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Calculating Method for Homology Solutions of Telescope Structures

The following is a mathematical method, written in such a way that it can be applied 
most directly for a computer program. As a first approach, it treats each joint as a 
pin joint, and each member as a single shape or pipe. It does not make use of symmetries, 
neither in the structure nor in the deformation matrix. (The use of symmetries will 
shorten the calculation time, but would complicate the formulae; it should be intro­
duced while writing the program.)

I._Introduction

In general, we have three types of degrees of freedom for a homologous structure: 
cross sections of members,
geometrical size and shape of the structure,
homology parameters (for example: change of focal length).

The following approach solves for cross sections and homology parameters, but considers 
the geometry as being given.

The conditions of homology deformation lead to algebraic equations of high order for 
the cross sections (the order can be as high as the number of members). A direct solut­
ion seems impossible, and the only way left is iteration: we start with a "first guess” 
for all cross sections, and improve them with an iterative method until homology is 
reached. If the changes are small, all equations then can be linearized. We thus need 
a fairly good first guess to start with, but I feel confident that a good first guess 
will be possible even in case of a complicated structure, if the structure consists only 
of cells for which the single-cell homology solutions already are found*

In my antenna paper I have shown that mathematical solutions must exist for every struc­
ture. But a '’physical" solution is much more narrow a selection: all cross sections 
must be real, positive and finite. Should our program yield a solution which is not 
physical, we have to try another first guess, or we must change the geometrical shape.

Since the number of cross sections is larger tho.̂  number of conditions, there is
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no unique solution, and the problem is not defined. We thus need some further demand 
for making it defined. I have choosen the following:

from all possible homology solutions, take the one which 
is most similar to the first guess (or to the last iteration).

This has two advantages. First, all changes will be as small as possible which gives the 
best hope that the linearized approach converges. Second, since the first guess will 
be a physical structure, we have the best hope that also the result will be a physical 
solution.

The solution thus obtained will, hopefully, be a physical solution, but not neccessar- 
ily the best one. The best solution we might define as the one ( from all physical sol­
utions) which meets as well the rigidity condition (wind deflections during observation) 
as the strength condition (survival) with a minimum total mass. Butiitis is a minimum 
problem and cannot be solved with a linear approach. The linear approach can only yield 
a gradient, meaning the direction in which to go to the best solution; but it cannot tell 
how far to go, which ought to be found by a second-order method. Whether this can be 
done in a rigorous way, or just by a few trials, will depend on calculating times.

A few things, partly needed for preparing the main sections, partly looking more like 
appendices, are somewhat heterogeneously grouped together in the present section.

1 . Some numbers and their relations

Call:
p = number of structural points (pin-joints)
N =
m =
m = v
c =
h =
f =

surface points to be kept homologous 
members in the structure 
members meeting at point
homology conditions + 1 (for keeping weight constant)
homology parameters
free parameters for cross sections

Then:

O PE R A T E D  B Y  ASSOCIATED U N IVERSITIES, I N C ., UNDER C O N TR A CT WITH THE NATIONAL SCIEN CE FOUNDATION



N a t io n a l  R a d io  A s t r o n o m y  O b s e r v a t o r y

P o s t  O f f ic e  B ox 2  

G r e e n  Bank , W e s t  V irg inia  24944

TELEPHONE ARBOVALE 456-2011

REPORT NO,.

CONTRACT N O ,_ 

PAttF -3 OF___
DATE_________

PROJECT: L F S P
s u b je c t: Homology Program

(p-2) m 4 p (p -l)/2 ( 0

3 4 m
V
4 P“f (2)

6 P m
V V-1 (3)

c - 2N + 1 (4)

f m + h - c (5)

2, Input data

The program should be given,as input data: ,
aajlJa ^ ^ O

1 • The x,y,z coordinates of all p points (telescope looking in^z-direction, no 
deformations), in the following order:

First, the N surface points
Second, all p-N-3 intermediate points
Third, three holding points (two bearings, one drive).

2• The number N of surface points, and the instruction which of the coordinates 
are fixed at the holding points,

3 , A first guess for the cross sections of all members, in form of a matrix of 
size p by p. A zero in this matrix means "No member” between the two points.

4# Material constants: 

f = density

E = modulus of elasticity

S = maximum allowed stresso

5, Surface loads (in kg per surface point):

wq = simulation of an antenna surface (including panels, etc,)
w = survival load (storm, snow, ice) s
w^ = maximum wind load during observation (for, say, 25 mph)

6, Shortest wavelength, X, for observation
7, Accuracy, AHq , wanted for "end of iteration”•
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3. Outline of over-all program

1 . Take coordinates, calculate lengths and projected lengths of all members. Set 
up matrices described in section "derivatives”.

2. Take first guess of cross sections, set up deformation matrix A and force vectors
— 1F; calculate inverse, A , calculate all deformations.

3. Find diViations from homology, using ,?best-fittingM homology parameters.

4. Keep weight W constant, find nearest homology solution with iterative method^ 
until accuracy wanted is reached. Check for negative cross sections and for non­
convergence (indicate failures). ^

5. Apply survival lfload, calculate total weightras defined by survival. Find shortest
wavelength X for structure defined by survival, s
Apply maximum observational wind load, calculate total weight W as defined byw
wind deflections.

