
aipsH-+ prototype

aips+H- development group, Charlottesville 1

August 28, 1992

1Sanjay Bhatnagar, Mark Calabretta, Brian Glendenning, Lloyd Higgs, Bob Hjellming, Mark
Holdaway, Friso Obion (editor), Bob Payne, Bob Sault, Dave Shone, Mark Stupar, Peter Teuben

Contents

Chapter 1

Overview

1.1 Why a prototype?

In early February a group met in Green Bank. This group consisted of six of the aips++
development group from Charlottesville and six others (from NRAO, NFRA and NRAL).
The goal of this group was to analyse the process of calibration and imaging astronomical
data, in particular radio-astronomical data. Most participants were satisfied with the results
from that meeting, and their report is summarized in [?]. One of the participants has very
strong disagreements with [?], his disagreements and a proposal to start afresh are outlined
in [?].

After the Green Bank meeting and followup discussion in Charlottesville (including Andrew
Klein, our 00/C+-1- consultant) it was decided to write a small prototype for the following
reasons:

• To attempt to see if there was anything grossly wrong with the "Green Bank" model
(it is fair to point out that a small prototype may inadequately push the boundaries
of the model).

• For the implementation group to get some hands-on experience with programming
radio-astronomical applications in C++. Although the group was supposed to arrive
in Charlottesville familiar with C++, the experience was largely with small personal
"toy" programs.

• To see how well the individual groups could communicate and provide services for one
another. This is critical if a distributed project like aips++ is to succeed.

1.2 What prototype?

The intention of the prototype was to build a system that was "broad and shallow" rather
than one that was "narrow but deep". The consensus was that it was most appropriate to
attempt in some small way many parts of the ultimate system (also, as a practical matter
it is easier to get a lot of people working on a wide problem).

The chosen problem was to apply an antenna based calibration to a UV dataset, image it,
and display it using a simple "keyword=value" based command line interface. Details of
the prototype are explained more fully in the following chapters and appendices.

1.3 How the prototype was built

The prototype was finished in just under three weeks and consisted of about 15,000 lines of
code and comments. We built our prototype on top of the CIC container classes and with
the GNU String class.

The team was split up into groups to implement the prototype. The Raw Data group1 was
responsible for forming/calibrating and imaging UV data, the Image group2 was responsible
for creating image classes and simplified coordinate systems, the User Interface group3 was
responsible for creating a parameter passing mechanism, the Fundamental Libraries group4

provided some support with support classes, and the Organization group5 was responsible
for creating appropriate makesfiles and directory structures.

The group was fairly enthusiastic about the prototype. In fact, doing it was enough fun
so that it was hard to stop work on it when it reached its predefined limits. The initial
few days of design were extremely useful, especially the exercises with the CRC (Class
- Responsibility - Collaborator) cards. The implementation went pretty well; there was
some time wasted getting the ObjectCenter (Saber) programming environment to work
properly with the preprocessor that is used by CIC to emulate C++ parametric types.
A somewhat surprising result was that the software environment — makefiles, source code
checkin systems, etc. — was extremely important, even for this small prototype with people
in only two offices.

1.4 Some preliminary conclusions

The user interface group should probably have been given a larger problem, perhaps a simple
image arithmetic program. The groups were only moderately successful at communicating
with each other. While it is desirable to keep communications costs down, we likely erred
too strongly on the side of working independently.

Some flaws in the Green Bank model were found and discussed during the implementation
of the prototype. The consensus of some internal email [?] was that some decoupling of
entities was required, undoubtedly by associating objects explicitly inside a database. This
should also be attractive for end-users of the system.

1Dave Shone, Sanjay Bhatnagar, Bob Hjellming, Mark Holdaway, and Bob Sault
2 Lloyd Higgs, Mark Calabretta, and Brian Glendenning
3 Friso Olnon and Peter Teuben
4 Bob Payne and Mark Stupar
5 Mark Calabretta

Chapter 2

UV data and imaging

2.1 Class descriptions

The problem specified for the UV data and imaging group is essentially as specified for
the Green Bank meeting; i.e. the manipulation of (for the prototype) visibility data, with
particular regard to calibration, and the formation of images from data. Thus the classes
which have been defined and implemented closely resemble those described in the Green
Bank report, but given the very limited amount of time available for this prototype, the
design and implementation of these is often rather different from what we envisage for a
full-scale system based on the Green Bank analysis. In particular, the classes do not exhibit
the full functionality specified in the Green Bank report, and their relationships have been
somewhat simplified. Nevertheless, the overall scheme is basically the same as that decribed
in the Green Bank report, although it is by no means a meaningul test of that proposal.

A number of issues have been ignored and/or circumvented. In particular, persistence is
neither required nor implemented in the prototype.

The fundamental classes are described below, and the way in which these differ from the
corresponding classes in the Green Bank report are indicated. More detailed descriptions
of the classes are given in the header files.

YegSet and IntYegSet - These are the representations of the data themselves. The full
functionality of YegSet as described in the Green Bank report is not implemented. We
have chosen to deal with data in bulk, as YegSets, rather than as individual Yegs. In
addition, the selection and sorting operations have not been implemented, although
these are still regarded as essential to a real system.

Telescope - As described in the Green bank report, this is essentially a crude means of
associating various kinds of objects which are related in some way. In our small pro¬
totype, this functionality is largely redundant, since we can maintain the relationships
in a "hard-wired" form, and the use of this is not really explored.

Telescope Model - This is a model of all attributes of the observing telescope which are
required in calibration/self-calibration of YegSets, together with methods for updating
the model e.g., determining gain solutions and applying corrections to the data on

the basis of the new attributes. In the prototype, this models a simple interferometer
using only complex gains for each receptor.

ImagingModel/IntlmagingModel - This is an imaging model for interferometer data.
It performs a Fourier transform on a YegSet to produce an image which represents the
sky brightness distribution.

In addition to the principal classes, a number of subsidiary classes have also been developed
from an analysis of the individual classes described above. Briefly, these are:

RVector - Real vector;

DVector - Double vector;

CVector - Complex vector;

Ass Array - Associative array;

GainTable - Complex table;

Whilst these classes have been developed specifically to serve the requirements of the
application-related classes, they are clearly likely to be generally useful. The Vector classes
used to implement YegSets, could also be used to implement the GainTable in a way which
might be more efficient for operations such as applying complex gains to a YegSet.

2.2 Design issues, problems and lessons

A number of simplifications to the Green Bank model have been mentioned, and in most
cases we do not envisage that these would be present in the ultimate design. A number
of problems which arise if these simplifications are not made will be discussed shortly, and
these will have to be addressed. However, one change which is likely to remain is that
we may wish to work with YegSets (rather than individual Yegs) in many most cases. In
the prototype, we have assumed that all Yegs in a YegSet are associated with the same
Telescope, TelescopeModel and ImagingModel, and we believe it may be more convenient
(as well as efficient) to make this assumption. We should still be able to cope with data
from multiple telescopes, but we should deal with them as sets of YegSets.

One of the most important problems arose out of design exercise which immediately pre-
ceeded the implementation of the prototype. The Green Bank scheme requires many kinds
of objects to be associated together, and proposed that this be implemented by using point¬
ers or references in one object to refer to another. It is often the case that such associations
may involve classes derived from those for which the pointers are defined, and may require a
cast down to the derived type in order to make use of methods which are not present in the
base class. This problem appears to be quite common, and it is almost certainly the case
that any scheme other than the Green Bank proposal, which has the degree of flexibility we
require, will also suffer from this problem. Put simply, relying solely on the static typing
of C++ may restrict the kind of dynamic association of different kinds of objects which is
likely to be essential.

This presents no problem in the simplified prototype, but must be addressed in a generally
extensible system. Whilst it would be inappropriate to discuss solutions to this problem in

this report, we should say that it is not insurmountable, and need not affect the fundamental
classes and their interrelationships. The most obvious difference might be the need to
maintain associations between objects using some entity external to the objects, rather
than by using pointers or references within the objects themselves. This external entity
might be a simple table containing "handles" for the objects to be associated, or might be
a more complicated database-like system, possibly part of the Project system proposed in
the Green Bank report.

The prototyping exercise has confirmed that under some circumstances, encapsulation may
be an obstacle to efficiency. For example, if we wish to perform some arbitrary operation
on all the elements of a vector or multi-dimensional array, this is best performed with direct
access to the array itself. It seems unlikely that it will always be possible to implement
such operations as methods of the class, and it might be argued that allowing applications
programmers to routinely modify such fundamental classes as vectors and images is worse
than introducing methods which present an array of raw data to the application. The latter
might be regarded as a violation of encapsulation, but could be performed with some degree
of control by the class itself. The appropriate solution to this problem is not clear; there are
a number of possibilities, most of which will have important consequences for the ultimate
design of our classes.

The analysis and design of high level application-oriented classes leads to new requirements
which are best implemented as a lower layer of classes. The Vector and GainTable classes
are examples of these; with a little modification, they could serve a variety of requirements
from many high-level classes. It is clear that there is considerable scope for reuse of objects
at this level. This will require a great deal of interaction between designers of high level
classes in order to specify requirements for utility classes which can be used commonly.
However, this is likely to result in a class library which is better tailored to the needs of the
system, as compared to one which is built out of classes which have not been designed with
a particular need in mind, and thus often turn-out to be a poor fit to the requirements.

Chapter 3

Image handling

3.1 Basic approach

The development of classes for image handling for the prototype aips++ exercise was based
on a few basic postulates:

• image data values would be restricted to "float", although it was recognized that many
types of images would eventually be required (complex, double, int,).

• dimensionality would be restricted to 2, although the code was written so that it could,
without a great deal of effort, be expanded to more dimensions.

• rudimentary capability for keeping track of pixel coordinates in an astronomical frame
of reference should be built in, but not developed in any depth.

• rudimentary capability for keeping a history attached to an image should be built in,
but not developed in depth.

• the prototype classes should demonstrate some capabilities of dynamic binding.

• some attempt should be made to assess the usefulness of the CIC image classes.

In the following, the design of the set of prototype IMAGE classes will be outlined, and
some of the member functions for the various classes will be briefly described.

3.2 Types of images

One of the first assumptions made in the image area was that the concept of an Image
class would be restricted to sets of data values in which each value has coordinates that
can be mapped onto a grid or n-cube, i.e. the coordinates can be represented by integers.
Data having random coordinate values therefore do not fall into the class that is defined
by "Image". Within the bounds of this definition of "Image", it was apparent that there
were needed (at least) three sub-classes of "Image": images in which a full matrix of data
values exist, images for which a list of pixel values and coordinates exist, and images that are

defined by an analytical function. In the following, these will be referred to as "Filledlmage",
"Listlmage", and "Modellmage". These will be described in considerable detail after the
generic attributes of the base "Image" class are presented.

3.3 Coordinate systems

One of the fundamental attributes of an Image is a coordinate system description that allows
the coordinates of any given pixel to be specified (in some user defined representation).
For the two-dimensional case treated in the prototype, a basic system of grid coordinates,
aligned with the "rows and columns" of an image, and which can be uniquely related to
some "physical" system of coordinates, has been assumed. Grid positions in this system are
called ImPixel coordinates, with a coordinate specification being given by an ImPixelCoord
object. Coordinate values in this system have been treated as "float" values, even though
image pixels are located at integral coordinate values. (More will be said about this later).
ImPixel coordinates are defined to increase from left to right across an image (first value)
and from the bottom to the top of an image (second value).

The class "CoordSys" was devised to specify the relationship between ImPixel coordinates
and some physical coordinate system, and also to specify the representation in which the
user wishes to have image coordinates expressed. For example, an image may have intrinsic
physical coordinates such as (l,m) in an interferometric image, but the user would like to
access the image in Galactic coordinates. The coordinate system selected by the user is
termed Image coordinates, and coordinates in this system are given by an ImageCoord
object.

The attributes for a CoordSys objects, for this exercise, consisted of a set of parameters that
can convert ImPixel coordinates to some intrinsic or "native" physical coordinate system,
assuming that the two components of the native coordinates are orthogonal and separable
(the standard AIPS convention). The characteristics of this native coordinate system are
specified in an object of the "CoordSysType" class. For this exercise, this is defined by a
name, an epoch, and a set of four parameters. Similarly, the user-specified Image coordinate
system is defined by a CoordSysType object. Conversions between the native physical
coordinate system and the user's Image coordinate system have not been implemented in
the prototype, but the parameters provided in the CoordSysType objects should suffice for
such methods.

