NOD2-file can contain any number of maps ($\mathrm{N} \geq 1$). These maps are written and accessed sequentially.

The available tasks can be considered under four headings,
i) Map Making and Calibration

AZELFIT
CALFLUX CONVERT MAKMAP
RESTOR
SETBASE
ii) Display and Editing

CNTR
DRAW
MAXMIN
MLIST PREPPLOT QMSPLT SUMMARY TEKPLT TOOLKIT
iii) Post Processing

FLUX
GFIT
GSMOOTH
NOISE
TFORM
iv) Image Transport

FITSTONOD
NODTOFITS

Definitions

In the 'Input Parameters' section of each TASK-description, the following conventions are employed.

FILENAME	The name of a disk-file containing NOD2 maps. The default file-extension is .NOD . Any other extension (i.e. .DAT) has to be entered explicitly.
A	Any alphabetic Hollerith character.
N	A numeric quantity; could be real or integer.
Y/N	The answer to a question. Either Y or y will be taken as affirmative. Any other reply, including <CR>, will be taken as negative.
<CR>	Carriage return.

Task AZELFIT

Function AZELFIT is a two-dimensional Gaussfit program that performs its operation on az-el maps. It is otherwise identical to GFIT.

Inputfile The file containing the map/s to be fitted.
Output A source list directed to the lineprinter. The user can choose to subtract the fitted sources from the input map and output the residual map to a file of chosen name.

Input Parameters

FILENAME The file containing the maps.
N1 N2
N3

N4
Style of fit; $N 4=1$, simple $2-D$ fit. $N 4=2,2-D$ fit with prior $1-D$ trial.
$N 4=3$, orthogonal 1-D fits.
$N 4=4$, style 2 plus subtraction of all fits, and output of residual map for which a new FILENAME is requested.

N5
$\mathrm{N} 5=1$ if a dual-beam map or any map that can have negative peaks (i.e. Stokes parameters Q and U).

N5 $=2$ for a map with only positive peaks.

Comments

If N5 = l, the task searches first for positive sources and then for negative sources. The complete map is searched and the task tries to fit all sources of peak intensity > N3 mu. At present the program fits only a 2-D elliptical Gaussian aligned with the $X-Y$ axes of the map.

The uses of AZELFIT include intensity calibration procedures and determination of the dual-beam geometry for use in RESTOR (see Section 6).

PAZELFIT
1: CONTROL HAS NOW PASSED TO AZELFIT ***
\%DCL-I-SUPERSEDE, previous value of FORO日G has been superseded NOD 2 LIBRARY, TUCSON VAX/VMS EDITION 24 APRIL I9R5
NO SCAN LIBRARY ATTACHED.
NO MODPLOT LIBRARY ATTACHED.
THIS RUN WAS MADE BY OBS ON 27 785 RT 17:21:30 MST.
ENTER NAME OF MAPFILE ON WHICH TO FIT SOURCES. Maps ar on file VENUSIRAW. VENUSIRRW
SPECIFY FIRST AND LAST MAPS TO BE FITTED.
22 J inst map 2.

SPECIfY STYLE OF FITTING PEQUIRED, AS FOLLOWS.
1 FOR SIMPLE 20-GRUSSFIT, NORMAL CASE
2 FOR 2D-GAUSSFIT WITH PRIOR 10 TRIAL
3 FOR ORTHOGONAL 10 -GAUSSFIT
4 FOR STYLE 2 PLUS BEST-FIT SUBTRACTION AND MAP OUTPUT
SPECIFY 1 IF A DUAL-BEAM MAP. ELSE $2 \quad$ Simple 2-D Canes it. END OF DATA. 8: CONTROL NOW PASSING BACK TO POPS. ***
$>$
The source list is being printed on the line-printer.

Task CALFLUX

Function CALFLUX provides the integral of the emission within a specified rectangular box in units of map units.steradians.

Inputfile The file containing the map to be integrated.
Output The value of the integral printed on the terminal.

Input Parameters

FILENAME The file containing the map to be integrated.

N1

N2 N3

N4 N5
N6

The map number on file.
The $X-Y$ coordinates of the box centre (in arcmin) relative to the origin of the map.

The $X-Y$ size of the box (in arcmin).
The zerolevel for the rectangular box in map units.

