Simplification of Built-up Members

 S. von Hoerner, UCLA (on leave from NRAO)

Summary

The present design uses 12 segments for all members, and the cost of manufacturing these members is about $1 / 2$ of the total cost for heavy members, and about $2 / 3$ for light members. This cost can be reduced by decreasing the number of segments.

Of the dish structure, 23 members in each quadrant (43.0% of the total weight of the dish) may be replaced by a single pipe. The lowest dynamical frequeney of any of these pipes is 2.4 cps ; wind-induced vibrations require that 4 of these pipes are made from high-stress steel. If a member is replaced by a pipe of equal stiffness, its weight decreases by 21%, and its manufacturing cost is eliminated.

A number of 32 members (19.3% of the total dish weight) may be designed with 4 segments instead of 12 , having only 51 single pieces instead of 219. Of the tower structure, 13 out of the 28 members (60.2% of the total tower weight) may be of a simple design.

All remaining members of dish and towers may have 10 segments instead of 12 , which will reduce the manufacturing labour by 20%.

1. Single Pipes

Many members of the dish structure carry only small loads and have small slenderness ratios. These members may be replaced by a single heavy pipe. The slenderness ratio then increases by a factor 4.77 (see Table 2); the maximum allowed stress decreases by a factor depending on the slenderness, and the stress ratio (maximum prevailing stress / maximum allowed stress) increases by the same factor.

The dish structure has 178 members in one quadrant. Subtracting the surface bars which actually are panels, and the rim of the elevation wheel which must provide a circle for the gear, we have 134 remaining members which are entered in Fig. 1 with their slenderness ratio $\mathcal{1}_{0}$ and stress ratio Q_{0}, both values for built-up members of the present design with 12 segments. We call Λ_{s} and Q_{s} the values for a single pipe of same stiffness and same load. The borderline between Fields 1 and 2 in Fig. 1 then is calculated for the two conditions:

$$
\begin{align*}
& Q_{s} \leqslant 1.00 \tag{1}\\
& \Lambda_{s} \leqslant 200 \tag{2}
\end{align*}
$$

All members in Field 1 may be replaced by a single pipe. They are listed in Table 1, and their weight makes up 43.0% of the total weight of the dish (including panels, but excluding the aluminum plates). Replacing a member by a pipe completely eliminates its manufacturing cost. In addition, the weight decreases by 21%, since $\rho_{\text {eq }}=0.358$ for the built-up member, compared to $0.283 \mathrm{lb} /$ inch 3 for steel.

Some of these members have very large bar areas, and rectangular combination shapes might be used instead of pipes. For the suspension bars, see Report 22.

Table 1. Listing of 23 members which may be replaced by a single pipe.

$1-56$	$22-41$	$38-41$	$51-53$
$5-26$	$25-30$	$43-44$	$51-54$
$6-26$	$26-44$	$44-45$	$51-55$
$8-25$	$27-47$	$45-46$	$51-57$
$11-27$	$34-46$	$45-58$	$57-58$
$19-56$	$38-40$	$46-47$	

2. Lowest Dynamical Frequency

The lowest dynamical frequency of any single member should be considerably higher than the one of the total telescope (1.05 cps). It must be checked whether the single pipes of Table 1 fulfil this condition.

From equation (3) of Report 20 we derive, for the lowest lateral vibration of a pin-ended pipe of length L, in inch,

$$
\begin{equation*}
\boldsymbol{V}=3.12 \times 10^{5}(L \Lambda)^{-1} \mathrm{cps} \tag{3}
\end{equation*}
$$

Or, with $\Lambda=4.77 \Lambda_{0}$,

$$
\begin{equation*}
V=0.653 \times 10^{5}(L \mathcal{A})^{-1} \mathrm{cps} \tag{4}
\end{equation*}
$$

Fig. 2 gives Λ_{0} and L of all 23 members of Table 1. The straight lines show the lowest frequency \boldsymbol{V}, if the member is replaced by a single pipe. The lowest value is 2.4 cps , for member $40-43$. All other members have $\boldsymbol{V} \geq 2.8 \mathrm{cps}$. It thus seems that vibrations do not impose a problem for the dynamical behaviour.

Wind-induced vibrations could be more serious. But if they are treated as in Report 24, the problem can be solved if 4 of the 23 pipes are made from high-stress steel of 60 ksi yield.