Thus a CoordSys object allows the following coordinate conversion, and its inverse:

ImPixelCoord —> ''Native Coords" —> ImageCoord

where the "native" coordinate system is just a useful intermediary.

A third (as defined by separate classes) coordinate system is the internal coordinate system
used within a given image. At first glance, it would seem logical to use ImPixel coordinates.
However, there are reasons to introduce a separate system, in order to minimize changes
required to CoordSys objects as images are manipulated. For example, if an image is
defined by a "window" which moves in "astronomical space" and ImPixel coordinates are
used for internal image coordinates, the parameters in the attached CoordSys object must
be changed for each window location. Similarly, if a new image is created by taking a sub-
image (perhaps every n'th pixel within a window area), the derived image must have a new
CoordSys object different from that of the parent image. Although all of this is possible, it

8

seemed simpler to introduce a third coordinate system and one image attribute that links
this system to ImPixel coordinates. This limits the proliferation of CoordSys objects. The
new system is referred to as Pixel coordinates, and a set of coordinate values is given by
a PixelCoord object. For the prototype exercise, Pixel coordinates have their origin (0,0)
at the top-left corner of the image and the first value increases from left to right, and the
second from top to bottom.

If a sub-image is extracted from an image by selecting every m'th pixel in the x direction
and every n'th in the y direction, in the resulting image each increment in Pixel coordinates
will no longer correspond to a unit increment in ImPixel coordinates. An image attribute
(object of the ImPixStep class) records this relation. Conversions between Pixel coordinates
and ImPixel coordinates are the responsibility of Images.

3.4 Image history

Images must carry with them some record of processing history. For the prototype, a class
HistFile was implemented, consisting only of a linked list of strings (using CIC classes).
Simple methods for listing entries in the files, and for inserting entries, are provided. This
is an area that would require much more development for a practical system.

3.5 Image base class and derived classes

The abstract base class Image contains data members which provide linkages to a history
file and to a coordinate system, descriptors giving the type of file and data units, and several
parameters describing the relationship between internal Pixel coordinates and ImPixel co¬
ordinates. Regions of interest (regions within which, and only within which, certain image
operations are to be performed) have not been incorporated in detail in the prototype. One
region of interest has been included, but in a practical system, a list of regions of interest
is probably required. Aside from the parameters that define the Pixel coordinate - ImPixel
coordinate relationship, another useful parameter that has been introduced is the image
"center". This is user-definable but defaults to Pixel coordinates of (m/2, n/2-1) where the
dimensions are [m,n].

The major member functions in the Image class deal with the following functional require¬
ments:

• setting a pixel in the image, and retrieving a given pixel from an image.

• conversions between Pixel coordinates and ImPixel (or Image) coordinates, and vice-
versa.

• checking whether one image is "conformant" with another, i.e. an add operation can
be performed on them without a chance of adding "apples and oranges".

• adding (with weighting) two images to produce a third, either in the UNION or IN¬
TERSECTION sense.

• scaling an image and adding it to another.

• adding entries to the image history, either individual entries or by copying the history
file of another image.

• adjusting an image's reference (TLC) position in ImPixel coordinates so that the center
of the image falls on a given ImPixel coordinate.

• finding the maximum and minimum pixel values in an image.

The three derived classes of images are "Filledlmage", "Listlmage" and "Modellmage".
The data members of these classes are not generally of interest to the users of the class,
so nothing more will be said of them here. (See the header files for details). It should be
stated, however, that the CIC class libraries and templates have been used in the prototype
to implement linked lists and arrays. The major member functions of these classes implement
the following functionality (in addition to that presented by the base Image class).

Filledlmage Class

• display image as a gray-scale using PGPLOT.

• provide access to the data storage for efficient mathematical operations. Although this
violates encapsulation to some extent, it may well be required in any realistic system.

• allow a sub-image to be extracted from an image, creating a new image, where there is
considerable flexibility in the selection of the sub-image, i.e. every i'th pixel in x and
every j'th pixel in y. It is this operation which demonstrates the utility of having both
Pixel and ImPixel coordinates, since the choice of i and j completely restructures the
relationship of Pixel coordinates and ImPixel coordinates, but the extracted sub-image
and its parent can and do still have the identical CoordSys object.

Listlmage Class

• be able to "clone" itself, copying all attributes but zeroing the list of pixels. This
functionality might be required for Filledlmages also but was only implemented as a
test for Listlmages.

• various methods of adding or retrieving pixels in the list (by matching Pixel coordi¬
nates, by serial number in the list, etc.). Special methods were introduced to make
use of the list iterator provided by CIC.

• the ability for the "dimensions" of a Listlmage to grow as new pixels, with new Pixel
coordinates, are added to the list.

• the ability to merge pixels in the list which may have the same Pixel coordinates (useful
for a list of CLEAN components). In a real system, this might be accompanied by a
sort operation.

Modellmage Class

• to allow the flexible specification of an analytical model of an image.

• to provide a flexible means of updating the parameters of the model.

10

3.6 Image operations using dynamic binding

Some experience in applications of dynamic binding has been obtained. Aside from the
general pixel access routines, which are implemented as virtual base class functions, the
combined and scaled-add methods have been the best examples of this. A statement of the
type:

Image C = 5 * Image A - 7 * Image B (logical code)

works correctly regardless of the image types (except that C cannot be a Modellmage). The
prototype has given some insight into the practicality (not always) of such methods, and
the requirements for implementing them.

3.7 What has been learned from the prototype

The prototype has provided a lot of experience in using C++ and C++ tools, but has also,
we feel, indicated that the general framework adopted for image handling is probably not
too different from what one would like for a practical system. The use of Pixel and ImPixel
coordinate systems has raised some questions of overhead (and possible user confusion)
but has provided great flexibility. Part of the overhead arises because Pixel coordinates
have two aspects: as indexes in image data arrays (where they must be integers), and
as computed counterparts of Image (or ImPixel) coordinates (where they must usually be
floating numbers). A practical system may have to introduce a better way of meeting both
these requirements, if it can be done with lower overhead. Certainly, several methods that
now take Pixel coordinate arguments or return Pixel coordinates will have to be overloaded
to also take/return ImPixel coordinates. It is possible that an ImPixel class (data value
plus ImPixel coordinates) will have to join the current Pixel class. If the dual-coordinate
system is to be used successfully, the client must be able to perform all image operations
without ever bothering with Pixel coordinates! The prototype has not been overly successful
in testing the usefulness of the CIC image classes, but only because multi-dimensional CIC
arrays of floating numbers, and associated display methods, are unavailable at this moment.

3.8 What was missing from the prototype

The prototype lacks dimensionality greater than two, generality with regard to types of
pixels, and no capabilities in the areas of regions of interest and image errror data, amongst
other things. The latter of these needs careful analysis before the optimum implementation
can be designed.

11

Chapter 4

User Interface

During the prototype stage a basic command line user interface was build, with which tasks
have been constructed. Some work was spend in showing that both the AIPS interpreter
and the Graphical User Interface (GUI) are plug-in compatible user interfaces. For example,
a functional GUI for Khoros1 is available for demo purposes. The AIPS shell interpreter
can be thought of in terms of the Miriad2 shell interpreter.

4.1 Astronomers vs. Programmers

The basic (command line) user interface is a series of "keyword=valuen pairs, which we call
program parameters3.

The class Param (see Param.h) implements one single such parameter. In addition to
a name and a value, a parameter has a variety of other attributes, such as a one-line help
string (useful when being prompted etc.), a type, a range and optional units. All of these are
character strings; parsing and error checking is done at a different level. The programmer
however will never interact with a parameter through it's class interface. This is done with
the class Input, which is some kind of container of Param's, with a variety of user interface
attributes (help-level, message/debug-level etc).

Although the programmer must supply the user interface with a number of predefined
program parameters, the user interface itself will create a small number of system
parameters (help=, debug=). The purpose of these is to tell the task how to communicate
with the user and it's environment, and give the user control over these items. For example,
the user may want to be prompted, with error recovery, and see (debug) messages above a
certain threshold level.

For the benefit of the Programmer, the user interface also defines a number of standard
parameters ("templates"), which can be copied and bound to a program parameter.

Parameter names are to be found by minimum match, if so requested by the user.

Most programs are probably happy with a simple set of parameters, like a linear list. We
1 (c) University of New Mexico
2(c) BIMA
3 The name parameter and keyword are sometimes used both

12

have discussed hierarchical keywords and in Section ?? a few thoughts are expressed.

All input as well as output is controlled by the user interface. The Astronomer has a varying
degree of control over how and where input and output occurs. In the command line interface
system control occurs through a small number of system parameters, which can be preset by
environment variables, supplied as if they were parameters on the command line, or both.

For example, a interactive UNIX shell session may look like:

1'/. setenv DEBUG 1
2'/, setenv HELP prompt,aipsenv
3*/, prog key 1=vail key3=val3
4% prog vail val2 key4=val4 key5=val5 debug=0
5'/, unsetenv HELP DEBUG
6*/, prog help=pane > prog.pane

After having preset the DEBUG and HELP modes in commands 1% and 2%, commands
3% and 4% will act accordingly: the user is prompted, and parameter default values are
restored and saved from an AIPS environment file before and after invocation. In addition,
in command 4*/. the user decided not to see any messages. Command 6*/. gives an example
of the self-describing mode of programs, where a pane description file for Khoros has been
constructed.

13

4.2 Programmers: Where is my main?

No, we don't want you to use main (int argc, char **argv) anywhere in your code.
Instead, use aips_input(), aips_main() and aips.output().

To summary, your section of code could then look something like:

//aips++
// Hypothetical Silly Interactive Contour Plotter
//

tinclude <Hain.h> // Standard declarations needed for an AIPS++ main program
•include <SillyImage.h>

aips.input(Input ftinputs) // Definition of the alloved Program Parameters
{

inputs.Version("19-mar-92 PJT");
inputs.Usage("Hypothetical Silly Interactive Contour Plotter");

inputs.Create("in", "", "Input file", "InFile", "r!");
input8.Create("levels", "", "Contour levels", "RealArray");
inputs.StdCreateC'lstyle", "Istyle", "solid", "My Contour line type");
inputs.StdCreateC'lvidth");
inputs.Create("annotate","full", "What annotation?", "String", "fulllbriefInonelpublica
inputs.StdCreate("device");

>

aips_main(Input tinputs) // Computation box - this could be spanned to various machines
{

String dname = inputs.GetStringC'device");
Device device(dname);

do {

File f = inputs.GetFileC'in");
RealArray contours * inputs.GetRealArray("levels");
String Istyle » inputs.GetStringC'lstyle");
Int Iwidth = inputs.GetlntC'lwidth");

contours.Sort(); // Hake sure this array is sorted

if (contours.Count() > 20) cvarning « "A lot of contours buddy\n"
if (countour.Count() == 0) break;

cdebug.Level(1);
cdebug « "Plotting " « contours.count() « " contoursXn"

« Level(2) « contours « "\n";

SillyImageContour(f.nameO.contours.Count 0,contours.Value(),
Istyle, Ividth, dname);

} shile (inputs.HoreO) ;

device.CloseO ;

14

Comments:

• In aips-input, the program parameters are defined through the Create member
function. In addition, a Version and Usage string should be supplied to the user
interface.

• The aips .input routine could be automatally made by a code generator from a de¬
scription section encoded in the source code of the program itself, much like Mark
Calabretta's proposal discussed last fall. The advantage of this is that we can gener¬
ate more elaborate online context and level dependant help. It should not be too hard
to create readable documents in page description languages like man, latex or texinfo.
The Andrew Toolkit, which has been considered too, is a different story.

• A number of standard ostream's (cwarning, cerror and cdebug) are to be provided
for4, acting much like cerr; they handle warning messages, fatal error messages and
a (Astronomer controlable message level) debug output. After a fatal error the pro¬
gram will exit gracefully. A specified number of fatal errors can be overridden by a
system parameter (error=). The Programmer can also define a cleanup function, say
aips-deanup, which is called before the program really quits. Even a recover function
could be supplied with which Programmers can recover from a known localized fatal
error.

• Alternatively, variable argument (<stdarg.h>) versions of the above output could be
made available under the names error, warning and debug:

#include <stdarg.h>

void error(char *lmt ...);
void warning(char *fmt ...);
void debug (int level, chair *fmt ...);

• The aipsjnain function acts as a replacement for where C/C++ programmers com¬
monly define their main. A true main (int argc, char **argv) is present in the
AIPS library (See Main. C), and gets automatically linked in when you #include <Main. h>.