Comments
CALFLUX is used in the calibration procedure (see Section 6).

```
CALFLUX
8% CONTROL HAS NOW PASSED TO CALFLUX ***
%OCL-I-SUPERSEDE, previous value of tuk\emptyset06 has been superseded
NOD2 LIBRARY. TUCSON VAX/VMS EDITION 24 APRIL }198
NO SCAN LIBRARY ATTACHED.
MO NODPLOT LIBRARY ATTRCHED.
TH1S RUN WRS MRDE BY OBS ON 27 7 85 RT 17:28:57 MST.
GIVE NAME DF MAP FILE TO BE INTEGRATED. M, M
SATURNIRES NUMBER ON FILE. MAP Mapio on file SATURNIRES.
GIVE X-Y cOORDS of box centre IN ARCMIN. Inteyrate map 1.
    (FOR RELEVANT COORD SYSTEM OF MAP)
GIVEX-Y SIZE OF BOX IN ARCMIN. Centre ta box on the mafo centre.
GIVE RELEVANT ZEROLEVEL INTENSITYIN MIP UNITS. BOX Sige = 10'* 10'
0
TITLE 277
SATURN MAG DJC +4.10REST 0.9
INTEGRATION FINISHED AFTER MAP I
FLUX= ©.7993718E-02 MAP UNITS * STER. T T Le flue in in
>

Task CNTR
Function CNTR prints out the RA-dec(1950.) coordinates of the "map centre" in decimal degrees.

Inputfile The file containing the map/s whose centre coordinates are to be investigated.

Output The RA-dec(1950.) of the centre in decimal degrees, printed on the terminal.

Input Parameters
FILENAME Name of input file.
N1 N2 First and last maps on file whose centres are to be determined.

Comments
The "map centre" is the origin of the map as defined by the header. The offsets for fitted sources printed by GFIT are relative to this origin.

CTR
FEE CONTROL HAS NOW PASSED TO CNTR ***
\%OCL-I-SUPERSEDE, previous value of FORE06 has been superseded
MOO LIBRARY. TUCSON VAX/VMS EDITION 24 APRIL 1985
NO SCAN LIBRARY ATTACHED.
WO MODPLOT LIBRARY ATTACHED.
THIS RUN WAS MADE BY OBS ON 27 7 85 RT 17:29:43 MST.
EMTER NAME OF MAP FILE. Map is on file ORICOM. DAT
ENTER FIRST AND LAST MAPS ON FILE TO PROCESS. (DAT must he stated as default 11 extension is . \(0 . D\) )
PROCESSING MAPS 1 TO INPUT STATUS OF MAP =
\[
\begin{aligned}
& \text { RA }= \\
& \text { FORTRAN STOP }
\end{aligned}
\]

FORTRAN STOP
8: CONTROL NOW PRSSING BACK TO POPS. ***
RA-dee "map centre" in degrees.

\section*{Task CONVERT}

Function CONVERT takes the final az-el maps and transforms them into the RA-dec frame. Either a single map can be transformed, a number of az-el maps transformed and stacked into a single RA-dec map, or one or more az-el maps transformed and added into an existing RA-dec map already made by CONVERT.

Inputfile i) One or more files containing az-el map/s to be transformed into a single RA-dec map.
ii) Possibly, a previously made RA-dec map of the same region into which it is desired to add further az-el map/s. This RA-dec map must be a previous output of CONVERT.

Output A file containing a single RA-dec map which is the result of transforming and stacking az-el map/s. If an RA-dec map already existed as input, the final map will have the same name but a higher version number.

Input Parameters
\(\mathrm{Y} / \mathrm{N} \quad\) Does an RA-dec map already exist?
FILENAME1 If you answered \(Y\), this is the name of the existing RA-dec map file. Else, this is the name for the new RA-dec map file.

FILENAME2 This is the file containing the az-el map/s.
Az-el map number on FILENAME2.
[N2 N3] If the RA-dec map does not yet exist, N2 and N3 are the \(X-Y\) sizes of the map to be made in arcmin.
[TITLE] If the RA-dec map does not yet exist, this is the title stored in the header. Enter as, TITLE THIS IS A MAP NAME.
\(\mathrm{Y} / \mathrm{N} \quad\) Is there another az/el map to add in? If \(N\), the task finishes. If \(Y\), then is the map in the same file?
\(\mathrm{Y} / \mathrm{N} \quad\) If Y , we return to ask for Nl and add the new map into the RA-dec map. If \(N\), a new FILENAME2 will be asked for before asking for Nl on that file.

\section*{Comments}

The az-el maps will be combined in the RA-dec map with relative weights proportional to, (integration time/point)*•(effective system temp.) \({ }^{-2}\)

CONVERT
88: CONTROL HAS NOW PASSED TO CONVERT ***
\%DCL-I-SUPERSEDE, previous value of FORO日6 has been superseded
MOO LIBRARY, TUCSON VAX/VMS EDITION 24 APRIL 1985
NO SCAN LIBRARY ATTACHED.
MO NODPLOT LIBRARY ATTACHED.
THIS RUN WAS MADE BY OBS ON 27 7 B5 RT 17:34:19 MST.
ENTER . Y. IF RA-OEC MAP ALREADY EXISTS.
\& \(<C R>\) means there was no previous
GIVE FILE NAME FOR NEH RA-DEC MAP.
ZORIAMAP File name for RA -dee mat \(R A\)-dee map.
GIVE FILENAME OF RZ-EL MAPS.
File name for RA-dee may \(D\) be produced.
ZORIABAS.OAT FIVE MAP NUMBER ON AZ-EL FILE. Containing first angel map 0 le added.
GIVE MAP NUMBER ON AZ-EL FILE.
1 Map n. on az-el file ZORIABAS.DAT.
title
ORION 18. MAG DRC
ENTER RA AND DEC EXTENTS OF REQUIRED RA-DEC MAP IN ARCMIN.
15 I5 RR-DEC MAP TITLE IN FORM Make an RA- der map

TITLE ORION A RT 84.2 GHZ. \(\quad\) Tithe for RA-decmup.
ENTER ,Y. IF THERE IS ANOTHER AZ-EL MAP TO ADO IN. r

F Yes, Ulere'is auslle az-el map \(I\) add in.
ENTER . Y, IF THIS RZ-EL MAP IS IN THE SAME FILE.
GIVE FILENAME OF RZ-EL MAPS.
ZORIBARS.DAT \(\quad\) GIVE MAP NUMBER ON AZ-EL FILE. Nom ne containing second az_el map GIVE MAP NUMBER ON RZ-EL FILE.
1 Map no on oz-el file ZORIBBAS. DAT.
is be added.
tItle
ORION 18. MAG DAC
ENTER , Y. IF THERE IS ANOTHER RZ-EL MAP TO ADD IN.
FORTRAN STOP
8\# CONTROL NOW PASSING BACK TO POPS. ***
\(\angle C R>\) as there are no more az- el
\(>\) mips id add in.

Task DRAW
Function DRAW unspools the output of PREPPLOT to the ZETA pen-plotter. It must be run on the terminal attached to the ZETA plotter.

Inputfile A plotfile prepared by PREPPLOT.
Output A contour plot on the ZETA pen-plotter.
Input Parameters
NONE

\section*{Comments}

A ZETA plotter is only available in the Tucson downtown office. DRAW deletes all plotfiles on exit, so unspool each plotfile before creating the next with PREPPLOT.

\section*{Task FITSTONOD}

Function FITSTONOD will read a single map from a FITS-tape and write it onto disk as a NOD2 file.

Inputfile A map image in FITS-format on a FITS-tape.
Output A NOD2 file containing the map in NOD2-format.
Input Parameters
\(T \quad\) When asked if data is on tape or disk, reply \(T\).
<CR> When FITS-tape is mounted.
N1 How many files to skip on the FITS-tape.
FILENAME The output NOD2 map file will be called FILENAME.NOD.

\section*{Comments}

Not currently a task to be proud of! However, it will convert a FITS-image into a NOD2 disk file. It will only read one image at one entry and prints a bunch of garbage on the screen. The NOD2 header parameters are not guaranteed to be set up currently (although AMAP(3) and (4) will be!).

On completion, the task dismounts (but doesn't unload) the FITS-tape via VMS command,
\$ DISMOUNT/NOUNLOAD MTAØ:
This means that you can immediately read down another file on the tape using FITSTONOD, but the number of files to skip, N1, will always be the number of files to skip from the beginning of the FITS-tape.

Before running FITSTDNOD mount your FITS－tape on the
tape drive．

PFITSTONOD
＊＊CONTROL NOW PASSING TO FITSTONOD．＊＊＊
To read FITS data and convert in NחND
Data from tape，or already on disk？（T／D）：T
Press return when tape is an MTAD：：\(\lll \lll\)
YMOUNT－I－MOUNTED，mounted on－MTIO：We want \(\square\) Neal t ter．FITS－lage

THIS PROGRAM READS INPUT FROM LOGICAL NAME－TAPE＊
Tape has NOT been rewound．
＊\＃\＃t ENTER TRPE－COPY PROCESSING PARAMETERS＊＊＊＊＊
PLEASE ENTER TRPE FORMAT TYPE（1－3）
OR ENTER O TO SEE R LIST OF FORMAT TYPES：
ENTER INPUT RECORD SIZE：
POSSIBLY THESE FILES ARE CARD IMAGES
DO YOU WANT TO STRIP OFF COLUMNS 73－80 AND STRIP TRRILING BLANKS \(Y\) Y NI？
DO YOU WANT TO TRANSLATE INPUT TD ASCII FROM EBCDIC OR BCD（YIN）？
ENTER－FILENAME ．TYP＂OR＂STOP＂OR＂SKIP＂OR＂NEW＂：
HOW MANY RILES DO YOU WANT TO SKIP ？：
ENTER－FILENAME ．TYP＂OR＂STOP＂OR＂SKIP＂OR－NEW＂：
RECORD： 100
END OF FILE \(1: 144\) RECORDS WRITTEN
