Report 35
January 14, 1971

## Conditions for Pipe Diameters

S. von Hoerner<br>National Radio Astronomy Observatory<br>Green Bank, West Virginia

## I. Member Types

A11 members of the telescope structure are divided in four types:

| Type | Explanation | $\begin{array}{c}\text { Number in } \\ \text { one quadrant }\end{array}$ |
| :--- | :--- | :---: |
| 1. Normal pipe | commercially available | 127 |
| 2. Special order pipe |  |  |
| 3. Special design | $\begin{array}{l}\text { pipes welded from plates } \\ \text { feed legs, suspension, wheel, } \\ \text { cabin }\end{array}$ | 29 |$\left.\} 168\right\} 229$

The first two types have two subtypes:

| Subtype | Used, if | Regarded as |
| :--- | :--- | :--- |
| a. straight ends | $\mathrm{d}<14$ inch | one end hinged, one fixed |
| b. both ends tapered | $\mathrm{d} \geqslant 14$ inch | both ends hinged |

The Homology Program yields for each member the bar area $A_{h}$ needed for homology. It also gives its length $L$, and the maximum stress $S_{m}$ for any load condition. Members of type 3 and 4 are specially marked and are omitted from the following.

The Replace Program handles all pipes. It decides whether a member is type 1 or 2 , and it replaces all those of type 1 by commercially available pipes given in a table. Each member must fulfil a set of conditions regarding its diameter; the program selects that pipe from the table which fulfills all conditions and whose area $A$ comes closest to $A_{t}$. The resulting deviation we call $\Delta \mathrm{A}=\mathrm{A}-\mathrm{A}_{\mathrm{t}}$.

Since the table is only loosely packed above 10 inch $^{2}$, see Fig. 1 , the
type decision is done the following way:

| area (inch ${ }^{2}$ ) | Type 1 | Type 2 |
| :---: | :---: | :---: |
| $\mathrm{A}<10$ | all | none |
| $10 \leqslant \mathrm{~A} \leqslant 16$ | $\Delta \mathrm{~A}<4 \%$ | $\Delta \mathrm{~A} \geqslant 4 \%$ |
| $\mathrm{~A}>16$ | none | all |

## II. Conditions Independent of Length or Load

The following conditions are best taken care of by just canceling all violating pipes from the table, leaving a Select Table on which the Select Program works for type 1 without further regard to those conditions.

1. Welding and Rolling

For welding the members to the joints, it was agreed to demand a minimum wall thickness $t$ of

$$
\begin{equation*}
t \geqslant 0.1 \text { inch, for type } 1 \text { only. } \tag{4}
\end{equation*}
$$

For type 2, flat plates are rolled cylindrical and welded along the seam, for which

$$
\begin{equation*}
t \geqslant 0.25 \text { inch, for type } 2 \text { only. } \tag{5}
\end{equation*}
$$

In order to use cold rolling only, one should demand (0. Heine) a diameter - wall thickness ratio of $d / t \geqslant 20$, or with $A=\pi d t$ :

$$
\begin{equation*}
\mathrm{d} \geqslant 2.52 \sqrt{\mathrm{~A}}, \text { for type } 2 \text { only. } \tag{6}
\end{equation*}
$$

2. Local Buckling

According to 0. Heine, we use the condition $0.24 \mathrm{Et} / \mathrm{d} \geqslant \mathrm{S}_{\mathrm{m}}=20 \mathrm{ksi}$; or, with $\mathrm{E}=29,000 \mathrm{ksi}$, and $\mathrm{t}=\mathrm{A} / \pi \mathrm{d}$,

$$
\begin{equation*}
\mathrm{d} \leqslant 10.52 \sqrt{\mathrm{~A}} \tag{7}
\end{equation*}
$$

As seen from Fig. 1 , condition (7) actually is never active for type 1.