• An Output object has not been defined yet.

4 Not present in this prototype

15

4.3 Heirarchical parameters

A hierarchical parameter would be set using the format

key.class1.class2.class3=value

(e.g. "xaxis.grid.style=dotted') we will use a notation where the hierarchical level is given by
a the appropriate number of dots that the keyname starts with. To start with an example,
a somewhat elaborate program which would clearly benefit from hierarchical keywords

<Key> <StdKey> <Type> <Range>
======== ====== =======

in infile InFile r|w|w!|rw|
.region xyzselect String
contour bool tlf
.levels RealArray sort($0,$I)
.style Istyle String solid|dotted I dashed I.

.thickness Isidth int 0:5

.color color String cyan|red|green|0x134|

greyscale bool tlf
.minmax Real[2] $1<$2

.gamma Real >=0

.invert bool tlf

.colormap colormap InFile bv|rainbov|..

xaxis
.ticks Real[2]

• grid Real
. .style Istyle

. .thickness Ividth

.label String

..font font InFile (calcomplhelvetica|ro

yaxis
.ticks Real[2]

• grid Real
. .style Istyle

. .thickness Isidth

.label String

..font font InFile (helvetica|roraan)(10,

Comments/Problems:

• The order in which keywords are "created"5 is still important, not only to properly
define their hierarchy, but foremost to allow shortcuts with nameless specification of
parameters on the command line. E.g. "ccdplot ngcl365u 'boj^lO, 10,20,20)'
t 10:20:2 grey=t ann=full" would be interpreted as in=ngcl565u etc. Obviously
once a parameter was named, all subsequent ones need to be too (assuming the com¬
mand line is parsed left to right).

• Range must contain a boolean expression, where $0 is the name of an array, $H the
number of elements, $1, $2, $3, ... $($H) the array elements, ft and I the boolean
operators, : to denote an implied do-loop (with optional second : followed by the
stride). A fairly rich syntax will be made available.

'See Input::Create()

16

• File could be the same as a String but could also be usefull class (InFile and OutFile)
in itself, with name, file pointer? and appropriate wildcard expansion of the string
into the full filename.

• xaxis,yaxis: these two keywords are clearly related. In prompt mode it would be
annoying if the Astronomer sat through the whole xaxis family, and then wants to
do the yaxis tree with the defaults now inherited from the xaxis tree, (perhaps only
the label name would be different (though the most appropriate default would be the
one from the image header, if available). The programmer must leave the defaults in
yaxis blank, and take the xaxis equivalent if none supplied in the yaxis equivalent.

4.4 Terminology/Glossary

program Executable within the Unix environment, that has the AIPS user interface.

task - same as above?

parameter Has a name, value, help and all that other good stuff. They come as program param¬
eters and system parameters, though a third kind, the standard parameters6

are internally defined by the user interface. Programmers can bind standard pa¬
rameters to program parameters at compile time.

keyword The name of a parameter.

default The value of a parameter as defined by aips .input, though possibly overriden by
previous settings of the Astronomer if the user interface was told to (aipsenv file,
commandline)

The name template parameters is perhaps more appropriate, but confusing in the C++ environment

17

Chapter 5

System management

With the dissemination of two papers, System management for aips++ - Part 1: orga¬
nization and distribution and Part 2: activation, generation, and verification the design of
aips+H- system management is now well advanced. The final part of the trilogy Part 3:
networking is scheduled for release by Jun/30, and will cover the area of network services.

Implementation of the system design has been driven by necessity. Creation of the empty
aips++ directory tree was a trivial operation, belying a great deal of thought which had
been put into its design.

Code management has, in the first instance, been implemented by using RCS. Each of the
code directories has an RCS repository attached to it. Plain-text copies of the code are kept
in the code area itself. Programmers can create their own "shadow" representation of the
aips++ code directory tree by using the mktree utility which creates symbolic links to the
"'aips++ RCS directories. Programmers then appear to have their own private workspace
with a window into the master RCS repositories, and can check code in and out of the RCS
repository as though it were their own. This mechanism has served us extremely well.

A generic GNU makefile works together with the RCS mechanism described above to compile
classes, class test programs, and the kernel library, and also has several other functions.
With a dozen programmers contributing 1000 lines of code per day on average, the system
has grown in complexity at an accelerating rate, and the makefile is now proving to be
indispensible. The makefile allows programmers to compile code without having to check it
out of RCS and thereby minimizes the number of files that need to be present in their private
workspace, with the consequent possibility that these may be "stale". It uses the search
path mechanisms which are part of GNU make, searching for files first in the programmer's
own directory, then in the standard aips++ directories. However, although the makefile is
logically correct, it is not particularly efficient in shirking unnecessary work. In particular,
it recompiles a class implementation file if any header file has changed. A later generation
should be able to do better.

aips++ programmers may now define their aips++ "environment" by means of an aipsinit. [c] sh.
script. This redefines the PATH (and MANPATH) environment variables, appending the aips++
binary (and man page) directories to it. It also defines a single environment variable,
AIPSPATH, which contains five space-separated character strings which define the root of the
aips++ directory tree, the host architecture, the aips++ version, the local site name, and

18

the local host name. This information is fundamental and must be known in order to access
the aipsrc databases.

The aipsrc databases have been implemented via a C-program called getrc. It looks for
device and other definitions in a format similar to that of the .Xdefaults database used by
X-windows. In resolving a reference it searches the following sequence of aipsrc files:

"/.aipsrc
$AIPS/$ARCH/$VERS/$SITE/$HOST/aipsrc
$AIPS/$ARCH/$VERS/$SITE/aipsrc
$AIPS/$ARCH/$VERS//aipsrc

The last of these files contains default values, and the other three allow these to be overridden
on a user-, host-, and site-specific basis.

The first use to which the aipsrc mechanism has been put is that of a simple, and easily con¬
figurable set of printer utilities, including a utility to print class header and implementation
files in a compact and convenient form.

19

Appendix A

Public interfaces

20

A.l CoordSys.h

HEADER FILE DESCRIPTION

Header file for CoordSys class

ENVIRONMENT

#define COORDSYS.H

#include <iostream.h>
#include "ImPixelCoord.h"
#include "ImageCoord.h"
#include "CoordSysType.h"

CLASS DESCRIPTION

Class: CoordSys This class defines the coordinate system associated with an image. The
coordinate system specification consists of two parts. The first relates ImPixelCoords to a
"native" image coordinate system. For example, the "native " coordinate system for a VLA
observed image would be 1 and m in the SIN system. The second part of the specification
defines the coordinate system which the user wants to use for ImageCoords. For example,
the user may want to use Galactic coordinates as ImageCoords.

CLASS SUMMARY

class CoordSys
<
public:

void SetRefPix(ImPixelCoord);
ImPixelCoord GetRefPixQ const;
void SetRelCoord(ImageCoord ic);
ImageCoord GetRefCoordQ const;
void SetDeltaCoordCImageCoord ic);
ImageCoord GetDeltaCoordO const;
void SetRotAng(double);
double GetRotAngO const;
void SetHtvCrd(CoordSysType ct);
CoordSysType GetNtvCrdQ const;
void SetImageCrdCCoordSysType ct);
CoordSysType GetlmageCrdQ const;
ImageCoord GetlmageCoord(ImPixelCoord) const;
ImPixelCoord GetlmPixelCoord(ImageCoord) const;
CoordSys();
CoordSys(ImPixelCoord rp, ImageCoord re, ImageCoord d, double a,

CoordSysType n, CoordSysType i);
"CoordSysO;

21

>;
ostreamft operator « (ostreamft os, const CoordSysft cs);

MEMBER FUNCTIONS

Set the coordinates of the reference ImPixel for coordinate system transformations to native
ImageCoords.

void SetRefPix(ImPixelCoord);

Return the reference ImPixel for coordinate transformations

ImPixelCoord GetRefPixQ const;

Set the reference native ImageCoord value at the reference pixel (presumably a value in
radians for sky coordinates)

void SetRefCoord(ImageCoord ic) ;

Return the reference native ImageCoord value at the reference pixel (presumably a value in
radians for sky coordinates)

ImageCoord GetRefCoordQ const;

Set the increment native ImageCoord value, per ImPixelCoord increment (presumably a
value in radians for sky coordinates)

void SetDeltaCoord(ImageCoord ic);

Return the increment native ImageCoord value, per ImPixelCoord increment (presumably
a value in radians for sky coordinates)

ImageCoord GetDeltaCoordO const;

Set the rotation angle (radians)

void SetRotAng(double);

Get the rotation angle (radians)

double GetRotAngO const;

Set the type of the native coordinate system (SIN, NCP, etc.)

void SetHtvCrd(CoordSysType ct);

22

Return the type of the native coordinate system (SIN, NCP, etc.)

CoordSysType GetNtvCrdQ const;

Set the type of the desired Image Coordinate system (SIN, NCP, etc.)

void SetImageCrd(CoordSysType ct);

Return the type of the Image Coordinate system (SIN, NCP, etc.)

CoordSysType GetlmageCrdQ const;

Convert ImPixel Coordinates to Image Coordinates (converting from system "ntvcrd" to
"imagecrd").

ImageCoord GetImageCoord(ImPixelCoord) const;

Convert Image Coordinates to ImPixel Coordinates (converting from system "imagecrd" to
"ntvcrd" in the process).

ImPixelCoord GetlmPixelCoord(ImageCoord) const;

// constructors and destructor
CoordSys();
CoordSys(ImPixelCoord rp, ImageCoord re, ImageCoord d, double a,

CoordSysType n, CoordSysType i);
"CoordSys();

NON-MEMBER FUNCTIONS

ostreamft operator « (ostreamft os, const CoordSys* cs);

23

A.2 CoordSysType.h

HEADER FILE DESCRIPTION

Header file for CoordSysType class

ENVIRONMENT

#define COORDSYSTYPE.H

#include <iostream.h>
#include <K_String.h>

CLASS DESCRIPTION

Class: CoordSysType This class defines the type of a coordinate system (e.g. SIN, NCP,
RaDec, etc.), and associated parameters. Currently the type is defined by an arbitrary
character string, but in future might be defined as one of a number of pre-determined
descriptors.

CLASS SUMMARY

class CoordSysType
{
public:

void SetCoordSysID(K_Stringft);

K_String GetCoordSysIDQ const;

void SetEpoch(float);

float GetEpochQ const;

void SetParam(int, double);
double GetParam(int) const;
CoordSysTypeQ;

CoordSysType(K.String , float = 2000, double =0.0, double =0.0,

double = 0.0, double = 0.0);

"CoordSysTypeQ;

>;
ostreamft operator « (ostreamft os, const CoordSysType* est);
int operator == (const CoordSysTypeft ctl, const CoordSysType* ct2);

MEMBER FUNCTIONS

Set the coordinate-system descriptor

void SetCoordSysID(K_Stringft);

Return the coordinate-system descriptor

24

K_String GetCoordSysIDQ const;

Set the epoch

void SetEpoch(float);

Get the epoch

float GetEpochQ const;

Set parameter i (0 j= i j= 3)

void SetParam(int, double);

Get parameter i (0 j= i j= 3)

double GetParam(int) const;

CoordSysType();
CoordSysType(K_String , float = 2000, double =0.0, double =0.0,

double =0.0, double = 0.0);
"CoordSysTypeQ;

NON-MEMBER FUNCTIONS

Print out a CoordSysType object

ostreamft operator « (ostreamft os, const CoordSysTypeft est);

Compare two CoordSysTypes for equality

int operator == (const CoordSysTypeft ctl, const CoordSysTypeft ct2);

25

A.3 Filledlmage.h

HEADER FILE DESCRIPTION

This file contains the interface to the Filledlmage class.

ENVIRONMENT

#define FILLED.IMAGE.H

#include MArray2d.h"

#include "Image.h"

#include <assert.h>
#include <iostream.h>
#include "Listlmage.h"

#include "ModelImage.h"

DECLARE.OHCE Array2d<float>;

DECLARE_OHCE Array2d<double>;

class Modellmage;

class Listlmage;

CLASS DESCRIPTION

The Filledlmage class is a two dimensional image (of float) class with access via the various
coordinate type.

