Memorandum

T0: $\quad 12-\mathrm{m}$ Memo Series
FROM: J. M. Payne, C. J. Salter

SUBJECT: $\quad 12-\mathrm{m}$ Telescope Calibration

We report the results of a short observing session made with the $12-\mathrm{m}$ telescope on 12 Apr 1984. The observations were performed at 230 GHz using the rebuilt $\lambda 1.3 \mathrm{~mm}$ two-channel mixer receiver. The performance of the receiver was evaluated, telescope pointing checked and the telescope characteristics as a function of elevation investigated (see $12-\mathrm{m}$ Memo, J. M. Payne et al, 26 Mar 84).
a) $\lambda 1.3 \mathrm{~mm}$ Receiver

The rebuilt $\lambda 1.3 \mathrm{~mm}$ mixer receiver performed stably, having similar noise temperatures in each channel with an average value of 325 K (DSB). After combination of the two channels, the noise ripple per unit time in continuum mode was about $5 \mathrm{Jy} / \mathrm{sec}$ outside the atmosphere.
b) Pointing

The pointing was checked via a set of measurements of the planets (Mars, Jupiter and Saturn) and the radio source 3C273 (Flux density, epoch 12 Apr $84=25.0 \pm 1.5 \mathrm{Jy}$). The observations covered $130^{\circ} \leqslant$ Azimuth $\leqslant 260^{\circ} ; 16^{\circ} \leqslant$ Elevation $\leqslant 60^{\circ}$. Over this area, no change of thumbwheel offset was necessary. The r.m.s. deviations of measured positions were,

$$
\sigma(\text { azimuth })=3^{\prime \prime} .7 ; \sigma(\text { elevation })=4^{\prime \prime} .0
$$

The pointing offset between the two receiver channels was $<2^{\prime \prime}$ in both azimuth and elevation.

c) Lateral Focus

Observations to determine the setting of the subreflector $\mathrm{N}-\mathrm{S}$ translation stage, and the sensitivity of the gain to errors in this setting, were made between elevations 15° and 60°. Within the observational errors, the measured settings for the translation stage agreed with the values calculated by L. J. King
(12-m Memo No. 219), reproduced in Fig. 1.
A provisional 230 GHz gain-lateral displacement curve is shown in Fig. 2. The curve is a free-hand fit to the displayed data points, which were measured on Saturn at elevation $=44^{\circ}$. The axial focus was fixed throughout the measurement. We note that a 1 mm error in setting the translation stage results in a decrease of telescope gain by only $2-3 \%$ at 230 GHz .

d) Axial Focus

We investigated the movement of the axial focus of the telescope as a function of elevation using the normal $12-\mathrm{m}$ FOCALIZE procedure. The observations were made at night and the ambient temperature did not vary by more than $2^{\circ} \mathrm{C}$ over the session.

The mean axial focus position of the two channels varies sysemmatically with elevation. This is shown as a function of sin (elevation) in Fig. 3. The straight line fit to the data is described by,

$$
\mathrm{F}_{\mathrm{o}}=37.5+2.8 \sin (\text { elevation }) \mathrm{mm}(1)
$$

This change of axial focus with elevation is considerably greater than predicted in $12-\mathrm{m}$ Memo No. 219. In addition, there is a small difference in the axial focus positions of the two orthogonal linear polarizations, amounting to

$$
\Delta F_{0}(C h 1-C h 2)=0.21 \pm 0.03 \mathrm{~mm}
$$

The detailed axial focus curve at 230 GHz for a given elevation is shown in Fig. 4. The half-power width of the curve is about 2.4λ, a value close to theoretical.

The gain-elevation curve at 223 GHz shown in Fig. 2 of $12-\mathrm{m}$ Memo, 26 Mar 84, can be satisfactorily accounted for by the defocussing effects described above. On the occasion of these previous measurements, 27 Feb 84 , the telescope was focussed at an elevation of 20°, with the $N-S$ translation stage fixed at +1 mm . We have computed the expected gain-elevation curve using the elevation dependence of F from (1) and computing gain factors from Fig. 4, together with the effects of the fixed translation stage. This resultant curve shows good agreement with the measured values of gain-elevation. Observers having existing $\lambda 1.3 \mathrm{~mm}$ data taken with the $12-\mathrm{m}$ telescope could use a similar process to correct their data for gain-elevation effects caused by defocussing.

Within the next few days, computer control of both the axial and lateral focus with elevation will be implemented.

Lateral

Focus
Position
(MM.)

