National Radio Astronomy Observatory
 Tucson, Arizona
 February 3, 1984

MEMORANDUM

TO: Spectral Line Observers
FROM: J. M. Payne \& B. Stobie

SUBJECT: Optical Depth Measurements

The present method of determining the optical depth from an antenna tip seems to be overcomplicated. We have implemented a simpler scheme that has the following advantages and is available to observers on a trial basis.

1) The measurement is made in switched power rather than total power so the stability of the receiver when tilted is not so critical.
2) The astronmer is not required to enter any parameters.

3) The fitting of the data is simpler.
Description of Method
The antenna is tipped in elevation to the elevation angles that have previously been used in sky tips. At each elevation angle data is taken from the total power channel of the receiver as follows. First the total power voltage with the ambient temp vane over the receiver feed is taken ($\mathrm{V}_{\mathrm{HOT}}$). Next the total power voltage with the ambient temp vane removed is taken ($\mathrm{V}_{\mathrm{SKY}}$).

$$
\begin{aligned}
& \text { Let }\left(\mathrm{V}_{\mathrm{HOT}}-\mathrm{V}_{\mathrm{SKY}}\right)=\Delta \\
& \text { then } \Delta=\mathrm{T}_{\mathrm{AMB}}-\mathrm{T}_{\mathrm{AMB}}\left(1-\mathrm{e}^{-\mathrm{T} / \text { SIN EL }}\right) \\
& \text { where } \mathrm{T}_{\mathrm{AMB}}=\text { ambient temperature } \\
& \mathrm{EL}=\text { elevation angle } \\
& \mathrm{T}=\text { optical depth }
\end{aligned}
$$

```
If \(\log _{e} \Delta\) is plotted against \(\frac{1}{\text { SIN EL }}\) the result should be a straight line the slope of which is \(-T\).
```


Analysis

During tipping scans the control system now integrates the total power of the receiver with the vane and then without the vane for the specified length of time (SEC) and records the difference between these values (Δ) for the same elevation angles as previously used.

The data is analyzed in the continuum programs CONDR1 or CONDR2. The procedure, NTIP, which must be INSTALLed in the program performs a linear fit to $\log \Delta$ as a function of secant Z by linear regression. The resulting ${ }^{\text {slope }}=-T$.

To use the procedure type:

RUN CONDR1
INSTALL NTIP
SCAN NTIP

The procedure will ouput the following:
RESULTS OF TIP
TAU $=\mathrm{x} . \mathrm{xxxx} \quad \mathrm{FCF}=\mathrm{x} . \mathrm{xxxx}$
where FCE (fit confidence factor) $=1$ for a perfect fit. See examples below.

