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Sitmmary

A method is suggested where a reference feed is fixed at the telescope 
focus, and a second feed has a lateral offset and scans the focal plane.
The telescope tracks a celestial radio source, and the receiver measures 
the phase difference at the two feeds and their (voltage) amplitude ratio.
A set of coordinate transformations is applied, after which the surface 
deviations a from a paraboloid can be obtained by a Fourier transform. The 
measuring error is discussed, and the best wavelength is found to be between 
14 and 21 a.

1. Introduction
Accurate measurements of the surface shape of radio telescopes are needed 

for two cases: adjustments of the surface panels for a selected elevation 
angle, and compensating the gravitational deformations at other elevations 
with a deformable subreflector [1]. The best adjustment angle is between 42° 
and 50° elevation for most telescope structures [2], and one would like to 
measure the surface, for both cases, at various elevations over the full range 
from zenith to horizon. Recent accurate measuring methods are mostly confined 
to zenith pointing [3], and the relative deformations between zenith and other 
pointings could then be measured by a radar method [4]. But if possible, one 
would like to have one and the same absolute method for all pointings from 
zenith to horizon, and the method should also be fast enough to avoid thermal 
changes in between.

Furthermore, it would be nice to have a method which (a) uses the fact 
that a telescope surface is almost a paraboloid of revolution and that only 
small deviations a from it ought to be measured, and which (b) could use 
available radio equipment. Since not only amplitude must be measured but



also phase (pathlength differences from surface deviations), one needs two 
receiving feeds. A "holographic method" of this kind was suggested by 
Bennet et al. [5], using a transmitter at a large distance, a fixed reference 
feed horn close to the antenna, and scanning the antenna in azimuth and 
elevation; but because^the needed transmitter, the method is confined to 
pointing at horizon.

For avoiding this limitation, Scott and Ryle [6] use an unresolved
celestial radio source, scanning the antenna in both directions by several
beamwidths, and using a second antenna as phase reference which is always
centered at the source. If one wants a spatial resolution of n points per
diameter, or n2 measured surface points, one must scan up to n beamwidths
off center, or im2 scan samples. The surface deviations a are then obtained,

IAasby a simple Fourier transform of te. scanned field, with an rms error of 
Act * nA/47rR, where X is the wavelength, and R is the signal/noise if centered 
on source and for the same integration time as used for a single scan sample. 
This method allows measurements at all elevations, but it is confined to cases 
where a second telescope is available nearby, at less than 1 km distance 
because of tropospheric irregularities. The spatial resolution is limited 
by the demand that the gravitational deformations should not change appreciably 
while the telescope tracks the celestial rotation of sky and source, which 
limits the integration time for a given pointing. Scott and Ryle [6] obtained 
a resolution of about 1 m for a 13 m diameter telescope, with an accuracy of 
Ao £ 0.1 mm, for a total duration of 2.5 hours per pointing, at X = 1.95 cm.

In the following, we suggest a variation of this method which can be 
applied to single telescopes. The telescope is always centered at the 
celestial source; a reference feed stays fixed at the telescope focus, and a 
movable feed is displaced laterally, scanning the field of the focal plane
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within a distance nX. The spatial resolution is again limited by the 
integration time. This is no problem for the study of gravitational 
deformations which mostly will have a long correlation length. But if a 
higher resolution is wanted, for adjusting many (or internally bumpy) surface 
panels, one should use in addition the zenith measurement of Payne, Hollis-. 
and Findlay [3].