Regard max(Ws, W^) as final weight, give all cross sections.

5 . Calculate sensitivity S of structure (deviations from homology due to small 
inaccuracies of cross sections).

7. Calculate direction in which to go to "best” solution. ( = gradient)

Up to here, all is completely computerized. From here on, it might be done manually or 
computerized, depending on the calculation times required.

8. If W >  W , change all cross sections in direction of gradient, repeat 2. to 7.w s
until minimum weight is approached closely enough.

9. If W .> W , find number of member with highest stress; increase this cross sections w ’
only, for a new first guess. Repeat, until as many members as possible are close 
to highest stress.

10, The whole procedure might be repeated with various geometrical shapes.
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4. Inverse of a matrix after small changes are added

M 7Suppose we have a matrix A and its inverse A . We add to A a matrix, a, whose 
elements are small as compared to those of A :

B = A + a . ( 6 )
-1We want a good approximation for the inverse, B , written in the following form:

B~1 = A~1 + b. (7 )

We multiply (7 ) from the right side by (e) and obtain, with E = unit matrix,

E = (A-7 + b)(A + a) = E + b A + A fa + b a .
— 1

For a linear approximation, we neglect ba and have bA = -A a. We multiply from the 
right side by A , and finally obtain the wanted correction, b, in terms of quantities 
already known:

(s)

or, in index notation:

’ij
(9)

III^_Deformation_Matrix 

1 . Equilibrium of forces

We consider the member connecting points P^ and P .
From the input data, we calculate its length, 1 ,
and the projection of this length on the coordinate
axes, 1 , 1 and 1 . If the x-coordinate of ’ tvx xvy tv z
point P^ is deformed by amount ^xTi an<̂  so on» 
resulting elongation of member tv is given by

A1 = (Ax -  Ax ) + (Ay -  Ay ) +T V 1TV t v TV
TV Z
TV

(Az - Az ). 
T v

( 1 0 )

Letting a = x, y, z (and later also (3 = x, y, z) we rewrite (1 0) as
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A1
T V

oc=x

x v a

t v

(Aa - Aa ) . 
T v ( 1 1 )

Calling Q the cross section of member t v ,  and E the modulus of elasticity, the 
force along member t v  is (positive for tension, negative for compression)

A1
T V

t v
T V

E Q *TV * ( 12)

and its projection on axis a is

T v aF = E Q 
T v a  t v  3 £

1~ (3=x
T V

1 (A0 - A|3 ) .
T V  p T  V

(13)

This is the a-component of the force acting on point P , resulting from the deformation 
of member t v .

In addition to the "deformation forces” (1 3), we have, if gravitation has direction 
a, the '’weight forces” on all points P^ resulting from the weight of all members joining 
in P^} and, on surface points only, the ”load forces” resulting from the loads applied 
to surface points, for various cases which we indicate by index Qi

Q direction g 
of gravity surface load case

1 z w
0

observing zenith

2 X w
0

observing horizon

3 z ww max. wind for obs.

4 z w + w
0 s survival condition

(14)

where the loads are defined in section ”Input data”. To be on the safe side and for
SvaviMoXsimplicity, we have applied the a force in the same direction as gravity. These 

additional forces, acting in a-direction on point t in case Q, then can be written as 
(divided by E in order to rid (1 3 ) from this constant factor):

O P E R A T E D  B Y  ASSOCIATED U N IVERSITIES, IN C ., UNDER CO N TR A CT WITH THE N ATIONAL SCIEN CE FOUNDATION



N a t io n a l  R a d io  A s t r o n o m y  O b s e r v a t o r y

P o s t  O f f ic e  B ox 2 

G r e e n  Bank , W e st  V irg inia  24944

TELEPHONE ARBOVALE 456-2011

REPORT NO___

CONTRACT NO,.

PAGE_Z__ OF__

DATE_________

PROJECT: LFSP

where

6* * = \ 10 \
1 for i=j 

0 for
and

1 for i^j 

o for i>j •

( 15)

(16)

In order to have equilibrium at point x in direction a for case Q, we must add
(13) for all members tv  coming to point t  from various points v ,  and let this sum 
be equal to the additional forces (1 5 ):

£
1 zxva

"TV _3  Q -  
V = f  1 P=x

T V

V  1  - ( a p 52 -  APS ) = I®
T V 3 T  V  TOC

T=1 ... p-3 
a=x,y,z 
Q—1 • • • 4

For simplicity, we have assumed that the three holding points are fixed in all three 
directions, thus t  = 1 • p-3 •

2 , Rearrangement

Formula (17) is arranged in order of the cross sections# We rearrange it in order of 
the deformations: (keeping in mind that the last three points do not deform)

(A
( . L i  y w  

_ p Q
z p - 3

O I T 4------ 3p=X ̂  U>=1 1TCP

which can be written as 
z

TCp -

p - 3

Z  E  AP=x V =1
ft APTa,vp v

V =1
V^T

Q

1 1 QT v a  TVp

T V

Q,tv = JpTa ( is)

