Report No. 42

# DESIGN OF THE FEED SUPPORT LEGS FOR THE 65-METER HOMOLOGY TELESCOPE

Woon-Yin Wong

## INTRODUCTION

In order to achieve about a one arc second pointing error under 18 mile/hour lateral wind during observation, the feed support legs of the 65-meter homology telescope requires essentially a deformation governed design (Fig. 1). This structure should also fulfill the survival condition of a wind load of 80 mph, the same as that for the dish back-up structure. With reference to the first requirement, the dimensions of the feed leg structure are larger than those recommended by SVH in Report 22, producing a blockage of 6.4% of telescope aperture.

The cabin is 12' deep and can hold up to 10 tons of front end instruments. An opening of 10' x 10' is provided for a fast change of instruments at the prime focus. This is to be done by pointing the telescope at horizontal position to the service tower, with the floor of the instrument cabin level with that of the service tower. The secondary mirror can be either hoisted up from the front using the feed legs as a boom, or installed from a platform of the service tower.

The legs are guyed at three points in the center portion for increased lateral stiffness. The portion behind the surface plates is a single pipe instead of a built-up structure in order to minimize the clearance problem between panel structures. The joint between the built-up portion and the single tubular section is braced in four directions to the nearest surface points. This bracing produced an insignificant effect on the RMS of the surface deformation of the dish.

Tubular members have been chosed for small shape factor under wind forces. COR-TEN steel with a specified yield stress of 50 ksi is used as in the back-up structure, for the purpose of being consistently with those of the dish structure.

Temperature deformation is also investigated. For a one degree Fahrenheit RMS temperature deviation from the mean of temperature, this feed supporting structure produced a pointing error of 2.04 second of arc RMS.

The lowest natural frequency of the system, by using mean value of frame and truss analysis, is 4.2 cps.



# SUMMARY

# Performance

| Survival wind load                                        |                | 80 mph                          |  |  |  |  |  |
|-----------------------------------------------------------|----------------|---------------------------------|--|--|--|--|--|
| Pointing error under 18 mph wind load                     | 1.08 arc-sec   |                                 |  |  |  |  |  |
| RMS pointing error with 1 deg. F temp. diff.              | 2.04 arc-sec   |                                 |  |  |  |  |  |
| Lowest natural frequency                                  | 4.2 cps        |                                 |  |  |  |  |  |
| Aperture blockage                                         |                | 6.4%                            |  |  |  |  |  |
| Gain loss (expressed as an equivalent surfac              | ce rms)        | Wind $-0.17 \times 10^{-3}$ in. |  |  |  |  |  |
|                                                           |                | Temp $0.73 \times 10^{-3}$ in.  |  |  |  |  |  |
| Optics                                                    |                |                                 |  |  |  |  |  |
| Focus and diameter ratio                                  | F/D            | 0.426                           |  |  |  |  |  |
| Focus length, prime focus system                          | F              | 1090.56 in.                     |  |  |  |  |  |
| Effective focus length, Cassegrain system                 | f              | 17,223.529 in.                  |  |  |  |  |  |
| Magnification                                             | М              | 15.793                          |  |  |  |  |  |
| Distance, prime focus to vertex of<br>Cassegrain mirror   | а              | 61.367 in.                      |  |  |  |  |  |
| Distance, secondary focus to apex of<br>Cassegrain mirror | g              | 969.193 in.                     |  |  |  |  |  |
| Height of secondary focus above the dish                  | Ъ              | 60.000 in.                      |  |  |  |  |  |
| Diameter of Cassegrain mirror                             | d              | 12 ft.                          |  |  |  |  |  |
| Dimensions and Weight                                     |                |                                 |  |  |  |  |  |
| Cabin                                                     |                | 10' x 10' x 12'                 |  |  |  |  |  |
| Width of leg                                              | Ъ <sub>о</sub> | 40.00 in.                       |  |  |  |  |  |
| Depth of leg                                              | <sup>b</sup> 1 | 97.98 in.                       |  |  |  |  |  |
| No. of segments                                           |                | 9                               |  |  |  |  |  |
| Weight (portion from surface up)                          |                | 33,324 1Ъ.                      |  |  |  |  |  |
|                                                           |                | 16.7 ton                        |  |  |  |  |  |
| Capacity of instrument cabin                              |                | 10 ton                          |  |  |  |  |  |

### POINTING ERROR OF THE FEED SUPPORT

Since observations at the short wave-lengths will be performed with Cassegrain optics, the demanded accuracy is governed by the magnitude of the angular rotation and the lateral translation of the secondary mirror. Studies on this subject have been done by several authors (1) (2). Ruze's treatment will be employed in this analysis.

In order to maintain the same notations as shown in Fig. 1, Ruze's formula will be re-stated as follows:

a) Beam movement in radian due to lateral translation, ∆X, of the secondary mirror:

$$\beta = \frac{\Delta X}{F} BDF - \frac{\Delta X}{f} BDf \qquad (1)$$

With reference to the tabulated values in the <u>SUMMARY</u> section for F and f, assuming the illumination function is  $I(r) = 1 - .9r^2$ , one could obtain BDF = 0.84 with F/D = 0.426; BDf = 1.00 with f/D = 6.725. Substituting all these values into eq (1), one derives the following relation:

$$\beta = 0.786 \frac{\Delta X}{F}$$
 (2)

b) The beam movement  $\alpha$  in radians due to the rotation of the secondary mirror  $\phi$  is given by:

$$\alpha = \phi \ge \frac{a}{F} (BDF + BDf)$$
 (3)  
Similarly, one again can derive the following relation for the  
65-meter telescope:

$$\alpha = 0.104\phi \tag{4}$$

c) The pointing error, consequently, is:

$$PE = \beta - \alpha \tag{5}$$

NUMERICAL RESULTS FOR THE WIND LOAD OF 18 MPH DURING OBSERVATION

From the structural analysis of the feed supporting structure, the lateral translation of the mirror  $\Delta X = .0104$  in., and the rotation  $\phi = 4.46$  arc-sec. The beam shifts due to these deformations are, by substituting these values into eq. (2) and (4):

$$\beta = 0.786 \times \frac{.0104}{1090.56} \times 2.06 \times 10^5 = 1.54 \text{ arc-sec.}$$

 $\alpha = 0.104 \times 4.46$  = 0.46 arc-sec.

and the pointing error is, by subtracting these two values

PE = 1.54 - 0.46 = 1.08 arc-sec.

# NUMERICAL RESULT FOR 1° F TEMPERATURE DIFFERENCE ON ONE LEG

The temperature load is applied on the structure as  $\pm 1^{\circ}$  F on two legs, and  $-1^{\circ}$  F on another two. This induced a lateral translation of the mirror .0127 inch, and a rotation of 9.63 arc-sec. Substituting these values into (2) and (4), one can have a peak pointing error, due to one degree temperature difference from the mean, of 2.89 arc-sec. Dividing this value by  $\sqrt{2}$ , one has a rms value of 2.04 second of arc for a random distribution.

It should be noticed that the pointing error in this case is the sum of the two due to different form of deformation.

#### GAIN LOSS

The gain losses are derived from the study of Zarghamee (3). Lateral displacement and angular tilt loss coefficients are extracted from Table 2 for a tapering law  $1-r^2$  expressed as an equivalent surface error rms we obtain:

$$\varepsilon_{1ateral} = 0.016 \Delta X$$

$$\varepsilon_{tilt} = 0.0016 \cdot f \cdot \Delta \alpha$$

where  $\Delta X$  is the lateral displacement

 $\Delta \alpha$  is the secondary mirror tilt in radians

f is the focal distance

These expressions are somewhat conservative since they apply to an optical system with a magnification of 10 (losses decrease with increasing magnification). The gain degradation for axial displacements of the secondary mirror is approximately computed as recommended by Ruze by using his equation (5) with the axial loss factor for very large f/D and 0.9 tapering.

We obtain

 $\epsilon_{axial} = 0.154 \ \Delta Z$ where  $\Delta Z$  is the axial displacement.

### STRUCTURAL DATA

The feed supporting structure is being analyzed in only one quadrant due to its symmetrical configuration in X-Z and Y-Z planes. Joint coordinates and member incidences are listed in Table 2, and also are illustrated in Fig. 3. All dimensions are expressed in inches and forces in pounds if not specified. The holding condition to simulate the symmetrical character is listed in Table 1.