CLASS SUMMARY

class Filledlmage : public Image

{
public:

Filledlmage();

Filledlmage(int m, int n, float v=0.0);

Filledlmage(const Filledlmage* src);

Filledlmage(const Listlmage* src, float);

Filledlmage(const Modellmage* src);

Filledlmage &operator=(const Filledlmage* src);

Filledlmage ftoperator=(const Modellmage* src);

int GetNumElQ const;

Array2d<double> GetStorageQ;

void SetStorage(const Array2d<double> ft);
void Scale(float);

void Fill(float);

int Extrema(Pixel ftmaxpix, Pixel ftminpix) const;
void SetPixel(PixelCoord, float);

26

float ftoperatorQ (int,int);
float GetPixel(PixelCoord) const;
int GetlmPixelVaKconst ImPixelCoord*, float*) const;
virtual int UCombine (float, const Image*, float, const Image*, float);
virtual int XCombine (float, const Image*, float, const Image*, float);
virtual int ScaledAdd (float, const Image*);
Filledlmage Sublmage(PixelCoord ft, ImPixStep ft, ImageDim ft) const;
void Display();
void Write(Char *File);
"Filledlmage();
friend ©stream &operator«(©stream &os, const Filledlmage ftim);

>;

MEMBER FUNCTIONS

Default constructor makes 0 sized image.

Filledlmage();

Make a Filledlmage of a given size (possibly with a set value)

Filledlmage(int m, int n, float v=0.0);

Copy constructors

Filledlmage(const Filledlmage* src);

Copy constructor (from Listlmage) - needs "fill" value

Filledlmage(const Listlmage* src, float);

Copy constructor (from Modellmage)

Filledlmage(const Modellmage* src);

Assignment operators

Filledlmage &operator=(const Filledlmage* src);

The following will fail if the existing Filledlmage does not have enough storage allocated!!

Filledlmage ftoperator=(const Modellmage* src);

Accessors

int GetNumElQ const;

27

Put all the values in memory, which this function allocates

Array2d<double> GetStorageQ;

Fill the image with the values in memory, optionally delete that memory

void SetStorage(const Array2d<double> ft);

Data operations.

void Scale(float);
void Fill(float);
int Extrema(Pixel ftmaxpix, Pixel ftminpix) const;
void SetPixel(PixelCoord, float);

Set/get pixel values by direct indexing

float ftoperatorQ (int,int);

If PixelCoord is non-integral or lies outside image range, method exits.

float GetPixel(PixelCoord) const;

The following returns FALSE if corresponding PixelCoord is non- integral or lies outside
image.

int GetImPixelVal(const ImPixelCoord*, float*) const;

Union/Intersection operators

virtual int UCombine (float, const Image*, float, const Image*, float);
virtual int XCombine (float, const Image*, float, const Image*, float);
virtual int ScaledAdd (float, const Image*);

Extract sub-image with the TLC specified (as a Pixel coordinate), the step in pixels specified
(by an ImPixStep object), and desired dimension specified. Exits if no image is possible (e.g.
TLC doesn't lie within the parent image). Desired dimension will shrink to get maximum
sub-image allowed.

Filledlmage Sublmage(PixelCoord ft, ImPixStep ft, ImageDim ft) const;

Display Function (uses PGPLOT to present a grey-scale representation of the image)

void Display();

Write Function (ASCII)

28

void Write(Char *File);

Destructor.

"Filledlmage();

Output an image's attributes and contents. Note that a CoordSys must be defined.

friend ostream ftoperator«(ostream ftos, const Filledlmage ftim);

29

double mydecl=50.0); // Source declination (degrees)

Return the Telescope object associated with this observation.

Telescope* Filler::GetTelescope();

31

A.5 GainTable.h

HEADER FILE DESCRIPTION

This file contains definitions for the GainTable class.

ENVIRONMENT

#define GAINTABLE.H

#include <assert.h>
#include <math.h>
#include <complex.h>

CLASS DESCRIPTION

GainTable class

CLASS SUMMARY

class GainTable
{
public:

GainTable(int, int);
"GainTable();
complex* Gain(int, int);
void SetGain(int, int, complex);
int Hants();
int NentriesQ;

};

MEMBER FUNCTIONS

Constructor for GainTable specifying: number of receptors; number of entries;

GainTable(int, int);

Destructor.

"GainTable();

Return a reference to a gain field in the table specifying: entry/tuple number; receptor
number;

complex* Gain(int, int);

32

Set a Gain value specifying entry/tuple number; receptor number; value

void SetGain(int, int, complex);

Return number of collumns (NANTS)

int Hants();

Return number of rows (Entries)

int NentriesQ;

33

A.6 GridTooLh

HEADER FILE DESCRIPTION

ENVIRONMENT

#define GRIDTOOL.H

#include <IntYegSet.h>
#include <DummyImage.h>

typedef double DFunction(double);
double SincExp(double);

CLASS DESCRIPTION

CLASS SUMMARY

class GridTool
i
public:

GridTool(DFunction *CF=SincExp,int w=l,int n=6);
"GridToolQ;
void SetConvFunc(DFunction *CF);
void SetVeightingScheme(int w);
void SetSupportSize(int i);
virtual int Resample(const IntYegSet ft, DummyImage ft);
virtual int Resample(const DummyImage ft, IntYegSet ft);
virtual int Resample(const IntYegSet ft, DummyImage ft, DummyImage ft);

};

MEMBER FUNCTIONS

Constructor

GridTool(DFunction *CF=SincExp,int w=l,int n=6);

Destructor

"GridToolQ;

Services

void SetConvFunc(DFunction *CF);
void SetVeightingScheme(int v);
void SetSupportSize(int i);

34

The Gridding and De-gridding services. The approprate algorithm is invoked by the ordering
of the argumensts.

Resample(IntYegSet, DummyImage) ==> griddiding from VIS -> Image
Resample(DummyImage, IntYegSet) ==> de-gridding from Image -> VIS

virtual int Resample(const IntYegSet ft, Dummylmage ft);
virtual int Resample(const Dummylmage ft, IntYegSet ft);

Gives grid for PSF as well

virtual int Resample(const IntYegSet ft, Dummylmage ft, Dummylmage ft);

35

A.7 HistFile.h

HEADER FILE DESCRIPTION

Header file for HistFile class

ENVIRONMENT

#define HISTFILE.H

#include "K.DList.h"
♦include "K.String.h"
♦include <iostream.h>

DECLARE_ONCE K_DList<K_String>;

CLASS DESCRIPTION

Class HistFile defines a linked list of CIC strings, which holds an account of the history
associated with an image.

CLASS SUMMARY

class HistFile
{
public:

HistFileQ;
"HistFile();
HistFile(const HistFile* src);
HistFile* operator = (const HistFile ft);
void AddRecord(K_String);
void AddFile(const HistFile ft);
int HiunRecs () ;

>;
ostreamft operator « (ostreamft, HistFile*);

MEMBER FUNCTIONS

Constructor and desctructor

HistFileQ;
"HistFileQ;

Copy constructor

HistFile(const HistFile* src);

36

Assignment operator

HistFile* operator = (const HistFile ft);

Add a record

void AddRecord(K_String);

Add the contents of another history file

void AddFile(const HistFile ft);

Get number of records

int NumRecsQ;

Print on given stream records i to j. The value of i must be positive and i must be j j. If no
specified records exist, nothing is output!

NON-MEMBER FUNCTIONS

Print out a HistFile object

ostreamft operator « (ostreamft, HistFile*);

37

A.8 ImPixStep.h

HEADER FILE DESCRIPTION

ENVIRONMENT

♦define IMPIXSTEP.H

♦include <iostream.h>
♦include <K_Array.h>
♦include <assert.h>
♦include "PixelCoord.h"
♦include "ImPixelCoord.h"

DECLARE.ONCE K_Array<int>; // For the TI preprocessor

CLASS DESCRIPTION

Number of ImPixel's per pixel. Important for derivation of sub-images from an image. For
a system where ImPixels increase left to right, and bottom to top; and a system such as
CIC where image pixels increase left to right and top to bottom, ImPixStep is -I- in the x
coordinate and - in the y coordinate. ImPixStep is also a useful object for integer vector
operations involving Pixel or ImPixel coordinates.

INVARIANT

Pixel steps must be non zero, although both positive and negative are acceptable.

CLASS SUMMARY

class ImPixStep

i
public:

ImPixStepQ;
ImPixStep(int dx,int dy);
ImPixStep(const K_Array<int> ft);
virtual "ImPixStepQ;
virtual int OkQ const;
void SetImPixStep(int i, int m);
void SetImPixStep(const K_Array<int> ft);
int GetImPixStep(int i) const;
K_Array<int> GetlmPixSetQ const;

>;
ImPixelCoord operator * (const PixelCoord ft, const ImPixStep ft);
ImPixelCoord operator * (const ImPixStep ft, const PixelCoord ft);
PixelCoord operator / (const ImPixelCoord*, const ImPixStep*);
ImPixStep operator * (const ImPixStep*, const ImPixStep*);
int operator == (const ImPixStep*, const ImPixStep*);
ostreamft operator« (ostreamft, ImPixStep);

38

MEMBER FUNCTIONS

Default constructor sets to steps of 1

ImPixStepQ;

Construct with given steps (non-zero)

ImPixStep(int dx,int dy);

Construct with given steps given in an array (non-zero)

ImPixStep(const K_Array<int> ft);

Destructor does nothing presently

virtual "ImPixStepQ;

Returns one if the state is acceptable (non-zero steps)

virtual int OkQ const;

Set's the ith step to m (must be non-zero)

void SetImPixStep(int i, int m);

Sets the steps to the vector elements (must be non zero and the correct size.

void SetImPixStep(const K_Array<int> ft);

Get the ith step

int GetImPixStep(int i) const;

Get all steps into a vector;

K_Array<int> GetlmPixSetQ const;

NON-MEMBER FUNCTIONS

Arithmetic operators

ImPixelCoord operator * (const PixelCoord ft, const ImPixStep ft);
ImPixelCoord operator * (const ImPixStep ft, const PixelCoord ft);
PixelCoord operator / (const ImPixelCoord*, const ImPixStep*);
ImPixStep operator * (const ImPixStep*, const ImPixStep*);

39

Compare two ImPixSteps for equality

int operator == (const ImPixStepft, const ImPixStep*);

Print a PixelCoord

ostreamft operator« (ostreamft, ImPixStep);

40

A.9 ImPixelCoord.h

HEADER FILE DESCRIPTION

Header file for ImPixelCoord class

ENVIRONMENT

♦define A_IMPIXELCOORD_H

♦include <assert.h>
♦include <iostream.h>
♦include "ImageCoord.h"

CLASS DESCRIPTION

This class defines the n-dimensional (currently 2-dimensional) coordinates of an image, in
the pixel frame of reference used by a CoordSys object. The x axis increases left to right and
the y axis from bottom to top. Although usually only integral coordinate values are used
with reference to an image, they are stored as floats for generality. (Coordinate conversions
from astronomical coordinates can return non-integral values!)

CLASS SUMMARY

class ImPixelCoord
{
public:

void SetImPixCoord(int i, float val);
void SetImPixCoord(float*);
float GetImPixCoord(int i) const;
float* GetlmPixCoordQ const;
ImPixelCoord operator += (const ImPixelCoord ft);
ImPixelCoord operator -= (const ImPixelCoord ft);
ImPixelCoordQ;
ImPixelCoord(float i, float j);
"ImPixelCoordQ;

};
ostreamft operator « (ostreamft os, const ImPixelCoord ic);
ImPixelCoord operator + (const ImPixelCoord*, const ImPixelCoord*);
ImPixelCoord operator - (const ImPixelCoord*, const ImPixelCoord*);
ImPixelCoord operator * (const ImPixelCoord*, const float);
ImPixelCoord operator * (const float, const ImPixelCoord*);
ImageCoord operator * (const ImPixelCoord*, const ImageCoord*);
ImageCoord operator * (const ImageCoord*, const ImPixelCoord*);
ImPixelCoord operator / (const ImageCoord*, const ImageCoord*);

41

MEMBER FUNCTIONS

Set the i-axis coordinate to value: val. The value of i must be greater than 0 and less than
3 (currently)

Preconditions:
valid axis: 0 < i < 3

Postconditions:
invalid input parameters: assertion exit

void SetImPixCoord(int i, float val);

Set the coordinate values to the array of float values given by the float pointer.

Preconditions:
valid number of values: 2

Postconditions:
invalid input parameters: assertion exit

void SetImPixCoord(float*);

Get the value of the i'th axis coordinate. The value i must be greater than 0 and less than
2.