= Z 2Ta

T = 1 . . .  P - 3  

a = x,y,z 
Q = 7 • • • 4

( 19)

We call A the "deformation matrix" and the "force vectors"# Matrix A is
of box-type: it is divided into (p-3) boxes of size 3 by 3 • It has two types of 
symmetry: each box is symmetrical in itself (exchange of a and (3), and matrix A 
is symmetrical with respect to the boxes (exchange of t  and v). If points t  and v 
are not connected by a member, both boxes t v  and v t  contain 9 zeros each# Matrix A
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p-3
x y z

x
* y

z
X

2 y
z
X

3 y  
z

X
P-3 y 

z

where, as an example, we have assumed that point is connected with
P , but not with point P ; P is connected with all points shown; p-3’ 2 3
nected with all points except P^. The marks "s" and mean:

cp=l 
i>4z

Vj-1 1

TV

The sum in (2 0) actually has only so many terms as members join in point P^. With 
we summarize:

A 0 = 6 xa,vp tv I
c p = ?

1 1 a 
Tcpa T(pp

l3
T<p

QTCp
1 1 Tv a tv(3

t v

T V

T=1 ... p-3 
V=1 ... p-3 
a=x,y,z 
(3=x,y,z

( 2 2 )

points P^ and
and P is con p-3

(2 0)

s s s 0 0 0 - - - — - —
s s s 0 0 0 - - - - - -
s s s 0 0 0 - - - - - -

0 0 0 s s s - - - 0 0 0
0 0 0 s s s - - - 0 0 0
0 0 0 s s s - -  - 0 0 0

Ta,V0

- -  - 0 0 0  - - -  
- -  - 0 0 0  - - - 
- -  - 0 0 0  - - -

s s s
S  S  S
s s s

PROJECT: L F S P
s u b je c t : Homology Program 

looks as shown below:

1 2  3

x y z  x y z  x y z
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3* Derivatives

Matrix A, as well as the force vectors F, are both linear in the cross sections; 
this means their derivatives, with respect to the Q's, do not depend on the Q's, they 
are constant for a given geometrical shape. We thus should start our program, for a 
given shape, by first building up the derivatives of A and F. Those of A are:

3A
tcx, t|3 ,mp

rot, v(3 ,mp 
t^v

dQ.
tcx,t!3
’rccp

dA

dQ.
xa,vP

with

TtCp

JTa,cp|3

6 L  a t t i : xa,cpp

- 6 6 L qT7l vcp xa,(pp

1  1  Qxva T V p

T V

1 • •  •  p™ 3
1 * . • p—3 
1 . . .  P -3 
1 ... p

x » y , z

X , y , z

(2 2)

( 2 3 )

(2 4 )

which, if wanted, can be summarized into

TOC n = 6 f 6 -  (f-6 )6 X L o •, Vp,TC(p TH L TV TV V(p J T0C,Cp|3 ( 25 )

The derivatives of the F^ are, from (15):

f 82
T a , i r c p

TCX
dQ

TCCp

= 6 6 Xs 1ag T7T 2 E TCP (2 6)

but for the F"% we have in addition to the Q-dependent terms also a constant term, 
which we call

f^ = 6 -S .. ^ (w + 6n w + 6 w ) Ta,o ag tN E o Q3 w Q 4 s (17 j

with g = g(Q) from (?4)f and -0 as defined in (16).

Actually, we do not have to store these derivatives; we store only matrix L and 
matrix 1. L is of same size and symmetry as matrix A, and 1 is symmetrical and of 
size p by p. The derivatives, whenever needed, are formed from (2 5 ) and (26).
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For better convenience, we now change our index notation, combining two in one:
i = 1 ... d

with
d = 3(p—3)*

The notation of the various quantities, then, changes as

j = 1 ... d ( 
Y = 1 ... m

(

A _ ---s Â. .Ta,vp ij
£  £  

xa,v(3,mp ij,y

xa X O t ,  TICp
-»*■ f . 

i*Y
£
'xa,o 1*0

Written in this notation, matrix A is built up from the derivatives as

m

A. . = V  a. . 0
Y =1

and the force vectors are built up as

i = 1 ... d 
j = 1 ... d

I? = fQ  * F f 8  Q 
1 1 *° f a  1 >Y '

4. The deformations

Applying the change of notations also to the deformations, by combining

Ax'Q

Ay,
Q

«J
j = 1 ... d

AzQJv J

we write (1 9 ) as
. ApQ 

J

i = 1 ... d 
Q = 1 ... 4
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- 7Finally, we caculate the inverse matrix of A and call it A , and obtain the defor­
mations as

AT? I?
1= 1

j = 1 ... d 
Q = 1 . . .  4

( 3 5 )