## 3. Thermal Lag

Report 17 (Jan. 3, 1967) gives for steel pipes with white protective paint a thermal time-lag of $\tau=1.73$ hours per inch of wall thickness. What matters is the difference, $\Delta \tau=1.73\left(t_{\max }-t_{\min }\right)$, where $t_{\min }=0.1$ inch from (4). Demanding $\Delta \tau \leqslant 0.5$ hours then gives

$$
\begin{equation*}
t \leqslant 0.4 \text { inch } \tag{8}
\end{equation*}
$$

## 4. Pipe Table

A11 available Corten pipes were compiled in a table. Then all pipes violating (4), (7) or (8) were omitted. The remaining Select Table is shown in Fig. 1 for $2 \leqslant A \leqslant 16$ inch $^{2}$.

The table actually starts at $A=0.1767$ inch $^{2}$, for panel members. The vertex cabin starts at 0.873 inch $^{2}$. The telescope starts at 1.570 inch $^{2}$, but all except six bars have $A \geqslant 2$ inch $^{2}$ (see Report 34). The Select Table contains 328 pipes for $2<A<16$ inch $^{2}$, and 598 pipes in total.

## III. Remaining Conditions

The following conditions are incorporated in the Select Program. Where their numerical values depend on the subtype (2), we give both values as:

$$
\left\{\begin{array}{ll}
\text { type } 1, & \text { straight }  \tag{9}\\
\text { type } 2, & \text { tapered }
\end{array}\right\}
$$

The program first calculates $d$ assuming straight ends; if $d \geqslant 14$ inch, it assigns tapered ends and recalculates $d$ for that case.

In the following formulas we mostly use, instead of length L ,

$$
\begin{equation*}
\ell=\mathrm{L} / 1000 \text { inch. } \tag{10}
\end{equation*}
$$

## 1. Lateral Dynamical Frequency

Since the lowest dynamical frequency of the combined structure (telescope, towers, drives, soil) will be $1.6-1.8 \mathrm{cps}$, it was decided that each single member must be somewhat higher, say

$$
\begin{equation*}
v \geqslant 2.5 \mathrm{cps} . \tag{11}
\end{equation*}
$$

$$
-4-
$$

The lowest lateral vibration is given by

$$
v=\frac{a}{2 \pi} \sqrt{\frac{\text { gEI }}{\rho A L}} \text {, with } a=\left\{\begin{array}{r}
15.40  \tag{12}\\
9.87
\end{array}\right\}
$$

where $g=386$ inch/sec ${ }^{2}, E=29,000 \mathrm{ksi}, I=r^{2} A, r=d / \sqrt{8}$ for thin-walled pipes, and $\rho=0.283 \mathrm{Ib} /$ inch $^{3}$. This yields

$$
v=\left\{\begin{array}{l|l}
0.1724  \tag{13}\\
0.1105
\end{array}\right\} v_{\mathrm{d} / \mathrm{L}^{2}}^{10^{6}} \quad \begin{aligned}
& v \text { in cps } \\
& \mathrm{d}, \text { L in inch }
\end{aligned}
$$

Demand (11) then results in

$$
\mathrm{d} \geqslant\left\{\begin{array}{l}
14.5  \tag{14}\\
22.6
\end{array}\right\} \ell^{2} .
$$

## 2. Maximum Slenderness Ratio

In previous discussions it was decided to use a maximum of

$$
\begin{equation*}
\mathrm{KL} / \mathrm{r} \leq 200 \tag{15}
\end{equation*}
$$

with

$$
K=\left\{\begin{array}{l}
0.8  \tag{16}\\
1.0
\end{array}\right\}
$$

which yields

$$
d \geqslant\left\{\begin{array}{l}
11.3  \tag{17}\\
14.1
\end{array}\right\} \ell
$$

## 3. Stress Ratio Q

For each member we consider the combination of the following two stresses:
$\begin{aligned} S_{m}= & \text { maximum axial stress from survival loads on whole } \\ & \text { telescope (output of Homology Program); }\end{aligned}$
$\begin{aligned} S_{g}= & \text { maximum bending stress from sagging of member under } \\ & \text { its own weight (horizontal, worst case). }\end{aligned}$

