S. vol Hoerner, NRAO.

The present report mainly gives the design data for the complete azimuth structure with two towers. A detailed analysis of its performance will follow soon.

I. Requirements

1. Size

The size of the $300-\mathrm{ft}$ dish structure is shown in Fig.1. For the towers we then obtain:
$\left.\begin{array}{ll}\text { tower top above ground, point 4, } & 1990 \text { inch }=166 \mathrm{ft}, \\ \text { elevation drive above ground, point } \sigma, & 890 \text { inch }=74.2 \mathrm{ft}, \\ \text { distance between tower tops, } 4-4 a, & 2400 \text { inch }=200 \mathrm{ft},\end{array}\right\}$ (f)

Point 5 must have clearance for the back-up structure of the dish, as shown in Fig, 1 .
The azimuth rails are standard railroad (no special foundation). For making the towers tetrahedral (they are shown in Fig.2), we need

$$
\begin{equation*}
\text { diameter of azimuth ring } 346,4 \mathrm{ft} \text {. } \tag{2}
\end{equation*}
$$

2. Loads for Survival

We consider the weight of dish and now, survival winds, and dumping snow, with the following data:
points 4: weight of complete dish $\quad 2430 \mathrm{kip}=1900$ tons (3)
4: maximum snow ($20 \mathrm{lb} / \mathrm{ft}^{2}$ whole area) $\quad 1454 \mathrm{kip}=660$ tons (4)
4: wind on dish (85 mph , full side-area, $\mathrm{C}_{\mathrm{s}}=1.3$) * $1050 \mathrm{kip}=476$ tons (5)
4,6: additional force from torque (asymmetry) $334 \mathrm{kip}=153$ tons (6)
4.6: dumping 6 inch of snow, plus 45 mph wind $269 \mathrm{kip}=418$ tons (7)

Since (7) is less than (6), it was omitted. Although (4) is larger than (5), it turned out that (5) always gives larger stresses, we thus omit (4) in the following, The wind force on the tower members is included, using $C_{s}=1$ for pipes. The stress in each member then is calculated for three different load conditions:

1) Simultaneously a) dead load of tower, b) weight of dish, with 1215 kip each on points 4 and 42 in z direction. Call S,
2) x-wind only; with simultaneously a) 693 kip each on points 4 and 42 ,

* $C_{s}=$ shape factor
in x direction, b) 334 kip on point 6, in $-x$ direction, c) wind force on all tower members, in x direction. Call S_{x}.

3) Same as above, but replace x by y, and $-x$ by $-y$. ($=y$-wind only) Call S_{y} (10) The maximum stress , for any wind direction, then is obtained as

$$
\begin{equation*}
s_{m}=\left|s_{1}\right|+\sqrt{s_{x}^{2}+s_{y}^{p}} \tag{11}
\end{equation*}
$$

3. Loads for Wind Deformation

The velocity adopted is 18 mph (wind is below this value for $3 / 4$ of all time); the total area, face-on, is used, and a shape factor of 1.56. In addition, the maximum torque is added. Two load conditions are calculated:

1) 64.9 kip each on points 4 and 42 , in x direction, and simultaneously 31.3 kip on point 6 , in $-x$ direction, plus wind force on all tower members.(12)
2) Same for y direction.

The maximum deformation then is simply

$$
\begin{equation*}
\Delta_{m}=\max \left(\Delta_{x}, \Delta_{J}\right) \tag{14}
\end{equation*}
$$

4. Restraints

We need five different restraints for the following five cases:
$\left.\begin{array}{c|c|c}\text { case } & \text { calculating } & \text { assuming } \\ \hline \text { A } & \Delta_{x} & \text { wheels fixed along rails, but soft perpendicular; } \\ \text { B } & \Delta_{y} & \\ \text { C } & S_{x} & \text { wheels soft both } x \text { and } y, 2 l l \text { taken up by pintle; } \\ \text { D } & S_{y} & \\ \hdashline \text { E } & - & \text { wheels fixed both } x \text { and } y .\end{array}\right\}$ (15)

Actually, we calculate only one tower; we thus need some additional restraints for replacing the action of the second tower and for avoiding free rotation. All restraints used are shown in Table 1.

To be on the safe side, maximum stresses S_{m} were calculated according to (11) for survival wind in all five contraint conditions, and for each member the maximum of the five values S_{m} was then adopted.

Table 1: Five restraint conditions.

5. Wind Deformations

It turned out that $\Delta_{x}>\Delta_{y}$. We thus give Δ_{x} only:

point	deformation
4	0.128 inch
6	0.074 inch
sum $=0.202$ inch.	

