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1. History

In April 1976, Buck Peery got a letter from ESSCO, giving the equations 
for the theoretical paraboloidal surface coordinates. At ESSCO, the panel 
was measured at n = 86 points of a rectangular grid, and ESSCO quoted for the 
deviations

ESSCO rms = 1.58 mils* = 40 ym. (1)

The panel was shipped to Green Bank, where Sidney Smith measured it five 
times (July and November 1976) with n - 72 points of a radial grid, obtaining 
a range of 3.3 ... 4.2 mils, with an average of

GB rms - 3.78 mils = 96 ym. (2)

This discrepancy between (1) and (2), a factor of 2.39, caused a great 
deal of concern on both sides. The panel was shipped back to ESSCO and was 
measured there four times, results ranging between 2.13 ... 2.40 mils, and 
averaging

ESSCO rms = 2.23 mils = 57 ym. (3)

Comparing (1) and (3), it could be that the panel had been damaged during 
the first shipping. But the discrepancy between (2) and (3), a factor of 
1.70, was still unexplained and too large to be tolerated.

The solution finally was given in February 1977 by a report from ESSCO, 
giving for the first time the detailed equation of their data evaluation. If 
A are the measured deviations, A = measured - paraboloid, ESSCO had subtracted

* 1 mil = 10  ̂inch.



the average (which may be called a one-aprameter best fit) and had multiplied 
by cos 0 (where 0 = 27.68° is the tilt angle of this panel on the telescope, 
between the panel and a plane normal to the telescope axis):

ESSCO rms - cos 0 * rms(A - A), (4)

whereas our values (2) mean simply

GB rms = rms (A). (5)

The panel was again shipped to GB, and a new set of four measurements 
was taken by Sidney Smith in February and March 1977. When evaluated the 
ESSCO way of equation (4), the results ranged between 2.3 ... 2.7 mils, with 
an average of

GB measurements: cos 0 * rms(A - A) = 2.58 mils = 65 vim, (6)

which now comes close enough, with overlapping rangeŝ  to the ESSCO value of 
(3). And when evaluated the GB way of equation (5), the range is 2.6 ... 3.9 
mils, with an average of

GB measurements: rms (A) = 3.32 mils = 84 ym, (7)

which agrees with our older data of (2), meaning that no damage has occurred 
during the last two shippings.

Since two different grids had been used by ESSCO and by us, ESSCO measured 
in their Report (Feb. 8, 1977) both grids. The difference, 2.40 versus 2.19 mils, 
is negligible as it should be. Our new GB measurements, from February 1977 on, 
were all done using the rectangular ESSCO grid.

2. The Meaning of RMS
In total, it took ten months to remove the discrepancy, which then turned 

out to be a question of semantics (science of meanings). The abbreviation "rms”
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means "root mean square.” Mathematically speaking, this is a function, and 
each function needs an argument and is incomplete without it. For example, 
"sin - ..." is incomplete, one must write "sin <j> * ...". Thus, one should 
never write "rms = ...", but always "rms(x) = ...", or "rms(x - x) = ... ", 
or whatever the argument may be. Then, by definition

Another technical term frequently used is the standard deviation a, where sub­
tracting the mean is already included in its definition:

The square of the standard deviation is called the variance, y2(x) = a2(x)*

Finite sample. These equations refer to samples of infinite (or very 
large) size. If a finite (small) number n of measurements are used for obtain-

Measuring error. Equations (8), (9) and (11) refer to the measured values

with x^ = xq  ̂+ ê , and if we want to know the true values (of our plate, for 
example), we need an independent determination of our measuring error, calling

rms(x) (8)
and

(9)

standard deviation of x * cr(x) - rms(x - x). (10)

ing both x = (1/n) and x2 ■ (1/n) £x^2, equation (8) still holds, but
equation (9) needs a correction:

(11)

or readings. If each reading x^ consists of a true value xq  ̂and an error ê ,

eQ = rms(e). Since x = xq whereas x2 = xq2 + eQ2, we finally have, referring 
to the true values,



If measurements with different methods are to be compared, and if the measurement 
errors are not negligible, the corrections given above should be applied.

3. Systematic Change
The last set of five GB measurements is shown in Table 1. The errors 

given are the (statistical) mean errors of each quantity, as obtained from the 
readings. Table 1 shows that the averages A are significantly different from one 
day to the other; for example Â  - Ac = 1.34+0.46, with 1.34/0.46 = 2.91.
The values a(A), however, stay much more constant, which means we did not just 
have "good and bad days."