We further call

$$
\begin{align*}
\Lambda & =\mathrm{KL} / \mathrm{r}=\text { effective slenderness ratio, }  \tag{20}\\
\mathrm{S}_{\mathrm{y}} & =\text { yield stress of material, }  \tag{21}\\
\mathrm{S}_{\mathrm{E}} & =\pi^{2} \mathrm{E} / \Lambda^{2}=\text { Euler stress of buckling, }  \tag{22}\\
S_{E s} & =S_{\mathrm{E}} / 1.92=149,000 / \Lambda^{2}, \text { (safety factor } 1.92 \text { ), }  \tag{23}\\
S_{\Lambda} & =\text { maximum allowed axial stress, }  \tag{24}\\
C & =\sqrt{2 \pi^{2} E / S_{y}},  \tag{25}\\
\mathrm{q} & =\Lambda / C=\sqrt{S_{y} / 2 S_{E}} \tag{26}
\end{align*}
$$

We then have from the Steel Manual, page 5-16, formulas (1) and (2),

$$
\begin{equation*}
S_{\Lambda}=\sqrt{\frac{1-q^{2} / 2}{5 / 3+3 q / 8-q^{3} / 8}} S_{y} \text { for } q \leqslant 1 \tag{27}
\end{equation*}
$$

And for the combination of $S_{m}$ and $S_{g}$ we find from the Steel Manual, page 5-20 formula (7a) and the second formula on page $5-17$, with $C_{m}=0.85$,

$$
\begin{equation*}
Q=\frac{S_{m}}{S_{\Lambda}}+\frac{1.288 S_{g} / S_{y}}{1-S_{m} / S_{E s}} \tag{28}
\end{equation*}
$$

with the demand

$$
\begin{equation*}
Q \leqslant 1 \tag{29}
\end{equation*}
$$

For thin-walled pipes $S_{g}=M d / 2 I$, with $M=\rho A L^{2} / 8$ for both subtypes (2), and $I=d^{2} A / 8$, thus

$$
\mathrm{S}_{\mathrm{g}}=0.1415 \mathrm{~L}^{2} / \mathrm{d} \quad \left\lvert\, \begin{array}{ll}
\mathrm{L}, \mathrm{~d} \text { in inch }  \tag{30}\\
\mathrm{S}_{\mathrm{g}} & \text { in } 1 \mathrm{~b} / \text { inch }^{2}
\end{array}\right.
$$

or

$$
\begin{equation*}
S_{g}=141.5 \mathrm{ksi}^{2} / \mathrm{d} \tag{30a}
\end{equation*}
$$

Finally, with $S_{y}=50 \mathrm{ksi}$ for Corten steel, we have the condition ( $\mathrm{S}_{\mathrm{m}}$ in ksi )

$$
\begin{equation*}
Q=\frac{S_{m}}{S_{\Lambda}}+\frac{2.83 \ell^{2} / d}{1-53.7 S_{m} K^{2} \ell^{2} / d^{2}} \leqslant 1 . \tag{31}
\end{equation*}
$$

Because of the complicated form of (27), equation (31) could be solved for $d$ only numerically, which would yield a minimum diameter $d_{m}$ :

$$
\begin{equation*}
d \geqslant d_{m}\left(S_{m}, L, K\right) \tag{32}
\end{equation*}
$$

Actually, the Replace Program calculates (31) for the nearest pipe in the Select Table. If fulfilled, the pipe is accepted; if not, the next one is tried, and so on.
4. Wind-Induced Vibrations

Wind-induced vibrations could result in fatigue and destruction. Vibrations do not occur if (a) the critical wind velocity for resonance is above the highest velocity ever expected, and/or if (b) the air flow is turbulent. If vibrations do occur, (c), the alternating stress must be below the fatigue limit of the material.
a) Critical Velocity