Preconditions:<
valid axis: 0 < i < 3

Postconditions:
true

float GetImPixCoord(int i) const;

Return the coordinate values by a pointer

Preconditions:
true

Postconditions:
true

float* GetlmPixCoordQ const;

Add an ImPixelCoord

ImPixelCoord operator += (const ImPixelCoord ft);

Subtract an ImPixelCoord

42

ImPixelCoord operator -= (const ImPixelCoord ft);

ImPixelCoordQ;
ImPixelCoord(float i, float j);
"ImPixelCoordQ;

NON-MEMBER FUNCTIONS

Print an ImPixelCoord

ostreamft operator « (ostreamft os, const ImPixelCoord ic);

Add two ImPixelCoords

ImPixelCoord operator + (const ImPixelCoord*, const ImPixelCoord*);

Subtract two ImPixelCoords

ImPixelCoord operator - (const ImPixelCoord*, const ImPixelCoord*);

Multiply an ImPixelCoord by a float

ImPixelCoord operator * (const ImPixelCoord*, const float);

Multiply a float by an ImPixelCoord

ImPixelCoord operator * (const float, const ImPixelCoord*);

Multiply an ImPixelCoord by a ImageCoord

ImageCoord operator * (const ImPixelCoord*, const ImageCoord*);

Multiply a ImageCoord by an ImPixelCoord

ImageCoord operator * (const ImageCoord*, const ImPixelCoord*);

Divide two ImageCoords (a coordinate value by a coordinate increment)

ImPixelCoord operator / (const ImageCoord*, const ImageCoord*);

43

A.10 Image, h

HEADER FILE DESCRIPTION

aips++ header

CLASS DESCRIPTION

Abstract base class which stores an image.

ENVIRONMENT

♦define A_IMAGE_H

♦include <assert.h>
♦include <iostream.h>
♦include "K.String.h"
♦include "CoordSys.h"
♦include "ImPixelCoord.h"
♦include "PixelCoord.h"
♦include "ImageUnit s.h"
♦include "ImPixStep.h"
♦include "HistFile.h"
♦include "ImageDim.h"
♦include "Pixel.h"

CLASS SUMMARY

class Image
{
public:

Image(int m =0, int n = 0);
ImageDim GetDimQ const;
virtual int GetHumElQ const = 0;
K.String GetlmageTypeQ const;
void SetImageType(K_String s);
void SetCenPix(PixelCoord p);
PixelCoord GetCenPixQ const;
void SetlmComPixdmPixelCoord p);
ImPixelCoord GetlmComPixQ const;
void SetPixStep(ImPixStep r);
ImPixStep GetPixStepQ const;
void SetDataType(ImageUnits iu);
ImageUnits GetDataTypeQ const;
void SetCoordSys(CoordSys * pes);
CoordSys * GetCoordSysQ const;

44

void SetRegBLC(ImPixelCoord blc);
ImPixelCoord GetRegBLCQ const;
void SetRegTRC(ImPixelCoord trc);
ImPixelCoord GetRegTRCQ const;
HistFile * GetHistPointerQ const;
void CenterImage(ImPixelCoord);
int ConformsWith(const Image*) const;
ImPixelCoord GetImPixCoord(PixelCoord) const;
ImageCoord GetImageCoord(ImPixelCoord) const;
ImageCoord GetlmageCoord(PixelCoord) const;
ImPixelCoord GetImPixCoord(ImageCoord) const;
PixelCoord GetPixelCoord(ImPixelCoord) const;
PixelCoord GetPixelCoord(ImageCoord) const;
void AddHistory(K_String);
void AddHistory(const Image*);
void ListHistoryQ const;
virtual void Scale(float) = 0;
virtual void Fill(float) = 0;
virtual int Extrema(Pixelft, Pixel*) const = 0;
Pixel MaximumQ const;
Pixel Minimum() const;
virtual void SetPixel(PixelCoord, float) = 0;
virtual float GetPixel(PixelCoord) const = 0;
virtual int GetImPixelVal(const ImPixelCoord*, float*) const = 0;
virtual int UCombine (float, const Image*, float, const Image*, float) = 0;
virtual int XCombine (float, const Image*, float, const Image*, float) = 0;
virtual int ScaledAdd(float, const Image*) = 0;
virtual "Image();

protected:
ImageDim dim;
K_String plmtype;
ImPixelCoord regblc, regtrc;
PixelCoord cenpix;
ImPixelCoord imcompix;
ImPixStep pixstep;
ImageUnits datatype;
CoordSys *pCsys;
HistFile *pHist;

int CombTwoImages(int, const Image*, const Image*, float*, float*,
float*, float*);

int Comb0nelmage(const Image*, float*, float*, float*, float*);
void UpdateCenterQ;

>;

MEMBER FUNCTIONS

Constructor ("fill with value" version must be in derived class). (Probably need more
constructors.)

45

Image(int m =0, int n = 0);

// Accessors.

The following accessor returns the image dimensions. If the dimensions of an image are
[m, n], then PixelCoords run from 0 to m-1 in the X dimension and from 0 to n-1 in the
Y direction. Image dimensions can be set only by the constructor, or modified by adding
pixels to a list image, or by an X/UCombine method. The default dimensions from the
constructor are [0,0].

ImageDim GetDimQ const;

Return the number of pixels in the image

virtual int GetNumElQ const = 0;

Return/set the image descriptor (a string)

K.String GetlmageTypeQ const;
void SetImageType(K.String s);

Set/return the specification of the "image center" in PixelCoord. N.B. The default "center"
position is (m/2, n/2-1) in Pixel coordinates, i.e. displaced to Top Right of geometric image
center.

void SetCenPix(PixelCoord p);
PixelCoord GetCenPixQ const;

Set/return the ImPixelCoords of the TLC of the image (the origin (0,0) of PixelCoord).

void SetlmComPixdmPixelCoord p);
ImPixelCoord GetlmComPixQ const;

Set/return the ImPixStep for the image == the number of ImPixels per Pixel. Since the
TLC is the origin for PixelCoords (CIC convention), the Y value of ImPixStep is negative.
Step values must be integral.

void SetPixStep(ImPixStep r);
ImPixStep GetPixStepQ const;

Set/return the type of data units for the image

46

void SetDataType(ImageUnits iu);
ImageUnits GetDataTypeQ const;

Set/retrieve the "coordinate system" for the image. This defines the relationship between
ImPixelCoord and some selected system of ImageCoords. The definition of the precise
system of ImageCoords to be used is defined within the CoordSys object. When images are
cloned, sub-images are formed, assignments made to new image objects, copied, etc., the
same CoordSys object is referenced.

void SetCoordSys(CoordSys * pes);
CoordSys * GetCoordSysQ const;

Set/retrieve a "region of interest" for the image. This feature is defined by a BLC in
ImPixelCoord and a TRC in ImPixelCoord. Implementation of a feature like this is not
currently in place. Probably one would need a list of regions of interest.

void SetRegBLC(ImPixelCoord blc);
ImPixelCoord GetRegBLCQ const;

void SetRegTRC(ImPixelCoord trc);
ImPixelCoord GetRegTRCQ const;

Get pointer to history file

HistFile * GetHistPointerQ const;

Method to shift "center" of image to a specified ImPixelCoord. The reference value (im¬
compix) of the TLC of the image is modified.

void Centerlmage(ImPixelCoord);

Checks whether another Image conforms with the current Image, i.e. can be used with
it in a "combine" or "scaledAdd" operation. The two images must have the same "pC-
sys", the same "pixstep", the same "dataunit", and their "imcompix" must be consistent
with"pixstep". Returns TRUE if they are conformant, FALSE otherwise.

int ConformsWith(const Image*) const;

Coordinate conversion - forward (various coordinate systems) Note that the first may return
non-integral values of ImPixelCoord.

ImPixelCoord GetlmPixCoord(PixelCoord) const;
ImageCoord GetlmageCoord(ImPixelCoord) const;
ImageCoord GetlmageCoord(PixelCoord) const;

47

Coordinate conversion - reverse (various coordinate systems) Note that these may return
non-integral values of ImPixelCoords or PixelCoord (even though the latter must be integral
to refer to image data elements).

ImPixelCoord GetImPixCoord(ImageCoord) const;
PixelCoord GetPixelCoord(ImPixelCoord) const;
PixelCoord GetPixelCoord(ImageCoord) const;

History maintenance. Add comments (string), another Image's history, or print out file

void AddHistory(K.String);
void AddHistory(const Image*);
void ListHistoryQ const;

Scale all pixel values in the image by a scaling factor,

virtual void Scale(float) = 0;

Replace all pixel values in the image by a new value,

virtual void Fill(float) = 0;

Return the maximum and minimum Pixel value (by returning Pixels) in the image. Returns
FALSE if image is empty, otherwise TRUE.

virtual int Extrema(Pixel*, Pixel*) const = 0;

Return the maximum and minimum Pixel values (by returning Pixels) in the image. Exits
if image is empty.

Pixel MaximumQ const;
Pixel Minimum() const;

Inserts a pixel value into the image with given PixelCoord.

virtual void SetPixel(PixelCoord, float) = 0;

Returns the data value of a pixel having a given PixelCoord. For a Listlmage, it will return
the value of the FIRST matching pixel in the list. If no matching pixel exists in the image,
the method exits.

48

virtual float GetPixel(PixelCoord) const = 0;

Returns the data value of a Pixel having a specified ImPixel coordinate. This function may
not always be able to find a matching pixel, in which case it returns FALSE. (There is no
guarantee that an integral ImPixel coordinate will be an integral Pixel coordinate). In the
case of a "Listlmage", it will return the FIRST matching pixel found in the list.

virtual int GetImPixelVal(const ImPixelCoord*, float*) const = 0;

// Union image operators.

General UNION combine: Image C (*this) = factorl*Image A + factor2*Image B . Image
C can be Filled or Listlmage type, while Images A and B can be any image type. Images A
and B must be conformant: same ImageUnits, same CoordSys, same ImPixStep and their
"imcompix" reference corners must be separated by an integral number of ImPixSteps.
Image C will be made to be conformant with images A and B, and its history file (if any)
will be repaced by that of A followed by B. The dimensions of C, and its reference corner,
will be set to represent the true UNION of images A and B. Output pixels in C will be
set to a "fill" value (only if C is a Filledlmage) if there are no corresponding pixels in A
or B. Otherwise, the output pixels in C will be = factorl*A (if pixel exists only in A), =
factor2*B (if pixel exists only in B), = factor 1*A + factor2*B (if pixel exists in both). The
method returns FALSE if the images are non-conformant.

virtual int UCombine (float, const Image*, float, const Image*, float) = 0;

// Intersection image operators.

General INTERSECTION combine: Image C (*this) = factorl*Image A 4- factor2*Image
B . Image C can be Filled or Listlmage type, while Images A and B can be any image
type. Images A and B must be conformant: same ImageUnits, same CoordSys, same
ImPixStep and their "imcompix" reference corners must be separated by an integral number
of ImPixSteps. Image C will be made to be conformant with images A and B, and its history
file (if any) will be repaced by that of A followed by B. The dimensions of C, and its reference
corner, will be set to represent the true INTERSECTION of images A and B. Output pixels
in C will be set to a "fill" value (only if C is a Filledlmage) if there is no corresponding pixels
in both A and B. (This can only happen if A or B is a Listlmage.) Otherwise, the output
pixels in C will be = factorl*A + factor2*B. The method returns FALSE if the images are
non-conformant, or if there is no INTERSECTION.

virtual int XCombine (float, const Image*, float, const Image*, float) = 0;

General scaled-add: Image A (*this) = Image A + factor*Image B. Image A can be Filled or
Listlmage type, while B can be any image type. Images A and B must be conformant: same
ImageUnits, same CoordSys, same ImPixStep and their "imcompix" reference corners must
be separated by an integral number of ImPixSteps. The history file of Image B will be added
to that of Image A. The scaled-add operation will take place only for pixels in A that have
corresponsding pixels in B. The method returns FALSE if the images are non-conformant.

49

virtual int ScaledAdd(float, const Image*) = 0;

// Destructor,
virtual "Image();

PROTECTED DATA MEMBERS

Dimensions of image [x,y]

ImageDim dim;

Image type identifier.

K_String plmtype;

The ImPixel coordinates of the BLC and TLC of a region of interest.

ImPixelCoord regblc, regtrc;

Image "centre", in pixel coordinates. Whenever the image dimensions are updated (at
construction time or otherwise) this is set to the default value of (m/2, n/2-1) where the
dimensions are [m,n]. The "CenterlmageQ" method uses this parameter.