3. Built-up Members with n Segments

One should try to cut down the labour cost by decreasing the number of segments for those members which are not contained in Table 1. But there should not be too many groups with different n. It is suggested to have a total of three groups:
(1) single pipes of Table l;
(2) simple members with $n=4$;
(3) all remaining normal members with $n=10$.

For standard steel pipes, $r=0.702 \mathrm{~A}^{2 / 3}$; with radius of gyration r, and bar area A. Calling $\alpha=$ (area of main chord) / (equivalent area of member), the slenderness ratio of a chord then is

$$
\begin{equation*}
\Lambda_{\mathrm{n}}=\frac{L / n}{0.702\left(\alpha \mathrm{~A}_{\mathrm{eq}}\right)^{2 / 3}} \tag{5}
\end{equation*}
$$

Table 2. Slenderness ratio Λ, and number of single pieces m, for members with n segments.

n	α	$\Lambda_{n} / \Lambda_{12}$	m	$m / 219$
12	.250	1.000	219	1.000
10	.253	1.194	177	.808
4	.270	2.860	51	.233
single pipe	1	4.77	1	.005

Some values are given in Table 2, with α from our member program. Using these numbers, the borderlines in Fig. 1 then are calculated under conditions (1) and (2). We arrive at the following results:

First, all members may be designed with $n=10$ segments instead of 12 . For two members (19 - 21 and $22-26$), a must be increased, by less than 10% for moving them from Field 4 into Field 3. The reduction from 12 to 10 segments decreases the
number of pieces, cuttings and weldings by 19.2%, see Table 2. The manufacturing cost will decrease by a comparable amount.

Second. We have 32 members in Field 2. Their weight is 19.3% of the total weight of the dish (including panels, excluding aluminum plates). These members may be designed with only 4 segments, which means 2 end-pyramids and only 2 segments vith battens, diagonals and triangles. This simple design has only 51 single pieces, instead of 219 for $n=12$ or 177 for $n=10$. All members of Field 2 are listed in Table 3.

Table 3. Listing of 32 members with 4 segments.

$1-21$	$11-36$	$30-31$	$40-43$
$2-56$	$21-38$	$30-43$	$41-15$
$3-56$	$21-40$	$32-33$	$41-47$
$4-25$	$22-23$	$33-34$	$43-51$
$7-27$	$22-38$	$36-46$	$45-57$
$9-25$	$25-45$	$36-47$	$47-57$
$9-30$	$27-28$	$38-57$	$51-52$
$9-32$	$27-36$	$38-58$	$56-22$

Field 1 (single pipes) and Field 2 ($n=4$) together make up 62.3% of the total dish weight, leaving only 37.7% for the normal members with $n=10$.

1. Tower Members

All heavy or shorter tower members may be designed in a simple way; either with 4 segments, or from rectangular combination shapes with bracing plates. They are listed in Table 4, and their weight is 60.2% of the total tower weight. The remaining tower members may also be designed with only 10 segments.

Table 4. Listing of 8 tower members of simple design.

$1-5$	$1-7$	$3-4$	$5-6$
$1-6$	$2-4$	$4-5$	$6-7$

Fig. 1. All members of the dish structure (except surface and elevation wheel). $\left.\begin{array}{l}\Lambda_{0}=\text { slenderness ratio } \\ Q_{0}=\text { stress ratio }\end{array}\right\}$ present design, 12 segments.

Field	members	
(1)	23	single pipe
(2)	32	4 segments
(3)	77	10 segments
(4)	2	increase A by 10%

Fig. 2. Lowest dynamical frequency \boldsymbol{V} (lateral vibration), of all members of Table 1 , if replaced by a single pipe.

SYSTEMS DEVELOPMENT LABORATORY

8820 SEPULVEDA BLVD., SUITE 110A
LOS ANGELES, CALIFORNIA 90045
dear sebastian:
APRKL 24, 1969

THANK YOU FOR YOUR LETEER OF APRII 20 REGARDING THE UNIT COS SCACING FOR THE Structural worr of the homalogy telrscope.
1 have reviewed your derivations and think your scallig for wed lengths is correct.
HOWEVER, WELOING COST IS AISO DEPENDING UPON WELS SIZE WHICH IN THIS CASE SHOURD
 DUCEP.
1 have pootted a averabe welong depostion rates us. plate tificinesses from in formatcon CONTAINEO IN WELONG ENGINRERIN:" BY ROSSI. AS YOU CAN SEE THIS CAN AISO BE EXPRESSED As an Exponential funciton.
But we must also remember not to use smallee than say io in averabe walls, thos the shaker dia. instruments wik have this adoitional limitation,

- have prepared a cost analesis (enciojed) consideiring each reflevor size and have computed welding, fittinl, haterial \& Erection costs step ey siza so ns To be able to see whenter those fibures are rrasonable in teach case and to recrect tiac aboure limitatiuns.
As you can see 1 have used the exponents wirgeo of by you and have ajourted fatat The Fabalcations cost includes Wúding coit at 50% and Fittlu: \& asserat at anjtirer 50%.
 and asst cost portion chanbes onit linearey (picles beccme heavier or ligiter resfeutiney).