Table 1. Last set of GB measurements (with mean errors).
A * measured heieht - oarabo].oid. in mils.

Date Fig. 1 A A2 rms (A) a(A)

Feb. 25 a -1.57 ± .33 11.71± 2.39 3.42 ± .35 3.06 ± .43
11 28 b -1.84 .34 13.12 2.91 3.62 .40 3.14 .51
Mar. 1 c -2.49 .33 15.63 2.58 3.95 .33 3.09 .50
" 21 d -1.15 .32 10.24 1.77 3.20 .28 3.00 .32

11 22 e -1.64 .31 11.08 2.04 3.33 .31 2.91 .40

Fig. 1 shows the second moment A2 and the standard deviation a(A), as
functions of the average A. We get the impression that some systematic
deformation takes place between different days, but not monotonic with time 
(as a creeping of the epoxy would do).
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The best check for a systematic change is to ask for the correlation 
between the differences of any two days, and those of any two other days; for 
example

86

M a a 86kl_ <14>
i=l

If M is significantly larger than zero, then the changes are systematic and 
not random. Since we have one more day of readings, we may also replace AcLl
in (14) by Ae »̂ calling the result M̂ . From the measurements mentioned in 
Table 1 we obtain

M = 0.80 ± 0.28, with 0.80/0.28 = 2.9, 
a (15)
M = 1.04 ± 0.25, with 1.04/0.25 = 4.2. e

This is significant enough to conclude that the changes indeed are systematic.

4. Our Measuring Error
From Fig. 1 we further conclude that cases e and a have about the same 

systematic deformation. Their difference then is a good measure for our 
intrinsic measuring error:

■k ^  (Aei - Aai)2 ' 2 eo2> <16>

and from the measurements we obtain

eQ = (0.81 + 0.08) mils = (21 + 2) ym. (17)

This error includes: the reading accuracy of each point as well as setting the 
scale exactly on the bench mark of this point, and adjusting the six adjustment 
points to A = 0. For an optical method this is quite good, amounting to 1.7 
ardsec total.



5. Thermal Deformations

The most probable explanation for the systematic changes seems to be 
thermal deformations. For this case we expect the deformations to be 
smallest close to the six adjustment points, to be largest in between and 
always of the same sign, but to be of opposite sign in the cantelevering 
piece. Fig. 2 gives the differences (A^- ôr points. Keeping
in mind that the mean error of these differences is £Q’//2 * 1.15 mils, we may 
conclude that the thermal expectations are fairly well fulfilled.

Thermal deformations occur when the skin has a temperature different 
from that of the lower part of the ribs underneath. The simple model of Fig. 3 
gives a central maximum deformation of

1 *z = t A t ~  , (18)max 4 th h *

and for the average z, for aluminum and the dimensions of this panel,

7 / AT = 2.69 mils/°F = 123 ym/°C. (19)

Between the extremes of Fig. 1, the ob^etved differfence is

z = A, - A = 1.34 mils = 34 ym, (20)a c
and with (19) we obtain for the temperature difference AT between skin and 
lower part of ribs:

AT(March 21) - AT(March 1) = 0.50 °F = 0.28 °C. (21)

This seems possible, regarding the small distance between panel and door, and 
between panel and the heating units at the wall, enforced by the small size of 
the room.

This result emphasizes the need for rather thick panels for our 
25-m design, to keep the thermal deformations sufficiently small.
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6. Best Possible Shape
From Fig. 1 one may get the idea that there might be some thermal 

condition better than that of case d, extrapolated from c to d and beyond. 
Calling the deviation of this best shape from the paraboloid, including 
correction (13) for out measuring error, it can be shown that

Compared with rms (A,) = (3.20 ±.28) mils from Table 1, we see no significanta
improvement. Which means that a change of thermal conditions can make it a lot 
worse but not much better.

A)2 - e 2 c o (22)

and from the measurements we obtain

rms(AQ) = (3.03 ±.31) mils * (77 ± 8) ym. (23)



2Fig, 1 . Last five GB measurments of ESSCO panel; second moment A ,

and standard deviation CT(A)t as functions of average A •
.3A a measured height - paraboloid, in 10 inch.
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Fig* 2. Rectangular measuring grid with n * 86 points, showing the difference
A,. - A . between March 21 and March t. di ci
At the six points marked the panel is adjusted to the correct
paraboloid.



Fig, 3. Thermal deformation of narrow beam or plate.
a) Simplified model, and central deformation z ;* 1 max’
b) Skin and ribs of panel, length £  for diagonal;
c) Average deformation z*