| Mode  | SS                                                                      | AS                                                                                                                                     | SA                                                                                                                                                                                                                                                                                                                                                                                            | AA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Point | ХҮZ                                                                     | XYZ                                                                                                                                    | XYZ                                                                                                                                                                                                                                                                                                                                                                                           | хүг                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2     | 111                                                                     | 111                                                                                                                                    | 101                                                                                                                                                                                                                                                                                                                                                                                           | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3     | $1 \ 1 \ 1$                                                             | $0\ 1\ 1$                                                                                                                              | $1 \ 1 \ 1$                                                                                                                                                                                                                                                                                                                                                                                   | 011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4     | 010                                                                     | 010                                                                                                                                    | 101                                                                                                                                                                                                                                                                                                                                                                                           | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5     | 010                                                                     | 010                                                                                                                                    | 101                                                                                                                                                                                                                                                                                                                                                                                           | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6     | 100                                                                     | 011                                                                                                                                    | 100                                                                                                                                                                                                                                                                                                                                                                                           | 011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7     | 100                                                                     | 011                                                                                                                                    | 100                                                                                                                                                                                                                                                                                                                                                                                           | 011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 8     | $1 \ 1 \ 1$                                                             | $1 \ 1 \ 1$                                                                                                                            | 101                                                                                                                                                                                                                                                                                                                                                                                           | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 9     | $1 \ 1 \ 1$                                                             | 011                                                                                                                                    | $1 \ 1 \ 1$                                                                                                                                                                                                                                                                                                                                                                                   | 011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 40    | $1 \ 1 \ 1$                                                             | 111                                                                                                                                    | $1 \ 1 \ 1$                                                                                                                                                                                                                                                                                                                                                                                   | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 41    | $1 \ 1 \ 1$                                                             | $1 \ 1 \ 1$                                                                                                                            | $1 \ 1 \ 1$                                                                                                                                                                                                                                                                                                                                                                                   | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 42    | $1 \ 1 \ 1 \ 1$                                                         | $1 \ 1 \ 1 \ 1$                                                                                                                        | $1 \ 1 \ 1 \ 1$                                                                                                                                                                                                                                                                                                                                                                               | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       | Mode<br>Point<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>40<br>41<br>42 | Mode SS   Point X Y Z   2 1 1 1   3 1 1 1   4 0 1 0   5 0 1 0   6 1 0 0   7 1 0 0   8 1 1 1   9 1 1 1   40 1 1 1   41 1 1 1   42 1 1 1 | Mode     SS     AS       Point     X Y Z     X Y Z     X Z Z       2     1 1 1 1 1 1     1 1 1     1 1       3     1 1 1 0 1 1     1     1       4     0 1 0 0 1 0     0 1 0     0       5     0 1 0 0 1 1     0     1       7     1 0 0 0 1 1     1     1       9     1 1 1 1 1     1     1       40     1 1 1 1     1     1       41     1 1 1 1     1     1       42     1 1 1     1     1 | Mode     SS     AS     SA       Point     X Y Z     X Y Z     X Y Z     X Y Z     X Y Z       2     1 1 1     1 1 1     1 0 1     1 1 1     1 0 1       3     1 1 1     0 1 1     1 1 1     1 0 1       4     0 1 0     0 1 0     1 0 1       5     0 1 0     0 1 0     1 0 1       6     1 0 0     0 1 1     1 0 0       7     1 0 0     0 1 1     1 0 0       8     1 1 1     1 1 1     1 0 1       9     1 1 1     0 1 1     1 1 1       40     1 1 1     1 1 1     1 1 1       41     1 1 1     1 1 1     1 1       42     1 1 1     1 1     1 1 |

#### TABLE 1

Constraints for supporting points, 0-free, 1-fixed

-7-

The structural analysis considered only in SS and AS modes, representing zenith and horizontal positions. For dynamic analysis, however, four modes are being studied for the lowest frequency.

The demand for the structural stability is that the combined stress ratio

$$\frac{S_{m}}{S_{\Lambda}} + \frac{.85}{1 - \frac{S_{m}}{S_{A}}} \times \frac{S_{g}}{.66S_{y}} < 1$$
(6)

where

 $S_m = Max. \{S_{zw}, S_t\}$  $S_{zw} = Survival wind in stow position = |S_1+S_2+S_5|+|S_6|+|(WF-1) \times S_3|$  $S_{t} = Tilted position = \sqrt{(S_{1}+S_{2})^{2}+(S_{3}+S_{4})^{2}+|S_{5}|+|S_{6}|}$  $S_1$  = Dead load in zenith position  $S_2$  = Instrument load in zenith position, 10 tons per 8 structural pts  $S_3 = Dead load in horizontal position$  $S_{L}$  = Instrument load in horizontal position, 10 tons per 8 structural pts  $S_5 = Stress$  due to tensil forces from cables, 7000 lbs each for cables  $S_6$  = Max. force on feed support from telescope design: 22,300 lbs WF = Value weight factor to combine the dead load of the structure with the survival wind load of 80 mph. This is derived from the assumption that each member has the same wall thickness of 0.156", and the wind force apply to every member disregarding the possible shadowing effects. Value used in this analysis equals 1.8.  $S_{\Lambda}$  = Axial stress permitted if axial force alone existed  $S_e = Euler stress = \frac{149,000,000}{\Lambda^2} psi$  $S_{\alpha}$  = Bending stress of the extreme fibre due to its own dead weight  $S_v =$  Specified yield stress: 50 ksi  $\Lambda$  = K1/r, slenderness ratio K = Effective length factor 1 = Length of members

r = Radius of gyration

The design data and analylical results are listed in Table 3. Member size is selected from tubular COR-TEN steel table. The stresses of the six loading conditions as well as the stress ratio are also listed. The analysis is performed in STRUDL. The structure is analyzed in truss model. Joint deformations between a truss model and a frame model is comparable.

#### DYNAMICAL BEHAVIOR

The structure has a lowest natural frequency of 4.2 cps, when the structure is oscillating around the Z-axis. One must note that this is not the lowest mode for the back-up structure.

The cross-section of the guy cables are 0.5 sq. in. In order to maintain a 2.5 cps vibration to the cable, it would be necessary to stress the cable to 26 ksi. This is too high a stress and a better alternative is to maintain a 14 ksi stress in the cable, which produces only a 10% loss of effective elasticity. In this case the lowest natural frequency of the cable itself is 1.7 cps. It is acceptable since the mass of the cable is small compared with that of the whole telescope structure.

Again the feed legs structure is being analyzed in both truss and frame models. The lowest frequency in truss analysis yields 4.6 cps, whereas in frame analysis, it yields 3.9 cps. Taking the average as the representative natural frequency of the telescope, one obtains 4.2 cps.

### APERTURE BLOCKAGE

The shaded area in Fig. 1 shows the shadow cast by one feed leg. This shadow can be considered the sum of  $A_1$ , the shadow of the subreflector;  $A_2$ , the shadow of the feed leg, with width  $b_0 = 40.5$  inches;  $A_3$ , the fan shape area caused by the diverging spherical wave from the focal point; and

-9-

 ${\rm A}_4,$  the shadow of the cables on the surface.

With the geometry of the present design, eq. (15) of Report 22 by SVH has to be adjusted to

$$\alpha$$
(rad) = 0.670 b<sub>o</sub>/h + 0.423 x 10<sup>-3</sup> x b<sub>o</sub>

Also, by using the same illumination function as suggested in the same report,  $I(r) = 1 - .776 r^2$ , one could derive the quartered effective aperture,  $A_0$ :

$$A_{o} = \frac{\pi}{2} \int_{0}^{1} I(r) r dr = .4807$$

shadow of subreflector,  $A_1$ :

$$A_1 = \frac{\pi}{2} \int_0^{12/213} I(r) r dr = .0025$$

shadow of feed leg, A<sub>2</sub>:

$$A_2 = \int_{12/213}^{1} I(r) \frac{b_0}{R} dr = .0217$$

fan shaped area,  $A_3$ , which is approximated with straight line:

$$A_3 = \int_{.477}^{1} I(r) (\alpha - b_0/R) \frac{r - .477}{1 - .477} r dr = .0110$$

and finally, the shadow of the cables,  $A_4$ , with the measured length above the surface equals 2280"; diameter equals .8":

$$A_4 = \frac{2280 \times .8}{R^2} = .0011$$

The weighted aperture blockage:

$$f_{s} = \frac{A_{1} + A_{2} + A_{3} + A_{4}}{A_{o}} = 7.5\%$$

when it is considered completely opaque.

For considering the opacity equals .83, the aperture blockage becomes:

$$f_s = \frac{A_1 + (A_2 + A_3) \times .83 + A_4}{A_0} = 6.4\%$$

For the sake of comparison, the following table lists the blockage of various telescopes:

| Antenna Diameter (ft) | <u>Spars (%)</u> | Randome (%) | Total (%) |
|-----------------------|------------------|-------------|-----------|
| JPL 210               | 6.55             |             | 6.55      |
| Rosman 85             | 18.37            |             | 18.37     |
| Proposed NEROC 440    | 1.11             | 8.6         | 9.71      |
| Proposed NRAO 213     | 6.4              | 600 km      | 6.4       |



![](_page_12_Figure_0.jpeg)

FIGURE 3 - Cabin and Feed-Support

![](_page_13_Figure_0.jpeg)

₹ 2

Fig. 3 (cont.)

