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Calculating Method for Homology Solutions of Telescope Structures

The following is a mathematical method, written in such a way that it can be applied
most directly for a computer program. As a first approach, it treats each joint as a
pin joint, and each member as a single shape or pipe. It does not make use of symmetries,
neither in the structure nor in the deformation matrix. (The use of symmetries will
shorten the calculation time, but would complicate the formulae; it should be intro-

duced while writing the program.)

I. Introduction

In general, we have three types of degrees of freedom for a homologous structure:
cross sections of members,
geometrical size and shape of the structure,
homology parameters (for example: change of focal length).
The following approach solves for cross sections and homology parameters, but considers

the geometry as being given.

The conditions of homology deformation lead to algebraic equations of high order for
the cross sections (the order can be as high as the number of members). A direct solut-
ion seems impossible, and the only way left is iteration: we start with a "first guess"
for all cross sections, and improve them with an iterative method until homology is
reached. If the changes are small, all equations then can be linearized. We thus need
a fairly good first guess to start with, but I feel confident that a good first guess
will be possible even in case of a complicated structure, if the structure consists only

of cells for which the single-cell homology solutions already are found.

In my antenna paper I have shown that mathematical solutions must exist for every struc-
ture. But a "physical" solution is much more narrow a selection: all cross sections
must be real, positive and finite. Should our program yield a solution which is not

physical, we have to try another first guess, or we must change the geometrical shape.

Since the number of cross sections is larger thon the number of conditions, there is
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no unique solution, and the problem is not defined. We thus need some further demand

for making it defined. I have choosen the following:

from all possible homology solutions, take the one which

is most similar to the first guess (or to the last iteration).

This has two advantages. First, all changes will be as small as possible which gives the
best hope that the linearized approach converges. Second, since the first guess will
be a physical structure, we have the best hope that also the result will be a physical

solution.

The solution thus obtained will, hopefully, be a physical solution, but not neccessar-
ily the best one. The best solution we might define as the one ( from all physical sol-
utions) which meets as well the rigidity condition (wind deflections during observation)
as the strength condition (survival) with a minimum total mass. Butthis is a minimum
problem and cannot be solved with a linear approach. The linear approach can only yield
a gradient, meaning the direction in which to go to the best solutionj but it cannot tell
how far to go, which ought to be found by a second-order method, Whether this can be

done in a rigorous way, or just by a few trials, will depend on calculating times.

II. Miscellaneous

A few things, partly needed for preparing the main sections, partly looking more like

appendices, are somewhat heterogeneously grouped together in the present section.

1. Some numbers and their relations

i p = number of structural points (pin-joints)
N= " " surface points to be kept homologous
m= " " members in the structure
m = " " members meeting at point Pv
c= " " homology conditions + 1 (for keeping weight constant)
h= " " homology parameters
£F= " " free parameters for cross sections
Then:
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3(p=2) € m £ p (p=-1)/2 (1)
3 £ mv £ -1 (2)
12 T2 o
6 5 & m, £ p-1 (3)
c = 2N + 1 (4)
f = m+h-c (s)
2. Input data
The program should be given,as input data:
progra & 3 P Nuéhuk{/

1. The x,y,z coordinates of all p points (telescope looking igﬂz-direction, no

deformations), in the following order:

First, the N surface points
Second, all p=N-3 intermediate points

Third, three holding points (two bearings, one drive).

2., The number N of surface points, and the instruction which of the coordinates

are fixed at the holding points.

3. A first guess for the cross sections of all members, in form of a matrix of

size p by p. A zero in this matrix means '"No member'" between the two points.

4, Materizal constants:

P

E

density

modulus of elasticity

Soz maximum allowed stress

5. Surface loads (in kg per surface point):

simulation of an antenna surface (including panels, etc,)

w

o
w_ = survival load (storm, snow, ice)
w = maximum wind load during observation (for, say, 25 mph)

6. Shortest wavelength, A, for observation

7. Accuracy, AH_, wanted for "end of iteration'.
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3. Outline of over-all program

Te

2e

5.

6e

7

Take coordinates, calculate lengths and projected lengths of all members. Set

up matrices described in section '"derivatives''.

Take first guess of cross sections, set up deformation matrix A and force vectors

F; calculate inverse, A-1, calculate all deformations.
Find deviations from homology, using 'best-fitting" homology parameters.

Keep weight W constant, find nearest homology solution with iterative method,
until accuracy wanted is reached. Check for negative cross sections and for non-

convergence (irndicate failures).

Apply survival l§oad, calculate total welgh;v/’ defined by survival. Find shortest

wavelength KS for structure defined by survival.

Apply maximum observational wind load, calculate total weight Ww as defined by

wind deflections.
Regard max(ws, Ww) as final weight, give all cross sections,

Calculate sensitivity S of structure (deviations from homology due to small

inaccuracies of cross sections).