2. One-Dimensional Case
We regard the pathlength L = Lj + L2 in the one-dimensional example of 

Fig. 1, with all possible offsets. In the undisplaced case, zero offsets, 
we have Lj - F + z and z = x2/4F for a parabola, L2 = F - z, and L ■ 2F.
With all three offsets and a surface displacement, we have a pathlength 
change AL * ALj + AL2, with AL2 = -yx - a, and

Calling a(x) the amplitude to be discussed later, and t any one of the 
offsets £, C or y, the field at the location of the feed then is
described by

(1)

The phase change then is <j> = 2ir AL/A which we divide into two parts, <f> from
offsets and <j) from surface deviations, with <#> = <#> + <J> , where s o s

o (2)

T es (3)

+D/2
(4)

-D/2



From equations (2) and (4) we recognize the difference between the three 
offsets if used for scanning. First, scanning the antenna beam across the 
source by varying y (keeping C = £ = 0) yields for equatiop. (4) exactly the 
form of a Fourier transform as used by Scott and Ryle, where a(x) can be 
obtained by a reversing Fourier transform of the measured field (A,i|0.
Second, scanning the feed along the axis by varying £ is useless for finding 
a(x) since <f>Q depends only on z - x2/4F which does not distinguish between 
-x and +x. Third, scanning the feed laterally by varying £ would give a 
Fourier transform if we had in equation (2) just the product £x instead of 
£x/(F+z). But this required form can be obtained by a transformation of 
coordinates, using q - x/(F+z) = sin 0, instead of x:
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q " F + x2/4F

The integration limit q^ for equation (4) is, with $ ■ F/D and 0 = rimo o
illumination angle,

|q| £  q° " r +8L *  = - 8 i n  e°' <6)

If we actually perform a lateral scan, using a fixed reference feed, we 
do not know the exact position (c,£) of the reference, nor the exact direction 
(y) of the beam in case of a complicated or split-up beam. If we neglect 
all three, we will obtain the deviations cr(x) of the telescope surface from 
a parabola which has its focus at the reference, and its axis perpendicular 
to the scan direction (£) • A ieast-squares solution for the best-fit parabola, 
applied to o(x) and having these degrees of freedom, will then yield all 
three unknowns.
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3. Lateral Scan in Two Dimensions
For an application, we must add the second dimension and the amplitudes. 

As to coordinates, we use for the aperture x ■ r cos a and y « r sin a; in 
the focal plane we use £ » Xp cos 8 and ri = Xp sin $, where £ is parallel to x 
and n to y, where a and 3 have the same origin and direction, and where the 
lateral offset p is measured in wavelengths. The feed illumination pattern 
shall be described by 1(0,a) in terms of voltage, where G(0,a) = I2 is the 
feed gain in terms of power, as a function of the angular distance 0 from the 
axis (Fig. 1), and of the azimuth a in case of an elliptic pattern. We shall 
normalize I (Oja) ■ 1 on the axis.

We use the coordinate transformation (5), replacing x by r,

with the integration limit qQ given by equation (6). In addition, we transform 
a(r,a) into s(q,a) by

F + r2/4F (7)

1 - /l - q2 (8)
q

dr = 2F (9)

s(q,a) = 2ir (1 + /l - q2 ) a(r,a) / X. (10)

The phase change then is

<f>. = <}> + <(> * - s(q,a) - 2 7 Fqp cos (a - $).O w (i d



We use two feeds, with feed 1 at the focus and feed 2 scanning laterally, 
and the receiver shall measure the phase difference

^ * if>2 “  (1 2 )  

and the (voltage) amplitude ratio

A - A2 / A i . (13)

Regarding the individual ray and its contribution to the measured ampli
tude, we keep in mind that the voltage decreases as 1/distance ■ 1/Lj of 
Fig. 1, where Lj - F + z and 2F/(F+z) = 1 + cos 0, with q = sin 0. We 
express r dr in terms of q from equations (8) and (9) and have

F . _ ,2
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with

Calling

r dr « 2 Fz Q(q) q dq (14)

Q(q) - — • (15)qVl - q2

B(q,a) = I(q,a) Q(q) a(q,a) (16)

and summing up all contributions, we then have
oo 2'tt

A(p,6) e ^ (p’B) = j  J B(,.b) e-1 s(’’o) e1 2" c o s ( a ~ 6 ) q dq da (17)
0 0

where the last exponential term has the form required for a Fourier trans
form, and where the phase is normalized by 1/1 j = 0. The individual amplitude 
a(q,ot) in the aperture contains all normalizing factors; it is proportional
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to the flux of the radio source, times the telescope area, divided by the 
reference amplitude Aj. As a check for the validity of the measuring 
method, we use the knowledge that the amplitudes must be, except for the 
shadows of receiver box and support legs, with qQ from equation (6):

constant, for q <  qQ , 
a(q,a) - ' (18)