![](_page_14_Figure_0.jpeg)

Fig. 3. (cont.)

| JUINTxyZCCNDITION160.001 mm $60.000$ $-1280.1600$ SUPPORT2 $60.000$ $60.000$ $-1280.1600$ SUPPORT3 $0.00$ $60.000$ $-1280.1600$ SUPPORT5 $60.000$ $0.0$ $-1208.1600$ SUPPORT6 $0.000$ $60.0000$ $-1208.1600$ SUPPORT7 $0.0000$ $60.00000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | JOINT  | (JULAUINATES |           |             | /         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------|-----------|-------------|-----------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | JUINT  | X            | ۲         | 7.          | CENDITION |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1      | 60.000       | 60.000    | -1280.160   |           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2      | 60.005       | C.C       | -1280.160   | SUPPORT   |
| 4 $103.046$ $1.0$ $-1208.160$ $SUPPRAT$ $5$ $60.000$ $()$ $-1208.160$ $SUPPRAT$ $6$ $0.0$ $60.020$ $-1208.160$ $SUPPRAT$ $7$ $0.0$ $60.020$ $-1208.160$ $SUPPRAT$ $8$ $60.020$ $()$ $-1136.160$ $SUPPRAT$ $9$ $0.0$ $60.000$ $-1136.160$ $SUPPRAT$ $10$ $60.000$ $60.000$ $-1136.160$ $SUPPRAT$ $11$ $137.811$ $105.927$ $-1174.795$ $14$ $173.811$ $-1025.882$ $14$ $171.772$ $142.927$ $-1064.519$ $15$ $142.927$ $171.272$ $-1064.519$ $15$ $142.927$ $171.272$ $-1064.519$ $16$ $126.922$ $126.922$ $-915.606$ $17$ $204.733$ $174.448$ $-954.243$ $18$ $176.449$ $204.723$ $-954.243$ $18$ $176.449$ $204.723$ $-954.243$ $19$ $160.382$ $160.386$ $-925.330$ $20$ $233.164$ $202.900$ $-843.967$ $21$ $209.909$ $235.164$ $-843.967$ $22$ $193.844$ $102.644$ $-73.661$ $24$ $243.370$ $271.654$ $-733.661$ $25$ $227.305$ $27.305$ $-77.32.651$ $26$ $305.115$ $276.726$ $-584.778$ $26$ $305.115$ $276.726$ $-942.964$ $34$ $327.687$ $327.687$ $-922.587$ $31$ $294$                                                 | 3      | 0.0          | 60.000    | -1280.160   | SUPPORT   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4      | 103-046      | 0.0       | -1208.160   | SUPPORT   |
| 6C.O. $1CE.^{A}46$ $-12CB.16C$ $SUPPORT$ 7 $0.0$ $6C.CCO$ $-120B.16C$ $SUPPORT$ 8 $6C.CCC$ $r.O$ $-1136.16C$ $SUPPORT$ 9 $0.C$ $6C.CCC$ $-1136.16C$ $SUPPORT$ 10 $60.0CC$ $6C.CCC$ $-1136.16C$ $SUPPORT$ 11 $137.811$ $1CS.577$ $-1174.795$ 12 $10^{a}.527$ $137.811$ $-1174.795$ 13 $93.461$ $93.461$ $-1225.8822$ 14 $171.272$ $142.697$ $-1C64.516$ 15 $142.697$ $171.272$ $-1C64.516$ 16 $122.992$ $127.622$ $-915.6C6$ 17 $-204.733$ $177.448$ $-654.243$ 18 $176.448$ $204.723$ $-954.243$ 19 $160.383$ $166.283$ $-F05.330$ 20 $233.164$ $20^{c}.909$ $-28.164$ 21 $209.909$ $238.164$ $-643.567$ 22 $193.644$ $10^{2}.644$ $-695.674$ 23 $271.654$ $243.370$ $-733.6651$ 24 $243.370$ $271.654$ $-643.567$ 25 $227.305$ $227.305$ $-27.325$ 26 $305.115$ $-623.415$ 27 $276.621$ $305.115$ $-623.415$ 26 $260.765$ $2eC.745$ $-474.532$ 29 $338.576$ $310.291$ $336.576$ 310.291 $336.576$ $-513.129$ 31 $294.226$ $274.267$ $-412.864$ 34 $327.687$ <                                                                | י<br>ז | 60.000       | 0.0       | -1208.160   | SUPPORT   |
| 70.06C.CC0-1208.16CSUPPORT86C.CC0 $C.$ -1136.160SUPPORT90.06C.CC0-1136.160SUPPORT106C.0C06C.CC0-1136.160SUPPORT11137.811109.627-1174.79512139.527137.611-1174.7951393.46193.461-1025.86214171.272142.697-1064.51615142.997171.272-1064.51616126.922126.622-915.60617-204.733176.448-654.24318176.448204.723-654.24319160.383160.383-605.33020233.164209.909-643.96721209.909236.164-643.96722193.644103.644-643.96723271.654243.700-733.65124243.370271.654-654.2141525277.305277.205-584.77826305.115276.821305.11527276.831305.115-623.41528260.765260.765-474.50229336.576310.291-513.12931294.226294.226-364.22732372.037343.752-722.58735-405.467377.213-292.58736377.213405.467-232.58737361.148361.148-143.67539410.674438.558 <td< td=""><td>5</td><td>6.0</td><td>108.046</td><td>-1208,160</td><td>SUPPORT</td></td<>                                                                                                                                                                                               | 5      | 6.0          | 108.046   | -1208,160   | SUPPORT   |
| 8     60.000     60.000     61.00     -1136.160     SUPPORT       9     0.0     60.000     60.000     -1136.160     SUPPORT       10     60.000     60.000     -1136.160     SUPPORT       11     137.811     105.627     -1174.795       12     109.527     137.611     -1174.795       13     93.441     93.441     -1025.882       14     171.272     142.697     -1064.515       16     126.922     126.622     -515.606       17     -204.733     174.448     -654.243       18     176.448     204.733     -654.243       18     176.448     204.733     -654.243       19     160.383     166.748     -655.330       20     233.104     200.909     -843.967       21     209.905     277.305     277.005     -584.778       24     243.370     271.654     -733.691       25     277.305     277.005     -513.139       26     305.115                                                                                                                                                                                | 7      | 0.0          | 66.630    | -1208.160   | SUPPORT   |
| 9     0.0     6C.CCC     -1136.160     SUPPORT       10     60.0CC     6C.CCC     -1136.160     SUPPORT       11     137.811     1CC.627     -1136.160     SUPPORT       12     133.527     137.811     -1174.795     SUPPORT       13     93.441     93.441     -1125.862     SUPPORT       14     171.272     142.987     -1064.519     SUPPORT       15     142.997     171.272     -1064.519     SUPPORT       16     126.922     126.922     -915.606     SUPPORT       17     204.733     176.4468     -554.243     SUPPORT       18     176.448     204.733     -954.243     SUPPORT       20     233.104     205.909     -843.967     SUPPORT       21     209.824     122.844     -495.054     SUPPORT       22     193.844     102.844     -732.691     SUPPORT       24     243.370     271.654     -732.691     SUPPORT       25     227.305     277.265                                                                                                                                                          | 8      | 010.08       | ſ.^       | -1136.160   | SUPPORT   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ů<br>u |              | 66.000    | -1136,160   | SUPPORT   |
| 11137.811 $1^{10}$ , $627$ $-1174.795$ 12139.527137.811 $-1174.795$ 1393.441 $93.441$ $-1025.882$ 14171.272 $142.697$ $-1064.516$ 15 $142.697$ $171.272$ $-1064.516$ 16 $126.922$ $126.622$ $-915.606$ 17 $204.733$ $174.448$ $-654.243$ 18 $176.449$ $204.733$ $-654.243$ 19 $160.383$ $160.283$ $-655.320$ 20 $233.164$ $206.902$ $-843.667$ 21 $209.909$ $238.164$ $-643.667$ 23 $271.654$ $273.661$ 24 $233.104$ $271.654$ $-733.661$ 25 $227.305$ $277.306$ $-584.778$ 26 $305.116$ $276.621$ $-623.415$ 27 $276.631$ $306.115$ $-623.415$ 26 $260.765$ $267.756$ $-344.257$ 29 $336.576$ $310.291$ $-513.139$ 30 $310.261$ $338.576$ $-613.139$ 31 $204.226$ $294.226$ $-264.227$ 32 $372.037$ $343.752$ $-402.864$ 34 $327.687$ $-253.951$ 35 $-405.467$ $377.213$ $-292.587$ 36 $377.213$ $405.497$ $-292.587$ 37 $361.148$ $-143.675$ 36 $438.558$ $410.674$ $-192.312$ 39 $410.674$ $438.558$ $-182.312$ 40 $437.578$ $437.578$ $-56.114$ <td>1.0</td> <td>60.000</td> <td>66.000</td> <td>-1136.160</td> <td></td> | 1.0    | 60.000       | 66.000    | -1136.160   |           |
| 1213137.5111174.7551393.46193.461 $-1025.882$ 14171.772142.697 $-1064.515$ 15142.697171.272 $-1064.515$ 16126.992126.522 $-915.606$ 17 $-204.733$ 176.448 $-654.243$ 18176.448204.733 $-654.243$ 19160.383160.283 $-805.320$ 20233.104200.909 $-843.967$ 21209.909238.164 $-655.054$ 23271.654243.370 $-733.651$ 24243.370271.654 $-733.651$ 25227.305227.305 $-733.651$ 26305.115 $-623.415$ 27276.831305.115 $-623.415$ 28260.765260.745 $-474.502$ 29338.576310.291338.57630310.291338.576 $-162.2967$ 31294.226294.226 $-364.227$ 32372.037343.752 $-722.587$ 35-405.467377.213 $-292.587$ 36377.213405.457 $-232.587$ 37361.148 $361.148$ $-143.675$ 38438.558 $410.674$ $-192.312$ 40437.578 $47.578$ $-56.114$ 538.102 $-538.102$ $230.000$ SUPPORT42 $-533.102$ $538.102$ $230.000$                                                                                                                                                                                                                                   | 11     | 137.811      | 105.527   | -1174.795   |           |
| 1393.44193.441 $-1025.882$ 14171.272142.697 $-1064.516$ 15142.697171.272 $-1064.516$ 16126.922126.522 $-615.606$ 17204.733174.448 $-654.243$ 18176.448204.733 $-654.243$ 19160.383160.383 $-605.330$ 20233.164206.909 $-643.667$ 21209.909236.164 $-665.054$ 23271.654243.370 $-713.661$ 24243.370271.654 $-733.661$ 25227.305277.205 $-584.778$ 26305.115276.821 $-623.415$ 27276.681305.115 $-623.415$ 28260.765260.765 $-612.126$ 29338.576310.291 $-364.227$ 31294.226294.226 $-364.227$ 32372.037243.752 $-402.864$ 34327.687 $327.687$ $-292.587$ 35 $-405.467$ $377.213$ $-292.587$ 36 $377.213$ $405.467$ $-292.587$ 37 $361.148$ $361.148$ $-143.675$ 36 $438.558$ $410.674$ $-192.312$ 40 $437.578$ $437.678$ $-56.114$ SUPPORT41 $538.102$ $-539.102$ $230.000$ SUPPORT                                                                                                                                                                                                                                            | 1/     | 1)9.527      | 137.811   | -1174.795   |           |