Calculate direction in which to go to "best" solution. ( = gradient)

Up to here, all is completely computerized. From here on, it might be done manually or

computerized, depending on the calculation times required.

8e

10.

If ww >-ws, change all cross sections in direction of gradient, repeat 2. to 7.

until minimum weight is approached closely enough.

If Ws:> Ww, find number of member with highest stress; increase this cross section
only, for a new first guess. Repeat, until as many members as possible are close

to highest stress.

The whole procedure might be repeated with various geometrical shapes.
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4, Inverse of a matrix after small changes are added

Suppose we have a matrix A and its inverse A7, Ve add to A a matrix, a, whose

elements are small as compared to those of A :

B = A+a. (6)
We want a good approximation for the inverse, B-1, written in the following form:
+ b. (7)

We multiply (7) from the right side by (6) and obtain, with E = unit matrix,

E (0”7 +b)(A +a) = E +DbA +A "2 + ba .

For a linear approximation, we neglect ba and have DA = -2 "a, We multiply from the
right side by A-1, and finally obtain the wanted correction, b, in terms of quantities
already known:

b - A""a a™’ (8)

or, in index notation:

ZZA o7 (9)

bis = ik A1 A1
F
\
III. Deformation Matrix

1. Bguilibrium of forces

We consider the member connecting points Pv and PT.

From the input data, we calculate its length, lrv’

and the projection of this length on the coordinate lﬁ” —;;;J

axes, 1, 1 and 1 . If the x-coordinate of -~ _,-—/"1_"' s X

Tvx' TTvy vz “—— >
point P_ is deformed by amount Ax_, and so on, the L
T T Tox
resulting elongation of member tv is given by
lrvx lrvl 1TVZ
81 = T— (AXT- bx ) + 7 (Ayr- ay ) o+ T (AZT- bz ). (10)
T™v TV TV

Letting a = x, y, z (and later also B = x, y, z) we rewrite (10) as
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E 1Tva
Al = Aa - Aa R
™ 1 (o, V) (11)
=X TV

Calling QTV the cross section of member <tv, and E the modulus of elasticity, the

force along member v is (positive for tension, negative for compression)

F = —EQ ., (12)

1 zZ
TVQ
chx = E QU 13 ;32=x: 11\!5 (ABT - AB\)) . (13)
TV

This is the oa-component of the force acting on point Pr’ resulting from the deformation

of member 1tv.

In addition to the "deformation forces" (13), we have, if gravitation has direction
a, the "weight forces'" on all points PT resulting from the weight of all members joining
in PT; and, on surface points only, the "load forces" resulting from the loads applied

to surface points, for various cases which we indicate by index Q:

direction
Q . g surface load case

of gravity
1 Z vy observing zenith
2 X v observing horizon

(14)

3 z ww max., wind for obs.
4 z wo+ ws survival condition

where the loads are defined in section "Input data". To be on the safe side and for
SunviNod,

simplicity, we have applied the A force in the same direction as gravity. These

additional forces, acting in a-direction on point T in case 2, then can be written as

(divided by E in order to rid (73) from this constant factor):
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O = (- ‘gn )
P
= l L +9 (wY+0_  w +0. w) (15)
TQ a 2 i N" "o Q3w Rs's
where
7 for 1i=] 1 for i€j
Gi_=< and ’Si.=< (16)
J 0 for i#j J o for i>j .

In order to have equilibrium at point T in direction a for case Q, we must add
(13) for all members 1v coming to point <t from various points v, and let this sum
be equal to the additional forces (15):

T=7 oo p‘3

i Uy o Z 1,508 - 280 T oXa Y2 (17)

Q=1 eoe 4

H

For simplicity, we have assumed that the three holding points are fixed in all three

directions, thus T = 7 see P=3 &

2, Rearrangement

Formula (77) is arranged in order of the cross sections. We rearrange it in order of

the deformations: (keeping in mind that the last three points do not deform)

Z %'tfﬂ p=3 1 1
5 ng Q TTva “TvB
g;\Z:;:( {Aﬁ (pL_‘ 13 Q ) \,Z::, e 13 v Fﬁ“ (1)