 210 FT. Unit or a lowrsi of \$. TTlus for the 600 FT. unit.

BEST REGARDS,

WELDING DEposition rates
V.S. WALL THIC:KNESS

RE: "WEDONG ENGINEERTNo"

COST ANAIYSIS, REFEETOR \& TOWER STRULTURES
ERECTED FOR VARIOUS SIZE HOMOLOGY TELESCOPES
BASl's For confacison

REFECCTOR DIA. (FT.)	210	250	300	350	410	500	600	REMARKS
RERECTOR WT. (ib) 10^{6}	. 85	1.39	2.3	3.57	5.6	9.7	16.1	VARIES WITH $D^{2.8}$
Tower UT. (CBS) 10^{6}	. 45	. 76	1.3	2.08	3.34	6.1	10.4	VARIES WITH D ${ }^{3,0}$
COMBINSD WE16HT (C8) 10^{6}	1.30	2.15	3.6	5.65	8.94	15.8	26.5	
D/300 RATO	. 70	. 835	1.0	1.17	1.37	1.67	2.0	
$(\mathrm{D} / 300)^{1.2}$. 652	. 806	1.0	1.207	1.458	1.85	2.3	Relative dias of Members - Reqector
$(\mathrm{D} / 300)^{1.33} \times$. 622	. 786	1.0	1.233	1.520	1.976	2.51	Relative dias of member - Tower
$\left(\frac{D}{305}\right)^{.60} \times 100 \times$	$.10{ }^{*}$	$.100^{-{ }^{-2}}$	$.100^{*}$. 110	. 121	. 136	. 156	WAll Thicknesses - Reflector (averabe)
$(1 / 300)^{167} \times 500 \times$. 390	. 440	. 500	. 550	. 620	. 700.	. 800	WAll Thicknesses - Tower (averase)
$\begin{aligned} & \text { WEDDNG COST }(\$) 10^{6} \\ & \text { REFEGETVR } \end{aligned}$. 59	170	. 84	1.18	1.59	2.45	3.73	$W_{C_{R}}=(.84)(D / 300)^{1.2} R_{F}$
WELDINS Cost (\$) 10^{6}	. 22	132	. 48	. 68	. 99	14.56	2.43	$W_{C_{T}}=(.48)(1 / 300)^{1.33} R_{T}$
	.92	1.09	1.31	1.53	1.79	2.18	2.62	VARIES WITH $D^{1.0}$
COST OF MATERIM COHBINED	. 26	. 43	172	1.13	1.78	3.16	5.30	\$.20/R \times COMBINED WEI6HT
	- 268 .27	-2\% .46	. 79	+1.26	2.05	3.6.7\% 3.68 13.03	5.30 +10.3 6.40	Includes escallation factor
ToTAL cost (\$) 10^{6}	2.26	3.00	4.14	5,78	8.20	13.03	20.48	
UNTT Cost (\$/16)	1.74	1.40	1.15	1.02	. 92	. 83	. 77	
RATV OF WEID:A DEPOSTIDN Rates - Refiector	1.0	1.0	1.0	$110 / 5=1.16$	119501.30	1170 $=1.58$	${ }^{116}=1.93$	R_{F}
RATIO OF WELDIN DEPOITEON RATES - TOWEa	$105 / 5=.70$	$0^{10.9 .5}=.84$	1.0	$\frac{105}{9}=1.16$	${ }^{\frac{10,5}{10.5}}=1.35$	${ }^{\frac{10,5}{6,4}}=1.64$	${ }^{\frac{10,5}{5.2}}=2,02$	RT
								** RE: v. HoEanaz pert \% 26

UNIT COST ($\$ / L B$) OF REFLECTOR- \& TOWER STRUCTURES VS. TELESCOFE sIzE FOR HOMOLOGY TEIESCOPE
$4123 / 69$