| 14171.272142.6P7 $-1.64.515$ 15142.6P7171.272 $-1.64.515$ 16126.922126.522 $-615.606$ 17 $2.04.733$ 174.448 $-654.243$ 18176.448204.733 $-564.243$ 19160.383166.283 $-605.320$ 20233.104 $200.909$ $-643.567$ 21209.909238.194 $-643.567$ 22193.844103.644 $-65.654$ 23271.654243.370 $-713.651$ 24243.370271.654 $-733.651$ 25227.305277.305 $-623.415$ 26305.115276.831 $305.115$ 27276.831 $305.115$ $-623.415$ 28260.765 $260.765$ $-513.135$ 30310.291336.576 $-102.864$ 31294.226294.226 $-364.227$ 32372.037343.752 $-402.864$ 34327.687 $-272.587$ 35 $-405.467$ $377.213$ $-292.587$ 361.148 $361.148$ $-143.675$ 38 $438.558$ $410.674$ $-192.312$ 39 $410.674$ $438.558$ $-182.212$ 40 $437.578$ $437.578$ $-56.114$ SUPPORT41 $538.102$ $-538.102$ $230.000$ SUPPORT                                                                                                                                                                                                                                              | 13     | 93.461       | 93.461    | -1025.882   |           |
| 15 $142.667$ $171.272$ $-1664.519$ 16 $126.922$ $126.922$ $-915.666$ 17 $204.733$ $174.448$ $-654.243$ 18 $176.448$ $204.733$ $-654.243$ 19 $160.383$ $166.283$ $-855.330$ 20 $233.164$ $206.909$ $-843.967$ 21 $209.909$ $238.194$ $-643.967$ 22 $193.844$ $102.844$ $-695.054$ 23 $271.654$ $243.370$ $-733.691$ 24 $243.370$ $271.654$ $-733.691$ 25 $227.305$ $-584.778$ 26 $305.115$ $276.621$ $-623.415$ 27 $276.831$ $305.115$ $-623.415$ 26 $305.115$ $276.75$ $-474.552$ 29 $338.576$ $310.291$ $338.576$ 30 $310.291$ $338.576$ $-513.139$ 31 $294.226$ $294.226$ $-364.227$ 32 $372.037$ $343.752$ $-723.951$ 34 $327.687$ $227.687$ $-292.587$ 35 $-405.467$ $377.213$ $-292.587$ 36 $377.213$ $405.457$ $-292.587$ 37 $361.148$ $361.148$ $-143.675$ 36 $438.558$ $410.674$ $-182.312$ 40 $437.578$ $437.578$ $-56.114$ SUPPORT41 $538.102$ $-538.102$ $230.000$ SUPPORT                                                                                                                                         | 14     | 171.272      | 142.587   | -1064-519   |           |
| 16126.922126.522 $-615.606$ 17 $204.733$ $176.448$ $-654.243$ 18 $176.448$ $204.733$ $-954.243$ 19 $160.383$ $166.283$ $-805.320$ 20 $233.104$ $200.909$ $-843.967$ 21 $209.909$ $238.194$ $-843.967$ 22 $193.844$ $103.844$ $-655.054$ 23 $271.654$ $243.370$ $-713.691$ 24 $243.370$ $271.654$ $-733.691$ 25 $227.305$ $227.305$ $-584.778$ 26 $305.115$ $276.821$ $-623.415$ 26 $305.115$ $276.725$ $-474.552$ 29 $38.576$ $310.291$ $338.576$ 30 $310.291$ $338.576$ $-513.139$ 31 $294.226$ $294.226$ $-364.227$ 32 $372.037$ $243.752$ $-432.864$ 33 $343.752$ $77.687$ $-253.951$ 34 $327.687$ $327.687$ $-253.951$ 35 $405.447$ $377.213$ $405.497$ 361.148 $361.148$ $-143.675$ 36 $377.213$ $405.497$ $-292.587$ 37 $361.148$ $361.148$ $-143.675$ 36 $438.558$ $410.674$ $-192.312$ 40 $437.578$ $-56.114$ SUPPORT41 $538.102$ $-538.102$ $230.000$ 42 $-533.102$ $538.1.2$ $230.000$                                                                                                                              | 15     | 142.987      | 171.272   | -1064-519   |           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16     | 126,922      | 126.522   | -915.606    |           |
| 16176.448 $234.733$ $-954.243$ 19160.383160.283 $-F05.330$ 20233.194 $200.909$ $-F43.967$ 21209.909238.194 $-F05.674$ 22193.844103.844 $-695.054$ 23271.654 $243.370$ $-713.661$ 24243.370271.654 $-733.661$ 25227.305 $227.305$ $-584.778$ 26305.115 $276.621$ $-623.415$ 27276.831305.115 $-623.415$ 28260.765 $260.765$ $260.745$ 29338.576 $310.291$ $336.576$ 31294.226294.226 $-364.227$ 32372.037343.752 $-402.864$ 33343.752 $372.687$ $-253.951$ 35 $-405.467$ $377.213$ $-292.587$ 36 $377.213$ $405.497$ $-292.587$ 37 $361.148$ $361.148$ $-143.675$ 39 $47.678$ $437.678$ $-192.312$ 40 $437.678$ $437.678$ $-56.114$ 538.102 $-538.102$ $230.000$ $SUPPORT$                                                                                                                                                                                                                                                                                                                                                     | 17     | -204.733     | 176.448   | -954.243    |           |
| 19   160.383   160.383   -F05.320     20   233.194   200.909   -E43.967     21   209.909   234.194   -E43.967     22   193.844   192.844   -E95.054     23   271.654   243.370   -733.691     24   243.370   271.654   -634.778     25   227.305   227.305   -584.778     26   305.115   276.821   -623.415     26   260.765   260.765   -474.502     29   338.576   310.291   -513.139     30   310.291   338.576   -613.139     31   294.226   294.226   -364.227     32   372.037   343.752   -402.864     33   343.752   372.027   -402.864     34   327.687   -292.587   -292.587     35   -405.467   377.213   -292.587     36   377.213   405.497   -292.587     37   361.148   '361.148   -143.675     39   410.674   438.558   -182.312 <td>18</td> <td>175.448</td> <td>204.723</td> <td>-954 242</td> <td></td>                                                                                                                                                                                                    | 18     | 175.448      | 204.723   | -954 242    |           |
| 20   233.104   200.909   -E43.667     21   209.909   238.164   -E43.667     22   193.844   103.644   -E95.054     23   271.654   243.370   -733.691     24   243.370   271.654   -733.691     25   227.305   227.305   -684.778     26   305.115   276.821   -623.415     26   305.115   260.765   260.765     29   338.576   310.291   365.76     30   310.291   336.576   -613.139     31   294.226   294.226   -364.227     32   372.037   343.752   -402.864     33   343.752   372.037   -432.864     34   327.687   -292.587   -35     35   -405.467   377.213   -292.587     36   377.213   405.467   -272.587     37   361.148   -143.675   -438.658     40   438.558   410.674   -192.312     40   437.578   437.578   -56.114   SUPPORT                                                                                                                                                                                                                                                                             | 10     | 160.383      | 160, 283  | -805,330    |           |
| 21   209.909   235.194   -E43.967     22   193.844   103.844   -73.661     23   271.654   243.370   -733.661     24   243.370   271.654   -733.661     25   227.305   227.305   -584.778     26   305.115   276.831   -623.415     26   260.765   280.745   -474.502     29   338.576   310.291   -513.136     30   310.291   338.576   -513.139     31   294.226   294.226   -364.227     32   372.037   343.752   -412.864     33   343.752   372.637   -412.864     34   327.687   292.587   -56.361.14     36   377.213   405.467   -292.587     36   377.213   405.467   -292.587     37   361.148   361.148   -143.675     39   410.674   438.558   -182.212     40   437.578   -56.114   SUPPORT     41   538.102   -638.102   230.000   S                                                                                                                                                                                                                                                                             | 20     | 233-104      | 200,000   | -143.967    |           |
| 22   193.844   193.844   -655.054     23   271.654   243.370   -733.651     24   243.370   271.654   -733.651     25   227.305   227.305   -584.778     26   305.115   276.831   305.115   -623.415     26   260.765   280.745   -474.502     29   338.576   310.291   -513.139     30   310.291   338.576   -564.227     32   372.037   343.752   -402.864     34   327.687   227.2037   -402.864     34   327.687   229.587   -551.3139     35   -405.467   377.213   -292.587     36   377.213   405.467   -232.587     37   361.148   361.148   -143.675     36   377.213   405.467   -192.587     37   361.148   361.148   -143.675     39   410.674   438.558   -182.312     40   437.578   437.578   -56.114   SUPPORT     41   538.102                                                                                                                                                                                                                                                                                | 20     | 209.909      | 238,104   | - 843 - 867 |           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22     | 193,844      | 133.844   | -695-054    |           |