TP VET v

which can be written as

V4 T = 71 see p-3
Q
Z \’Z; TO \,B B - Fs‘za a = x’y'z (19)
=X Q = 1 eoe 4

We call A the "deformation matrix" and F° the "force vectors"., Matrix A is
of box-type: it is divided into (p-3)2 boxes of size 3 by 3 . It has two types of
symmetry: each box is symmetrical in itself (exchange of a and B), and matrix A
is symmetrical with respect to the boxes (exchange of t and v)., If points T and v

are not connected by a member, both boxes 1tv and vt contain 9 =zeros each. Matrix A
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looks as shown below:
v 1 2 p~3
T o B Xyz XYz XYz cosaces Xy z
X Sss 000 === - - -
1 y Sss 000 === - -
4 S S8 000 === - - -
X 000 5§88 === 0O 0 0
2 y 000 sS8S8 === 000
z 000 SS8SS8 === 00O
X - == ==~ sS5SS8 - - -
3 Yy - == = -~ s5SS8 - -~
z -~ ==~ =~ 5585 - - =
Ta,vB
.
[ ]
]
*
[ ]
[ ]
L[]
X - === 000 = == S s s
p-3 ¥y -~ 000 === s s s
z - == 000 === s s s

where, as an example, we have assumed that point P1 is connected with points P3 and

P
nected with all points except Pz‘ The marks "'s'" and "-" mean:

P11
s) A = _toa "B Q (20)
T, TP =1 13 TP
P+ TP
™V 1rvB
=) AT&,VB = - ———13———— QTv for T#v (21)
v

The sum in (20) actually has only so many terms as members join in point P_. With Q..
ii

T

we summarize: P
1‘[ l’]_' B l’r\)a 1T\)B T=1 se 0 p-3
A'L'OL,\)B = b‘rv Z 3 Q‘L'(p - _3 QT\, V=1 eee p-3(22)
p=1 1 1 a=x Z
TP v L)
P=X,¥,2
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3. Derivatives

Matrix A, as well as the force vectors F, are both linear in the cross sections;
this means their derivatives, with respect to the Q's, do not depend on the Q's, they
are constant for a given geometrical shape. We thus should start our program, for a

given shape, by first building up the derivatives of A and F. Those of A are:

aAra 18
= e—th o
ata,rB,nw aan 6rn T, B (22)
aATa VB T = 7 eoe p-3
= —_— = - 6 = e -
20, v8 10 anp o 6Wp Lw.ﬁpﬂ v =1 p-3 (23)
T#V T =7 eee p-3
Wlth lrva lTvB w = 1 eee p
Pagep T T 5 A (24)
TV B = X,¥,2
which, if wanted, can be summarized into
Bra,vB,mp 6tn{561v- (1-6rv)6vw§:Lra,wB g (25)

The derivatives of the T are, from (15):

aF%a g

(26)

TOL y TP aan og 6rn 2E ltm

but for the FQ, we have in addition to the Q-dependent terms also a constant term,

which we call

f = &6 9 + 0

1
1,0 ag 1N E (W + Bggw, + Bg W) (27)
with g = g(®) from (14), and ¥ as defined in (16).

Actually, we do not have to store these derivatives; we store only matrix L and
matrix 1l. L is of same size and symmetry as matrix A, and 1 is symmetrical and of

size p by p. The derivatives, whenever needed, are formed from (25) and (26).
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For better convenience, we now change our index notation, combining two in one:

i = 1 eee
A - "75—9 Y =1
a B (p o0 0
Y = 1 eee
with
d = 3(p~-3).
The notation of the various quantities, then, changes as
A —A, . —> a. . —
T, VB iJ Fra,vB o i,y Qmp QY
S £ “ TS o
10 i TO, TP i,y T0L,0 3O

Written in this notation, matrix A

m
A.. =
1J

aist QY

Y=1

and the force vectors are built up as

Fo=

1

m
Q
Z fioY

=1

f? +
i,o

4o The deformations

%

is built up from the derivatives as

i= T eee d
j= T eee d
i=1...4d
= 1 eee 4

Applying the change of notations also to the deformations, by combining

AxQ
A\

Q Q
Ayv —_— ABj

we write (19) as

j= T oo d
i=1...4d
= 1 see 4
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Finally, we caculate the inverse matrix of A and call it A-1, and obtain the defor-

mations as a

AB? = Z A3l e

. 1 1
1=1 J

17 .00 d

i

(35)

RONN N

17 eee 4

Suppose we have already calculated A, A™" and all A8 for a given set of Q's.
Now, we change each QY by a small amount into Qy+ dQY’ and we want to know the resul-
ting changes dAB of the AB's. We ask only for a linear approximation. Instead of
(34) we have now

m m

d .
Q Q 'Q i=1..4d
:Zj {Aij ¥ zzj F13,Y dQY% {ﬁABi * dABi.E - F? * fi,Y de Q=1 4o 4 (36)

j=1 Y=1 Y=1

and instead of (35) we get, with help of approximation (9)

and, neglecting second=-order terms,

d d m
Q Q 7 At
865 + AnBy = Z Z E 54 dqQ, - }{: c LAy gy QA B

i=1 i=1 y=1 i=1

We use (35) for the first and the last term on the right side, we exchange k and i in the

last term, and we call

d j=1ood
<1
-1 Q _
Z : {" iy T % L 351y ABiE Y=1..m (39)
=1 Q=7..4

The changes dAB of the deformations AB, as caused by the changes dQ, then are given

b
7 u 1 d
Q 1 LN
dap j = 2 Bg? aQ. .