ENTER＂FILENAME．TYP＂OR＂STOP＂OR＂SKIP＂OR＂NEW＂：
USER REQUESTED EXIT
SIMPLE＝T FITS format
D le TOM4．NOD．
8＊：FITS KEYHORD NOT RECOGNISED＊＊＊
TYP
ETC.

METERS
INITIAL RESOLUTION
CURRENT RESOLUTION
TABULAR INTERVAL
MAP COORDINATES
MAP EXTENT
COLUMNS AND ROWS


COORDINATE SYSTEM 31.0
TRANSFORMATION TD 1950.0 COORDINATES．
0.99961452 － 0.019633690 .01962991
©． 01962931 0．99980724 0．00038548
－0．01963369 0．0日000000 0．99980724
BRIGHTNESS TO DEG K INITIAL CALIBRATION
CURRENT CALIBRATION

SCALE
g．OR日RO日 ZERO． 0．0日0日00 0．000000

IFAULT STATUS OF MAPOUT ON FORDS
Prints a bunch of gink！
>FLUX
E\#\# CONTROL HAS NOW PASSED TO FLUX ***
\%OCL-I-SUPERSEDE, previous value of FORe has been superseded
MOD LIBRARY, TUCSON VAX/VMS EDITION 24 APRIL 1985
NO SCAN LIBRARY ATTACHED.
MO MODPLOT LIBRARY ATTACHED.
THIS RUN WAS MADE BY OBS ON 27 7 85 RT 17:47:05 MST. GIVE NAME OF MAP FILE TO BE INTEGRATED.
GRICOM.DAT GIVE MAP NUMBER ON FILE. Map is on file ORICDM. DAT.
GIVE MAP NUMBER ON FILE. Inter ate may 1.
GIVE \(X-Y\) COORS OF BOX CENTRE IN RRCIIIN.
(FOR RELEVANT COORS SYSTEM OF MAP)
GIVE X-Y SIZE OF BOX IN ARCMIN. Centare the base on the map centre.
GIVE RELEVANT ZEROLEVEL INTENSITY IN MAP UNITS \(14 \times 14^{\prime}\)
GIVE RELEVANT ZEROLEVEL INTENSITY IN MAP UNITS.
\[
\pm \cdots \operatorname{local} \sin e=0 \mathrm{~m} \cdot v .
\]

TITLE
ORION A COMEINED MAP, SCALED TO 84.2 GHZ.
ENTER FACTOR TO CONVERT MAP UNITS INTO DEG K.
INTEGRATION FINISHED AFTER MAP 1 Map is in \(M K\), sos scale factor FLUX \(=\) 288.6954724 JY. int K is 0.001. FORTRAN STOP
8: \(\boldsymbol{3}\) CONTROL NOW PASSING BACK TO POPS. ***
The fine density in any.

\section*{Task FLUX}

Function FLUX will provide the flux density of the emission within specified rectangular box in units of Janskys. It is used to obtain the flux densities of extended sources. FLUX must be provided with the factor to convert the map units into Kelvin (i.e. 0.001 if the map is in \(n K\) ).

Inputfile The file containing the map to be integrated.
Output The flux density value printed on the terminal.

\section*{Input Parameters}

FILENAME The file containing the map to be integrated.

N1 The map number on file.

N2 N3
The \(X-Y\) coordinates of the box centre (in arcmin) relative to the origin of the map.

N4 N5 The X-Y size of the box (in arcmin).
N6 The zerolevel for the rectangular box in map units.

The factor to convert map units into Kelvin.

\section*{Comments}

Although a complete map made with the dual-beam technique has a well-defined zerolevel (identically zero, as the dual-beam observations inherently lose the zero spatial frequency), care should be taken in determining the local zerolevel for the rectangular box. This may have an offset from zero, i.e. a small-sized region within a larger area of emission.

\section*{Task GFIT}

Function GFIT is a two-dimensional Gaussfit program that is intended for use on maps in celestial coordinates. (For az-el maps, use AZELFIT.)

Inputfile The file containing the map/s to be processed.
Output A list of sources directed to the lineprinter. The user can choose to subtract the fitted Gaussians from the input map and output the residual distribution giving it a new filename.

Input Parameters

FILENAME
N1 N2 The first and last maps to be processed.
N3

N4

> The approximate lowest flux density (in map units) to be searched for.
> Style of fit; \(N 4=1\), simple \(2-\mathrm{D}\) fit. N4 = 2, 2-D fit with prior 1-D trial. N4 \(=3\), orthogonal l-D fits. N4 = 4, style 2, plus subtraction of fits and output of residual map. A new FILENAME will be requested.
> N5 \(=1\), duai-beam map or a map that can have negative peaks (i.e. Stokes parameters Q and U ).
> N5 = 2, map with only positive peaks.

N5

\section*{Comments}

Very similar to AZELFIT. If \(N 5=1\), the task searches for positive sources first, and then for negative sources. The task searches the complete map and tries to fit all sources of peak flux density > N3 map units. At present the program fits only a 2-D elliptical Gaussian aligned with the \(\mathrm{X}-\mathrm{Y}\) axis of the map.

N4 \(=4\) can be used to subtract the strongest sources in a map, often allowing a better fit for weak sources sitting in their wings.
>FIT
18: CONTROL HAS NOW PASSED TO GFIT ***
\%OCL-I-SUPERSEDE, previous value of FORO日6 has been superseded
MOO LIBRARY, TUCSON VAX/VMS EDITION 24 APRIL 1985
MO SCAN LIBRARY ATTACHED.
MO MODPLOT LIBRARY ATTACHED.
THIS RUN WAS MADE BY OBS ON 5 B 85 AT 13:51:55 MST.
EMTER MAME OF MAPFILE ON WHICH IO FIT SOURCES._ Map \(s\) On file W49COM.DAT. SPECIFY FIRST AND LAST MAPS TO BE FITTED.
SPECIFY MIN FLUX (IN MAP UNITS) TO BE SEARCHED FOR Fit jus map 1.
SPECIFY MIN FLUX (IN MAP UNITS) TO BE SEARCHED FOR Search down \(D \sim 50 \mathrm{~m} . \mathrm{u}\).
SPECIFY STYLE OF FITTING REQUIRED
1 FOR SIMPLE 20-GAUSSFIT, NORMAL CASE
2 FOR 20-GRUSSFIT WITH PRIOR 10 TRIAL
3 FOR ORTHOGONAL 10 -GRUSSFIT
4 FOR STYLE 2 PLUS BEST-FIT SUBTRACTION AND MAP OUTPUT
SPECIFY 1 IF OUAL-BEAM MAP, ELSE 2 2
END OF DATA.
Job PFILE (queue SYSsPRINT, entry 1149) started on SYSSPRINT
*** CONTROL NOW PASSING BACK TO POPS. ***
The source list is being printed on the lineprinter.

The printed sore list,


SOURCE SEARCH COMPLETED.

Col 1: \(\Delta\) latitude in \((\circ, ")\) of are.
\(\operatorname{Col} 2: \Delta\) longituch in \(\left(^{\circ}, "\right)\) of are, real angle.
Col 3: Peck flux derisits in mate units.
\(\operatorname{Cos} 4-5: X-Y\) half power widths of fitted Gaussian in aremin.
Cols 6-8: Fitted planar baselevel.

Col 9: Number of iterations needed to converge.
Cols.10-11: Size of region fitted; no. 8 columns \(x\) no. 8 rows.
Col 12: R.M.S. deviation of fit as a fraction of fitted peak value.

Task GSMOOTH
Function GSMOOTH is a two-dimensional smoothing routine that uses convolution with a Gaussian to obtain a map at the required (lower) resolution.

Inputfile The file containing the map/s to be smoothed.
Output A file containing the smoothed map/s.
Input Parameters
FILENAME1 The file containing the map/s to be smoothed.
FILENAME2 The file to contain the smoothed map/s.
N1 N2 The required resolution in \(\mathrm{X}-\mathrm{Y}\) of the map (in arcsec) after smoothing.

N3 N4 First and last maps to be smoothed on the file.

\section*{Comments}

This is a highly simplified version of the general NOD2 smoothing routine. Note that the post-smoothing resolution will be elliptical and aligned with the \(X-Y\) axes. The grid spacing will be the same in the input and output maps.

We wish to smooth the map shown in Fig 5 iii) to a resolution of \(2^{\prime} \times 2^{\prime}\).

SMOOTH
\#\# CONTROL HAS NOW PASSED TO GSMOOTH ***
\%DCL-I-SUPERSEDE, previous value of FORe has been superseded
MOD LIBRARY. TUCSON VAX/VMS EDITION 24 APRIL 1985
MO SCAN LIBRARY ATTACHED.
WO MODPLOT LIBRARY ATTACHED.
THIS RUN WAS MADE BY OBS ON 27 78 RT 17:49:46 MST.
GIVE MAME OF MAP FILE TO BE SMOOTHED. Original map is on file ORICOM. DAT.
ORICOM.DAT
GIVE NAME FOR SMOOTHED MAP FILE. ORISI20 \(\qquad\) Put the smoothed map int ORIS 120.NOD.
Title
GAUSS BERM.
GIVE REQUIRED POST-SMOOTH RESNS IN \(X\) AND \(Y\) IN RRCSEC.
120120
\(\&\) Post-smotith resolution is to be \(120^{\prime \prime} \times 120^{\prime \prime}\).
ENTER MOS. ON FILE OF FRET AND LAST MAPS TO BE SMOOTHED. it be \(120^{\circ} \times 1\)
CONVOLUTION REQUESTED FOR STYLE 23
Inst smooth the first map.
WITH COSINE LATITUDE CORRECTIONS.
ORTHOGONAL CONVOLUTION FOR MAP
CONYOLVED MAP (1,1) = INPUT MAP( 1,11
STEP \(=1\) YSTEP \(=1\)
CONVOLUTION COMPLETED.
FORTRAN STOP
\% \({ }^{2}\) E CONTROL NOW PASSING BACK TO POPS. ***
Now we are ready 20 lock at the result.

Use TOOLKIT for a quick-losh at the smoothed map.
```