PixelCoord cenpix;

ImPixel coordinates of Pixel coordinate (0,0), the top-left corner. This defines the position
of the image with respect to ImPixel (and hence Image) coordinates. The default value of
this is (l,n) when the dimensions are [m,n], i.e. the BLC is (1,1).

ImPixelCoord imcompix;

Number of ImPixels per Pixel. This defines the ratio of ImPixel coordinates to Pixel co¬
ordinates, and the default value is (1,-1), corresponding to the CIC convention of having
Pixel coordinate (0,0) at the TLC. When a new image is created by taking a sub-image of
an existing image, this may change.

ImPixStep pixstep;

Data units for the pixel values in the image.

ImageUnits datatype;

Associated coordinate system. Note that a coordinate system must be explicitly assigned
(currently no constructor does this!) by inserting a pointer to it here.

50

CoordSys *pCsys;

Associated history (pointer to Hist File object). This is usually assigned automatically by
the constructor, and the destructor removes the storage.

HistFile *pHist;

PROTECTED MEMBER FUNCTIONS

Methods for combining images. These are solely for the use of the derived classes in imple¬
menting dynamically bound combine and scaled add functions. Essentially they compute
the "union" or "intersection" areas in terms of x and y values of ImPixel coordinates.

int CombTwoImages(int, const Image*, const Image*, float*, float*,
float*, float*);

int CombOneImage(const Image*, float*, float*, float*, float*);

Update the "centre pixel". This method is for the use of the base and derived classes, to
update the "center" definition whenever the dimensions are changed.

void UpdateCenter();

51

A. 11 ImageCoord.h

HEADER FILE DESCRIPTION

aips-|—|-

ENVIRONMENT

#define A.IMAGECOORD.H

#include <iostream.h>

CLASS DESCRIPTION

Class ImageCoord is used to define astronomical coordinates, or increments in astronomical
coordinates. The units are usually assumed to be radians, but could have other units for
specialized coordinate systems

CLASS SUMMARY

class ImageCoord

•C
public:

ImageCoord();
ImageCoord(double i, double j);
void SetImageCoord(int i, double m);
void SetImageCoord(double *);
double GetImageCoord(int i) const;
double* GetImageCoord() const;
"ImageCoord();

};
ostreamft operator«(ostreamft, ImageCoord);
ImageCoord operator + (const ImageCoord*, const ImageCoord*);
ImageCoord operator - (const ImageCoord*, const ImageCoord*);
ImageCoord operator * (const ImageCoord*, const float);
ImageCoord operator * (const float, const ImageCoord*);

MEMBER FUNCTIONS

Default constructor.

ImageCoord();

Constructor which sets coordinates.

ImageCoord(double i, double j);

52

Set i'th coordinate to m.

void SetImageCoord(int i, double m);

Set coordinates to values.

void SetImageCoord(double *);

Return i'th coordinate.

double GetImageCoord(int i) const;

Return coordinates.

double* GetImageCoord() const;

Destructor.

"ImageCoord();

NON-MEMBER FUNCTIONS

Print an ImageCoord.

ostreamft operator«(ostreamft, ImageCoord);

Add two ImageCoords

ImageCoord operator + (const ImageCoordft, const ImageCoord*);

Subtract two ImageCoords

ImageCoord operator - (const ImageCoordft, const ImageCoordft);

Multiply an ImageCoord by a float

ImageCoord operator * (const ImageCoordft, const float);

Multiply a float by an ImageCoord

ImageCoord operator * (const float, const ImageCoordft);

53

A. 12 ImageDim. h

HEADER FILE DESCRIPTION

Header file for ImageDim class

ENVIRONMENT

#define IMAGEDIM.H

#include <iostream.h>

CLASS DESCRIPTION

Class ImageDim defines the (vector) dimensions of an image. Currently it is defined only
for two-dimensional images, i.e. there are two vector (int) elements.

CLASS SUMMARY

class ImageDim
{
public:

void SetDim(int i, int val);
void SetDim(int*);

int GetDim(int i) const;

int* GetDimQ const;

ImageDim();
ImageDim(int i, int j);
"ImageDimQ;

};
ostreamft operator « (ostreamft os, const ImageDim id);

MEMBER FUNCTIONS

Set the i'th dimension to value: val. The value of i must be greater than 0 and less than 3
(currently)

Preconditions:
valid axis: 0 < i < 3
valid dimension value: 0 <= val

Postconditions:
invalid input parameters: assertion exit

void SetDim(int i, int val);

54

Set the dimensions to the values given by an int pointer. There must be two valid values,
and each must be positive.

Preconditions:
valid number of values: 2
valid dimension value: 0 <= val

Postconditions:
invalid input parameters: assertion exit

void SetDim(int*);

Get the dimension of the i'th axis. The value i must be greater than 0 and less than 2.

Preconditions:
valid axis: 0 < i < 3

Postconditions:
true

int GetDim(int i) const;

Return the dimensions

Preconditions:
true

Postconditions:
true

int* GetDimQ const;

ImageDim();

ImageDim(int i, int j);
"ImageDimQ;

NON-MEMBER FUNCTIONS

ostreamft operator « (ostream* os, const ImageDim id);

55

A.13 ImageUnits.h

HEADER FILE DESCRIPTION

Header file for ImageUnits class

ENVIRONMENT

#define IMAGEUNITS.H

#include <iostream.h>
#include <K_String.h>

CLASS DESCRIPTION

Class ImageUnits defines the pixel units for an image. Currently this is defined by any
arbitrary character string, but in future might be idefined as one of a number of pre¬
determined descriptors, unit scaling factors, etc.

CLASS SUMMARY

class ImageUnits
•C
public:

void SetlmUnits(K.String*);
K.String GetlmUnitsQ const;
ImageUnits();
ImageUnits(K.String s);
"ImageUnits();

};
ostreamft operator « (ostreamft os, const ImageUnits* iun);
int operator == (const ImageUnits* iul, const ImageUnits* iu2);

MEMBER FUNCTIONS

Set the image units descriptor

void SetlmUnits(K.String*);

Return the image units descriptor

K.String GetlmUnitsQ const;

ImageUnits();
ImageUnits(K.String s);
"ImageUnits();

56

NON-MEMBER FUNCTIONS

Print out an ImageUnits object

ostreamft operator « (ostreamft os, const ImageUnits* iun);

Compare two ImageUnits for equality

int operator == (const ImageUnits* iul, const ImageUnits* iu2);

57

A. 14 ImagingModel. h

HEADER FILE DESCRIPTION

Uses Dummylmage, must be replaced by Image

ENVIRONMENT

#define A.IMAGINGMODEL.H

#include "YegSet.h"
#include "Dummylmage.h"

CLASS DESCRIPTION

CLASS SUMMARY

class ImagingModel
{
public:

ImagingModel();
"ImagingModel();
virtual int InvertYeg(YegSet ft, Dummylmage ft);
virtual int PredictYeg(YegSet ft, Dummylmage ft);

>;

MEMBER FUNCTIONS

//Constructor
ImagingModel();

//Destructor
"ImagingModel();

//Services
virtual int InvertYeg(YegSet ft, Dummylmage ft);
virtual int PredictYeg(YegSet ft, Dummylmage ft);

>;

58

A.15 Input.h

HEADER FILE DESCRIPTION

header file for class Input

ENVIRONMENT

#define A.IHPUT.H

#include <iostream.h>
#include <stdeirg.h>
#include "Param.h"
#include <K_DList.h> // CIC

DECLARE.OHCE K_DList<Param>; // Template kludge (CIC)
DECLARE.OHCE K.DLinkable<Param>; // Template kludge (CIC)

CLASS DESCRIPTION

Class Input is: A linked list of parameters (defined by the helper class "Param") with various
user interface attributes.

Part of an example of a traditional "key=value + help" command-line user interface.

CLASS SUMMARY

class Input
•C
public:

Input();
"Input();
void Create(String key. String value, String help);
void StdCreate(String stdkey, String key, String value, String help);
void Close();
double GetDouble(String key);
int Getlnt(String key);
String GetString(String key);
bool GetBool(String key);
int Count();
bool Debug(int 1);
bool Put(String key. String value);
bool Put(String keyval);

>;
extern Input inputs;
void error(char *fmt ...); // The aips stdarg family
void warning(char *fmt ...);

59

void debug(int 1, char *fmt ...);

MEMBER FUNCTIONS

The default constructor is the only one! It enables the creation of parameters. It puts
the program in no-prompt mode unless environment variable HELP is defined with value
"prompt". The output debug level is set according to the value of the environment variable
DEBUG. The maximum number of error messages to be outputed is set according to the
value of the environment variable ERROR.

Input();

Destructor.

"Input();

// parameter creation

Create a new parameter, either from scratch or looking it up from an internal list of tem¬
plates.

The function also checks whether parameters can still be created, and whether key is unique
for the program.

The value, help and remaining arguments are all optional.

void Create(String key. String value. String help);
void StdCreate(String stdkey. String key. String value, String help);

Disable the creation of parameters. Highly recommended, but not required?

void Close();

// query functions

Get the double value of the parameter (or 0.0 if unknown key). If the program is in prompt
mode, ask the user for the value.

double GetDouble(String key);

Get the int value of the parameter (or 0 if unknown key). If the program is in prompt mode,
ask the user for the value.

int Getlnt(String key);

Get the string-type value of the parameter (or "" if unknown key). If the program is in
prompt mode, ask the user for the value.

60

String GetString(String key);

Get the boolean value of the parameter (or FALSE if unknown key). If the program is in
prompt mode, ask the user for the value.

bool GetBool(String key);

Get the number of parameters of this program

int Count();

See if the current debug level is thresholded

bool Debug(int 1);

// modify function

Set the value for a named parameter. Return FALSE if key is an unknown parameter name.
The default value is"".

The function can also be called with a single argument of the form 'key=value', where key
is a valid new parameter name, and where value may be empty (the '=' is required though).
In this case a new parameter will be created (provided that creation is still allowed).

bool Put(String key, String value);
bool Put(String keyval);

NON-MEMBER FUNCTIONS

void error(char *fmt ...); // The aips stdarg family
void warning(char *fmt ...);
void debug(int 1, char *fmt ...);

61

A.16 IntYegSet.h

HEADER FILE DESCRIPTION

This file contains the definitions for the IntYegSet class.

ENVIRONMENT

#define INTYEGSET.H

#include "YegSet.h"

CLASS DESCRIPTION

The IntYegSet class provides services to return telescope, data, weights and coordinates.

CLASS SUMMARY

class IntYegSet:public YegSet
{
public:

IntYegSet(const YegSet*);
DVector uQ const;
DVector vQ const;
DVector wQ const;
DVector timeO const;
DVector rlQ const;
DVector r2() const;
virtual void ShowYegSet (int il, int i2);

>;

MEMBER FUNCTIONS

Construct an IntYegSet from an YegSet. Default copy constructor should also work OK.

IntYegSet(const YegSet*);

Return u,v,w coordinates, time and receptor numbers.

DVector uQ const; // u in wavelengths.
DVector vQ const; // v in wavelengths.
DVector wQ const; // w in wavelengths.
DVector timeO const; // time in seconds.
DVector rlQ const; // Number of antl.
DVector r2() const; // Number of ant2.

62

Display

virtual void ShowYegSet (int il, int i2);

63

A. 17 List Image, h

HEADER FILE DESCRIPTION

Header file for Listlmage class

ENVIRONMENT

#define LISTIMAGE.H

#include <iostream.h>
#include "Image.h"
#include "K.DList.h"
#include "Pixel.h"
#include "ModelImage.h"
#include "Filledlmage.h"

DECLARE.OHCE K_DList<Pixel>;

class Filledlmage; // Needed for proper declaration order
class Modellmage;

CLASS DESCRIPTION

The Listlmage class: pixels (values plus coordinates) are stored as a linked list.