1 eo #

O o
fl

(40)
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1. Homology conditions

The equation for an undeformed paraboloid of focal length f, looking in negative

z-direction, is

2 2
7z = = Ez%QX— . (41)

If gravity has z-direction (telescope looking at zenith, =71, g=z), we allow two

homologous changes:

h, (42)

h2 (43)

1. Parallel translation down, amount dz; call dz

2. Increase of focal length, amount df; call 2df

If gravity has x-direction (telescope looking at horizon, GQ=2, g=x), we allow again

two homologous changes:

3. Parallel translation down, same amount dx = dz = h1

4. Rotation around y-axis, angle do, call 2fde = h_. (44)

We call
h3 = homology parameters.

2’
Let a surface point Pv’ under the forces of case &, deform its coordinate X, by
Axi, and similar to the other two coordinates. We demand@ that the deformed point then
is situated (somewhere) on a paraboloid defined by the three homology parameters. In
case of only small deformations, one can show that the deformations of point PV must

fulfill the following condition:

Z
v
- — Q =
x, o v, o o ////,h1 oF h2 for 1
— AOx + — Ay + Az = (45)
2f v 2f v v
\X\) X\) Z\)
2wt t ok, fres
or, written in general terms:
z 3 v = 1 N
l Q ¢ Q oo
> ey, OB = Zi: g8 ’ (46)
B=x Bv \Y = \)khk Q = 1, 2.
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where the coefficients have the following values:
B=x Bsy | b=z
X y
CBV = "2% "2_;’.- . 1 V = 7 see N (47)
and
k=1 =2 =3
ZV
1 - = 0 Q=1
of
Q
Bok =< < N . vV=1..N (48)
2 0 (1 - =) @=2
2f , 2f 2f
From the left side of (46) we define a vector, b,
z
= N
Q Z Q \Y 1T eooe
b = - cg, LB - Q= 1, 2 (49)
We change again the index notation, and let
Q Q i = 1 oo 2N
by —>b;  and Bk T By k=1...3 (50
The conditions of homology, (46), then, can be written finally as
3
ZZ: By By = by, i=1...02N (51)
k=1

2. Deviations from homology

Equations (51) will not be fulfilled as long as homology is not reached, and we need

a measure for the deviations. From (571) we can derive the best-fitting values of the
homology parameters, hk’ by a least-squares method. We define the transposed, gfi = 8379
and call
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2N
> &
K = = 815 85k (52)
B l1=1...3
N
2 T k = 1 s e e 3
I, = Z 815 05 (53)
i=1

Matrices g and gT are rectangular, but K is a square matrix (symmetric and positive
- *
definite) of size 3 by 3. We calculate the inverse of K, K 1, call h the best-

fitting values of the homology parameters, and obtain

k=1...3 (52)

3

* -

by = 12 Kk?ZIl'
=1

These best-fitting values we insert into (51); we square and add the residuals, and

as the measure of deviation, which we call AH, we define the rms residual of (51):

2N

5 1/2
AH ={-2—I;1Z1' (bi-kZ; gikhk)z} . (55)

This deviation AH has the dimension of a length. We calculate AH after each
step of the iteration, and the structure is satisfactory as soon as AH € A/16, where
A is the shortest wavelength from the input data, But for a more theoretical interest,
we might have decided to iterate to a higher accuracy, and for this case we have given

AHo s the accuracy wanted, in the input data. This means we iterate until

AH £ AHO . (56)

3. Corrections d@ needed for homology

As long as homology is not reached, equations (46) are not fulfilled. In order to

fulfill (46), we would need changes dAB for the deformations 4B, and (46) then reads

Z 3
Q Q Q V = 7 s N
ZE: c (AB™ + aap) = g . (57)
Box Bv v v = vk hk Q= 1, 2.
We use (40), but change the notation o o
BY —> B 58
JY vB,Y (s8)
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Z V=1 40 N
We call Q ! Q
C = [¢] B = 1 . m (59)
vy — Bv "vB,Y Y .
B=x 9
= 1 9 2 o

with B defined in (39) and c¢ in (48). We change notation:

Q
c.—>¢C i=1 .., 2N

vy iy -

We use (49) with notation (50), and (57) then takes the following form

m 3
2
%;J ciY dQY - Z;; By by = - b, i=1 ... 2N (60)

~

Bquations (60) we call "homology equations'. The right sides of (60) are known;
and the left sides contain the changes of all cross sections, dQ, needed for obtaining
homologous deformations; the type of deformation is described by the three homology

parameters, hk’ which also are contained in the left sides of (60).