TOOLKIT
5\&* CONTROL HAS NOW PASSED TO TOOLKIT. ***
NOD2 LIBRARY. TUCSON VAX/VMS EUIIIUN <4 HHKIL lYBS
NO SCAN LIBRRRY ATTACHED.
MO NODPLDT LIBRARY ATTACHED.

```
THIS RUN WAS MADE BY OBS ON \(27 \quad 7\) ES RT 17:50:28 MST.
ENTER THE NAME OF THE FILE TO BE READ FROM.
ORISI20
SPECIFY MAP NUMBER REQUIRED ON FILE,
OR FOR HELP. OR - 1 FOR A NEW MAP FILE.
1
STYLE, EL, STARTVAL, STOPVAL, -OR-, - 777 , NFCNT, ZERO, STEP
STYLE 5 OR G->INPUT ROW OR COL. COL OR ROWSTART AND STOP.
ENTER A COMMAND PLEASE OR <CR> TO ASK FOR ANOTHER MAP.

15.0

30

\section*{Task MAKMAP}

Function This task makes the initial map from the raw telescope data. The user can make any number of maps during one entry to MAKMAP, the output maps being put in the same NOD2 file. The user can update the pointing, receiver gain parameter and atmospheric attenuation factor used in an observation, based on the better information available after observation.

Inputfile The Pops Data File (PDFL.DAT) containing the raw scan data.

Output A NOD2 file containing the map/s.

Input Parameters
FILENAME1 The name of the output file containing the map/s.

FILENAME2 The name of the Pops Data File (usually just PDFL).

N1 N2
\(\mathrm{Y} / \mathrm{N} \quad\) Is a modified pointing solution required?

If \(N\), the data is left as observed.

If \(Y\), the task reads the next set of pointing data from FIVEPT.DAT, which should have been previously prepared on disk. The pointing parameters as a function of elevation are computed and the data corrected accordingly. See Section 5 for a description of FIVEPT.DAT.
\begin{tabular}{ll} 
Y/N & \begin{tabular}{l} 
Are modified receiver gain parameters to be \\
used?
\end{tabular} \\
& If \(N\), the data is left as observed. \\
lf Y, the user must supply the local sidereal \\
times and calibration values (非 or \#CP) for \\
noise tube calibrations made before and after \\
the observation. Linear interpolation is used. \\
If Y has already been given here for an earlier \\
map made at this MAKMAP entry, the program may \\
ask if you wish to keep the values then \\
entered. Read the questions carefully and \\
reply accordingly.
\end{tabular}\(\quad\)\begin{tabular}{l} 
Are modified atmospheric attenuation factors to
\end{tabular}
-45-
\begin{tabular}{ll}
\(\mathrm{Y} / \mathrm{N}\) & Is another map to be made? \\
& If N, the task terminates. \\
\(\mathrm{Y} / \mathrm{N} \quad \mathrm{Y}\), are the scans in \\
the same PDFL.DAT file?
\end{tabular}\(\quad\)\begin{tabular}{l} 
If N, a new FILENAME2 will be requested. \\
Flow of input will now return to N 1 N 2.
\end{tabular}

Comments
After running MAKMAP, use TOOLKIT to look at the maps that have been made. If anything looks too strange, ask those who ought to know why!

AK MAP
2: CONTROL HAS NOW PASSED TO MAKMAP. ***
\%DCL-I-SUPERSEDE, previous value of FOROD6 has been superseded
NOD 2 LIBRARY, TUCSON VAX/VMS EDITION 24 APRIL 1985
NO SCAN LIBRARY ATTACHED.
NO NODPLOT LIBRARY ATTACHED.
THIS RUN WAS MADE BY OBS ON \(27 \quad 785\) AT 17:11:39 MST.
GIVE FILE NAME FOR OUTPUT NOD 2 MAPS. FLE \(D\) contains the maps made is SAT 1 RAW.
Give file name of pdf file.
POFL Input sean are in PDFL.DAT.
ENTER FIRST \& LAST SCANS TO BE ANALYSED. Make the map of channel 1 first. The sean
ENTER • \(\cdot\) • IF MODIFIED POINTING SOLN IS WANTED. are numbered 3694, 3696,3698---- 3714 . \(Y\)
pointing solution requested.
vALUES WILL BE READ FROM FILE FIVEPT.OAT.
The file FIVEPT. DAT is reedy prepared on disk.

ENTER • \(Y\) • IF YOU WISH TO USE MODIFIED CAL VALUES
\(r\)
CAL UPDATING REQUESTED.
We wish \(D\) update th \#C value.
ENTER CST (TO NEAREST MINUTE) FOR FIRST CAL

ENTER FIRST CAL VALUE
349 \# \(C\) at teat time for Channel 1.
ENTER LST (TO NEAREST MINUTE) FOR SECOND CAL
AS HM MM EXAMPLE: 1242
1310 EXAMPLE: 1242

LST of CALIBRATE after the observation.
Enter second cal value.
347
4 \# \(C\) at that time for Channel 1.
ENTER • \(Y\) • TO USE MODIFIED RTM. RBSORP. VALUES
Y \({ }^{\text {rim. ABSOPB. UPOATING REQUESTED. }}\)
ENTER LST (TO NEAREST MINUTE) FOR FIRST TAU
AS HM MM EXAMPLE: 1242
1218
ENTER FIRST TAU VALUE .119
\(\qquad\) LST of SPTIP before the olsenation.
119 ATTN at to rm time.
ENTER LST (TO NEAREST MINUTE) FOR SECOND TAU
AS HM UM EXAMPLE: 1242
1313
ENTER SECOND TAU VALUE.
. 141 \(\dot{A} A T T N\) at teat time.
ENTER •Y• IF YOU WISH TO MAKE A MAT \(\mathbf{r}\) MAP MAKING REQUESTED.

ENTER the no. of pts to use for baseline at scan end.
4 Use for points at lorthends 1 each seam for setting a zerdevel.
ENTER THE OBSERVING FREQUENCY IN GHZ. 84.2

ENTER THE H.P.B.W. IN ARCSEC. 71 \(\qquad\) HPBW in arrases.
RA. \(=229.4032869122645\) DEC \(=-15.91627029459908\)
ENTER THE RECEIVER TEMPERATURE IN K. 200.

CURRENT ROW IN MAP IS = CURRENT ROW IN MAP IS = CURRENT ROW IN MAP IS = CURRENT ROW IN MAP \(15=\) CURRENT ROW IN MAP IS CURRENT ROW IN MAP IS = CURRENT ROW IN MAP IS =

MATRIX NORMAL ISP.
SCQLE - 0.010 WEIGHT LIMIT - 0.000 LOW LIMIT - ©.0日
title
SATURN MAG DJC
- LOW weight points.

NORMALISATION COMPLETED.
MATRIX MAX -MIN.

TITLE 2
SATURN MAG DJC
max \(=49391.522\) MIN \(=-49647.480\)
MATRIX MAX -MIN.

TITLE
SATURN
MAG DJC
mn X \(=\)
\[
3.447 \mathrm{MIN}=
\]
3.27

ENTER 'Y' IF YOU WISH TO MAKE RNOTH
R WraP. We wort \(D\) make the mol for Channel.
ENTER • \(Y\) • IF NEH ORTA IS ON SAME IN UT FILE. r \(\qquad\) Data for seas of Chang 2 is also in PDFL.DAT.

ENTER FIRST 8 LAST SCANS TO BE ANALYSED. 36953715

Tie seas for Channel 2 are \(3695,3697, \cdots-3715\).

ENTER bY IF YOU WANT TO KEEP THE SAME POINTING.
4 -We will use new parity, as He two channels have a small printing difference.
EMTER • \(Y\) • FOR NEH POINTING OR • \(N\) • FOR 12-M THUMB-WHLS.
Y POINTING SOLUTION REQUESTED.
VALUES WILL BE READ FROM FILE FIVEPT FIVEPT. DAT
VALUES WILL BE READ FROM FILE FIVEPT.DRT. from FIVEPT. DAT.

EMTER • \(Y\) • TO KEEP PREVIOUS LHL VHLS.
\#C values are different for the Two channels
 CAL UPOATING REQUESTED. Res, we writ D enter new values.
ENTER LST (TO NEAREST MINUTE) FOR FIRST CAL

ENTER FIRST CAL VALUE
27
ENTER LST (TO NEAREST MINUTE) FOR SECOND CAL
OS HM MM EXAMPLE: 1242 L ST J Second CALIBRATE.
ENTER SECOND CAL VALUE.
271 \(\qquad\)
ENTER •Y• TO KEEP PREVIOUS TAU VALUES \(\boldsymbol{V}\)

ENTER •Y• IF YOU WISH TO MAKE A MAP
Y MAP MAKING REQUESTED.
ENTER THE NO. OF PTS TO USE FOR BRSELINF RT SCAN END.
\(\checkmark\) Use tow prints at both ends of ear scan for setting a zerlencl.
ENTER THE OBSERVING FREQUENCY IN GHZ. 84.2 \(\qquad\)
ENTER THE H.P.B.W. IN ARCSEC.
71
R.A. \(=229.4032860122645 \quad D E C=-15.91627029459908\)

ENTER THE RECEIVER TEMPERATURE IN K.
240. \(\qquad\)
\[
T_{R K} \text { in } K
\]
\begin{tabular}{lll} 
CURRENT ROW IN MAP IS \(=\) & 1 \\
CURRENT ROW IN MAP IS \(=\) \\
CURRENT ROW IN MAP IS \(=\) & 2 \\
CURRENT ROW IN MAP IS \(=\) & 3 \\
CURRENT ROW IN MAP IS \(=\) & 4 \\
CURRENT ROW IN MAP IS \(=\) & 5 \\
CURRENT ROW IN MAP IS \(=\) & 6 \\
CURRENT ROW IN MAP IS \(=\) & 7 \\
CURRENT ROW IN MAP IS \(=\) & 8 \\
CURRENT ROW IN MAP IS \(=\) & 9 \\
CURRENT ROW IN MAP IS \(=\) & 10 \\
& & 11
\end{tabular}

MATRIX NORMALISE.
SCALE \(=0.010\) WEIGHT LIMIT \(=0.000\) LOW LIMIT \(=0.000\)

TITLE
SATURN MAG DJC
- LOW WEIGHT POINTS.

NORMALISATION COMPLETED.
MATRIX MAX -MIN.

TITLE 2
SATURN MAG DJC
MAX \(=55934.522\) MIN \(=-56743.478\)
MATRIX MAX -MIN.

TILE
SATURN
MAX \(=\quad 3.447 \mathrm{MIN}=\)

Mop of Channel 2 made. This will he the second map on fir SatiRaw.

The FJVEPT. DAT file used in this example.


\section*{Task MAXMIN}

Function MAXMIN will print the maximum and minimum intensities (in map units) within a map/s.

Inputfile The file containing the map/s to be processed.
Output The maximum and minimum values on the terminal.
Input Parameters

FILENAME The file containing the relevant map/s.
N1 N2 First and last maps to be processed.
Comments

Useful parameters when deciding the contour levels to choose for plotting, or the minimum flux to search for in GFIT.

MAXIM
5: CONTROL HAS NOW PRSSED TO MAXMIN ***
\%OCL-I-SUPERSEDE, previous value of FOR G日6 has been superseded MOD LIBRARY, TUCSON VAX/VMS EDITION 24 APRIL 1985
MO SCAN LIBRARY ATTACHED.
NO MODPLOT LIBRARY ATTACHED.
THIS RUN WAS MADE BY OBS ON 27 7 85 AT 17:57:54 MST.
GIVE NAME OF MAP FILE TO BE MAXMINED. Map is on file ORIS 120 .
ENTER NOS. ON FILE OF FRET AND LAST MAPS TO BE MAXMINED.
\({ }_{\text {MAPS }}^{1} 1\) to 1 WILL BE MAXMINEO. Just give maoc-min of first map.
MATRIX MAX -MIN.

TITLE 1
ORION A COMBINED MAP, SCALED TO 84. 2 GHZ.

8: CONTROL NOW PASSING BACK TO POPS. ***

\section*{Task MLIST}

Function MLIST prints the data values in a map on the lineprinter. For an az-el map, the local sidereal times can also be printed.

Inputfile The file containing the map/s to be printed.
Output A lineprinter listing of the map values.

\section*{Input Parameters}

FILENAME The file containing the map/s to be printed.
N1 N2 First and last maps on file to be printed.
N3 N4 N5 N3 = printing style (see below).
N4 = number of places before decimal point. (but see below).
N5 = number of places after decimal point (but see below).
[N6] Onl.y requested if the maps are in az-el. Then the l.s.t.'s will be printed if \(\mathrm{N} 6=1\).
[ N 7 N8] The 1.s.t.'s will be printed in style \(\mathrm{N} 3=2\), with N7 places before and N8 places after the decimal point.

\section*{Comments}

The task will print the data in a number of different formats controlled by the parameter N3. The recommended values for N3 are the following,
\(\mathrm{N} 3=2\); The header parameters are listed, followed by the data. The data is printed row by row starting with the bottom row and proceeding to the top. There will be N 4 places before and N5 places after the decimal point.

N3 \(=4\); The data is printed in the form of a grid.
Successive pages can be glued together to give the complete map. N4 is the number of places allocated to each column and \(\mathrm{N} 5(\geq 2)\) is the number of printer lines per row. If \(\mathrm{N} 5=0\), it is set to \(0.6 * \mathrm{~N} 4\). Only the integral part of the data is printed.

N3 = 5; As N3 = 4, but the fractional part is printed below the integral part. This fractional part is multiplied by \(10 * *(\mathrm{~N} 4-2)\) before printing. If the fractional part represents a weight value, then 0.5 is subtracted from it before scaling and printing. (See the NOD2 Manual for more details.)

MLIST can be used in conjunction with a map plotted by TOOLKIT for finding bad data in the raw map. This can be edited and the edited file saved with TOOLKIT.
```