IVi_Small_Changes_of_the_Cross_Sections

Suppose we have already calculated A, A and all Ap for a given set of Q's. 
Now, we change each Q by a small amount into Q^+ dQ^, and we want to know the resul­
ting changes dA(B of the Af3's. We ask only for a linear approximation. Instead of 
(3 4) we have now

d x- m . mf i n  -  ***

A. . + 2 ^  a. . dQ \ f Ap5? + dAP? | = 1̂ ? + X !  f? 
1 3 ^  1 3 .Y nrj i 1 1 ] 1 ^  i,

and instead of (3 5 ) we get, with help of approximation (9 )

d r  d d

dQ Y Y
i = 1 • • d 
Q = 1 .. 4

(36)

ma r a a m
♦ dAP® = E  j - £  r  I  ^  dQ A-’] ♦ 2 f?fY

J J 1 = 1 I J k= 7 1= f Y= f J ^ Y= 1
(3 7 )

and, neglecting second-order terms,

d d m d d d m

ap5? + dAp5? = ^  * 22 72k~1-fQ dQ - 2  zT ZT Z]'a~v at- **
3 3 £rf ^  1 &  &  ^  ^  ^  !=♦ y=i Jk ^ 1,Y Y 11 :

We use (3 5 ) for the first and the last term on the right side, we exchange k and i in the 
last term, and we call

d d
B °  = 2 2  A~-1- - f  f ?  -  2 Z  a . n A P ^ I  3Y jirJ 31 I i,Y ^  il,Y lj

j = 1 .. d
Y = 1 . .  m
Q = 1 . .  4

( 3 9 )

The changes dA(3 of the deformations A(3, as caused by the changes dQ, then are given

fey in .Q 'v 1 o J - f .. a
( 4 0 )

Y =1 JY Y
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1 . Homology conditions

The equation for an undeformed paraboloid of focal length f, looking in negative 
z-direction, is

X + Z - .  (41)
4t

If gravity has z-direction (telescope looking at zenith, Sb=1, g=z)« we allow two 
homologous changes:

1 . Parallel translation down, amount dz; call dz = h (4 2)
2. Increase of focal length, amount df; call 2df = (4 3)

If gravity has x-direction (telescope looking at horizon, S I  —2, g=x), we allow again 
two homologous changes:

3. Parallel translation down, same amount dx = dz = h■ 1
4. Rotation around y-axis, angle dtp, call 2fdcp = h ̂ . (4 4)

We call
h , h , h = homology parameters. 
1 2  3

Let a surface point P^, under the forces of case Q, deform its coordinate x^ by
Ax^, and similar to the other two coordinates. We demand that the deformed point then v ’
is situated (somewhere) on a paraboloid defined by the three homology parameters. In 
case of only small deformations, 
fulfill the following condition:
case of only small deformations, one can show that the deformations of point P^ must

z
. h - h for Q = 1

X  n  y  n  n  1 21  2
V  A ^  A *— - Ax + — r Ay + Az = v ( 4 5 )2f v 2f v v \  x

+  f o r Q  =  2

or, written in general terms:

5-- c[3v Af3v ' Svk \  >p=x k=1

v = 1 ... N
( 4 6 )

Q = 1, 2.
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where the coefficients have the following values:

and

XIICEL P=y P=Z

CPv s
XV
2f 2f

1

k=f k =2 k =3

Q
svk

/
1

zV
“ 2f 0 Q= 1

. .  / 
' \ XV

2f 0
X 
— (2f 1 " 2f Q=2

v = ? ... N (4 7)

v = 1 .. N (4 5)

From the left side of (4 5 ) we define a vector, b f

\  = 7 1  =<>- •|3=x ■fip v  V

v = 1 ... N 
Q = f, 2 . (4 9)

We change again the index notation, and let

.  a b.
1

and Q
vk >i k *

i = 1 ... 2N 
k = 1 ... 3

The conditions of homology, (4e), then, can be written finally as

3

2  sik **k = bi • k - 1

(so)

i = f ... 2N (5 1 )

2. Deviations from homology

Equations (51) will not be fulfilled as long as homology is not reached, and we need
a measure for the deviations. From (51) we can derive the best-fitting values of the

Thomology parameters, h^, by a least-squares method. We define the transposed, g ^  = £ 
and call
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2N

= z
T

Klk sli &ik 1 = 7
2N

T1 = ?  sli bi
1=  7

T

1 = 7 ... 3
k = 7 ... 3

( 52)

( 5 3 )

TMatrices g and g are rectangular, but K is a square matrix (symmetric and positive
— 7 *definite) of size 3 by 3. We calculate the inverse of K, K , call h the best- 

fitting values of the homology parameters, and obtain

1=7 ‘kl X1 ' k = 1 ... 3 ( 5 4 )

These best-fitting values we insert into (5 7 ); we square and add the residuals, and 
as the measure of deviation,’ which we call AH, we define the rms residual of (5 7 ):

AH = i f  O i - i ;
1 = 7 k= 7 J

1 / 2

(55)

This deviation AH has the dimension of a length. We calculate AH after each 
step of the iteration, and the structure is satisfactory as soon as AH 4 X/ie, where 
X is the shortest wavelength from the input data. But for a more theoretical interest, 
we might have decided to iterate to a higher accuracy, and for this case we have given
AHq , the accuracy wanted, in the input data. This means we iterate until

AH 4  AH ( 56)

3. Corrections dQ needed for homology

As long as homology is not reached, equations (4e) are not fulfilled.' In order to 
fulfill (4 5 ), we would need changes dA(3 for the deformations A(3, and (46) then reads

£  cpv (APV + ^  = £  * 4  \  •P=x

We use (4 0), but change the notation

k= 7

v = 7 ... N 
Q = 7, 2 .