In the introduction, we have given reasons for going to a special homology solution
(the nearest one), which means that also the three homology parameters, h , are unknowns,

yielding a total of m+3 unknowns.
Since the total weight does not matter for homology, but still must be defined some~-
how, we keep it constant, by adding one more equation to system (60):
m

§ﬂ 1 4 = (61)
y&y = °- 61

——d
Y=1
We thus have 2N+1 equations and m+3 unknowns, and we call

c = 2N+1 and n = m+3 . (62)
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Next, we want a unified way of writing the equations (60) and (61), and of dealing

with the unknowns. The system of equations looks as follows:

Y=1, 2 e o o m, m"‘1’ .m+3
i=1 | Y=1 i=1
2 | 2 2
¢ C. - ° ° i,
L 1Y I glk X —-— . bl
| dQY (63)
ey | 2N| ]
2N+1 1Y l 000 2N+1| 0
*
- vector =b,
. i
< matrix C. >
iy
m——--
m+1
m+2
m+3 hk
*
vector dQY

*

As shown above, we define a matrix CiY y including the g, and equation (61). We
*

define the vector of unknowns, dQY, which includes the homology parameters as

Qe = My , k=13 (64)

*
and vector bi is the same as bi except for an additional zero in the last place.

Altogether, the system of homolgy equations then reads

Z * * *

n
i = 1 o0 C (65)
Y=1

System (65) has ¢ equations and n unknowns, with c¢<n, and we call

¢’ = n-c = m+2=-2N = number of free parameters, (66)
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VI, The "Nearest' Solution

From the family of all homology solutions, as given by (65) for various choices
of the free parameters, we now want to select that solution which requires the
smallest possible changes dQ of all cross sections (small as compared to the present
values of Q). We thus define a quantity L as the "distance" we have to go to one

of the homology solutions, and we require L to be minimum:

o 2
dQy
L = E: Q. = Min. (67)
r=1 Y
Equation (67) is required as long as we do not care about the values of the
resulting homology parameters hl----h4. But actually, it might sometimes be
desirable to find structures where hy-..-hy have only very small values. This
means we should include these parameters in the minimum condition (67).
The homology parameters should be given a treatment comparable to that given
O
for thg&section changes. First, we divide h;---h, by twice the focal length f
for normalization, just as the dQ are divided by Q in (67). Second, we introduce
a weight factor w (the same for all four parameters), to be given with the input
data, which tells how important small homology parameters are; for w = 1, for
example, a 1% change of the focal length is valued the same as a 1% change of a
cross section, while w >> 1 would try to keep the focal length much more constant,

whereas ® << 1 makes the change of focal length unimportant. In order to include

hy--+hy in (67), we use again (64) for the dQ*, and in a similar way we define

Q* = 2f/w = const. k=1-..-4, (68)

Using these definitions, we write instead of (67)
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daqx\2 )
_X = Min. (69)

= Q*
=1 ¥

The task to be solved is a "minimum condition, (69), with a set of constraint

equations, (65)". The proper way of solving this task is known as the method of

Lagrangean multipliers: in a general case, we have, for n parameters pj:

1 minimum condition: L(py****py) = Min.

0 li=1..-.c.

c constraint equations: wi(pl""p )
n

We multiply each constraint equation by a multiplier Xi, add up, and demand

C

—

L+ L A, ©; = Min, (70)
i=1

Letting all derivatives of (70) with respect to the P; equal zero, we obtain n
equations; together with the ¢ constraints, we then have n + ¢ equations for the

n + c unknowns (n values for pj----pp, and c values for Aj----2\J).

In our case, the ¢; are represented by the homology equations (65); for L we

use (69), dividing by 2 for convenience, and we obtain for (70):

n 2 c n
dqQ..*
1 _Y* * E N b, + C.* dQY = Min. (71)
2 Xe QY & iq i - iy

We let the derivatives of (71) with respect to all dQY* equal zero

d.Q *
Q*2

o
inc =0 |Y=1----n. (72)

Systems (72) and (65) together give n + ¢ equations for the n + c unknowns dQYf

and Xi. The matrix of the combined system is of size n + ¢, but because of its
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symmetry and incompleteness we do not have to invert the whole matrix. Instead of,

we express the dQY* in terms of the A from equations (72) as

c
dQ*=—Q*zz7ij* ¥ =1'"°n, (73)
Y Y — Jjr
Jj=1
and insert into equations (65):
= 2
Z cC*Q~* A, C* =b;* i=1----c. (74)
U =1 J JY

We define a matrix T as a "weighted transposed" of C*

2

T, = Q ¢ * (75)
YJ QY JY

and build the product

i= 1""C,
jJ=1l....c.