For laminar flow across cylindrical bars, the von Karman vortices cause a lateral vibration with a frequency

$$
\nu_{\mathrm{w}}=3.52 \mathrm{v} / \mathrm{d} . \left\lvert\, \begin{array}{llc}
\nu & \text { in } & \text { cps }  \tag{33}\\
v & \text { in } & \text { mph } \\
\mathrm{d} & \text { in } & \text { inch }
\end{array}\right.
$$

Large amplitudes occur only in resonance, when (33) equals (13), which results in a critical velocity for resonance

$$
\begin{equation*}
\mathrm{v}_{\mathrm{cr}}=25.1 \mathrm{mph}(100 / \Lambda)^{2} . \tag{34}
\end{equation*}
$$

Using 85 mph as the highest expected wind, resonance is excluded if $v_{c r} \geqslant 85 \mathrm{mph}$, which yields the condition

$$
\begin{equation*}
\Lambda \leqslant 54.4 \tag{35}
\end{equation*}
$$

or

$$
d \geqslant\left\{\begin{array}{l}
41.6  \tag{36}\\
52.0
\end{array}\right\} \ell .
$$

b) Turbulent Flow

If the Reynold number

$$
\mathrm{R}_{\mathrm{e}}=780 \mathrm{vd} \left\lvert\, \begin{array}{lll}
\mathrm{v} & \text { in } & \mathrm{mph}  \tag{37}\\
\mathrm{~d} & \text { in } & \text { inch }
\end{array}\right.
$$

is above a critical value of $2 \times 10^{5}$, the flow is turbulent and no vibrations occur. We ask only for the resonant case and demand

$$
\begin{equation*}
780 \mathrm{v}_{\mathrm{cr}} \mathrm{~d} \geqslant 2 \times 10^{5} \tag{38}
\end{equation*}
$$

or, with (34)

$$
\mathrm{d} \geqslant\left\{\begin{array}{l}
17.4  \tag{39}\\
20.1
\end{array}\right\} \ell^{2 / 3}
$$

Since it is enough to fulfill either (36) or (39), we can disregard (36) because (39) is more favorable if (which holds for all members)

$$
L>\left\{\begin{array}{ll}
73 & \text { inch }  \tag{40}\\
58 & \text { inch }
\end{array}\right\}
$$

c) Fatigue

If vibrations do occur, the wind lift (perpendicular to both pipe axis and wind) is

$$
\mathrm{F}_{\mathrm{W}}=8.40 \times 10^{-9} \mathrm{v}^{2} \mathrm{Ld} \left\lvert\, \begin{array}{ll}
\mathrm{F} & \text { in kip }  \tag{41}\\
\mathrm{v} & \text { in mph } \\
\mathrm{L}, \mathrm{~d} \text { in inch }
\end{array}\right.
$$

and at resonance the dynamical force is

$$
\begin{equation*}
\mathrm{F}_{\mathrm{d}}=\frac{\pi}{n} \mathrm{~F}_{\mathrm{w}} \tag{42}
\end{equation*}
$$

with a damping factor $\eta$ which is linear with stress except close to the yield point. We use (0. Heine Report, March 11, 1969)

$$
\begin{equation*}
\eta=0.00033 \mathrm{~s} . \quad \mid \mathrm{S} \text { in } \mathrm{ksi} \tag{43}
\end{equation*}
$$

Load (42) distributed over length $L$ gives for thin-walled pipes and for both subtypes (2) a maximum alternating stress of

$$
\begin{equation*}
S_{a}=\frac{\dot{M z}}{I}=\frac{F_{d}}{2 A d}=\frac{\pi}{2 \eta} \frac{F_{w} L}{A d} . \tag{44}
\end{equation*}
$$

$F_{d}$ itself depends on $S_{a}$ via $\eta$. At the onset of wind the amplitude increases until $\eta$ becomes large enough for a saturation. This defines the final $S_{a}$, which is obtained by inserting $v_{c r}$ from (34) into (41), and then solving (41) - (44) for $S_{a}$. This yields the alternating stress

$$
S_{a}=\left\{\begin{array}{l}
0.310  \tag{45}\\
0.198
\end{array}\right\} \frac{d^{2}}{\ell \sqrt{A}} \quad \mathrm{ksi}
$$