(5 7)

B’,Q B‘Q
JY vP,y
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We call = z : B‘Q
VY PV VP,Y 

with B defined in (3 9 ) and c in (4 3). We change notation:

1 ... N 
1 ... m
U  2 .

v y
C

I T
i = 1 ... 2N

We use (4 9) with notation (so), and (5 7 ) then takes the following form

3

'iY d<̂ Y " ^k “ bi *

m

Y=* k= 1
i = 1 ... 2N

( 5 9 )

( 6 0 )

Equations (so) we call ’’homology equations”. The right sides of (eo) are known; 
and the left sides contain the changes of all cross sections, dQ, needed for obtaining 
homologous deformations; the type of deformation is described by the three homology 
parameters, h^, which also are contained in the left sides of (so),

the introduction^ we have given reasons for going to a special homology solution 
(the nearest one), which means that also the three homology parameters, h^, are unknowns, 
yielding a total of m+3 unknowns.

Since the total weight does not matter for homology, but still must be defined some­
how, we keep it constant, by adding one more equation to system (go):

m
V 1
/

Y =1
1 dQ = 0 . Y Y

( 6 1 )

We thus have 2N +1 equations and m+3 unknowns, and we call

c = 2N+1 and n = m+3 . ( 62)
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Next, we want a unified way of writing the equations (5 0) and (e-r), and of dealing 
with the unknowns. The system of equations looks as follows:

y = u  2 m, m+i,.m+3
Y = f  

2

X

matrix C.
1Y

m
m+f
m+2
m+3

lQr

\

1 =1 
2

2 N 
2N + 1

-b.
1

(5 3)

vector -b.1

vector d

As shown above, we define a matrix C. , including the g., and equation (5 7 ). We$ 1Y lie
define the vector of unknowns, dQ , which includes the homology parameters as

dQ.m+k k - 1 -  3 ( 64 )

and vector b. is the same as b. except for an additional zero in the last place. 
1 1

Altogether, the system of homolgy equations then reads

n

Z  c -Z— 1 1 'Y =1
dQ = - b. . iy y 1

(65)

System (65) has c equations and n unknowns, with c<n, and we call 

^  = n-c = m+2-2N = number of free parameters. ( 66)
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VI, The "Nearest" Solution

From the family of all homology solutions, as given by (65) for various choices 

of the free parameters, we now want to select that solution which requires the 

smallest possible changes dQ of all cross sections (small as compared to the present 

values of Q). We thus define a quantity L as the "distance" we have to go to one 

of the homology solutions, and we require L to be minimum:

Equation (67) is required as long as we do not care about the values of the 

resulting homology parameters h^****h^. But actually, it might sometimes be

desirable to find structures where h1--- h4 have only very small values. This

means we should include these parameters in the minimum condition (67).

The homology parameters should be given a treatment comparable to that given 
(xrfy*

for th^section changes. First, we divide h^***h^ by twice the focal length f 

for normalization, just as the dQ are divided by Q in (67). Second, we introduce 

a weight factor co (the same for all four parameters), to be given with the input 

data, which tells how important small homology parameters are; for co = 1, for 

example, a 1% change of the focal length is valued the same as a 1% change of a 

cross section, while co »  1 would try to keep the focal length much more constant, 

whereas co «  1 makes the change of focal length unimportant. In order to include 

hj.* * *h4 in (67), we use again (64) for the dQ*, and in a similar way we define

L Min. (67)

2f/co = const. k = 1****4. (68)
m+k

Using these definitions, we write instead of (67)
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(69)

The task to be solved is a ’’minimum condition, (69), with a set of constraint 

equations, (65)”. The proper way of solving this task is known as the method of 

Lagrangean multipliers: in a general case, we have, for n parameters pj:

1 minimum condition: L (Pi*'**Pn) = Min.
c constraint equations: <p. (p ••••p ) = 0 i = l-***c.1 1 n

We multiply each constraint equation by a multiplier , add up, and demand
c

L + ki vi ~ Min* (70) i=l

Letting all derivatives of (70) with respect to the pj equal zero, we obtain n 

equations; together with the c constraints, we then have n + c equations for the 

n + c unknowns (n values for Pi****Pn» an(̂  c values for \i****X.c).