| 24   243.370   271.654   -733.691     25   227.305   227.305   -584.778     26   305.115   276.831   -623.415     27   276.831   305.115   -623.415     26   260.765   260.745   -474.502     29   338.576   310.291   338.576     30   310.291   338.576   -513.139     31   294.226   294.226   -364.227     32   372.037   343.752   -402.864     33   343.752   372.027   -402.864     34   327.687   -292.587     35   -405.467   377.213   -292.587     36   377.213   405.497   -292.587     37   361.148   361.148   -143.675     38   438.558   410.674   -192.312     39   410.674   438.558   -182.312     40   437.578   437.578   -56.114   SUPPORT     41   538.102   -538.102   230.000   SUPPORT     42   -533.102   538.102   23                                                                                                                                                                                                                                                                             | 22     | 271.654      | 243.270   | -733.691    |           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23     | 243.370      | 271.654   | -733.691    |           |
| $26$ $305 \cdot 115$ $276 \cdot 621$ $-623 \cdot 415$ $27$ $276 \cdot 831$ $305 \cdot 115$ $-623 \cdot 415$ $26$ $260 \cdot 765$ $260 \cdot 745$ $-474 \cdot 502$ $29$ $338 \cdot 576$ $310 \cdot 291$ $-513 \cdot 139$ $30$ $310 \cdot 291$ $338 \cdot 576$ $-513 \cdot 139$ $31$ $294 \cdot 226$ $294 \cdot 226$ $-364 \cdot 227$ $32$ $372 \cdot 037$ $343 \cdot 752$ $-402 \cdot 864$ $33$ $343 \cdot 752$ $372 \cdot 037$ $-402 \cdot 864$ $34$ $327 \cdot 687$ $-292 \cdot 587$ $35$ $-405 \cdot 467$ $377 \cdot 213$ $-292 \cdot 587$ $36$ $377 \cdot 213$ $405 \cdot 467$ $-292 \cdot 587$ $37$ $361 \cdot 148$ $361 \cdot 148$ $-143 \cdot 675$ $38$ $438 \cdot 558$ $410 \cdot 674$ $-192 \cdot 312$ $40$ $437 \cdot 578$ $437 \cdot 578$ $-56 \cdot 114$ SUPPORT $41$ $538 \cdot 102$ $-538 \cdot 102$ $230 \cdot 000$ SUPPORT $+2$ $-533 \cdot 102$ $538 \cdot 102$ $230 \cdot 000$ SUPPORT                                                                                                                       | 25     | 227.305      | 227.205   | -584.778    |           |
| 27 $276.831$ $305.115$ $-623.415$ $26$ $260.765$ $2c0.745$ $-474.502$ $29$ $338.576$ $310.291$ $-513.139$ $30$ $310.291$ $338.576$ $-513.139$ $31$ $294.226$ $294.226$ $-364.227$ $32$ $372.037$ $343.752$ $-402.864$ $33$ $343.752$ $277.687$ $-253.951$ $35$ $-405.467$ $377.213$ $-292.587$ $36$ $377.213$ $405.467$ $-292.587$ $37$ $361.148$ $361.148$ $-143.675$ $38$ $438.558$ $410.674$ $-192.312$ $40$ $437.578$ $437.578$ $-56.114$ $41$ $538.102$ $-538.102$ $230.000$ $42$ $-533.102$ $538.102$ $230.000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26     | 305,115      | 276 . 821 | -622,415    |           |
| 26 $260.765$ $260.745$ $-474.502$ $29$ $338.576$ $310.291$ $-513.139$ $30$ $310.291$ $338.576$ $-513.139$ $31$ $294.226$ $294.226$ $-364.227$ $32$ $372.037$ $343.752$ $-402.864$ $33$ $343.752$ $972.037$ $-402.864$ $34$ $327.687$ $227.687$ $-253.951$ $35$ $-405.467$ $377.213$ $-292.587$ $36$ $377.213$ $405.467$ $-272.587$ $37$ $361.148$ $361.148$ $-143.675$ $38$ $438.558$ $410.674$ $-192.312$ $39$ $410.674$ $438.958$ $-182.212$ $40$ $437.578$ $437.578$ $-56.114$ SUPPORT $41$ $538.102$ $-538.102$ $230.000$ SUPPORT $+2$ $-533.102$ $538.102$ $230.000$ SUPPORT                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27     | 276.831      | 305,115   | -623.415    |           |
| 29 $338.576$ $310.291$ $-513.139$ $30$ $310.291$ $33F.57E$ $-513.139$ $31$ $294.22E$ $294.226$ $-364.227$ $32$ $372.037$ $343.752$ $-472.864$ $33$ $343.752$ $372.037$ $-412.864$ $34$ $327.687$ $-253.951$ $35$ $-495.467$ $377.213$ $-292.587$ $36$ $377.213$ $40F.497$ $-232.587$ $37$ $361.148$ $361.148$ $-143.675$ $39$ $410.674$ $438.558$ $-182.212$ $40$ $437.578$ $437.578$ $-56.114$ SUPPORT $41$ $538.102$ $-538.102$ $230.000$ SUPPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20     | 260.765      | 200.745   | -474.502    |           |
| 30 $310.291$ $33E.57E$ $-513.139$ $31$ $294.22E$ $294.226$ $-364.227$ $32$ $372.037$ $343.752$ $-402.864$ $33$ $343.752$ $372.037$ $-402.864$ $34$ $327.687$ $-253.951$ $35$ $-405.467$ $377.213$ $-292.587$ $36$ $377.213$ $405.497$ $-232.587$ $37$ $361.148$ $361.148$ $-143.675$ $38$ $438.558$ $410.674$ $-192.312$ $39$ $410.674$ $438.958$ $-182.212$ $40$ $437.578$ $437.578$ $-56.114$ $41$ $538.102$ $-538.102$ $230.000$ $42$ $-533.102$ $538.102$ $230.000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 29     | 338.576      | 310.291   | -512.139    |           |
| 31   294.226   294.226   -364.227     32   372.037   343.752   -402.864     33   343.752   372.037   -402.864     34   327.687   -253.951     35   -405.467   377.213   -292.587     36   377.213   405.497   -292.587     36   377.213   405.497   -292.587     36   377.213   405.497   -292.587     36   377.213   405.497   -292.587     37   361.148   361.148   -143.675     38   438.958   410.674   -182.312     49   410.674   438.958   -182.312     40   437.978   437.978   -56.114   SUPPORT     41   538.102   -538.102   230.000   SUPPORT     +2   -533.102   538.102   230.000   SUPPORT                                                                                                                                                                                                                                                                                                                                                                                                                     | 30     | 310.291      | 338.576   | -513.139    |           |
| 32 $372.037$ $343.752$ $-402.864$ $33$ $343.752$ $372.037$ $-402.864$ $34$ $327.687$ $-253.951$ $35$ $-495.467$ $377.213$ $-292.587$ $36$ $377.213$ $405.497$ $-292.587$ $36$ $377.213$ $405.497$ $-292.587$ $36$ $377.213$ $405.497$ $-292.587$ $36$ $377.213$ $405.497$ $-292.587$ $37$ $361.148$ $361.148$ $-143.675$ $38$ $438.558$ $410.674$ $-192.312$ $39$ $410.674$ $438.958$ $-182.312$ $40$ $437.978$ $437.978$ $-56.114$ $41$ $538.102$ $-538.102$ $230.000$ $42$ $-533.102$ $538.102$ $230.000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 31     | 294.226      | 294.226   | -364.227    |           |
| 33   343.752   372.037   -4.)2.864     34   327.687   227.687   -253.951     35   -405.467   377.213   -292.587     36   377.213   405.497   -232.587     36   377.213   405.497   -232.587     37   361.148   361.148   -143.675     38   438.558   410.674   -192.312     39   410.674   438.558   -182.312     40   437.578   437.578   -56.114   SUPPORT     41   538.102   -538.102   230.000   SUPPORT     +2   -533.102   538.102   230.000   SUPPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 32     | 372.037      | 343.752   | -472.864    |           |
| 34   327.687   327.687   -253.951     35   -495.467   377.213   -292.587     36   377.213   405.497   -292.587     37   361.148   361.148   -143.675     38   438.558   410.674   -192.312     39   410.674   438.958   -182.212     40   437.978   437.978   -56.114   SUPPORT     41   538.102   -538.102   230.000   SUPPORT     +2   -533.102   538.102   230.000   SUPPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33     | 343+752      | 272.027   | -4)2.864    |           |
| 35   -405.467   377.213   -292.587     36   377.213   405.497   -292.587     37   361.148   -361.148   -143.675     38   438.558   410.674   -192.312     39   410.674   438.958   -182.212     40   437.578   437.578   -56.114   SUPPORT     41   538.102   -538.102   230.000   SUPPORT     +2   -533.102   538.102   230.000   SUPPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 34     | 327.687      | 327.687   | -253.951    |           |
| 36   377.213   405.497   -292.587     37   361.148   361.148   -143.675     38   438.958   410.674   -192.312     39   410.674   438.958   -182.312     40   437.978   437.978   -56.114   SUPPORT     41   538.102   -538.102   230.000   SUPPORT     +2   -533.102   538.122   230.000   SUPPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35     | 495.497      | 377.213   | -292.587    |           |
| 37   361.148   361.148   -143.675     38   438.558   410.674   -192.312     39   410.674   438.558   -182.312     40   437.578   437.578   -56.114   SUPPORT     41   538.102   -538.102   230.000   SUPPORT     +2   -533.102   538.122   230.000   SUPPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30     | 377.213      | 405.497   | -292.587    |           |
| 30   438.558   410.674   -192.312     39   410.674   438.558   -182.312     40   437.578   437.578   -56.114   SUPPORT     41   538.102   -538.102   230.000   SUPPORT     +2   -538.102   538.102   230.000   SUPPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 37     | 361.148      | 361.148   | -143.675    |           |
| 39   410.674   438.958   -182.212     40   437.978   437.978   -56.114   SUPPORT     41   538.102   -538.102   230.000   SUPPORT     +2   -538.102   538.102   230.000   SUPPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30     | 438.558      | 410.674   | -192.312    |           |
| 40   437.578   437.578   -56.114   SUPPORT     41   538.102   -538.102   230.000   SUPPORT     +2   -538.102   538.102   230.000   SUPPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 39     | 419.674      | 438.558   | -182.312    |           |
| 41     538.102     -538.102     230.000     SUPPORT       +2     -538.102     538.102     230.000     SUPPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 40     | 437.578      | 437.578   | -56.114     | SUPPORT   |
| 42 -538.102 538.102 230.000 SUPPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 41     | 538.102      | -538.102  | 230.000     | SUPPORT   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 42     | -533.102     | 538.102   | 230.000     | SUPPORT   |