CLASS SUMMARY

class Listlmage : public Image
■C

public:
Listlmage(int m = 0, int n = 0);
"ListImage();
Listlmage(const Listlmage* src);
Listlmage(const Modellmage* src);
Listlmage(const Filledlmage* src);
Listlmage * operator = (const Listlmage*);
Listlmage * operator = (const Modellmage*);
Listlmage * operator = (const Filledlmage*);
int GetNumElQ const;
void Scale(float);
void Fill(float);
void FillPixeKint, float);
int Extrema(Pixel ft, Pixel ft) const;
void SetPixel(PixelCoord, float);
int PixelExists(int) const;
int PixelExists(PixelCoord) const;

64

float GetPixel(PixelCoord) const;
int GetPixel(PixelCoord, float*) const;
void DeletePixel(int);
Pixel GetPixel(int) const;
void SetToPix(int) const;
Pixel GetNxtPixelQ const;
int GetImPixelVal(const ImPixelCoord*, float*) const;
int GetFirstNegO const;
Listlmage CloneEmptyQ const;
void SortMerge(int);

friend ostreamft operator « (ostreamft, Listlmageft);
int ScaledAdd(float, const Image*);
int UCombine(float, const Image*, float, const Image*, float);
int XCombine(float, const Image*, float, const Image*, float);

>;
end{verbatim}

\subsection*-CMEMBER FUNCTIONS}

Constructor and destructor
\begin-Cverbat im}

Listlmage(int m = 0, int n = 0);
"ListImage();

Copy constructors

Listlmage(const Listlmage* src);
ListImage(const Modellmage* src);
ListImage(const Filledlmage* src);

Assignment operators

Listlmage ft operator = (const Listlmageft);
Listlmage ft operator = (const Modellmage*);
Listlmage ft operator = (const Filledlmage*);

Return number of elements

int GetNumElQ const;

Scale all pixel values by a scaling factor

void Scale(float);

Replace values of all existing pixels by a new value.

void Fill(float);

Fill the value of the n'th pixel with a new number, n must be a valid serial pixel number (0
j n i= number of elements)

65

void FillPixeKint, float);

Return maximum and minimum pixels in image. Returns FALSE if empty image.

int Extrema(Pixel ft, Pixel ft) const;

Set a pixel (add a pixel to the list)

void SetPixel(PixelCoord, float);

Check that pixel of serial number i exists.

int PixelExists(int) const;

Check that a pixel having given Pixel Coords exists.

int PixelExists(PixelCoord) const;

Retrieve the value of a pixel (scan through list). The value of the FIRST pixel with matching
coordinates is returned. If there is no matching pixel, or if the image is empty, the method
exits.

float GetPixel(PixelCoord) const;

Retrieve the value of a pixel (scan through list). The value of the FIRST pixel with matching
coordinates is returned. The method returns FALSE if the image is empty or no matching
pixel is found, otherwise TRUE.

int GetPixel(PixelCoord, float*) const;

Delete the n'th pixel in the list. The serial pixel number n must be l 0 and j= the number
of pixels.

void DeletePixel(int);

Retrieve the n'th pixel in the list. The serial pixel number n must be £ 0 and j= the number
of pixels.

Pixel GetPixel(int) const;

Prepare to extract pixels having serial number n (and greater). This is a faster access
method than the preceding. The number n must be in range 0 j n j= number of pixels in
image.

void SetToPix(int) const;

Get next pixel. Must be preceded by invocation of itself, or SetToPixQ. Exits if one has
run off end of pixel list!

66

Pixel GetNxtPixelQ const;

Return value of FIRST pixel having ImPixelCoords. If there is no matching pixel, it returns
FALSE, otherwise TRUE.

int GetlmPixelVaKconst ImPixelCoord*, float*) const;

Get serial pixel number of first negative pixel. Returns zero for empty image or no negative
pixels.

int GetFirstNegO const;

" Clone" a new Listlmage that has an empty list but all other attributes of the current image

Listlmage CloneEmptyQ const;

Merge pixels with corresponding coordinates (i = 0), and merge and then sort into decreasing
order of pixel value (i = 1). The latter is not yet implemented.

void SortMerge(int);

Print out a Listlmage object. Note that a CoordSys must be defined!

friend ostream* operator « (ostreamft, Listlmageft);

Union and intersection combine and scaled-add. All methods used to implement these must
be virtual methods!

int ScaledAdd(float, const Image*);
int UCombine(float, const Image*, float, const Image*, float);
int XCombine(float, const Image*, float, const Image*, float);

67

A.18 Modellmage.h

HEADER FILE DESCRIPTION

aips++ header

ENVIRONMENT

#define A.MODELIMAGE.H

#include <assert.h>
#include <iostream.h>
#include "Image.h"

typedef float (*pFunc)(float *,ImPixelCoord);

CLASS DESCRIPTION

Class: Modellmage

Image with pixel values defined by an analytical function.

An example of how to use Modellmages follows:

If one wished to have a 128 x 128 Modellmage of a Gaussian function centered on ImPixel
coordinates (64,64) and having width paramters (5,5) and unity amplitude, the following is
the procedure.

float Gaussian(float parms, ImPixelCoord imp);
i

float xim = imp.GetlmPixCoord(l);
float yim = imp.GetImPixCoord(2);
float dx = (xim - parms[1])/parms[3];
float dy = (yim - parms[2])/parms[4];
double val = parms[0]*exp(-dx*dx - dy*dy);
return (float)val;

}

float gparms[5] = {1,64,64,5,5};

Modellmage mim(128,128);
// Attach a coordinate system here!
mim.SetFunction(Gaussian);
mim.SetParmList(gparms);

etc.

NOTE: If one wished to have the Gaussian centred at given Pixel coordinates, one must
(before any image operation) set gparms[l:2] to the ImPixel coordinates corresponding to

68

the Pixel coordinates. This requires a call to the Image method that makes this conversion.

CLASS SUMMARY

class Modellmage : public Image
{
public:

Modellmage (int m = 0, int n = 0, pFunc f = 0, float *p = 0,
float sc = 1.0);

Modellmage(const Modellmage* src);
Modellmage ftoperator=(const Modellmage* src);
int GetNumElQ const;
void SetParmList(float * pp);
void SetFunction(pFunc fp);
void Scale(float scl);
void FilKfloat);
int Extrema(Pixel ftmaxpix, Pixel ftminpix) const;
void SetPixel(PixelCoord, float);
float GetPixel(PixelCoord) const;
int GetImPixelVal(const ImPixelCoord*, float*) const;
int UCombine (float, const Image*, float, const Image*, float);
int ScaledAdd(float, const Image*);
int XCombine(float, const Image*, float, const Image*, float);

friend ©stream* operator « (ostreamft, Modellmage*);
"Modellmage();

>;

MEMBER FUNCTIONS

Make a Modellmage.

Modellmage (int m = 0, int n = 0, pFunc f = 0, float *p = 0,
float sc = 1.0);

Copy constructor

Modellmage(const Modellmage* src);

Asignment operator

Modellmage &operator=(const Modellmage* src);

Accessors

int GetNumElQ const;
void SetParmList(float * pp);
void SetFunction(pFunc fp);

69

Data operations.

void Scale(float scl);
void FilKfloat);

Find extrema. Returns FALSE if empty image.

int Extrema(Pixel ftmaxpix, Pixel ftminpix) const;
void SetPixel(PixelCoord, float);

Return "pixel" value. It will return a model image value, even for non-integral values of
PixelCoord.

float GetPixel(PixelCoord) const;

Get pixel value, given ImPixel coordinates. Returns FALSE if the resulting PixelCoord is
non-integral.

int GetlmPixelVaKconst ImPixelCoord*, float*) const;

Union image operator.

int UCombine (float, const Image*, float, const Image*, float);

Scaled Add and Intersection image operator.

int ScaledAdd(float, const Image*);
int XCombine(float, const Image*, float, const Image*, float);

Output a Modellmage object. Note that a CoordSys must be defined!

friend ostream* operator « (ostreamft, Modellmage*);

Destructor.

"Modellmage();

70

A. 19 Param.h

HEADER FILE DESCRIPTION

header file for class Param

ENVIRONMENT

#define A.PARAM.H

#include <iostream.h>
#include "String.h" // Meant to be the GNU String MM
#include <string.h> // things like strlenQ and such

enum bool {FALSE, TRUE};

CLASS DESCRIPTION

Class Param ...

Part of an example of a traditional <key=value -I- help' command-line user interface.

CLASS SUMMARY

class Param
{
public:

Param();
Param(String, String, String);
Param(const Param*);
"ParamQ;
bool operator == (const Param*) const;
double GetDouble(bool do_prompt=FALSE);
int Getlnt(bool do_prompt=FALSE);
String GetString(bool do_prompt=FALSE);
bool GetBool(bool do.prompt-FALSE);
String GetQ;
String GetHelpQ;
String GetKeyQ;
String KeyValQ const;
bool Put(const String a.value);
void Print(ostreamft out) const;

};
ostreamft operator« (ostreamft os, const Param* p);

71

MEMBER FUNCTIONS

default constructor

ParamQ;

normal constructor with optional value and help strings

Param(String, String, String);

copy constructor

Param(const Param*);

destructor

"ParamQ;

// operator functions: =, == and «

copy-assignment operator

Param* operator= (const Param*);

comparison operator

bool operator— (const Param*) const;

// query functions

get a double parameter value; prompt if switch is TRUE

double GetDouble(bool do.prompt=FALSE);

get an int parameter value; prompt if switch is TRUE

int Getlnt(bool do.prompt=FALSE);

get a string-type parameter value; prompt if switch is TRUE

String GetString(bool do.prompt=FALSE);

get a boolean parameter value; prompt if switch is TRUE

bool GetBool(bool do.prompt=FALSE);

get parameter value as a string

72

String GetQ;

get parameter help string

String GetHelpQ;

get parameter name

String GetKeyQ;

get the string 'key = value' for the parameter

String KeyValQ const;

// modify function

set new parameter value; return FALSE if invalid value

bool Put(const String a_value);

// Output function

void Print(ostream* out) const;

NON-MEMBER FUNCTIONS

output operator

inline ©stream* operator« (ostreamft os, const Param* p)

73

A.20 Pixel.h

HEADER FILE DESCRIPTION

Class which stores a "float" pixel value and pixel coordinates.

ENVIRONMENT

#define A.PIXEL.H

#include <iostream.h>
#include "PixelCoord.h"

CLASS DESCRIPTION

CLASS SUMMARY

class Pixel
<
public:

Pixel();
Pixel(float v, float x, float y);
void SetPixel(float v, PixelCoord pc);
void SetPixel(float v) ;
void SetPixel(PixelCoord c);
float GetPixelValueQ const;
PixelCoord GetPixelCoordQ const;
"PixelQ;

};
ostreamft operator«(ostreamft, Pixel);
int operator == (const Pixelft, const Pixelft);

MEMBER FUNCTIONS

Default constructor.

PixelQ;

Constructor which sets coordinates.

Pixel(float v, float x, float y);

Set pixel coordinate and value.

void SetPixeKfloat v, PixelCoord pc);

74

Set pixel value.

void SetPixeKfloat v);

Set pixel coordinate.

void SetPixel(PixelCoord c);

Get pixel value.

float GetPixelValueQ const;

Get pixel coordinate.

PixelCoord GetPixelCoordQ const;

Destructor.

"PixelQ;

NON-MEMBER FUNCTIONS

Print a Pixel.

ostreamft operator«(ostreamft. Pixel);

Compare two pixels for equality

int operator == (const Pixel*, const Pixel*);

75

A.21 PixelCoord.h

HEADER FILE DESCRIPTION

The PixelCoord class is used for holding positions in the "storage" coordinates. They may
have fractional values, although in general use they are restricted to integers (indexes along
the coordinate axes. If the dimensions of an image are m,n, the PixelCoords range from 0
to m-1, and 0 to n-1. The valid operations essentially consist of setting and getting values.
Dimensionality is implicitly 2. PixelCoords must always be positive when being used within
an image but can have negative values otherwise. Therefore there is trap for negative values.

It would probably be very useful to define coordinate arithmetic and comparisons on this
type. (hi,-,= etc).