(76)

n
By = ) Cay Ty
=1

‘ -
Whereas both matrices C and T are rectangular, matrix D is square. We call D ? the
inverse of D and have, from equations (74) and (76), for the Lagrangean multipliers Xj

to be inserted into equations (73):

c
- *
)\.j = Z Dj]:’_ bi * j = 1 o0 C (77)
i=1
We now define a matrix G as
*my=1
G = T(€T)
or
S =1 n
G Z T D-1 Y - oo e (
. = e @ < 78)
Yi =1 Y] ji i=1...°0
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Equations (73), with help of equations (78) and (77), then finally read

C
» *

*
where the b, are defined by (63) and (49).

With equations (79), all unknowns now are found, the cross section changes dQ, ... dQ

as well as the homology parameters h1 cos hé.

For all cross sections Q, we have now found the corrections dQ, neccessary to bring
us (as close as possible with a linear approach) to the homology solution which is most
similar to our first guess (or to the result of the previous iteration). We apply

these corrections and

replace by
Q +d
v U 9y
n Y= 1 see I
F F o+ £ aQ i=1...4d (80)
i 1 —y 1,
Y— j = 1 eee d
a Q= 142
A A + a. . oo
13 1] er 17,Y QY
Y=1
We check, whether
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If not, we replace the negative one by a small positive value and try the next iteration.
If it fails again, we print ''Negative Cross Section", and stop the calculation. This
means trying again with a different first guess, or, more probably, changing the geomet-

rical shape of the structure.

Next, we go through the whole procedure of inverting A and calculating all deflec-
tions AP until we arrive at the deviations from homology as given in (55). With (56)
we check whether the accuracy wanted is already reached; if not, we repeat the iteration.
If (56) is fulfilled, we regard (80) as the "Final Result of Iteration".

Agvae
If, after A iteration’ it turns out that the deviations, AH, do not decrease but

jump or increase, we stop the calculation and print ''No Convergence'. Most probably,
the mathematical solution would call for imaginary or complex cross sections, and we

have to change the geometrical shape of the structure.

Considering the tolerances in all manufactoring and erection procedures, we ought to
know how sensitive our homology solution is with respect to small inaccuracies of the

cross sections. We vary each cross section by
d = with < 1 = 1 eee M (82)
QY QY EY ’ 67 ’ Y

and we regard the Ey,as being uncorrelated random numbers, with mean zero and rms EY

=€ . Suppose we have exact homology before applying the changes (82); in equation

(55), then, each single term equals zero. Now, we apply changes (82) and have
2N m 2
db.
(am? = £ El 2 —= dQ . (83)
2N ¢ 0Q Y
i=1 Y=1 Y

Since the EY are uncorrelated, only the quadratic terms remain in the average

2N m
2
, 2 I { ob, }
(am) %Z,YZ Yw ). (e4)
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From (60) we find
ab' i = 7 eee 2N
< = -c. . (85)
OQY 1y Y = 1 eee I

At present, we go "away" from a homology solution, which means that all cross sections
are free for variation (as opposed to (72) and (73), where some parameters were bound

by the homology equations). Thus
&i 2N m
g 2 T e
(on? = & (c, @) (s6)
i=1 y=1

Finally, we define the sensitivity in a dimensionless way as

AH

S = 5F (87)
with
D = diameter of the telescope (88)
and obtain
2N m 1/2
111 t ! 2
s D{zN 2 1 e, ). (a9)

i=1  y=1

Having calculated S, we must demand that the rms deviations from homology, A4H, are
smaller than 1/16 of the shortest wavelength, A, which leads to the following demand

for the structural accuracy
Z A
E < e NI (90)

The accuracy needed will be found properly, from (90), when the calculations are per-
formed. But meanwhile I made a very rough estimate, with help of formulae (59), (39)
and (32), which gave o
0H a2 £AB, with A = rms(AB)), v =1 ..N. (91)
We call A_ the gravitational limit for a normal telescope of diameter D (Kg =8 cm
(D/100m¥ , from (8) of my antenna paper, with K = 1,5), and we allow the AB for our
structure to be three times larger than for the best possible normal telescope, which
gives for (90)

E € A (92)

Y
g
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This is a very low demand on the structural accuracy. Even if we want to pass the grav-
itational limit by a factor 10 in wavelength (or a factor 3 in diameter), we need
no better accuracy in the cross sections than three per cent. This eases the manufactur-

ing as well as the calculations: a few iterations will be enough.