In our case, the are represented by the homology equations (65); for L we 

use (69), dividing by 2 for convenience, and we obtain for (70):

dQ«v . - ■ - • = Min. (71)
h l i  vr=

We let the derivatives of (71) with respect to all dQ̂ ,* equal zero

dQ * c ,
— 2-r + ^  CA* = 0  |r= 1---n. (72)
Q*2 MT

Systems (72) and (65) together give n + c equations for the n + c unknowns dQ^* 
and The matrix of the combined system is of size n + c, but because of its
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symmetry and incompleteness we do not have to invert the whole matrix. Instead of, 

we express the dĈ .* in terms of the \ from equations (72) as

dQ * = - Q *
r r S > Jj=l

C *j r Y = 1--- n, (73)

and insert into equations (65)

F I
\ c * j j r = t>i* i = 1 (74)

We define a matrix T as a "weighted transposed" of C*

T . = Q* C *
tj r jr (75)

and build the product

'ij £  ciY TrJ 
7*1

i = l*••• c , 
j ■ 1.•..c.

(76)

1Whereas both matrices C and T are rectangular, matrix D is square. We call D the 
inverse of D and have, from equations (7 4) and (7 5 ), for the Lagrange^n multipliers 
to be inserted into equations (7 3 ):

c

‘J 2 1  D-.' b. •1 31 1
1=7

j = 1 ... c (7 7 )

We now define a matrix G as

G = T (C T)
or

Yi

- 1

Y = 1 ... n
1 — */ »• * c ( 7 5 )
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Equations (7 3 ), with help of equations (78) and (7 7 ), then finally read

-  L
1 = 1

where the b. are defined by (5 3) and (4 9).

c
a *!

1 = 1
Y = 1 ... n (7 9 )

With equations (7 9), all unknowns now are found, the cross section changes dQ^ ... dQm
as well as the homology parameters h . .. h .1 4

YZIz_I^§?§^i25_§Sd_£hecks

For all cross sections Q, we have now found the corrections dQ, neccessary to bring 
us (as close as possible with a linear approach) to the homology solution which is most 
similar to our first guess (or to the result of the previous iteration). We apply 
these corrections and

We check, whether

Y = 1 ... m
i = 1 ... d (so)
3 = 1 ... d
Q = 1 ,2 .

Y = 1 0 0 0 m (si)
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If not, we replace the negative one by a small positive value and try the next iteration. 
If it fails again, we print ’’Negative Cross Section”, and stop the calculation. This 
means trying again with a different first guess, or, more probably, changing the geomet­
rical shape of the structure.

Next, we go through the whole procedure of inverting A and calculating all deflec­
tions A(3 until we arrive at the deviations from homology as &iven in (5 5 ). With (56) 
we check whether the accuracy wanted is already reached; if not, we repeat the iteration. 
If (56) is fulfilled, we regard (so) as the "Final Result of Iteration".

If, after A  iteration1, it turns out that the deviations, AH, do not decrease but 
jump or increase, we stop the calculation and print "No Convergence". Most probably, 
the mathematical solution would call for imaginary or complex cross sections, and we 
have to change the geometrical shape of the structure.

VIII^_Sensitivity

Considering the tolerances in all manufactoring and erection procedures, we ought to 
know how sensitive our homology solution is with respect to small inaccuracies of the 
cross sections. We vary each cross section by

dQy = ^  , with «  U  Y = 1 ... m (5 2 )

and we regard the £ as being uncorrelated random numbers, with mean zero and rms 
= £  . Suppose we have exact homology before applying the changes (3 2 ); in equation 
(5 5 ), then, each single term equals zero. Now, we apply changes (5 2 ) and have 

«■>■ - £ « , } ' •
1  =1 L y =1 Y J

Since the are uncorrelated, only the quadratic terms remain in the average
2N m

= S i l  . (s<)
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From (so) we find
i = 1 ... 2N

(85)
3b.__l

~ ~ ~iY
1 = - C

Y  = 1 ... m

At present, we go "away" from a homology solution, which means that all cross sections 
are free for variation (as opposed to (7 2 ) and (7 3 ), where some parameters were bound 
by the homology equations). Thus

2N m
( a n 2 = §  2  7 1  (c v 2- (se)

± - 1 y=i

Finally, we define the sensitivity in a dimensionless way as

S - (87)
with

D = diameter of the telescope (sa)
and obtain

2N m 1 1/ 2r 2N m j 1/2

s = Z  Z > i Y Q / j -  <89>
L i.= i y=i J

Having calculated S, we must demand that the rms deviations from homology, AH, are 
smaller than 1/16 of the shortest wavelength, X, which leads to the following demand 
for the structural accuracy

£  *  T r b  • (90)

The accuracy needed will be found properly, from (9 0), when the calculations are per­
formed, But meanwhile I made a very rough estimate, with help of formulae (5 9), (3 9)
and (3 2), which gave ~

AH ^£Af3, with A|3 = rmsCAp^), v = 1 .. N. (9 1 )

We call the gravitational limit for a normal telescope of diameter D (X^ = 8  cm
(D/-room)2 , from (s) of my antenna paper, with K = 1,5), and we allow the A|3 for our 
structure to be three times larger than for the best possible normal telescope, which 
gives for (9 0)

£  *  3 T  ' (9*>g
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This is a very low demand on the structural accuracy. Even if we want to pass the grav­
itational limit by a factor 10 in wavelength (or a factor 3 in diameter), we need 
no better accuracy in the cross sections than three per cent. This eases the manufactur­
ing as well as the calculations: a few iterations will be enough.