MLIST
** CONTROL HRS NOW PASSED TO MLIST ***
%OCL-I-SUPERSEDE, previous value of FOROQF has haen suparsatat
NOO2 LIBRARY, TUCSON VAX/VMS EDITION 24 APRIL 1985
MN ST.AN I IRRARY RTTRC.HFI.
NO NODPLOT LIBRARY ATTRCHED.

```
THIS RUN WAS MADE BY OBS ON 27785 AT 18:01:03 MST.
```

ENTER NAME OF FILE TO BE PRINTED.
22
MAPS 2 TO 2 WILL BE PRINTED.
map on file
ENTER A) MPRINT STYLE
B) PLACES BEFORE DECIMAL
C) PLACES AFTER DECIMAL.
(STYLE=2 IS REREADABLE FORMAT
STYLE=4 IS SQURRE GRID FORM, SIGNAL ONLY.
STYLE=5 IS SQURRE GRID FORM, SIGNRL AND WEIGHT.)
4 6 \% ~ P r i n t ~ t e ~ m a p ~ i n ~ g i e d ~ f o r m ~ w r i t h ~ 5 ~ p l a c e s ~
OO YOU MANT TO PRINT THE SIDEREAL TIME ARRAY TOOT per columm and 3(=0.6*5)
ENTER E FOR NO
ENTER 1 FOR YES
printerlines per rons.
EORTRAN STOP Don't pront the sidereal times.

```

\section*{Task NODTOFITS}

Function NODTOFITS will write a FITS-tape of one or more NOD2 maps.

Inputfile One or more files of NOD2 maps that it is wished to write as a FITS-tape.

Output A FITS-tape of maps that can be read by the AIPS-task IMLOD.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline <CR> & Enter 'carriage-return' when you have mounted your blank tape and been prompted by the task. \\
\hline L/N & Whether you want 'L'ots of printout or 'N'one. \\
\hline FILENAME & File containing maps to be written to tape. \\
\hline N1 & \begin{tabular}{l}
Either, \\
\(\mathrm{N} 1 \geq 1\); the number in the file of the map to be written to tape. \\
N1 \(=-1\); to enter a new FILENAME. \\
N1 \(=0\); to finish.
\end{tabular} \\
\hline
\end{tabular}

Comments
The maps to be processed from a given file should be written (via Nl) in order of increasing map number on file.

Run NODTOFITS when you wish to export your maps in FITSformat.

We wish It write the fist tho maps on the file [STOBIE. STUART] TOM 4 and tie first map on file ORICOM.DAT is a FITS-tape.
First put up your blank magnetic tape, with wite -ring in, on the
muviutils
*8: CONTROL HAS NOW PASSED TO NOOTOFITS ***
\(\%\) OCL-I-SUPERSEDE, previous value of FORO日G has been superseded
Put your blank tape on MTAB:
Press return when it is ready:
\(\langle C R\rangle\) as tape is mounted.
\%MOUNT-I-MOUNTED, mounted on -MTRE:
MOO LIBRARY, IRA VAX/VMS EDITION SEPTEMBER 1982
MO SCAN LIBRARY ATTACHED.
MO NODPLOT LIBRARY ATTACHED.
THIS RUN WAS MADE BY OBS ON 27 7 B5 RT 17:39:45 MEZ.
Lots of print output or none? (L/N) No point -ont required.
GIVE NAME OF MAP FILE TO BE USED.
ISTOBIE.STUARTITOMA
GIVE EITHER MAP NUMBER ON FILE. OR - 1 FOR NEW FILE,
\(\underset{\&}{\text { OR }} \boldsymbol{\square}\) TO END. Wire up frit map on file.
1
- dummies found and set to
\(0.0000000000 \mathrm{E}+00======\)
\(=\)
MATRIX MAX -MIN.
title
SOMA AT 1720 MHZ TOTAL INTENSITY.
max \(=4.011 E+03 \mathrm{MIN}=-139\).

GIVE EITHER MAP NUMBER ON FILE,
OR - 1 FOR NEW FILE,
OR 0 TO END.
\(2=========\)
- dUMMIES FOUND AND SET TO

Write up second map on file. \(=\)

MATRIX MAX -MIN.
title
TOM RT 1720 MHZ CORRECTED POLARIZED INTENSITY.
MAX \(=\) 233. MIN \(=\)-24.2

GIVE EITHER MAP NUMBER ON FILE,
OR - 1 FOR NEW FILE.
OR \(\triangle\) TO END.
-1
We want to select a new file.


MATRIX MAX -MIN.
```