IX. The total weight

The total weight wags kept constant from the first guess until we reached the nearest
homology solution. If we now multiply each cross section (and the surface load wo) by
one and the same factor q, we still have homology. In my antenna paper, I found four
items which can define the total weight of a telescope: wind deflections, survival
conditions, gravitational deflections, and the minimum stable structure. Now, the grav-
itational deflections have been made homologous and cannot define the weight; the minimum
structure cannot be treated in the present approach, since we have taken the weight of
a member as being the product of density times cross section times length, neglecting
the passive weight of braces, struts and so on. As to the remaining two items, Fig.é6 of
my antenna paper shows that we are always in the wind deflection region, if we pass the
gravitational 1limit by an appreciable factor. Thus, the weight will be, most probably,
defined by keeping the wind deflections down, but in order to be safe we also check the

survival stresses,
1. Survival

We calculate the stress in each member for the survival conditions, case @ = 4 in
(14). The best way seems to be: we calculate all deflections 4B from (35), find the
elongation 41~ of each member wv from (71), which gives the stress in member tv

as Al

Tv B
Stv = I . (93)

We find the member with the largest stress, Sm, and compare Sm with the maximum allowed
stress, So’ from the input data. If the structure were defined by survival, we had to
multiply all cross sections (and L simulating the surface weight) with Q.= Sm/So. The
total weight then is

W, o= W Sm/so = total weight as defined by survival. (94)

WS should be printed, in any case.

OPERATED BY ASSOCIATED UNIVERSITIES, INC,, UNDER CONTRACT WITH THE NATIONAL SCIENCE FOUNDATION



NaTioNaL Rapio Astronomy OBSERVATORY
Post OrricE Box 2
GreeN Bank, WestT VIRGINIA 24944

TELEPHONE ARBOVALE 456-2011

REPORT NO._%
CONTRACT NO,
pace23 _oF

DATE

prOJECT:  LIFSP
suBJECT: Homology Program

2+ Wind deflections

We apply the maximum wind load for observation, case Q=3 in (74), and calculate the
deformations for all surface points in z~direction from (35); we call Az the rms

value, and we demand
Az £ AN16 . (95)

This can be done in two ways. First, we ask for the limiting wavelength, AS, if the

structure were defined by survival, with weight WS from (94):

As = 16 Oz So/sm . (96)

Second, we calculate the total weight, Ww, necessary to fulfill (95) for the shortest

wavelength A as given by the input data:

W= W6 Az/N = total weight as defined by wind deflections. (97)

For the actual weight we finally call

q = max (16>\Az R §ﬁ ) (98)
o

and we multiply all cross sections with q, and print out the results., The actual total

weight then is given by
W = qW, (99)

1, The gradient of the total weight

We assume that the actual weight, W_, is defined by wind deflections in (97), which,
as I think, will always be the case., Our present goal is to decrease this weight while
keeping the structure homologous., Within the frame of a linear approach, we cannot solve
directly for a minimum weight; but we can find the direction (ratio of cross section

changes) in which the weight decreases most rapidly.

Since the actual weight in (97) is proportional to the product of the initial weight

W from the firat guess, times the rms wind deflection Az, our task can be written as:
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Change all cross séctions QY by dQY’
and all homology parameters hk by dhk’ such that

(a) Homology still holds, (100)
(b) The initial weight W stays constant,

(c) The wind deformation Az decreases most rapidly.

Condition (c) means we regard Az as a function of the n parameters dQY and dh , and we ask
for the gradient of Az in this n-dimensional space., But conditions (a) and (b) together
are ¢ constraint equations, defining an (n-c)-dimensional hyperplane on which the solution
must lie, Thus, we have to project the n-dimensional gradient of Az on the (n-c)-dimen-
sional hyperplane; this projected gradient, then, points exactly opposite to the direction
wanted where Az decreases most rapidly. Furthermore, the length of the projected gradient
can be used as a measure of the distance to the final point of minimum Az, because at this

point the gradient is zero,

The wind deformation Az is defined as the rms deformation of all surface points in z-direc-

tion, under maximum observational wind loads:

, 3 a2 172 B
Az = ﬁ Z (AB\,) . Q 3 (101)

1]
N

v=1

We a»ply small changes dQY of all Qy’ resulting in small changes dAP of all AR, leading
to a small change dAz of Az. Neglecting terms of second order, we then have
N

B=2g=
1 Zf Q Q
ddz = Fao AR dABT a (102)

=3
v=1

Now, we replace the resulting dAB's by the causing dQ's with help of equations (40), but

we change the notation
Q Q
B, ——>B
JY Bv,Y

and we define a vector t by Y=1 eoem

NZ
C

"m

<

-

=<

w

1

N

Q=3 (103)

/\

Y = M+1 ... M+4,
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Equation (7102) then reads =

doz = 2 t_ dQ (104)
= v

and we see that the gradient of Az in the n-dimensional space is (grad Az)Y = tY « Next,
we must project this gradient on the hyperplane given by the constraint equations, which
in our case are given by the homology equattons (65) and definitions (63). But in (e5),
we wanted to reach homology, whereas now we already have Homology and just want to keep it
this means that equations (51) hold and can be subtracted from equations (65). Furthermore,
we already have a set of homology parameters hk, but we allow for small changes dhk' We

thus define, instaed of (64):