0 q >  qQ •

Written in real terms, the reversing Fourier transform yields B(q,a)— 
and s(q,a) in the aperture, from the measured amplitude ratio A(p,&) and 
phase difference iK p ,$) in the focal plane, as

oo 2tt
B cos s ■» + I f  A cos[i/> + 2tr qp cos(a-$)] p dp d $ ,  

o o
(19)

oo 2ir
B sin s ■ - I f  A sin[i|> + 2tt qp cos(a-B)] P dp d $ .  

o o

From the values B(q,a) we check with equations (15) and (16), and with 
the known feed pattern I(q,a), whether equation (18) is fulfilled. Finally, 
the wanted surface deviations a(r,a) are obtained as

«(r,«) - £  ■faff) (20)
zir 1 + /l - q2

with r(q) from equation (8). These are the deviations from a paraboloid 
which has its focus at the phase center of the reference feed, and its axis 
perpendicular to the plane of scanning. The deviations are defined parallel 
to the telescope axis, and positive is up, see Fig. 1.



Up to now, we have assumed that the measurements are performed in the 
plane of the prime focus, scanning off axis up to a distance of n beamwidths, 
for a resolution of n points per diameter. It is also possible to apply the 
method in the plane of a Cassegrain or Gregorian focus, scanning up to a 
distance increased by the magnification factor m. In this case, the resulting 
a from equation (20) is a combination of the surface deviations of both 
primary and secondary mirror, and of all misalignments of the secondary which 
also will show gravitational deformations depending on elevation angle.

4. The Measuring Error
The rms error Aa of the deviations a are for the suggested two-feed 

method the same as for the method of Scott and Ryle [6] who derive

Aa - f a  (21)

if n2 surface points are to be measured, and where X is the wavelength, R is 
the signal-to-noise ratio at the reference feed, for an integration time t 
equal to the duration of a scan sample, or 1/n2 of the total observing time 
for a given telescope pointing which is limited to one or two hours because of 
the changing gravitational deformations. The signal/noise is proportional to

R *'J  S JO JI E .  (2 2 )

where S is the flux of the source, r\ <\-* exp [-(4TTa/X)2] is the aperture 
efficiency, b the bandwidth, t oj n”2 the sample integration time, and T the 
system noise temperature. Thus

% 2 T X (4tto/X)2 A a nz -- =  e . (23)S /b
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We see that Aawn2 for a limited total time. The best wavelength X should 
be chosen such that (23) is minimized, which depends on the available 
receivers (T and b) and radio sources (S). For many cases, observations at 
the strong water line may be best, at X - 1.35 cm.

“k 1cIn case of continuum observations, we use S ** v ^  X , where v is 
the frequency and k the spectrum index; we shall assume b v X  ̂and 
T ■ constant for simplicity. Then

. 2 -yl*5-k (4ircx/X)2 /r)/sAa ̂  n* X e (24)

which has its minimum at

X - a. (25)/3 - 2k

For example, X = 14 a for k ■ 0 (flat spectrum), and X ■» 21 a for k = 0.8 
(normal spectrum). We see that the best wavelength is about the same as the 
shortest wavelength of observation, usually adopted as 16 a, where the 
efficiency is degraded by a factor of two.
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Figure Caption

Fig. 1. Geometry of parabolic reflector.
Heavy lines are ray paths, full line for undisturbed case. 
Broken line with beam tilt y , axial feed displacement C» 
lateral displacement £, and surface deviation a.



Geometry of parabolic reflector.

Heavy lines are ray paths, full line for undisturbed case. 
Broken line with beam tilt Y» axial feed displacement £ , 
lateral displacement £, and surface deviation CT".