| ME | МВЕК  | <b>AREA</b> | ƙ.G.  | LENGTH   | L/R        | 1     | ?     | 3     | 4     | 5     | 6     | RATIO |
|----|-------|-------------|-------|----------|------------|-------|-------|-------|-------|-------|-------|-------|
| 1  | 1 2   | 2.515       | 1.369 | 60.00    | 35.        | 0.25  | -0.45 | -C.69 | -1.01 | 2.80  | 1.19  | C.26  |
| 2  | 1 3   | 2.515       | 1.369 | 60.0C    | 35.        | C.25  | -0.45 | 0.0   | 0.0   | 2.80  | 1.19  | 0.19  |
| 3  | 1 10  | 2.515       | 1.369 | 144.OC   | 84.        | -0.25 | -0.01 | 1.17  | 2.07  | -1.79 | 0.35  | 0.28  |
| 4  | 8 10  | 2.515       | 1.369 | 60.CC    | 35.        | -0.56 | 0.05  | 1.23  | 2.29  | 4.60  | -0.39 | 0.39  |
| 5  | 9 10  | 2.515       | 1.369 | 60.00    | 35.        | -0.56 | 0.09  | 0.0   | 0.0   | 4.60  | -0.39 | 0.25  |
| 6  | 15    | 1.439       | 0.928 | 93.72    | 81.        | -0.20 | -0.CE | 0.80  | 1.49  | -1.00 | -0.93 | 0.20  |
| 7  | 17    | 1.439       | 0.928 | 93.72    | 81.        | -0.20 | -C.08 | -1.41 | -2.90 | -1.00 | -0.93 | 0.29  |
| 8  | 5 10  | 1.439       | 0.928 | 93.72    | 81.        | -0.23 | -0.08 | 0.80  | 1.49  | -1.86 | 1.67  | 0.27  |
| 9  | 7 10  | 1.439       | 0.928 | 93.72    | 81.        | -0.23 | 30.2- | 1.45  | 2.90  | -1.86 | 1.67  | 0.36  |
| 10 | 1 4   | 1.439       | 0.928 | 105.32   | 91.        | 0.04  | -0.13 | -0.14 | -0.42 | -1.52 | -1.05 | 0.19  |
| 11 | 16    | 1.439       | 0.928 | 105.32   | <b>91.</b> | 0.04  | -0.13 | -0.42 | -1.85 | -1.52 | -1.05 | 0.28  |
| 12 | 1 11  | 1.516       | 1.149 | 140.03   | ç7.        | C.32  | -C.89 | -1.47 | -2.44 | 4.26  | 1.43  | C.66  |
| 13 | 1 12  | 1.516       | 1.149 | 140.03   | <b>97.</b> | C•32  | -0.89 | -0.05 | 1.20  | 4.26  | 1.43  | 0.48  |
| 14 | 4 10  | 1.439       | 0.928 | 105.32   | 91.        | -0.03 | -0.02 | -0.09 | -0.06 | -0.28 | 1.43  | 0.12  |
| 15 | 4 11  | C•960       | 0.641 | 118.30   | 148.       | 0.02  | -C.40 | -0.22 | -1.31 | 1.78  | 0.99  | 0.70  |
| 16 | 6 IU  | 1.439       | 0.928 | 105.32   | <b>91.</b> | -0.03 | -0.02 | 1.34  | 1.88  | -0.28 | 1.43  | 0.29  |
| 17 | 6 12  | 0.960       | 0.641 | 118.30   | 148.       | C.02  | -0.4C | -0.79 | -0.02 | 1.78  | 0.99  | 0.59  |
| 18 | 10 11 | 0.960       | 0.641 | 100.00   | 125.       | -0.38 | 0.76  | 0.30  | 2.01  | -4.29 | -1.43 | C•95  |
| 19 | 10 12 | C•960       | 0.641 | 100.00   | 125.       | -C.38 | 0.76  | 0.16  | -0.81 | -4.29 | -1.43 | 0.73  |
| 20 | 11 12 | 0.960       | 0.641 | 40.0C    | 50.        | -0.03 | -0.03 | -0.06 | -0.22 | 0.10  | 0.24  | 0.04  |
| 21 | 4 5   | 0.103       | 0.220 | 48.05    | 175.       | C•O   | 0.0   | 0.38  | 0.0   | 0.0   | 0.0   | 0.09  |
| 22 | 67    | 0.103       | 0.220 | 48.05    | 175.       | C•O   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.01  |
| 23 | 10 13 | 3.290       | 1.770 | 120.00   | 54.        | -C.42 | -0.68 | 2.10  | 3.49  | -2.72 | 1.89  | 0.67  |
| 24 | 11 14 | 3.290       | 1.770 | 120.00   | 54.        | C.03  | -0.34 | -0.83 | -1.07 | 1.41  | 0.60  | 0.26  |
| 25 | 12 15 | 3.290       | 1.770 | 120.00   | 54.        | 0.03  | -0.34 | -0.01 | 0.39  | 1.41  | 0.60  | 0.17  |
| 26 | 14 15 | 0.291       | 0.262 | 40.00    | 122.       | C.17  | 0.61  | 0.78  | 0.29  | -1.39 | -1.17 | C.40  |
| 27 | 13 14 | C.720       | 0.575 | 100.00   | 139.       | C.22  | 0.30  | -0.43 | -1.43 | 1.21  | -0.78 | 0.55  |
| 28 | 13 15 | C.720       | 0.575 | 100.00   | 139.       | C.22  | 0.30  | -1.18 | -1.43 | 1.21  | -0.78 | 0.65  |
| 29 | 11 15 | 1.074       | 0.840 | 126.49   | 120.       | C.04  | -0.28 | 0.06  | -0.74 | 1.20  | 0.50  | 0.26  |
| 30 | 12 14 | 1.074       | 0.840 | 126.49   | 120.       | C.04  | -0.28 | -C.74 | 0.14  | 1.20  | 0.50  | C.25  |
| 31 | 10 14 | 1.394       | 1.061 | 156.21   | 118.       | -0.45 | -0.09 | 0.24  | 1.63  | -3.21 | 0.46  | 0.57  |
| 32 | 10 15 | 1.394       | 1.061 | 156.21   | 118.       | -0.45 | -0.09 | 0.53  | 1.10  | -3.21 | 0.46  | 0.55  |
| 33 | 11 13 | 1.394       | 1.061 | 156.21   | 118.       | 0.15  | -0.05 | 0.46  | 0.03  | 1.17  | 0.10  | 0.19  |
| 34 | 12 13 | 1.394       | 1.061 | 156.21   | 118.       | C.15  | -0.05 | 0.29  | 0.27  | 1.17  | 0.10  | 0.20  |
| 35 | 13 16 | 3.290       | 1.770 | 120.00   | 54.        | -0.22 | -0.63 | 2.13  | 2.94  | -0.56 | 1.61  | 0.48  |
| 36 | 14 17 | 3.290       | 1.770 | 120.00   | 54.        | -0.18 | -0.34 | -0.85 | -0.22 | 0.01  | 0.70  | C.13  |
| 37 | 15 18 | 3.290       | 1.770 | 120.00   | 54.        | -0.18 | -C.34 | 0.17  | 0.34  | 0.01  | 0.70  | 0.10  |
| 38 | 17 18 | 0.291       | 0.262 | 40 • C C | 122.       | C•49  | 0.58  | C.56  | -0.39 | 1.02  | -1.27 | 0.39  |
| 39 | 16 17 | C.720       | 0.575 | 100.00   | 139.       | C.11  | C.36  | -0.38 | -0.90 | -0.21 | -0.83 | 0.34  |

