Bean Characteristics of the Resurfaced 300-Foot Telescope at 21 cm
by
G. Westerhout. G. Mader and R. Harten University of Maryland August 1973

The buan characieristics of the man 300-foot telescope at Grean Bank W. Va, hnve been described by R. Harten (1969,1973). Since that paper was Writion, he telescope has been resurfaced. This paper reports the results of measummats of the 30-Eoot celescope bean characteristics, taken after the telnscope vas resumaced tn fall 1970. Most date, including those of the ham patern, were obtaned in early July 1971s aditionai measurements of beamidths as a function dechination were obtained in Sumer 1973. For a. more complete deccription of the methods employed, we recer to Harten (1973). Tho measurements were made asing feeds 3 and 4 of the 4 -feed system at 21 cm, which is used for both line and continum observations.
ine aperture efficiency na was detemined as a function of the declination Ey om dafe scans (leting a source whth kom Elux density pess through the benn with the telescone stathonary) and is given in Table 2. The resulting cure egrees well with the one detemined by M. Davis in Decenber 1970; the approwinately 10% lower efficheroy (peak 48.5% instead of 54.5%) was expected sthce Davis ${ }^{\text {d }}$ data were obtaned with a more efficient (singie, on-axis) feed. The results for feeds 3 and 4 were identical, indicating that the thermal calibration of the noise tube (upon which $n_{\text {a }}$ critically depencs) for these two receivers agreas to within 3% on a relative scale. The aboiute noise tube calibration, and hence the value of η_{A}, fs believed to be correct to rithin $\pm 5 \%$ (maximum error)。

The bean pattern $f(\theta, y)$ was detemined down to 30 db using "wobbles" (moving the telescope rapidy up and down in declination during the transit of a source) about cas A, and below 30 db , down to 69 db, ustig the Sun. Pigure 1 shows the inner bean patem using Cas A and feed 3. The peculiar lobe at the 20 -ab level appearing at negative wight-ascencion (which could not be completely napped) is due to the feed (part of the four-reed system)

If one knew the shape of the beam pattern not onily at 58°, but at all declinations, it would be possible to convert antema temperatures T_{A} into brightness iemperatures To by deconvolution. One often simplifies this by writing $T_{A}=n_{B}$ There the bean efficiency n_{B} is defined as the fraction of the total power, incident from the full beam, which is available at the antenna terminals, and where the full beam is "the part of the antenna pattern dow to a level necessary for the problem under consideration". The quantity η_{B} is directly related to η_{A}, as $\eta_{B}=\eta_{A} \Omega^{\prime} A_{G} / \lambda^{2}$. However, the beam solid angle Ω depends on the "problen under consjeration", and moreover, using n_{B} in thits mancr one assumes that $\bar{T}_{\bar{D}}$, the brightness temperature averaged over the bean, is constant over the area Ω^{\prime}. The approximation usually works reasonably well for onjects which are of the order of size of the main beam, so that sidelober do not play a role, but for more extended objects is in general a poor way of calculating T_{b}. In particular, as Table 1 shows, the larger the object, the larger the value of Ω° to be used and thus the larger η_{B}. Obviously, for larger objects covered by the sidelobes the value of ${ }^{T} A$ gets closer to \bar{T}_{B}. Taking the value of $\Omega^{i}(0.0360)$ within the 42 db level (i.e. within an area of apmoximately 75 minutes of arc in deameter) and the maximun value of $n_{4}(0.485)$ we find $n_{B}=0.78$. On the other hand, for a gaussian beam at 40° decitnation (halfwidths $10: 30 \times 10.10$, Table 2) we find $\Omega^{*}=0.0327$ and $\eta_{B}=0.713$.

In spite of these shortcomings in the use of η_{B}, we calculated this quantity as a function of declination. Assuming a gaussian main beam, $\Omega^{3}=$ 1. $133 \times \theta_{H} \times \theta_{F}$, where θ_{H} is the halfwidth in right-ascension and θ_{E} in declination. A total of 65 values each of θ_{H} and θ_{E} were determined at decinations between -15° and $+72^{\circ}$. The halfwidth in right-ascension was determined from drift scans, in declination from "wobbles". The measured values were corrected for the effect of the receiver time constant (Howard 1951). The r.th. s. deviations from a hand-drawn curve through plots of $\theta_{\text {Hin }}$ and θ_{E} vs declination were ± 0.25 and ± 0.35 minutes of arc, respectively. Average values of θ_{H} and θ_{E} were read from this curve every 10° in declination and are given in Table 2 , together with $\Omega^{\prime}, \eta_{A}$ and η_{B}.
comparing Survey antena temperatures with F_{B} values in other surveys) did not show any systematic variation ($+5 \%$) of intensity with elevation of the telescope. Moreover, the ratio T_{A} (Survey)/T (others) was approximately 0.80 , indicating $\eta_{B}=0.80$. This then suggests that the value of n_{B} for a region of the order of J° diameter does not change appreciably with declination, in spite of the change in $n_{1 s}$.

It appears plausible that the reason for the variation in n_{A} is the formation of near-in sidelobes at larger zenth distances, which at a declination of -10°, together with the wider main beam, should then contain about 23% of the energy contained in the main beam in the zenith. The main beam solid angle $\delta 0^{\circ}$ increases from 0.0327 square degrees in the Zenith to 0.0352 at $\delta=-10^{\circ}$, taking up approximately 10% of the energy. If the remaining 13% is distributed in near-in sidelobes over an area $0: 5$ in diameter, this would indicate an average increase of the sidelobe level over this area of 2.5% or -16 db of the main beam response, an effect which would only be noticeable on the strongest sources. It would be of interest to attempt making accurate antenna pattern measurements down to -25 db for two or three sources at different Zenjth distances to confirm this hypothesis. In the meantine, observers would do well to use the values of η_{B} given in Table 2 only for sources or features of the order of size of the main beam, i.e. 10 minutes of arc. For extended regions, i.e. larger than 1°, perhaps $\eta_{B}=0.78$ should be used, and it seems likely that this value does not change by more than 5% or so from the Zenith $\left(\delta=36^{\circ}\right)$ down to the Iimiting declinations of the telescope ($\delta=-19^{\circ}$ and $+90^{\circ}$). At the same time, however, it should always be realized that using such a simple transformation from T_{A} to T_{b} gives only a zero-order approximation to the real distribution of T_{b}.

Finally, using η_{A}, we can calculate the beam solid angle Ω (integral of the antenna pattern over the entire sky), since $\frac{1}{\Omega}=\eta_{A} A_{g} / \lambda^{2}$. For $\delta=58^{\circ}$, we find $\Omega=0.0474$. Since $\Omega_{42 \mathrm{db}}^{8}=0.0360$, the solid angle outside the 42 db level is 0.0114 , which, if distributed evenly over the 40,000 square degrees of sky, leads to an average power response of -65.5 db in the sky outside the 42 db level.

