A 300 FOOT HIGH-PRECISION RADIO TELESCOPE

Appendix 1

May, 1969

National Radio Astronomy Observatory * Green Bank, West Virginia

* OPERATED BY ASSOCIATED UNIVERSITIES, INC., UNDER CONTRACT WITH THE NATIONAL SCIENCE FOUNDATION.

CONTENTS

Appendix 1

Report Number

Approach to a Structure with Homology Deformation	1
Telescope Model for Homology Test	2
Spillover Shield	3
Calculating Method for Homology Solutions of Telescope	
Structures	4
LFSP Summary of S. von Hoerner	5
Approximation to the Inverse of a Matrix	6
The Flat Fixed-Elevation Transit Antenna	7
The Effective Elasticity, E, of a Long Rope, Sagging	
Under Its Own Weight	8
Weight Increase by Slenderness	9
The Wind Area of Members and Space Frames	10
Tower for a Flat Transit Telescope	11
Mirror for the Floating Sphere	12
Structures for Homology Calculations	13
Discussions with Railroad Engineers	14
Use of Homology Program	15
Statistics of Wind Velocities at Green Bank	16
Thermal Deformations of Telescopes	17
Homologous 300-ft Telescope: Data for Analysis of	
Towers and Built-up Members	18
Azimuth Towers for Homologous 300-ft	19
Final Tower Data	20
Final Data for Telescone Design	21
Telescope Members with Special Design	22
Wind and Temperature Deformations of the 300-ft	
Homologous Telescope	23
Nind-Traduced Vibrations of Pines	24
Decien and Porformance of the 300-ft Homologous Telescope	25
Design and refformance of the 500-it homotogous felescope	25
The Number of Observable Radio Services for Large	20
Sincle Teleseeree	27
prukte tetescobes	41

Reducing	the	Influe	ence	of	Sunshi	lne t	y	Blowing	A	mbi	ent	:			
Air Tl	hroug	h the	Feed	Su	pport	Legs		• • • • • • • •	••	• • •	• • •	• • •	 • • •	 • •	28

Appendix 1

INTRODUCTION

Appendix 1 contains a series of internal memoranda and engineering notes written since October 1965 when the early ideas of a large homologous telescope were developed. It should be kept in mind that these notes were intended to be a form of internal communication only, and they have not been edited or corrected in any way.

During the four years covered by these notes, concepts and ideas have changed, and the reader might find specifications and statements in the earlier reports which later have been changed as the work progressed. The notes are included in the appendix only in order to give the reader a chronological account of the development of the conceptual design of a 300-ft homologous telescope and to provide background material whenever appropriate.