IX, The total weight

The total weight wq.s kept constant from the first guess until we reached the nearest 
homology solution. If we now multiply each cross section (and the surface load wq) by 
one and the same factor q, we still have homology. In my antenna paper, I found four 
items which can define the total weight of a telescope: wind deflections, survival 
conditions, gravitational deflections, and the minimum stable structure. Now, the grav­
itational deflections have been made homologous and cannot define the weight; the minimum 
structure cannot be treated in the present approach, since we have taken the weight of 
a member as being the product of density times cross section times length, neglecting 
the passive weight of braces, struts and so on. As to the remaining two items, Fig,6 of 
my antenna paper shows that we are always in the wind deflection region, if we pass the 
gravitational limit by an appreciable factor. Thus, the weight will be, most probably, 
defined by keeping the wind deflections down, but in order to be safe we also check the 
survival stresses,

1 . Survival

We calculate the stress in each member for the survival conditions, case Q = 4 in
(1 4), The best way seems to be: we calculate all deflections A(3 from (3 5), find the 
elongation A3.TV of each member t v  from (1 1 ), which gives the stress in member t v

We find the member with the largest stress, S^, and compare with the maximum allowed 
stress, S^, from the input data. If the structure were defined by survival, we had to
multiply all cross sections (and wq, simulating the surface weight) with 
total weight then is

W total weight as defined by survival. ( 9 4 )s nf o
W should be printed, in any case, s
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2♦ Wind deflections

We apply the maximum wind load for observation, case £2=3 in (1 4), and calculate the 
deformations for all surface points in z-direction from (3 5 ); we call Az the rms 
value, and we demand

Az ^  X/ 1 6  . (9 5)

This can be done in two ways. First, we ask for the limiting wavelength, X , if thes
structure were defined by survival, with weight W from (9 4):s

X = Az S /S . (96)s o m

Second, we calculate the total weight, W^, necessary to fulfill (9 5) for the shortest 
wavelength X as given by the input data:

W^ = W 16 Az/\ = total weight as defined by wind deflections. (9 7 )

For the actual weight we finally call
sf 16 Az m Nq = max (— ^ ) (98)
o

and we multiply all cross sections with q, and print out the results. The actual total 
weight then is given by

W ss q W . (9 9)a

1 , The gradient of the total weight

We assume that the actual weight, W , is defined by wind deflections in (9 7), which,d,
as I think, will always be the case. Our present goal is to decrease this weight while 
keeping the structure homologous. Within the frame of a linear approach, we cannot solve 
directly for a minimum weight; but we can find the direction (ratio of cross section 
changes) in which the weight decreases most rapidly.

Since the actual weight in (9 7) is proportional to the product of the initial weight 
W from the firat guess, times the rms wind deflection Az, our task can be written as:
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Change all cross sections by dQ^,
and all homology parameters h^ by dh^* such that

(a) Homology still holds,
(b) The initial weight W stays constant,
(c) The wind deformation Az decreases most rapidly.

(100)

Condition (c) means we regard Az as a function of the n parameters dQ^ and dĥ .* and we ask 
for the gradient of Az in this n-dimensional space. But conditions (a) and (b) together 
are c constraint equations, defining an (n-c)-dimensional hyperplane on which the solution 
must lie. Thus, we have to project the n-dimensional gradient of Az on the (n-c^dimen­
sional hyperplane; this projected gradient, then, points exactly opposite to the direction 
wanted where Az decreases most rapidly. Furthermore, the length of the projected gradient 
can be used as a measure of the distance to the final point of minimum Az, because at this 
point the gradient is zero.

The wind deformation Az is defined as the rms deformation of all surface points in z-direc- 
tion, under maximum observational wind loads:

N
iAz =■ { *  z

P = z

Q = 3 (1 0 1)

We apply small changes dQ^ of all Q^, resulting in small changes dAp of all A(3, leading
to a small change dAz of Az. Neglecting terms of second order, we then have

N
dAz = ipr—  T \  A0Q dApQ .N Az z— ' v v

V=1

P = z
Q = 3

( 102)

Now, we replace the resulting dAP*s by the causing dQ*s with help of equations (40), but
we change the notation

and we define a vector t by

bq

JY -»BQ
P v,Y

N
1__ T"1 aqq

N Az pv,'
V =1

Y = 1 ... m 
P = z 

Q = 3
(  103)

0 for Y = •••
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Equation (10 2) then reads n
dAz = T  t dQ L— » y Y Y -1

(  104)

and we see that the gradient of Az in the n-dimensional space is (grad A z)^ = . Next, 
we must project this gradient on the hyperplane given by the constraint equations, which 
in our case are given by the homology equations ( 65 ) and definitions ( 53)*  But in (5 5), 
we wanted to reach homology, whereas now we already have homology and just want to keep it; 
this means that equations (5Tf) hold and can be subtracted from equations ($5). Furthermore, 
we already have a set of homology parameters h^, but we allow for small changes dh^. We 
thus define, instaed of (5 4):

^ d Q Y Y - 1 • • •  m

Y = m+k, k  = 1 . . .  4
( 105)

and instead of (5 5) we now have the constraints
n

2 _, c *  d Q - =  o

Y =1
. dQ° 1Y Y i — 1 ... c ( 106)

■i nn 'nfThe projection'of vector t on the hyperplane given by matrix C can be written as
n

= t
cp=?