-dQ Y= 17 eee I
dQ$ =< Y (105)
dh, Yy=mk, K=1 co0 4

and instead of (65) we now have the constraints

n

7 ¢l af ‘ (106)
. = 0 . 1 = 1 eee C 106
=1 iy Y
N .
The projectionYof vector t on the hyperplane given by matrix C can be written as
n
= t - Z’ t = 1 eee I (107
&y Y& = Yo e v )
=1
where matrix H is given by
* * xm *
B =Ccl(echH'c, (108)
. * #T
Or, in detail, we multiply C from (63) with its transposed C
n .
* *T 1 - 1 o0 0 c
I., = c. C7 . (109)
ij vog v v] J=1...0¢
With the inverse, 1-1, we get c .
Z I-1 C* 1 - 1 o0 0 C ( )
J. = . 110
ie j=1 ij Jo @ = 1 eee 1
and finally have c - Y=1...m
H = 2[: c. J. . (111)
Yo i=q Y1 1P P =1 eee
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The length g of the projected gradient, then, is

:%: s 1/2
g = &y . (112)

Y=1

The direction of decreasing weight has now been found, as the one opposite to direction
€107). If we want to move in this direction by some fraction (or multiple) k of g, we

choose k and

1 b -k = oo
replace QY y QY gy Y =1 m (113)

‘ﬂy which procedure the homolgy parameters will change from hj into hj- kgj4”for J=1e0e4.

2. A two-step procedure

Since a linear approach cannot yield a minimum, it cannot tell us how far we have to
go (what value for k we should take). But a quadratic approach, in its full generality,
would need 1 +-§X§ﬁa)/2 constants to be defined, which means we had to calculate Az
and grad Az at 1 +@/2 points (sets of various QY); this would certainly take much
too long a calculation time, and it would give more accuracy than actually needed, because
we do not have to find the exact point of minimum weight, we just want to come close to
it. The following approach was worked out for a problem in hydrodynamics which lead to
a non-linear least-squares fit in many parameters, it gave good results in relatively
short calculation times. Applied to our present task, it leads to a two-step procedure:

first, we need another homology solution, second, we approach the point of minimum weight.

We call QY1 the present values of QY’ and, similarly, call gY1, 8,9 Az1 the pres-
ent values of these quantities. Next, we want to move away from this present point by
such a fraction k1 of 8,9 in the direction of decreasing weight, that second-order terms
already become appreciable and higher terms still may be neglected. A good choice may be
to demand that the largest change of any cross section should be, say, 20 per cent. This
means we claculate all
Y= 1 eeem (114)

ky1 = ’Qy1/gy1 I

and call

k, = o.2min (kg k,, ... km1). (115)
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We change all cross sections according to
QYZ = QY1 - k1 SY, . Y = 17 see N (116)

We use these cross sections as a new first guess, repeat all previous calculations until

we arrive again at the gradient of A4z, and we give an index 2 to all new values, We

calculate all

k, = ,QYZ/gYZ‘ Y =1 e.om (117)
and call '

k2 = min (k12' k22 ooe kmz) (118)
allowing this time changes up to 100 per cent. We call

k
k" = 1 (119)
2 1 -8

where s 1is defined as the scalar product of both gradients, divided by gj':

g1
s = llZ gY1 gYa ) (120)
g1 Y=1
and we call
- s ] ”"
k, = min (kz, kz) . (121)

The improved cross sections, then, are given by

QY3 = Q_Yz - k2 ng . Y = 1 eeo I (122)

This holds, if the first step was an improvement, which means if Az2 é'Az1. If not,
the first step has overshot the minimum point by too large an amount, and we better
start the improvement from the first point, which simply means we exchange index 1 and

index 2 in all formulae from (7117) to (122).

Formula (119) was chosen as to be identical with the general quadratic approach for
the two limiting cases, where both gradients are either parallel or antiparallel to each
other, and it gives satisfactory results in between. The whole two-step approach might
be regarded as a first iteration which could be repeated if calculation times would

allow.
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Finally, a possible problem should be mentioned. In equation (7107) and (14) we have
defined Az as the deformation in z-direction resulting from a face-on wind in z=-direction.
This wind direction always yields the largest force on the structure, and our definition
of Az will usually select the largest possible deformation. But if we iterate several
times according to (122), we might develop a somewhat unusual structure, being very stiff
in z-direction but too soft in the other directions, such that a side wind, although yiel-
ding less force, still might result in larger deformations than a face-on wind. If this
is the case, we should have changed the definition of Az and should have included the
other cases of side winds in x-direction and in y-direction. But whether or not this
complication actually is needed can best be decided after some trial runs of (722) with

various model structures have been performed.
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