We now demand $\mathrm{S} \leqslant 25 \mathrm{ksi}$, yielding

$$
d \leqslant\left\{\begin{array}{c}
8.98  \tag{46}\\
11.23
\end{array}\right\} \quad \ell^{1 / 2} \quad A^{1 / 4} .
$$

With respect to wind-induced vibrations, the diameter thus must be either larger than (39) preventing vibration, or it must be smaller than (46) preventing fatigue.

## IV. Summary

The following table contains all conditions. For the sake of consistency also the conditions (4), (5) and (8), which concern the wall thickness, are rewritten as diameter conditions using $t=A / \pi d$. Conditions in parentheses
are already taken care of in the Select Table of Corten pipes, Fig. 1.
The most critical condition is that for the stress ratio, (31). Therefore this is already incorporated in the Homology Program, in an apppoximate way where $r=k A^{2 / 3}$ is assumed with $k=0.73$ for 1 ighter pipes and $k=1$ for heavier ones. Condition (17) is also included in the program.

|  | Demand | Equation | $\mathrm{d} \leqslant$ | $\mathrm{d} \geqslant$ |
| :---: | :---: | :---: | :---: | :---: |
| Type 1 only |  |  |  |  |
| welding joints | $t \geqslant 0.1$ inch | 4 | $(\mathrm{d} \leqslant 3.18 \mathrm{~A})$ |  |
| Type 2 only |  |  |  |  |
| welding seams | $t \geqslant 0.25$ inch | 5 | $\mathrm{d} \leqslant 1.273 \mathrm{~A}$ |  |
| cold rolling | $d / t \geqslant 20$ | 6 |  | $\mathrm{d} \geqslant 2.52 \sqrt{\mathrm{~A}}$ |
| Both types |  |  |  |  |
| local bucking | . $24 \mathrm{Et} / \mathrm{d} \geqslant 20 \mathrm{ksi}$ | 7 | $(\mathrm{d} \leqslant 10.52 \sqrt{\mathrm{~A}})$ |  |
| thermal lag | $\Delta \tau \leqslant 0.5$ hours | 8 |  | ( $\mathrm{d} \geq .795 \mathrm{~A}$ ) |
| dynamical frequency | $v \geqslant 2.5 \mathrm{cps}$ | 14 |  | $d \geq\left\{\begin{array}{l}14.5 \\ 22.6\end{array}\right\} \ell^{2}$ |
| slenderness ratio | KL/r $\leqslant 200$ | 17 |  | $\left.\mathrm{d} \geqslant 2 \begin{array}{l}11.3 \\ 14.1\end{array}\right\} \ell$ |
| stress ratio | $Q \leqslant 1$ | 31 |  | $\mathrm{d} \geqslant \mathrm{d}_{\mathrm{m}}\left(\mathrm{S}_{\mathrm{m}}, \mathrm{L}, \mathrm{K}\right)$ |
| $\int \text { either }$ | turbulence | 39 |  | $\mathrm{d} \geqslant\left\{\begin{array}{l}17.4 \\ 20.1\end{array}\right\} \ell^{2 / 3}$ |
| $\text { tatigue }\left\{\begin{array}{l} \text { and/or } \end{array}\right.$ | $\mathrm{S}_{\mathrm{a}} \leqslant 25 \mathrm{ksi}$ | 46 | $\mathrm{d} \leqslant\left\{\begin{array}{c}8.98 \\ 11.23\end{array}\right\}^{1 / 2} \mathrm{~A}^{1 / 4}$ |  |



Fig. 1. Available Corten pipes for $2 \leqslant \mathrm{~A} \leqslant 16$ inch $^{2}$, fulfilling conditions (4), (7) and (8).
$A=$ bar area, $d=$ outer diameter, $t=$ wall thickness, $0=$ stock items, $+=$ on request.