H t
Ycp <p

Y = 1 n

where matrix H is given by
*m * *m 4 *

H = C (C C V C .

Or, in detail* we multiply C from (5 3) with its transposed C
n

- 1With the inverse, I , we get

and finally have

I. . =10

J .
i<p

H
Y <p

Z  c* c * *C--1 IV V jV = 1 °

72 j -f— * Yi 
1  - 1

1  = 

j  = 

i = 
<p = 

Y = 
9 =

• • c
• • c

• • c 
.. n

.. n 

.. n

( 1 0 7 )

(  108)

( f  0 9  )

( 110)

( 111)
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The length g of the projected gradient, then, is

g (112)

The direction of decreasing weight has now been found, as the one opposite to direction 
( 1 0 7 )# If we want to move in this direction by some fraction (or multiple) k of g, we 
choose k and

replace by Q^- kg^ m ( 113)

iff which procedure the homolgy parameters will change from h. into h.- kg., for j=f###4,
J  J

2> A two-step procedure

Since a linear approach cannot yield a minimum, it cannot tell us how far we have to 
go (what value for k we should take). But a quadratic approach, in its full generality, 
would need 1 + ̂ ($+3)/2 constants to be defined, which means we had to calculate Az 
and grad Az at 1 + $/2 points (sets of various Q^); this would certainly take much 
too long a calculation time, and it would give more accuracy than actually needed, because 
we do not have to find the exact point of minimum weight, we just want to come close to 
it* The following approach was worked out for a problem in hydrodynamics which lead to 
a non-linear least-squares fit in many parameters, it gave good results in relatively 
short calculation times. Applied to our present task, it leads to a two-step procedure: 
first, we need another homology solution, second, we approach the point of minimum weight#

We call Q the present values of Q^, and, similarly, call Sy1$ ^Z1 the pres­
ent values of these quantities# Next, we want to move away from this present point by
such a fraction k of g , in the direction of decreasing weight, that second-order terms

1 1
already become appreciable and higher terms still may be neglected. A good choice may be 
to demand that the largest change of any cross section should be, say, 20 per cent# This 
means we claculate all

k = I Q /g IY1 > yr eY 1 * Y = i . . . n i  ( 1 1 4 )

and call
k » o #2 min (k„4, k 94 ... k ). ( 1 1 5 )1 m 1
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We change all cross sections according to

Y = 1 .  • . m ( 116 )

We use these cross sections as a new first guess, repeat all previous calculations until 
we arrive again at the gradient of Az, and we give an index 2 to all new values. We 
calculate all

^Y2 ~ I ̂ Y2^SY2 I Y = 1  ... m (117 )

and call ,
k  =  m in  ( k  ,  k  ••• k  ) ( 118 )2 12 22 m2

allowing this time c h a n g e s  u p  t o  1 0 0 p e r  c e n t .  We call

k f . V" - 1 (f19)
2 1 -  S

%where s is d e f i n e d  a s  t h e  s c a l a r  p r o d u c t  o f  b o t h  gradients, divided by g :
1

1 Y-1

and we call

tV

®Y 2 * ( 1 2 0)

k  = min ( k ' ,  k " )  • ( 1 2 1 )
2 2 2

The improved cross sections, then, are given by

^ 3  ^ Y 2  k 2  g Y 2 Y = 7 . . . m  ( 1 2 2 )

This holds, if the first step was an improvement, which means if Az2 - Az^, If not, 
the first step has overshot the minimum point by too large an amount, and we better 
start the improvement from the first point, which simply means we exchange index f and 
index 2 in all formulae from ( . 1 1 7 )  to (1 2 2 )•

Formula ( 1 1 9 )  was chosen as to be identical with the general quadratic approach for 
the two limiting cases, where both gradients are either parallel or antiparallel to each 
other, and it gives satisfactory results in between. The whole two-step approach might 
be regarded as a first iteration which could be repeated if calculation times would 
allow.
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Finally, a possible problem should be mentioned. In equation (1 0 1 ) and (1 4 ) we have 
defined Az as the deformation in z-direction resulting from a face-on wind in z-direction 
This wind direction always yields the largest force on the structure, and our definition 
of Az will usually select the largest possible deformation. But if we iterate several 
times according to (1 2 2), we might develop a somewhat unusual structure, being very stiff 
in z-direction but too soft in the other directions, such that a side wind, although yiel 
ding less force, still might result in larger deformations than a face-on wind. If this 
is the case, we should have changed the definition of Az and should have included the 
other cases of side winds in x-direction and in y-direction. But whether or not this 
complication actually is needed can best be decided after some trial runs of (1 2 2) with 
various model structures have been performed.
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