The vertical distance between points 4 and 6 is 1222 inch. The deformation thus yields a pointing deviation of

$$
\begin{equation*}
\alpha=(.202 / 1222) 2.06 \times 10^{5}=34 \mathrm{arcsec} \tag{17}
\end{equation*}
$$

Most of (17) stays constant and is corrected by the optical pointing system. For the remaining fraction of (17) we apply two reduction factors:

```
pressure fraction faster than 1 sec = . 34
average of independent gusts over dish area = . 54
```

and the resulting pointing error then is

$$
\begin{equation*}
\Delta \alpha=5.9 \text { arcsec. } \tag{19}
\end{equation*}
$$

This result is acceptable. For the shortest wavelength, $\lambda=2 \mathrm{~cm}$, the beamwidth is 54 arc sec, and (19) then is $1 / 9$ of the beam, for integration times of 1 sec and shorter. Fer longer integration times, the errors average out. An integration time of 15 sec, for example, will have a pointing error of $1 / 20$ beamwidth.
=II Design

The design of the towers is done the same way as that of the dish; we use long, pin-ended built-up members. This has twe advantages. First, it is economical with respect te stiffness/weight as well as to maximum ferce/weight. Second, the analysis is breken down in two independent parte; the overall-structure is analysed considering each member as a single red with given area and density, and the member can be analysed separately. Only two types of members will be considered here.

1. Data fer Orerall-Structure

The geometry of the towers is shown in Figures 1 and 2 , and the coordinates are given in Table 2. Nominal bar areas (see followinc section) are given in Table s, together with the length of each member. The last column gives the type.

Table 2: Coerdinates (inch)

peint	x	y	2
1	0	0	0
2	-1039	1800	0
3	1039	1800	0
4	0	1200	1990
5	0	810	1000
6	0	0	890
7	-2078	0	0
0	2078	0	0

Table 38 Members; $A_{k}=$ bar area (inch ${ }^{2}$),
$L=$ length (inch), $t=t y p e$.

points	A_{n}	L	t
$1-2$	70	2078	2
$1-3$	70	2078	2
$1-5$	130	1286	1
$1-6$	30	190	1
$1-7$	70	2078	1
$1-6$	35	2078	2
$2-3$	35	2078	2
$2-4$	120	2324	2
$2-5$	50	1749	1
$2-7$	40	2078	2
$3-4$	120	2324	2
$3-5$	50	1749	1
$3-8$	35	2076	2
$4-5$	140	1064	1
$5-6$	40	817	1
$6-7$	70	2261	1

2. Data for Member Desim

The built-up member is shown in Figures 3 and 4. Table 4 gives the length b_{c} of the center batten (thickness of member) in terms of the member length L, and the bar area A_{p} of the pyramid, area A_{c} of the chords, A_{b} of the battens, A_{d} of the diagonals, and A_{t} of the little triangles, all in terms of the nominal member area A_{n} as used in Table 3.

Table 4: Desien of built-up members.

	b_{c} / L	A_{p} / A_{n}	A_{c} / A_{n}	A_{b} / A_{n}	A_{a} / A_{n}	A_{t} / A_{n}
type 1	.0557	.421	.2603	.0407	.0444	.0182
type 2	.0808	.419	.2603	.0527	.0424	.0182

Following this procedure then results in a table of bar areas for each bar in each member. All bars are pipes; the actual bar area is taken as the one from the Steel Manual which comes closest (up or down) to the one in the table.

3. Preliminary Data for Foundation

The maximum reactions at the tower legs (point 3 and 3) are about 650 tons downard and 130 tons uplifting. Each tower leg will stand on a support fixed on several cars; support and cars will provide already some counterweight, and the rest may be conerete (or just rocks) in the cars, for balancing the 130 tons. The maximum down force on each leg then is

$$
\begin{equation*}
780 \text { tons. } \tag{20}
\end{equation*}
$$

With a maximum load of 33 tons/axle (see Report 14 of Sept. 1966), we then need 24 axles, or six heavy condolas of 4 axles each, for each of the four tower legs. They could be arranged on a double railread as shown in Figure 5.

The maximum forces on the central pintle bearing are about

```
900 tons down,
560 tons horizontal.
```


Changes for Tower

In Report to (Oct. 18, 60), please make the following changee:

1. In Table 38	points	A_{n}	t
	1-2	75	
	t-6	20	
	1-8	30	
	2-3	30	
	2-4	140	,
	3-4	140	+
	3-8	30	
	5-6	30	

2. In Table 48

		A_{p}	A_{c} / A_{n}	A_{b} / A_{n}	A_{n}	A^{\prime} / A_{n}
type	1	. 430	. 2730	.0426	. 0468	.0191
type	2	. 455	. 2908	. 0589	.0474	.0203

Fíc. $1:$ SizeS

Fig, 3
poinds and comiectiones of $1 / 2$ meender.

Parabolic Shape, $M=12$

Type 1

$$
\left.\| \begin{gathered}
35 \text { joints } \\
119 \text { members }
\end{gathered} \right\rvert\,
$$

Figs. 4: Geometry of built-up members

Fig. 5: Support from 6 condoles for one tower leg.

