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WIND-INDUCED VIBRATIONS OF PIPES 

S. von Hoerner, NRAO

I. Basic Formulas

A problem which was not incorporated in the original design study is given 

by the wind-induced vibrations of long, thin pipes. O. Heine mentioned the 

problem, suggested the use of high strength steel, and provided the following 

formulas. Vibrations occur if the Reynold number

Re = 780 Vd (1)

is

Re < 2*106(laminar flow) (2)

with V = wind velocity (mph) and d = outer pipe diameter (inch). The lateral 

wind lift (perpendicular to both wind and pipe axis) then is, for a pipe of 

length L (inch), in pounds:

Fw = 8.40><L0*6V aLd (3)

which is the wind force parallel to the wind, multiplied by a v. Karman factor 

of 0.5 (for 102<Re<106; fast decreasing for larger Re).

Vibrations are important only close to resonance, where the wind-induced 

vibration frequency

fw = 3.52 V/d (4)

equals the natural frequency of the pipe

fn = 1.75X10 ed/L2 (5)

( where half-clamped pipes are assumed).

Resonance, then, occurs at a critical wind velocity of

V cr = 4.97*104(d/L)s. (6)

Assuming a damping of 2%, the dynamical force is, at resonance,

Fd = ^ F w » .00140 V ^ d ,  (7)
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and gives a stress in the extreme fiber of
Fd L (8)

S y  =  1 / 2  " d A - 1

where A = bar area (inch8), for thin-WAlled pipes.

II. Three Critical Limits

Using these formulas, we derive for general use three critical limits. Since

the bar area A, and the l/* ratio

A-  = L/r = slenderness ratio (9)

are the most directly used design parameters, we express the three limits in

these terms, eliminating L and d. Our adopted survival velocity yields the

first limit; from 6̂) we find

<  68.5, for V cr ^85 mptu (10)

pipes below this slenderness do not vibrate in resonance within our survival

range. Second, from (lj, and(6) we derive

1/3J L  <  57.6 A , for Re (Vcr)> 2XL06. (11)

Pipes below this limit do not vibrate in resonance because of laminar flow. Third, 

the stress in the extreme fiber, at resonance, can be written from a  a  and ($, 
in lb/inchs, as

Sv = 6.45M07 Al/3 (12)

Or, if Sv <  S 0 is demanded, with some adopted stress limit S , we bave^

JL > 1 0 0 A^. (13)

Pipes above this limit do vibrate in resonance, but the resulting stress stays 

below the adopted limit. If no other stress were present, we may adopt a safety 

factor of 1.5, say, and an endurance factor of 2, meaning that 1.5X2 S 0 

shall be below the yield point, Sy, or

S Q = (1/3) Sy (14)

In the presence of an additional axial stress Sa , we suggest the following 

procedure. We call Q = Sa / Sm the stress ratio, with Sm = maximum allowed
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axial stress according to the 1/r ratio and the type of steel used. If Q = 1, 

all allowed stress is already used up, and is left for vibrations; for

Q = 0, (14) holds. We thus use

S 0 = (1/3) (1-Q) Sy. (15)

III. The Critical Range

All three limits are shown in Fig. 1. For (15) we have taken A36 steel,

Sy = 36, and Q = .50, giving S Q= 6.0 ksi. Some other limits are also drawn, 

for Q = .75 with S Q = 3 ksi, and Q = .88 with S 0 * 1.5 ksi, representing 

limit (13) for pipes under heavy axial loads.

We obtain an elongated unstable triangular range, surrounded by stability. 

The thickness of the unstable range depends on axial loads and steel type. If 

all pipes of a structure originally are designed with Q<L.O for A36 steel, 

the unstable range will disappear completely if we change to steel df higher 

yield strength, such that the stress limit (13) coincides with the most initial 

point, A = 1.68 inch® and^\.= 68.5. We find

No critical range, if Sy > 85 ksi. (16)

This type of steel would be needed for a pipe of the given structure which 

happens to be at the most critical point and has already Q = 1.0. If not, 

some value smaller than (16) would be enough.

IV. Application to Homologous Telescope Design

In our present telescope structure, we have taken the longest diagonal from 

each member (except the surface bars which actually are panels and would demand 

a separate treatment). Their values of A and are plotted in Fig. 1, with 

division of Q in three classes. The result is the following.

33 diagonals do not vibrate;
77 diagonals vibrate, but uncritical for A36 steel; (17)
30 diagonals vibrate critical for A36 steel.



The 30 critical cases all become uncritical with regard to (13) and (15) if a 

steel is chosen with

Sy = 60 ksi. (18)

It thus might be recommended to build 30 of the build-up members from high- 

strength steel meeting (18), and all other members from normal A36 steel.

All pieces of the build-up members can be made from standard-weight pipes. 

The diagonals are checked in the present calculations, and the battens of all 

telescope members have the same L, A and Q as the diagonals. The chords and 

pyramids are thicker and thus less critical. And the small triangle bars 

(secondary bracing) have practically no loads, Q = 0, and their small bar area 

and high l/r ratio places almost all of them above the critical range. Whether 

this holds for all triangles, should be checked individually.
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Fie. 1. The critical range of bar area A and slenderness 
ratio 4/r Of each build-up telescope member, the long
est diagonal is entered. Sv = stress in extreme fiber 
from wind vibrations. Stress ratios from external axial 
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