TABLE 3 - RESULTS OF STRUCTURAL ANALYSIS

-17-

| ME | MBER |    | ARFA  | R.G.  | LENGTH   | L/R  | 1     | 2     | 3     | 4     | 5     | 6     | RATIO |
|----|------|----|-------|-------|----------|------|-------|-------|-------|-------|-------|-------|-------|
| 40 | 16   | 18 | 0.720 | 0.575 | 100.00   | 139. | C.11  | 0.36  | -0.88 | -1.02 | -0.21 | -0.83 | 0.42  |
| 41 | 14   | 18 | 1.074 | 0.840 | 126.49   | 120. | -0.13 | -0.24 | -0.31 | -0.39 | -0.01 | 0.50  | 0.15  |
| 42 | 15   | 17 | 1.074 | 0.840 | 126.49   | 120. | -C.13 | -0.24 | -0.17 | 0.49  | -0.01 | 0.50  | 0.12  |
| 43 | 13   | 17 | 1.394 | 1.061 | 156.21   | 118. | -0.27 | -0.16 | 0.48  | 1.13  | -2.15 | 0.53  | 0.44  |
| 44 | 13   | 18 | 1.394 | 1.061 | 156.21   | 118. | -C.27 | -0.16 | 0.25  | 0.88  | -2.15 | 0.53  | 0.40  |
| 40 | 14   | 16 | 1.394 | 1.061 | 156.21   | 118. | C.17  | -0.15 | -0.06 | -0.48 | 2.23  | 0.17  | 0.31  |
| 46 | 15   | 16 | 1.394 | 1.061 | 156.21   | 118. | 0.17  | -0.15 | 0.26  | 0.06  | 2.23  | 0.17  | C.29  |
| 47 | 16   | 19 | 3.290 | 1.770 | 120.00   | 54.  | -C.04 | -0.63 | 1.89  | 2.16  | 2.23  | 1.40  | 0.51  |
| 48 | 17   | 20 | 3.290 | 1.770 | 120.00   | 54.  | -0.33 | -C.34 | -C.4C | 0.48  | -1.18 | 0.80  | 0.20  |
| 49 | 18   | 21 | 3.290 | 1.770 | 120.00   | 54.  | -0.33 | -0.34 | -0.04 | 0.30  | -1.18 | C.80  | 0.18  |
| 50 | 20   | 21 | 0.291 | 0.262 | 40 • C C | 122. | C.73  | 0.60  | C.33  | -0.97 | 3.06  | -1.48 | 0.63  |
| 51 | 19   | 20 | C.72C | 0.575 | 100.00   | 139. | C.13  | 0.36  | -0.22 | -0.93 | -0.71 | -0.78 | 0.38  |
| 52 | 19   | 21 | C.720 | 0.575 | 100.00   | 139. | C.13  | 0.36  | -0.99 | -0.80 | -0.71 | -0.78 | 0.47  |
| 53 | 17   | 21 | 1.074 | 0.840 | 126.49   | 120. | -0.23 | -0.25 | -C.69 | -0.16 | -0.86 | 0.58  | 0.27  |
| 54 | 18   | 20 | 1.074 | 0.840 | 126.49   | 120. | -C.23 | -0.25 | C.38  | 0.73  | -0.86 | 0.58  | 0.28  |
| 55 | 16   | 20 | 1.394 | 1.061 | 156.21   | 118. | -C.20 | -0.15 | C.97  | 1.21  | -2.07 | 0.50  | 0.49  |
| 56 | 16   | 21 | 1.394 | 1.061 | 156.21   | 118. | -C.20 | -0.15 | 0.04  | 0.76  | -2.07 | 0.50  | 0.36  |
| 57 | 17   | 19 | 1.394 | 1.061 | 156.21   | 118. | C.C8  | -0.13 | -0.34 | -0.40 | 2.31  | 0.14  | 0.33  |
| 58 | 18   | 19 | 1.394 | 1.061 | 156.21   | 118. | C•08  | -0.13 | 0.29  | -0.06 | 2.31  | 0.14  | 0.28  |
| 59 | 19   | 22 | 3.290 | 1.770 | 120.00   | 54.  | 0.02  | -0.62 | 1.50  | 1.41  | 4.88  | 1.17  | 0.59  |
| 60 | 20   | 23 | 3.290 | 1.770 | 120.00   | 54.  | -C.42 | -0.34 | 0.69  | 1.22  | -2.43 | 0.89  | 0.35  |
| 61 | 21   | 24 | 3.290 | 1.770 | 120.00   | 54.  | -C.42 | -0.34 | -0.70 | 0.24  | -2.43 | 0.89  | 0.31  |
| 62 | 23   | 24 | 0.873 | 0.685 | 40.CC    | 47.  | C.03  | 0.20  | -1.06 | -1.27 | 5.47  | -0.78 | 0.47  |
| 63 | 22   | 23 | 0.873 | 0.685 | 100.00   | 117. | C.12  | 0.25  | -2.55 | -1.18 | -C.64 | -0.65 | 0.49  |
| 64 | 22   | 24 | 0.873 | 0.685 | 100.00   | 117. | C.12  | 0.25  | 1.51  | -0.17 | -0.64 | -0.65 | 0.27  |
| 65 | 20   | 24 | 1.074 | 0.840 | 126.49   | 120. | -C.34 | -0.26 | -1.C4 | 0.10  | -1.76 | 0.69  | 0.41  |
| 66 | 21   | 23 | 1.074 | 0.840 | 126.49   | 120. | -0.34 | -C.26 | 0.95  | 0.98  | -1.76 | 0.69  | 0.47  |
| 67 | 19   | 23 | 1.394 | 1.061 | 156.21   | 118. | -C.13 | -0.16 | 1.12  | 1.15  | -1.74 | 0.49  | 0.46  |
| 68 | 19   | 24 | 1.394 | 1.061 | 156.21   | 118. | -C.13 | -0.16 | 0.09  | 0.70  | -1.74 | 0.49  | 0.32  |
| 69 | 20   | 22 | 1.394 | 1.061 | 156.21   | 118. | -C.00 | -0.14 | -0.96 | -0.46 | 2.64  | 0.13  | 0.43  |
| 70 | 21   | 22 | 1.394 | 1.061 | 156.21   | 118. | -C.00 | -0.14 | 0.59  | -0.12 | 2.64  | 0.13  | 0.34  |
| 71 | 22   | 25 | 3.290 | 1.770 | 120.00   | 54.  | 0.15  | -0.59 | 1.80  | 1.33  | 4.20  | 1.15  | 0.56  |
| 72 | 23   | 26 | 3.290 | 1.770 | 120.00   | 54.  | -C.50 | -0.34 | 0.57  | 1.60  | 3.39  | 0.97  | 0.44  |
| 73 | 24   | 27 | 3.290 | 1.770 | 120.00   | 54.  | -0.50 | -0.34 | -0.12 | 0.43  | 3.39  | 0.97  | 0.35  |
| 74 | 26   | 27 | C.720 | 0.575 | 40.00    | 56.  | C.42  | C.25  | -0.08 | -0.72 | 2.20  | -0.69 | 0.27  |
| 75 | 25   | 26 | 0.720 | 0.575 | 100.00   | 139. | C.12  | 0.35  | -C.26 | -1.03 | -0.15 | -0.79 | 0.33  |
| 76 | 25   | 27 | C.720 | 0.575 | 100.00   | 139. | C.12  | 0.35  | -1.39 | -0.74 | -0.15 | -0.79 | 0.44  |
| 77 | 23   | 27 | 1.074 | 0.840 | 126.49   | 120. | -C.40 | -0.27 | 1.41  | 0.88  | -2.50 | 0.75  | C•59  |
| 78 | 24   | 20 | 1.074 | 0.840 | 126.49   | 120. | -C.40 | -0.27 | -1.13 | 0.64  | -2.50 | 0.75  | C.51  |
| 79 | 22   | 26 | 1.394 | 1.061 | 156.21   | 118. | -C.20 | -0.16 | -C.83 | 0.37  | 0.86  | 0.33  | 0.19  |

TABLE 3 - (CONT.)