TITLE
ORION A COMBINED MAP, SCALED TO 84.2 GHZ.
MAX = 1.097E+03 MIN = -59.5

```
    GIVE EITHER MAP NUMBER ON FILE,
        OR - 1 FOR NEH FILE.
        OR \(\operatorname{O}\) TO END.



Tape data: bytes reversed to original format
Tepe data: bytes reversed to original format Mi unit closed now. end prog FORTRAN STOP 2: CONTROL NOH PASSING BACK TO POPS. ***

\section*{Task NOISE}

Function NOISE is used to estimate the mean and r.m.s. of the data within a specified region/s of a map/s.

Inputfile The file containing the map/s to be processed.
Output The mean and r.m.s. of the data within each specified region are given on the terminal. The total sum of the data point values and number of points are also displayed.

\section*{Input Parameters}

FILENAME The file containing the map/s to be processed.
N1 N2 First and last maps on file to be processed.
N3 Number of regions within the current map to be processed.

N4 N5 N6 N7 The rectangular region to be processed given in row and column number.

N4 N5 are the first and last columns in the region.

N6 N7 are the first and last rows.
[N4 - N7 are requested afresh for each separate region.]
[N3 is requested afresh for each separate map.]

\section*{Comments}

NOISE is useful for estimating local zeros for regions whose flux density is to be estimated by FLUX. The r.m.s. noise of the data in a map can be estimated by NOISE, using regions devoid of source emission.


We wrist \(t \frac{t}{}\) estimate the prise on this map by obtaining the r.m.s. Of the data values in the two hatched areas.

MOI SE
8: CONTROL HAS NOW PASSED TO NOISE ***
\%DCL-I-SUPERSEDE, previous value of FORO日6 has been superseded
MOO LIBRARY. TUCSON VAXIVMS EDITION 24 APRIL 1985
MO SCAM LIBRARY ATTACHED.
MO NODPLOT LIBRARY ATTACHED.
THIS RUN YAS MADE BY OBS ON 27 7 ES AT 18:04:51 MST. MOI SE MEASURING AND INTEGRATION PROGRAM.

ENTER NAME OF FILE
ORICOM. DAT TE malty is in file ORICOM.DAT
ENTER FIRST AND LAST MAPS REQUIRED FROM INPUT FILE. IT is the first maps on file.
MAPS 1 TO 1 ON INPUT FILE WILL BE EXAMINED.
========= FAULT STATUS OF MARIN IS:
MATRIX MAXIMIN.

TITLE
ORION A COMBINED MAP, SCALED TO 84.2 GHZ.
MAX \(=1096.524\) MIN \(=\quad-59.495\)
ESTIMATION OF MAP NOISE LEVEL FOR A SELECTED NUMBER OF AREAS
FOR SMALL VALUES BEWARE OF ERRORS CAUSED BY THE WEIGHT FACTORS OF PO WIS.

INPUT NUMBER OF AREAS TO BE PROCESSED
2
TOTAL NUMBER OF AREAS TO BE ANALYZED \(=2\) of the map.

SPECIFY AREA BY START \& STOP COLS AND ROWS (IE. XE XI YO VI.)

\(\begin{array}{llll}\text { ORANGE } & 1 & \text { TO } & 10 \\ \text { YRANGE } & 1 & \text { TO } & 43\end{array}\)
USING 282 POINTS MEAN IS 4.16 AND RMS DEVIATION IS \(16.9 \underbrace{\circ}\)
SUM OF THESE POINTS WITHIN CHOSEN REGION IS: 1171.90

SPECIFY AREA BY START 8 STOP COLS AND ROWS. (IE. XE XI YO VI.')
3643143 To 43 Seem regin is cols. 36243 , rows 1243.
\(\begin{array}{llll}\text { ORANGE } & 1 & \text { TO } 43\end{array}\)
USING 240 POINTS MEAN IS 4.02 AND RMS DEVIATION IS 17.97
SUM OF THESE POINTS WITHIN CHOSEN REGION IS: 964.38

FORTRAN STOP
18: CONTROL NOW PASSING BACK TO POPS. ***
\(>\)
The no vise is seen to be \(\sim 17.5 \mathrm{~m} . \mathrm{v}\).

Task PREPPLOT (To be used only in Tucson Downtown Office)
Function PREPPLOT prepares a plotfile for the ZETA-plotter that can be unspooled by a subsequent call to DRAW. Various styles of contour labelling can be used and astronomical grids can be plotted on the final map. PREPPLOT can overlay the contours with polarization vectors and mark star positions for comparison with optical plates.

Inputfile The file containing the map to be plotted.
Output A plotfile which can be unspooled to the ZETA-plotter by DRAW. The user can print a logfile on exit which will help identify unlabelled grid lines.

Input Parameters
FILENAME The file containing the relevant map.
N1 The map number on file.
\(\mathrm{Y} / \mathrm{N} \quad\) Is there an associated polarization map to be overlayed as vectors?

If \(Y\), answer the questions as to which file and map.
\(\mathrm{Y} / \mathrm{N} \quad\) Is a 20 cm high default-sized plot required?
If \(N\), the plot scale in cm . per degree for both X and Y will be requested.

N2 N3 N4 N2 = the lowest contour level to be plotted in map units.

N3 = the basic contour interval in map units.
\(\mathrm{N} 4=\) the polarization scale factor ( \(\mathrm{N} 4=0\) if there is no polarization map).

If the polarization value at a point is \(I\) mu, a vector will be drawn there of length I * N4 tábular units. (tabular unit \(=\) grid spacing) i.e., if \(I=100 \mathrm{mu}\) and \(\mathrm{N} 4=0.01\), the vector will have a length of one grid separation distance.

N5
Enter - 1 for default contour style. This gives thickened and labelled contours (major contours) every tenth contour, with the contour interval always being N3.

Enter 0 to give your own instructions as to how frequently you wish to have a major contour and at what multiples of N3 you wish contours to be drawn. You will be asked for a set of numbers, N5A
N5B N5C
where, N5A is the number of major contours for which the subsequent N5B and N5C apply. (N5B - 1) is the number of unlabelled (minor) contours between successive major contours. N5C defines the contour interval N3 \(*\) N5C between successive contours. N5A, N5B, and N5C must be integer.

Enter -1 unless you wish to mark star positions for making the contours into an overlay. If you enter 1 or 2 , the RA-dec of stars must be entered as follows,

N6 = 1; HH MM SS.S DD MM SS.S
N6 \(=2\); DD MM SS.S DD MM SS.S
If \(N 6=1\) or 2, the task asks for N6A \(\mathrm{N} 6 \mathrm{~A}=5\) to enter star positions from the terminal.
\(N 6 A=X X\) (where \(X X\) is a one or two digit positive no. \(\neq 5\) ) to read the positions in from a file FOROXX.DAT. Entry of positions from either terminal or file is terminated by typing the word END (terminal) or having END as the last entry in FOROXX.DAT. END should be on a new line.

TITLE

N7 N8

N9 N10

The caption to be printed at the top of the map. Enter this preceded by the word TITLE, i.e.,

TITLE THIS IS A MAP,
The spacing between RA-dec grid lines in arcmin.
\(N 7=N 8=-1\) for no RA-dec grid.
The spacing between \(1, b\) (Galactic coordinate) grid lines.
\[
\mathrm{N} 9=\mathrm{N} 10=-1 \text { for no } 1, \mathrm{~b} \text { grid. }
\]

\section*{Comments}

The lowest level will be dotted and labelled ' 0 '. The HPBW will be hatched in the top left hand corner of the plot. Unspool the file with DRAW before preparing another plotfile, as DRAW deletes all plotfiles on completion.

PREPPLOT
*E: CONTROL HAS NOW PASSED TO PREPPLOT ***
\%OCL-I-SUPERSEDE, previous value of FORE日G has been superseded
MOD 2 LIBRARY, TUCSON VAX/VMS EDITION 24 APRIL 1985
NO SCAN LIBRARY ATTACHED.
CYBER NODPLOT LIBRARY MADE 11 NOV 76.
THIS RUN MAS MADE BY OBS ON 27 7 85 RT 14:59:35 MST.
GIVE NAME OF MAP FILE TO BE CONTOURED.
GEIVESIRAM MUMBER ON FILE. Map be plotted is on VENUS 1RAW. 2 IV NUMBER ON FILE. Plotithe second male on the file.
ENTER. \(Y\). IF THERE IS A MAP TO VCR.
No polarization map.
ENTER, Y , FOR A PLOT 20CM HIGH. Y
PLOT SCALE \(=\quad 364.0894507553252\) CM. PER DEGREE.
ENTER THE FOLLOWING.
A) THE LOWEST CONTOUR (MAP UNITS, WILL BE DASHED).
B) THE BASIC CONTOUR INTERVAL (MAP UNITS).
C) THE POL VECTOR SCALE FACTORS = IF NO POLS).
 -1

1 TYPE =
\(\begin{array}{ll}\text { IIrPE=1 R.H. IN HUUKS MIN SEL } \\ \text { II TYPE } & \text { R.R. IN DEGREES ARC MIN ARC SEC Default style contours. }\end{array}\)
ITYPE=-1 IF NO STARS TO BE PLOTTED G \(_{1}\) No stor prestions ts lu e plotted.
ENTER \(A\) CAPTION FOR THE MAP RS, TITLE \(X X X X X X X\) ETC.
IITLE SATURN AT 84.2 GHZ, DURL-BEAM MAP. \& 1 _ Write tiv caption (minus the word TTTLE)
 IF EQUATORIAL GRID NOT WANTED ENTER \(-1-1\).
\(-1-1\)
GIVE SPACING BETWEEN \(L 8\) GRID LINES (IN RRCMIN) IF GALACTIC GRID NOT WRNTED ENTER -1 -1.
\(-1 \quad-1\)
666
EFF CONTROL NOW PASSING BACK TO POPS. ***
>DRAM
* Unipod to th Zeta-plotter via tusk DRAW.

The result was Fig. 1 .

\section*{Task QMSPLT}

Function QMSPLT prepares a plotfile for the QMS laser-printer and unspools this plotfile to the device. It is very similar to PREPPLOT, to which frequent reference will be made below.

Inputfile The file containing the map to be plotted.
Output A finished plot via the laser-printer.
Input Parameters
\begin{tabular}{|c|c|}
\hline FILENAME & The file containing the relevant map. \\
\hline M1
\(\mathrm{Y} / \mathrm{N}\) & \\
\hline Y/N & See task PREPPLOT. \\
\hline N2 \(\quad\) N3 \(\quad\) N4 &  \\
\hline N5 & \\
\hline N6 & \\
\hline CAPTION & A caption of up to 40 characters that will be printed at the head of the plot. Enter this without any preceding word TITLE, i.e., THIS IS A MAP. \\
\hline N7 N8 & See task PREPPLOT. \\
\hline N9 N10 &  \\
\hline
\end{tabular}

Comments
Almost identical to PREPPLOT, but note that the caption has no preceding word TITLE!

OMSPLT
5: CONTROL HAS NOW PASSED TO OMSPLT ***
\%DCL-I-SUPERSEDE, previous value of FOR006 has been superseded WOOL LIBRARY, TUCSON VAX/VMS EDITION 24 APRIL 1985
NO SCAN LIBRARY ATTACHED.
CYBER MODPLOT LIBRARY MADE 11 NOV 76.
THIS RUN MAS MADE BY OBS ON 27 7 85 AT 14:47:38 MST. GIVE NAME OF MAP FILE TO BE CONTOURED.
VEMUSIRAW NUMBER ON FILE. Map \(D\) he plotted in on file VENUS 1 RAW. Plot the second oral on file.
EMTER • \(Y\) • If THERE IS A MAP TO VCTR. \(\square\) No polarization map.
ENTER ' \(Y\) • FOR A DEFAULT-SIZED PLOT. Y
PLOT SCALE \(=130.2383199814775\) CM. PER DEGREE.
ENTER THE FOLLOWING.
A) THE LOWEST CONTOUR (MAP UNITS, WILL BE DASHED)
B) THE BASIC CONTOUR INTERVAL (MAP UNITS).
C) THE POL VECTOR SCALE FACTOR( = 0 IF NO POLS)

IF YOU KANT DEFAULT CONTOURS TYPE -1. ELSE 0
HEIMIN = 5090 Default style contras. starting from \(-52500 \mathrm{m.v}\).
1 SEQUENCES HEIMIN=5000.00 CLAMIK=1.000 ID=0
1 TYPE=
ITYPE=I RA. IN HOURS MIN SEC
ITYPE=2 RA. IN DEGREES ARC MIN ARC SEC
ITYPE=-1 IF NO STARS TO BE PLOTTED \(\forall\) - No star positions to le plotted.
ENTER TITLE (NO MORE THAN AQ CHARACTERS)
SATURN AT 84.2 GHZ, DUAL-BEAM MAP.
GIVE SPACING BETWEEN RA 8 DEC GRID LINES (IN ARCMIN)
If EQUATORIAL GRID NOT WANTED ENTER -1-1 No RA- Nee grid \(T\) hue plotted. GIVE SPACING BETWEEN L 8 B GRID LINES (IN ARCMIN)
IF GALACTIC GRID NOT WANTED ENTER -1 -1
\[
\begin{equation*}
-1-1 \tag{8}
\end{equation*}
\] No l, b grid \(D 1\) be plotted. 665
:5: YOUR PLOT HILL APPEAR POST-HASTE. *** 7 Plot has been sent to the
8: CONTROL NOW PASSING BACK TO POPS. *** laser-printer.


This is the laser-printer plst.

\section*{Task RESTOR}

Function RESTOR will restore a dual-beam map to the equivalent single-beam representation via the Emerson et al algorithm.

Inputfile The file containing the map/s to be restored.
Output A file containing the restored map/s.
Input Parameters
FILENAME1 The file containing the az-el map/s to be restored.

FILENAME2 The file to contain the restored az-e1 maps.
N1 N2 First and last maps to be restored on FILENAME1.

N3 N4 N5 The parameters giving the dual-beam geometry. These will be requested afresh for each of the maps to be restored.

N3 = the beam separation between the dual-beam responses in arcmin.

N4 = angular offset in degrees of the line joining the two beams to the horizontal. N4 is measured anticlockwise from the horizontal with azimuth increasing to the right.

N5 = the relative amplitudes of the left-hand beam to the right. If the beam to the left is the negative beam, then N 5 is conventionally defined to be negative.

\section*{Comments}

If the sign of \(N 5\) is wrong, all sources will appear as holes!

RESTER
8: CONTROL HAS NOW PASSED TO RESTOR ***
\%O CL- 1 -SUPERSEDE, previous value of tukvies has been superseded
MOO LIBRARY. TUCSON VAX/VMS EDITION 24 APRIL 1985
MO SCAN LIBRARY ATTACHED.
MO NODPLOT LIBRARY ATTACHED.
THIS RUN W RS MADE BY OBS ON 27 7 85 RT 18:08:40 MST.
PROGRAM TO RESTORE DURL-BERM OBSERVATIONS TO A SINGLE-BERM MAP

GIVE FILE NAME FOR INCOMING DUAL-BERM MAPS.
VEAUSI RaH
GIVE FILE NAME FOR OUTPUT RESTORE MAPS. file VENUS1RAW. VENUSIRES

4 - The restored map will go to file VENUSIRES.
INPUT NUMBER OF FIRST AND LAST MAPS ON FILE TO BE PROCESSED.
22
MAPS FROM 2 TO 2 WILL BE PROCESSED.
IFAULT STATUS IS 0 : MAP NO \(=1\)
IFAULT STATUS IS 0 : MAP NO \(=2\)
INPUT A) THE SEPARATION OF THE THO BERMS, IN ARC MIN
(B) THE RAG. OFFSET (LEGS) OF THE LINE JOINING THE THO BERMS. (MEASURED ANTICLOCKWISE FROM HORIZ.. IDEALLY DD).
C) THE RELN. AMPL. OF LFT-HAND BEAM TO RT-HAND BEAM (IDEALLY 1.0)
fir Lft-hand berm is vc, rein mil is vc.)
4.1 6. -1. FORTRAN STOP E\& CONTROL NOW PASSING BACK TO POPS. ***

The result is shown overleaf.

The dual -beam mop.


2800.0

The restored map.


\section*{Task SETBASE}

Function SETBASE sets a zerolevel for each row of a map, defined by the average value of a given number of points at each end of each row. The task also allows the scaling of the maps by an arbitrary factor.

Inputfile The file to be processed.
Output A file containing the scaled and baselined maps.

\section*{Input Parameters}

FILENAME1 The file of maps to be processed.
FILENAME2 The file to contain the processed maps.
N1 The scale factor by which to multiply the current map.

N2 N3 The number of points at the left- and right-hand ends of each row to be used in the baselevelling process for the current map. If the user does not wish to change the baselevel of a particular map, \(N 2=N 3=0\).
(N1 N2 N3 will be requested afresh for each map in the file.)

\section*{Comments}

SETBASE can be used at any stage of the analysis, but is particularly useful after RESTOR both for rebaselining and entering the scale factor to bring the intensities into calibrated units.

SETBASE
1** CONTROL HAS NOW PASSE O TO SETBRSE ***
\%OCL-1-SUPERSEDE, previous value of FOR日日6 has been superseded
NOD LIBRARY. TUCSON VAX/VMS EDITION 24 APRIL 1985
NO SCAN LIBRARY ATTACHED.
NO MODPLOT LIBRARY ATTACHED.
THIS RUN WAS MADE BY OBS ON \(27 \quad 785\) AT 18:10:15 MST. GIVE NAME OF MAP FILE TO BE BRSELEVELLED. VENUSIRES
GIVE FILE NAME FOR BASELEVELLED MAP. to may on file VENUS 1 RES.
GENUSIBAS VEMUSIBRS

We will scale and rebaseline
The result will be put in
TITLE 2
SATURN
MAG DJC
+4.10REST 0.0 flevenusibas.

MAP
1 ENTER SCALE FACTOR BY WHICH TO MULTIPLY MAP.
.1787
Scale factor to convect

SCALING COMPLETED.
GIVE NO OF PTS RT SCAN START \& END FOR SETTING ZEROLEVEL.
44
FORTRAN STOP
52: CONTROL NOH PASSING BACK TO POPS. ***
Set the baselenel using four points at each ont io each row.

\section*{Task SUMMARY}

Function SUMMARY gives the user a bri.ef synopsis of the parameters of the map.

Inputfile The file containing the map/s for which summaries are required.

Output The summary printed on the terminal.

\section*{Input Parameters}

FILENAME The file containing the map/s for which summaries are required.

N1 N2

N3
The first and last maps on file for which summaries are required.

The angular units in which angular quantities will be printed.

N3 = 0 for degrees.
\(=1\) for minutes.
\(=2\) for seconds.
The same angular units will be presumed for all maps for which summaries have been requested.

Comments
Useful when you've lost track of what you are doing!


\section*{Task TEKPLT}

Function TEKPLT prepares a plotfile for the TEKtronix 4010 or MODgraph graphics-terminals and unspools it to the device. It is very similar to PREPPIOT, to which frequent reference will be made below.

Inputfile The file containing the map to be plotted.
Output A finished plot on the graphics terminal.
Input Parameters
FILENAME The file containing the relevant map.
N1
Y/N
\(\mathrm{Y} / \mathrm{N}\)
See Task PREPPLOT
N2 N3 N4
N5
N6
CAPTION A caption of up to 40 characters that will be printed at the top of the plot. Enter this without preceding it by TITLE, i.e.,

THIS IS A MAP.
N7 N8
See Task PREPPLOT
N9 N10

\section*{Comments}

Almost identical to PREPPLOT, only note that the caption has no preceding word TITLE!

TEKPLT
8\&: CONTROL HRS NOW PRSSED TO TEKPLT ***
\%OCL-I-SUPERSEDE, previous value of FORE06 has been superseded
MOO LIBRARY, TUCSON VAX/VMS EDITION 24 APRIL 1985
NO SCAN LIBRARY aTTACHED.
CYBER NODPLOT LIBRARY MADE 11 NOV 76.
THIS RUN HAS MADE BY OBS ON 27 7 B5 AT 14:56:09 MST. GIVE NAME OF MAP FILE TO BE CONTOURED.
VENUSIRAM NUMBER ON FILE. Map \(D\) le felted is on file VENUSIRAW. 2

ENTER • \(Y\) • IF THERE IS A MAP TO VCTR. Plot the second mats on file.

ENTER •Y• FOR A PLOT OT OLTRULT SIZE.
Y
CRULTSI2C. Ma the a defanlt-sized old.
PLOT SCALE \(=117.44\) I
ENTER THE FOLLOWING.
A) THE LOWEST CONTOUR (MAP UNITS, WILL BE DASHED)
B) THE BASIC CONTOUR INTERVAL (MAP UNITS).
() THE POL VECTOR SCALE FACTOR ( = IF NO POLS).
-525 IF YOU MANT DEFRULT CONTOURS TYPE -1, ELSE \(O\) Pl A contours at intervals of
-i 4 Default style contrive.
1 SEQUENCES
HEIMIN = 5000.00
CLAMIN = 1.000 \(5000 \mathrm{~m} . \mathrm{u}\). starting from \(-52500 \mathrm{~m} \cdot \mathrm{U}\).

1 \(1 \mathrm{YPE}=\)
ITYPE=1 RA. IN HOURS MIN SEC
ITYPE=2 RAP. IN DEGREES ARC MIN ARC SEC
ITYPE=-1 IF NO STARS TO BE PLOTTED No star pinion to lu plated.
ENTER TITLE (NO MORE THAN AE CHARACTERS)
SATURN RT 84.2 GHZ, DURL-BEAM MAP.
GIVE SPACING BETWEEN RA 8 DEC GRID LINES (IN ARCMIN)
IF EQUATORIAL GRID NOT WANTED ENTER -1-1 No RA - dee gild the -isle SPACING BETHEEN L 8 B GRID LINES (IN ARCMIN) IF GALACTIC GRID NOT WRNTED ENTER -1 -1 perter.
\(-1-1\)
No l, b gird to be plotted

SATURN RT 84.2 GHZ. DUAL-BERM MAP.


This is the plot ttat appears on the MODgraph.

Task TFORM
Function TFOKM performs various coordinate transformations on maps, i.e. from RA,dec to 1 , b or vice-versa.

Inputfile The file containing the map/s to be included in the transformation process.

Output A file containing the (single) map in transformed coordinates.

Input Parameters
FILENAME1 The file containing the map/s to be transformed.

FILENAME2 The file containing the transformed map.
N1
A coordinate code identifier.
\(0=\) absolute \(1, b\).
\(1=\) absolute RA,dec.
\(20=\) A map in real angle centred on the given 1, b position (N2,N3). Zero rotation ( \(\mathrm{N} 4=0\) ) aligns the axes with 1 , \(b\) at the centre of the new map.
\(21=\) A map in real angle centred on the given RA, dec position ( \(\mathrm{N} 2, \mathrm{~N} 3\) ). Zero rotation ( \(\mathrm{N} 4=0\) ) aligns the axes with RA, dec at the centre of the new map.

N2 N3 The coordinates of the required field centre in degrees.

If \(\mathrm{N} 1=0\) or 20 , the centre should be given in absolute 1, b.

If \(\mathrm{N} 1=1\) or 21 , the centre should be given in absolute RA,dec.

N4
If \(\mathrm{N} 1=20\) or 21 , N 4 is the rotation angle in degrees for the cutput map relative to the nominal axes. (Enter 0 for \(\mathrm{N} 1=0\) or 1.\()\)

N5 N6
Total \(X-Y\) sizes of the output map in arcmin.
\begin{tabular}{ll} 
N7 N8 & \begin{tabular}{l} 
Grid point separation in arcmin for the output \\
map.
\end{tabular} \\
N9 N10 & \begin{tabular}{l} 
First and last maps in the input file to be \\
included in the transformed (output) map.
\end{tabular} \\
TITLE & \begin{tabular}{l} 
A title for the new map entered as, \\
TITLE THIS IS A MAP.
\end{tabular}
\end{tabular}

\section*{Comments}

Apart from the obvious use of transforming from one coordinate frame to another, the task has other uses. It can be employed to interpolate a map on to a different grid spacing. This is handy for T.V. image display, where a degree of oversampling improves the appearance of the image. It can also be used to mosaic a number of adjacent, or overlapping, maps into a single output map (with or without coordinate transformation). A small section of a large map can also be extracted. Different frequency maps can be produced on identical grids (probably following the smoothing of one) for inter-comparison. Rotation of the image is useful for long, thin objects such as edge-on spiral galaxies.

We wish to transform the RA-dec map of Orion \(A\) on file ORICOM.DAT int \(l, b\) coordinates.

FORM
EFF CONTROL HAS NOW PASSED TO TFORM ***
\%OCL-I-SUPERSEDE, previous value of FORE日G has been superseded
NOD 2 LIBRARY, TUCSON VAX/VMS EDITION 24 APRIL 1985
NO NODPLOT LIBRARY RTTACIILD.
THIS RUN WAS MADE BY OBS ON 31 7 85 AT 14:30:06 MST.
GIVE NAME OF MAP FILE TO BE TRANSFORMED. The map is on file ORICOM. DAT
GIVE MAME FOR TRANSFORMED MAP FILE. The \(l, b\) map will he on fill ORIGAL.
GIVE COORDINATE CODE FOR THE NEW MAP.

GIVE \(x\) and \(r\) COORDS IN DEGS (NEH SYSTEM) OF FLD CNTRE. Make the map in tied
\(209.0^{-19.4}\) centre (ie. Neal angle) \(l\), \(t\).
GIVE CLOCKWISE ROTA (LEGS) ABOUT FIELD CENTRE: \(0=N O\) ROTA. \(l\), \(t\) of field centre if new map.
Give \(x\) and \(Y\) extents of the new field in arcmin.
GIVE AND \(Y\) GRID-SEPN IN NEW GRID IN AैCMIN.
GIVE FIRST AND LAST MAP NO ON INPUT FILE.
\({ }^{1}\) E' TITLE ORION A RT 84.2 GHZ . IN GALACTIC CORDS.
DATA USED FROM 1 MAP (S).
FORTRAN STOP
*E: CONTROL NOW PASSING BACK TO POPS. ***

Let's lon at our \(l, b\) map on fitch ORIGAL with ToOLKIT.
```