-18-

| ME  | MBER |    | ΔΡΕΔ  | R.G.  | LENGTH | L/R  | 1     | 2     | 3     | 4     | 5     | 6     | RATIO |
|-----|------|----|-------|-------|--------|------|-------|-------|-------|-------|-------|-------|-------|
| 80  | 22   | 27 | 1.394 | 1.061 | 156.21 | 118. | -0.20 | -0.16 | 1.08  | 0.40  | 0.86  | 0.33  | 0.28  |
| 81  | 23   | 25 | 1.394 | 1.061 | 156.21 | 118. | 0.09  | -0.13 | 1.08  | 0.45  | -0.70 | 0.32  | 0.27  |
| 82  | 24   | 25 | 1.394 | 1.061 | 156.21 | 118. | C.09  | -0.13 | -0.03 | 0.26  | -0.70 | 0.32  | 0.14  |
| 83  | 25   | 28 | 3.290 | 1.770 | 120.00 | 54.  | C.22  | -0.57 | 2.01  | 1.32  | 3.22  | 1.15  | 0.50  |
| 84  | 26   | 29 | 3.290 | 1.770 | 120.00 | 54.  | -0.62 | -0.36 | -0.61 | 1.50  | -2.97 | 0.99  | 0.36  |
| 85  | 27   | 30 | 3.290 | 1.770 | 120.00 | 54.  | -C.62 | -C.36 | C•94  | 0.57  | -2.97 | 0.99  | 0.38  |
| 86  | 29   | 30 | 0.720 | 0.575 | 40.00  | 56.  | 0.47  | C.25  | -0.08 | -0.72 | 1.90  | -0.68 | 0.25  |
| 87  | 28   | 29 | C.720 | 0.575 | 100.00 | 139. | C•14  | 0.34  | -0.31 | -1.00 | -0.00 | -0.77 | 0.31  |
| 88  | 28   | 30 | C.720 | 0.575 | 100.00 | 139. | C.14  | 0.34  | -1.32 | -0.69 | -0.00 | -0.77 | 0.40  |
| 89  | 26   | 3Ú | 1.074 | 0.840 | 126.49 | 120. | -C.45 | -C.26 | 0.93  | 0.87  | -2.17 | 0.72  | 0.51  |
| 90  | 27   | 29 | 1.074 | 0.840 | 126.49 | 120. | -C.45 | -0.26 | -0.68 | 0.64  | -2.17 | 0.72  | 0.44  |
| 91  | 25   | 29 | 1.394 | 1.061 | 156.20 | 118. | -0.13 | -0.16 | -0.27 | 0.38  | 0.82  | 0.32  | 0.16  |
| 92  | 25   | 3û | 1.394 | 1.061 | 156.20 | 118. | -C.13 | -0.16 | 0.75  | 0.34  | 0.82  | 0.32  | C.24  |
| 93  | 26   | 28 | 1.394 | 1.061 | 156.21 | 118. | C.01  | -0.12 | C.87  | 0.45  | -0.74 | 0.31  | 0.25  |
| 94  | 27   | 28 | 1.394 | 1.061 | 156.21 | 118. | C.01  | -0.12 | -0.12 | 0.19  | -0.74 | 0.31  | 0.14  |
| 95  | 28   | 31 | 3.290 | 1.770 | 120.00 | 54.  | C.20  | -0.55 | 2.03  | 1.30  | 2.26  | 1.15  | 0.44  |
| 96  | 29   | 32 | 3.290 | 1.770 | 120.00 | 54.  | -C.68 | -0.37 | -1.15 | 1.41  | -2.54 | 0.99  | 0.36  |
| 97  | 30   | 33 | 3.290 | 1.770 | 120.00 | 54.  | -C.68 | -0.37 | 1.50  | 0.68  | -2.54 | 0.99  | 0.39  |
| 98  | 32   | 33 | 0.291 | 0.262 | 40.00  | 122. | 1.23  | C.64  | -0.28 | -1.78 | 3.95  | -1.69 | 0.88  |
| 99  | 31   | 32 | C.720 | 0.575 | 100.00 | 139. | C.19  | 0.34  | -0.14 | -0.98 | 0.21  | -0.79 | 0.32  |
| 100 | 31   | 33 | C.720 | 0.575 | 100.00 | 139. | C.19  | 0.34  | -1.53 | -0.75 | 0.21  | -0.79 | 0.47  |
| 101 | 29   | 33 | 1.074 | 0.840 | 126.49 | 120. | -C.49 | -0.27 | 0.47  | 0.88  | -1.85 | 0.72  | 0.44  |
| 102 | 30   | 32 | 1.074 | 0.840 | 126.49 | 120. | -0.49 | -0.27 | -C.21 | 0.65  | -1.85 | 0.72  | 0.37  |
| 103 | 28   | 32 | 1.394 | 1.061 | 156.21 | 118. | -0.06 | -0.15 | -0.02 | 0.36  | 0.74  | 0.32  | 0.16  |
| 104 | 28   | 33 | 1.394 | 1.061 | 156.21 | 118. | -0.06 | -0.15 | 0.77  | 0.36  | 0.74  | 0.32  | 0.24  |
| 105 | 29   | 31 | 1.394 | 1.061 | 156.20 | 118. | -C.C8 | -C.11 | C.36  | 0.43  | -0.82 | 0.31  | 0.21  |
| 106 | 30   | 31 | 1.394 | 1.061 | 156.20 | 118. | -0.08 | -0.11 | 0.15  | 0.22  | -0.82 | 0.31  | 0.17  |
| 107 | 31   | 34 | 3.290 | 1.770 | 120.00 | 54.  | C.08  | -0.52 | 1.89  | 1.26  | 1.30  | 1.13  | 0.37  |
| 108 | 32   | 35 | 3.290 | 1.770 | 120.00 | 54.  | -C.70 | -0.38 | -1.21 | 1.31  | -2.10 | 0.99  | 0.34  |
| 109 | 33   | 36 | 3.290 | 1.770 | 120.00 | 54.  | -0.70 | -0.38 | 1.72  | 0.79  | -2.10 | 0.99  | 0.38  |
| 110 | 35   | 36 | 0.291 | 0.262 | 40.0C  | 122. | 1.26  | 0.69  | -0.53 | -1.87 | 3.29  | -1.75 | 0.85  |
| 111 | 34   | 35 | C.720 | 0.575 | 100.00 | 139. | C.19  | 0.28  | -0.08 | -0.79 | 0.30  | -0.66 | 0.28  |
| 112 | 34   | 36 | C.720 | 0.575 | 100.00 | 139. | C.19  | 0.28  | -1.28 | -0.65 | 0.30  | -0.66 | 0.41  |
| 113 | 32   | 36 | 1.074 | 0.840 | 126.49 | 120. | -C.50 | -C.28 | 0.07  | 0.88  | -1.53 | 0.72  | 0.37  |
| 114 | 33   | 35 | 1.074 | 0.840 | 126.49 | 120. | -C.50 | -0.28 | 0.32  | 0.65  | -1.53 | 0.72  | 0.37  |
| 115 | 31   | 35 | 1.304 | 1.061 | 156.21 | 118. | -C.01 | -0.16 | 0.35  | 0.36  | 0.65  | 0.33  | 0.19  |
| 116 | 31   | 30 | 1.394 | 1.061 | 156.21 | 118. | -C.01 | -C.16 | 0.67  | 0.39  | 0.65  | 0.33  | 0.22  |
| 117 | 32   | 34 | 1.394 | 1.061 | 156.21 | 118. | -C.19 | -0.12 | -0.04 | 0.43  | -0.91 | 0.32  | 0.19  |
| 118 | 33   | 34 | 1.394 | 1.061 | 156.21 | 118. | -C.19 | -0.12 | 0.30  | 0.25  | -0.91 | 0.32  | C.20  |
| 119 | 34   | 37 | 3.290 | 1.770 | 120.00 | 54.  | -C.18 | -0.53 | 1.66  | 1.33  | 0.27  | 1.21  | 0.30  |

TABLE 3 - (CONT.)

-19-

| ME  | MBER  | AREA  | R.G.  | LENGTH  | L/R  | 1     | 2     | 3     | 4     | 5     | 6     | RATIO |
|-----|-------|-------|-------|---------|------|-------|-------|-------|-------|-------|-------|-------|
| 120 | 35 38 | 3.290 | 1.770 | 120.00  | 54.  | -C.68 | -C.4C | -0.75 | 1.25  | -1.68 | 1.02  | 0.29  |
| 121 | 36 39 | 3.290 | 1.770 | 120.00  | 54.  | -0.68 | -C.4C | 1.63  | 0.93  | -1.68 | 1.02  | 0.36  |
| 122 | 38 39 | 0.873 | 0.685 | 40.CC   | 47.  | C.57  | C.34  | -0.4C | -0.91 | 1.26  | -0.84 | 0.20  |
| 123 | 37 38 | 0.873 | 0.685 | 100.00  | 117. | C.70  | C.65  | -0.64 | -1.77 | 1.21  | -1.56 | 0.54  |
| 124 | 37 39 | C.873 | 0.685 | 100.00  | 117. | C.70  | C.65  | -2.18 | -1.62 | 1.21  | -1.56 | 0.66  |
| 125 | 35 39 | 1.074 | 0.840 | 126.49  | 120. | -C.52 | -0.31 | -0.24 | 0.96  | -1.29 | 0.78  | 0.34  |
| 126 | 36 38 | 1.074 | 0.840 | 126.49  | 120. | -C.52 | -0.31 | C.94  | 0.72  | -1.29 | 0.78  | 0.41  |
| 127 | 34 38 | 1.394 | 1.061 | 156.21  | 118. | C.10  | -0.1C | 0.70  | 0.20  | 0.67  | 0.21  | 0.19  |
| 128 | 34 39 | 1.394 | 1.061 | 156.21  | 118. | C.10  | -C.1C | 0.32  | 0.28  | 0.67  | 0.21  | 0.17  |
| 129 | 35 37 | 1.394 | 1.061 | 156.20  | 118. | -0.24 | -0.07 | -0.46 | 0.27  | -0.88 | 0.20  | 0.19  |
| 130 | 36 37 | 1.394 | 1.061 | 156.20  | 118. | -C.24 | -0.07 | 0.20  | 0.13  | -0.88 | 0.20  | 0.17  |
| 131 | 37 40 | 3.730 | 1.768 | 139.54  | 63.  | -C.39 | -0.57 | 1.59  | 1.46  | -0.30 | 1.33  | 0.14  |
| 132 | 38 40 | 3.730 | 1.768 | 129.12  | 58.  | -0.80 | -0.49 | -0.20 | 1.42  | -1.72 | 1.22  | 0.35  |
| 133 | 39 40 | 3.730 | 1.768 | 129.12  | 58.  | -C.80 | -C.49 | 1.54  | 1.21  | -1.72 | 1.22  | 0.44  |
| 134 | 22 41 | 0.500 | 0.045 | 1228.81 | **** | -0.63 | -0.07 | 0.09  | -1.58 | -4.49 | -0.59 | ****  |
| 135 | 22 42 | 0.500 | 0.045 | 1228.81 | **** | -0.63 | -0.07 | -5.18 | -2.36 | -4.49 | -0.59 | ****  |
| 136 | 23 41 | C.500 | 0.045 | 1269.01 | **** | -0.71 | -0.02 | 0.18  | -1.36 | -5.26 | -0.57 | ****  |
| 137 | 24 42 | 0.500 | 0.045 | 1269.01 | **** | -0.71 | -0.02 | -5.53 | -2.44 | -5.26 | -0.57 | ****  |

**REFERENCES:** 

- Richards, C. J.: <u>Mechanical Engineering in Radar and Communication</u>, van Nostrand Reinhold
- (2) Ruze, J.: <u>Small Displacements in Parabolic Reflectors</u>, MIT Lincoln Laboratory, 1969
- (3) Zarghamee, M. S.: <u>Beamshift and Gain Degradation Due to Deflection in</u> <u>the Proposed C. I. C. Antenna</u>, Aeronomy Report No. 25, Appendix F, University of Illinois, 1968