TOOLKIT
E\& CONTROL HAS NOW PASSED TO TOOLKIT. ***
NOD2 LIBRARY, TUCSON VAX/VMS EDITION 2A RPRIL IG85
MO SCAN LIBRARY ATTACHED.
NO NODPLOT LIBRARY ATTACHED.
THIS RUN WAS MPDE BY OBS ON 31 7 85 RT 14:31:33 MST.
ENTER THE NAME OF THE FILE TO BE RERO FROM.
ORIGAL
SPECIFY MAP NUMBER REQUIRED ON FILE.
OR FOR HELP, OR -1 FOR A NEW MAP FILE.
I
STYLE,EL,STARTVAL,STOPVRL,-OR-,-777,NFCNT, ZERO,STEP
STYLE 5 DR G->INPUT ROW OR COL,COL OR ROWSTART AND STOP.
ENTER A COMMAND PLERSE OR <CR> TO ASK FOR ANOTHER MAP.
l

```


\section*{Task TOOLKIT}

Function TOOLKIT can be used as a quick-and-easy display task on a graphics terminal. It can also be used for data editing, scaling, baselevelling, changing titles and dummy values. The modified maps can be output to a new file.

Inputfile The file containing the map/s of interest.
Output A plot on the graphics terminal and/or a file containing edited maps.

\section*{Input Parameters}

FILENAME1 The file containing the map/s of interest.
N1
\[
\begin{aligned}
\text { If } \mathrm{N} 1 & >0 \text {, it specifies the map number of file. } \\
\mathrm{N} 1 & =0 \text { for a HELP display. } \\
\mathrm{N} 1= & -1 \text { to give a new FILENAME1 and select } \\
& \text { that file. } \\
\mathrm{N} 1= & \text { A (alphanumeric character) to exit } \\
& \text { TOOLKIT. }
\end{aligned}
\]

N2 A command sequence.
N 2 gives a command code and the operation will depend on this and other parameters entered. The details of the commands are as follows;

N2 ( \(=0\) ) N3 N4 N5 N6 This command will first scale the map by N3 and then add a planar distritribution defined by N4 (at BLC), N5 (at BRC) and N6 (at TLC).

N2 ( \(=1\) ) N3 N4 N5 This will add values to all points in row N3 varying smoothly from N4 (map units) at the left-hand end to N5 at the right-hand end.

N2 (=2) N3 N4 N5 The same as N2 = 1, but the values are added along column N3.

N2 ( \(=3\) ) N3 N4 N5 In row N3 the data in columns N4 through N5 will be replaced with dummies (= AMAP (6)).
\begin{tabular}{|c|c|}
\hline N2(=4) N3 N4 N5 & As \(\mathrm{N} 2=3\), but the dummies are inserted in column N3 for rows N4 through N5. \\
\hline N2 (=5) N3 N4 N5
N6 N7 & In row N3, for columns N4 through N5, values will be added varying smoothly from N6 (map units) to N7. \\
\hline N2 (=6) N3 N4 N5 N6 N7 & As \(\mathrm{N} 2=5\), but the values are added in column N3 for rows N 4 through N5. \\
\hline \[
\begin{aligned}
& \text { N2( }=-222) \\
& \text { TITLE }
\end{aligned}
\] & A new title is read into the map header. The title is preceded by the word TITLE as in, TITLIE THIS IS A MAP. \\
\hline N2 (=-333) N3 & The dummy values in the map, and the value in AMAP (6), are changed to be N3. \\
\hline N2( \(=-777\) ) N3 N4 N5 & This plots a contour map on the graphics terminal. N3 contour levels will be plotted, the lowest being N4 map units and the contour-interval being N5 map units. The plot will have equal separation between adjacent rows and adjacent columns, and vertical and horizontal lines are drawn at each tenth column and row. \\
\hline N2 (=/) & This gives an \(\mathrm{N} 2=-777\) style plot with default contour interval chosen to give a fixed number of levels between the map minimum and maximum values. \\
\hline N2 ( \(=-888\) ) N3 N4 N5 & As \(\mathrm{N} 2=-777\) except that the separation of adjacent rows and columns is such that the plot just fills the screen. \\
\hline
\end{tabular}
\(\left.\begin{array}{ll}\text { N2 (=-999) } & \begin{array}{l}\text { This will write an edited } \\
\text { [FILENAME2] } \\
\text { (or unedited!) map to the }\end{array} \\
\text { file FILENAME2. The name } \\
\text { FILENAME2 is requested the }\end{array}\right]\)\begin{tabular}{l} 
first time that N2 \(=-999\) \\
is entered. All subsequent \\
calls will write further \\
maps to the same file.
\end{tabular}

\section*{Comments}

This is a general display and editing task. It can be useful at any stage of analysis in either role.

We wish to have a "quick-losk" at a map.

TOOLKIT
888 CONTROL HAS NOW PASSED TO TOOLKIT. ***
WOOL LIBRARY, TUCSON VAX/VMS EDITION 24 APRIL 1005
NO SCAN LIBRARY ATTACHED.
THIS RUN WAS MADE BY OBS ON 27 785 AT 17:23:03 MST.
ENTER THE NAME OF THE FILE TO BE READ FROM.
SPECIFY MAP NUMBER REQUIRED ON FILE
OR FOR HELP. OR - 1 FOR A NEH MAP FILE.
STYLE, EL, STARTVAL, STOPVAL, -OR-, -777, NFCNT, ZERO, STFP
STYLE 5 OR G->INPUT ROW OR COL, COL OR ROWSTART AND STOP.
ENTER A COMMAND PLEASE OR <CR> TO ASK FOR ANOTHER MAP.

Default plot with 18 levels.
\(-77720-52500500 』\)
Reflst with 20 leads of \(5000 \mathrm{~m} \cdot \mathrm{v}\).
stating at \(-52500 \mathrm{~m} . \mathrm{v}\).


The default plot

SATURN MAG DUE
ENTER A COMMAND PLEASE OR <CR> TO ASK TOR ANOTHER MAR.
\({ }_{\text {THANK }}\) YOU Exit from TODLKIT by entering ?:8 CONTROL NOU PASSING BACK TO POPS. *** the Hollerift character 'O'.


The plot with 20 levels of \(5000 \mathrm{~m} \cdot \mathrm{v}\). starting at \(-52500 \mathrm{~m} \cdot \mathrm{v}\).

We wish to lark at our map of Orion A on file ORICOM. DAT at teen do some editing on it.

TOOLKIT
FEE CONTROL HAS NOW PASSED TO TOOLKIT. ***
NOD LIBRARY, TUCSON VAX/VMS EDITION 24 APRIL 1985 NO SCAN LIBRARY ATTACHED.
NO NODPLOT LIBRARY ATTACHED.

THIS RUN WAS MADE BY OBS ON 31 7 85 RT 18:05:44 MST.
 SPECIFY MAP NO. ON FILE, \(D\) FOR HELP, OR -1 FOR NEH MAP FILE. For te "Help" display.
FIRST NO. INPUT IS MAP NO. ON FILE OR -I FOR NEW FILE. A \(g\),
AFTER MESSAGE -COMMAND PLEASE-. PUT IN FOLLOWING COMMANDS:
AFTER MESSAGE -COMMAND PLEASE-, PUT IN FOLLOWING COMMANDS:
\(B\) (CR) = \({ }^{\text {SCALE, NOTE BASE BOO, BOX. BOY ADDED AFTERGAIN AP }}\)

NO. ADDED ROUNDED TO NRST INT, SO WT PRESERVED.
\(\begin{array}{llll}2 \text { I A } 8 \text { (CR) } & =>R S \text { ABOVE, ROD ALONG COL I } \\ 3 \text { I A B (CR) } & =>\text { REPLACE ROW I WITH DUMMY }\end{array}\)
B (CR) \(\Rightarrow\) REPLACE ROW I WITH DUMMY BTHN COL ABB.
\(A B\) (CR) \(\Rightarrow\) ADD TO ROW I BETWEEN COLS A AND B:
THEN ENTER START AND STOP VALUES.
61 AB (CR) \(\Rightarrow\) ADD TO COL I BETWEEN ROWS A AND B
-222 (CR). THEN WORD TITLE FOLLOWED BY NEW TITLE FOR MAP.

CONTOUR INT B; PLOT IN NORMAL PROPORTIONS.
-666 (CR) \(\Rightarrow\) THEN 4 SAME, BUT PLOT TO FILL SCREEN.
I MPUT ROWSTART, STOP, COLSTART, STOP. RESET WHOLE MAP \(\theta\) O 0 ©.
- 999 (CR) \(=\) O OUTPUT MODIFIED MAP TO REQUESTED FILENAME.

IF YOU SIMPLY INPUT / WHEN ASKED, YOU GET A DEFAULT PLOT
IF INPUT CARRIAGE RETURN ONLY, GO BACK TO READ NEW MAP.
TYPE RLPHA-CHAR. TO EXIT PROGRAM......WE MADE IT CAPTAIN
SPECIFY MAP NO. ON FILE, 1 FOR HELP. OR - 1 FOR NEW MAP FILE.
The "Help" display.

STYLE, EL, STARTVAL, STOPVRL, -OR-, - 777 , NFCNT, ZERO, STEP
STYLE 5 OR G->INPUT ROW OR COL. COL OR ROWSTART AND STOP.
ENTER A COMMAND PLEASE OR <CR> TO ASK FOR ANOTHER MAP.

Make an 18 level default pleA.

\(-59.5\)
64

The regional map

Enter a new scale and add a planar baselerd of the maid ENTER GAIN AND BOD, BOX, BOY FOR MSCRLE
2. 0. 180. 100. Scale factor \(=2\)., Planar baselevel defined by MATRIX SCALE TYPE
GRIN
\(2.00 \theta\)
SCALING COMPLETED.

2
811
0.000
\(8 \times 1\)
100.000 0. (at BLC), 100. (at BR C), 100. (t TR C).

ENTER A COMMAND PLEASE OR <CR> TO ASK FOR ANOTHER MAP.
T -Make a default plot of the modified map.


The moificis map.
-222 4-Gine the mab a new lite.
title we are entering a new title. This is the new tithe.
ENTER A COMMAND PLEASE OR <CR> TO ASK FOR ANOTHER MAP.
3193043 30.0000 43.0000 Replace columns 30 to 43 in. rows 19
ENTER \(A\) COMMAND PLEASE OR <CR> TO ASK FOR ANOTHER MAP. with dummies.

ENTER A COMMAND PLEASE OR <CR> TO ASK FOR ANOTHER MAP. at colum m 1 and varying linear \(t\) \(5291121.0000 \quad 12.0000 \quad\) de 0 mu. by colum m \(43^{\circ}\). ROW 29 BETWEEN COLS \(1 \frac{12}{29}\) - Ad values Lis columns 1212 of row 29. SPECIFY VALUES TO RDO AT START AND STOP. The values added are to vary linearly ENTER A COMMAND PLERSE OR <CR> TO ASK FOR ANOTHER MAP. from 1000 mu . at column 1
\[
\Sigma
\]
to \(500 \mathrm{~m} \cdot \mathrm{v}\). at column 12 .
Make an 18 level default pelt.

The effect of 529112
1000. S00.


The effect of 19500.0 .

ENTER A COMMAND PLEASE OR <CR> TO ASK FOR ANOTHER MAP. -999 \(\qquad\) Write modified file \(t\) disk.
ENTER NAME FOR OUTPUT FILE. ORIMAD A ENTER, \(Y\), IF YOU REALLY WANT TO LOSE YOUR EDITING. TOOLKIT. thank You \&\# CONTROL NOW PASSING BACK TO POPS. ***

As you have performed some . editing, th program asks for confirmation before exiting.```