ENVIRONMENT

#define PIXELCOORD.H

#include <iostream.h>
#include <assert.h>

CLASS DESCRIPTION

CLASS SUMMARY

class PixelCoord
■C

public:
PixelCoordQ;
PixelCoord(float ri, float rj);
virtual "PixelCoordQ;
virtual int OkQ const;
void SetPixelCoord(int i, float v);
void SetPixelCoord(float *fp);
float GetPixelCoord(int i) const;
float* GetPixelCoordQ const;

};
ostreamft operator« (ostreamft, PixelCoord);
PixelCoord operator + (const PixelCoord*, const PixelCoord*);
PixelCoord operator * (const PixelCoord*, const float);
PixelCoord operator * (const float, const PixelCoord*);
PixelCoord operator - (const PixelCoord*, const PixelCoord*);
int operator == (const PixelCoord*, const PixelCoord*);

76

MEMBER FUNCTIONS

The default constructor sets the positions to 0.0

PixelCoordQ;

Construct at a given position

PixelCoord(float ri, float rj);

Destructor currently does nothing

virtual "PixelCoordQ O

Checks the state of this object

virtual int OkQ const; // This object always OK

Set the location on the i'th axis. Range checks i.

void SetPixelCoord(int i, float v);

Sets the positions on all axes. Should be a vector type so we could check the length of the
vector.

void SetPixelCoord(float *fp);

Gets the value on the i'th axis

float GetPixelCoord(int i) const;

Returns the value on all axes (should be vector)

float* GetPixelCoordQ const;

NON-MEMBER FUNCTIONS

Print a PixelCoord

ostream* operator« (ostreamft, PixelCoord);

Add two PixelCoords

PixelCoord operator + (const PixelCoord*, const PixelCoord*);

Multiply a PixelCoord by a float

77

PixelCoord operator * (const PixelCoord*, const float);

Multiply a float by a PixelCoord

PixelCoord operator * (const float, const PixelCoord*);

Subtract two PixelCoords

PixelCoord operator - (const PixelCoord*, const PixelCoord*);

Compare two PixelCoords for equality

int operator == (const PixelCoord*, const PixelCoord*);

78

A.22 TelModeLh

HEADER FILE DESCRIPTION

This file contains definitions for the TelModel class.

ENVIRONMENT

#define TELMODEL.H

#include <assert.h>
#include <math.h>
♦include "String.h"
♦include <complex.h>
♦include "GainTable.h"
♦include "YegSet.h"
♦include "Telescope.h"

CLASS DESCRIPTION

TelModel class.

CLASS SUMMARY

class TelModel
■C

public:
TelModel(int, float, float, float);
"TelModelQ;
void Update(YegSet*, YegSet*);
YegSet* Apply(const YegSet*);
complex InterpGain(int, float);

>;

MEMBER FUNCTIONS

Constructor for TelescopeModel specifying: number of receptors; time of first entry; time of
last entry; time interval between entries.

TelModel(int, float, float, float);

Destructor.

"TelModelQ;

79

Update this model given a pair (measured and predicted) of YegSets. This model solves for
and updates its internal state. The YegSets remain unchanged.

void Update(YegSet*, YegSet*);

Create a new, corrected, YegSet and associated Telescope from an existing YegSet by ap¬
plying this model. The preexisting YegSet remains unchanged. A copy of this model is
attached to the new telescope as its default model.

YegSet* Apply(const YegSet*);

Return an interpolated gain given: a receptor number; time. This simple performs a crude
linear interpolation between the two nearest entries in the gain table.

complex InterpGain(int, float);

80

A.23 Telescope.h

HEADER FILE DESCRIPTION

This file contains the defintions for the Telescope class.

CLASS DESCRIPTION

The Telescope class is mainly a book-keeping class, being a convenient place to hang together
pointers to objects that are used by others.

ENVIRONMENT

♦define TELESCOPE.H

♦include <String.h>
♦include <YegSet.h>
♦include <TelModel.h>
♦include <ImagingModel.h>

CLASS SUMMARY

class Telescope{
public:

Telescope(const String*);
Telescope(const TelModel*);
Telescope(const String*, const TelModel*);
void SetName(const String* myName);
const String NameQ;
void SetYegs(YegSet* myYegs);
YegSet* YegsQ;
double Coord(const String*) const;
void SetTelMod(TelModel* myModel);
TelModel* TelModQ const;
void SetlmModdmagingModelft myModel);
ImagingModel* ImModQ const;

>;

MEMBER FUNCTIONS

Construct the telescope, just giving the telescope name. In this case, the default telescope
model is a null.

Telescope(const String*);

81

Construct the telescope, giving just the default telescope model. In this case, the telescope
name is "Unknown-Telescope" !!

Telescope(const TelModel*);

Construct the telescope giving both the telescope name and the default model.

Telescope(const String*, const TelModel*);

Set and return the name of the telescope.

void SetHame(const String* myName);
const String NameQ;

Set and return the YegSet associated with this telescope.

void SetYegs(YegSet* myYegs);
YegSet* YegsQ;

Inquire about coordinates of this observation, e.g. freq.

double Coord(const String*) const;

Set and return the telescope model associated with this telescope.

void SetTelMod(TelModel& myModel);
TelModel* TelModQ const;

Set and return the imaging model associated with this telescope.

void SetlmModdmagingModelft myModel);
ImagingModel* ImModQ const;

82

A.24 XYZ.h

HEADER FILE DESCRIPTION

This file contains the definitions for the XYZ position class.

ENVIRONMENT

♦define XYZ.H

♦include "Vector.h"
♦include <assert.h>

CLASS DESCRIPTION

The XYZ position class is used to store the location of various antennas. Positions are
assumed to be in an equatorial system. That is, Y axis points east, Z axis is parallel to
the pole, and the X axis to defined to make a right-handed orthogonal system. Units are
assumed to be nanoseconds.

CLASS SUMMARY

class XYZ
i
public:

XYZ(int n, const double* myx, const double* myy, const double* myz);
int DimQ const;
double X(int i) const;
double Y(int i) const;
double Z(int i) const;

};

MEMBER FUNCTIONS

Construct the antenna locations from arrays of the positions. Input are the antenna locations
and the number of antenna.

XYZ(int n, // Number of antennas,
const double* myx, // Antenna locations in X.
const double* myy, // Antenna locations in Y.
const double* myz) // Antenna locations in Z.

Function to return the number of antenna.

int DimQ const;

83

Functions to return the locations of the various antenna.

double X(int i) const;
double Y(int i) const;
double Z(int i) const;

84

A.25 YegRep.h

HEADER FILE DESCRIPTION

This file contains the definitions for the YegRep class.

ENVIRONMENT

♦define YEGREP.H

♦include "Vector.h"
♦include "AssArray.h"

decleire(Ass Array, DVector)

class Telescope;

CLASS DESCRIPTION

The YegRep class provides services to return telescope, data, weights and coordinates.

CLASS SUMMARY

class YegRep
i
public:

YegRep(const Telescope*,CVector);
YegRep(const YegRep*);
void SetData(CVector);
void SetWeight(RVector);
void SetCoord(const String*,DVector);
const Telescope* telQ const;
int NumYegsQ const;
CVector DataQ const;
RVector Weight() const;
DVector Coord(const String*) const;
int CoordPresent(const String* name) const;
int ReflncQ;
int RefDecQ;

};

MEMBER FUNCTIONS

Construct the YegRep from a telescope and a vector of complex data.

YegRep(const Telescope*,CVector);

85

The copy constructor: Make a true copy of a YegRep.

YegRep(const YegRep*);

Overwrite the data.

void SetData(CVector);

Initialise the weights.

void SetWeight(RVector);

Initialise a coordinate.

void SetCoord(const Stringft,DVector);

Return a reference to the associated telescope.

const Telescope* telQ const;

Return the number of yegs.

int NumYegsQ const;

Return the vector giving the data.

CVector DataQ const;

Return a single precision vector of the weights.

RVector Weight() const;

Return a double precision vector of a particular coordinate.

DVector Coord(const String*) const;

Check if a particular coordinate is available.

int CoordPresent(const String* name) const;

Allow access to the reference counting mechanism.

int ReflncQ;
int RefDecQ;

86

A.26 YegSet.h

HEADER FILE DESCRIPTION

This file contains the definitions for the YegSet class.

ENVIRONMENT

♦define YEGSET.H

♦include "Vector.h"
♦include "String.h"
♦include "YegRep.h"

class Telescope;

CLASS DESCRIPTION

The YegSet class provides services to return telescope, data, weights and coordinates.

CLASS SUMMARY

class YegSet

i
friend class IntYegSet;

public:
YegSet(const Telescope* tel,CVector data);
YegSet(const YegSet* ys);
virtual "YegSet();
void SetData(CVector cv);
void SetWeight(RVector rv);
void SetCoord(const String* name,DVector dv);
const Telescope* telQ const;
int NumYegsQ const;
CVector DataQ const;
RVector Weight() const;
DVector Coord(const String* name) const;
virtual void ShowYegSet (int il, int i2);
int CoordPresent(const String* name) const;

};

MEMBER FUNCTIONS

The only constructor.

YegSet(const Telescope* tel,CVector data);

87

Constructed from another YegSet.

YegSet(const YegSet* ys);

The destuctor.

virtual "YegSet();

Overwrite the data.

void SetData(CVector cv);

Initialise the weights.

void SetWeight(RVector rv);

Initialise a coordinate.

void SetCoord(const String* name,DVector dv);

Return a reference to the associated telescope.

const Telescope* telQ const;

Return the number of yegs.

int NumYegsQ const;

Return the vector giving the data.

CVector DataQ const;

Return a single precision vector of the weights.

RVector Weight() const;

Return a double precision vector of a particular coordinate.

DVector Coord(const String* name) const;

Virtual Display Function

virtual void ShowYegSet (int il, int i2);

Check if a particular coordinate is available.

int CoordPresent(const String* name) const;

Appendix B

Details

This chapter is just a bag of tricks. The items may not belong in this report, but their
inclusion at least ensures that they do not get lost.

B.l Object-state checking

Brian Glendenning

It is useful, especially when the code is being debugged, to be able to check the "state" of
an object (in Eiffel this is called checking the invariants). It is useful to write a member
function int OkQ that performs such a check and returns 0 if not successful, 1 otherwise
(or boolean values). This function should be virtual for obvious reasons, and a subclass that
redefines OkQ should probably within it also refer to its parent classes OkQ, e.g., refer to
Parent: :0k() to ensure that the parent class is also consistent.

Conceptually you want to check the state of the object after construction, and at entry to
every member function. However this state checking could be computationally expensive
(e.g., checking all the pointers in a complicated data structure) so it must be possible to
compile it out, preferably on a class by class basis, for the production system. A way of
doing this is to use the macro OK rather than the function OkQ (obviously the latter is
still available). Then the macro OK can be defined to be nothing, or can be defined to be
something like assert (OkQ) (the assert should be replaced with the exception handling
mechanism when available). Every .h file for classes which use the OkQ mechanism should
have OK default to something, e.g. if you wanted to check state by default:

♦ifndef OK
♦define OK assert (OkQ) // Use exceptions when available
♦endif /* OK */

This can be overridden at compile time (probably in the makefile).

89

B.2 Efficient indexing in vectors

Bob Sault

The three vector classes RVector, DVector and CVector (for real, double precision and
complex) have methods defined on them to do all the normal arithmetic operations (addition,
subtraction, multiplcation, division), and functions (sin, cos, etc), as well as interconversion.
They use a reference counting scheme, and a copy-on-modify policy to reduce the about of
copying.

The implementation of the indexing operator which returns a data element of the array (i.e
operator []) is noteworthy. Convention dictates that this should act as either an lvalue or
an rvalue. Having this operator always return a reference to a data-element would have
disadvantages. As the operator would not know whether it is being used as an lvalue or an
rvalue, it would have to assume the worse - an lvalue - which would significantly reduce the
effectiveness of the reference counting and copy-on-modify policy. The way used to avoid
this loss is to have two overloaded versions of the indexing operator, defined (for the real
vector class) as

float operator[](int) const;

and

float* operator[] (int);

The first version can only appear as an rvalue, and the compiler will use this in preference
whenever the vector is of const type. The second version can appear as both an lvalue and
an rvalue, and the compiler will use this for non-const vectors. Provided the programmer
uses the const declaration wherever possible, the effectiveness of the reference counting, etc
is maintained. For a multiply-referenced, non-const vector, then a copy will have to be made
sooner or later anyway, so it does not matter what this is initiated by the indexing operator
(even in instances where it is used as an rvalue).

Coplien discusses an alternate scheme (pp. 50-52) which would be applicable here. Coplien's
scheme is quite a bit more expensive - a very undesirable characteristic in such a common
operation as indexing. It also has the disadvantage that the indexing operator would always
be a non-const method.

90

Bibliography

[1] Calibration, Imaging and Datasystems for AIPS++ — Report of the meeting held at
Green Bank, West Virginia 3d - 14th February, 1992, Ed. D.L. Shone and T.J. Cornwell.

[2] A Rational Plan for AIPS++, Chris Flatters, March 12 1992.

[3] A Delayed Reaction to Green Bank, B.E. Glendenning; Comments on Brian's note, R.?.
Sault; ++GreenBank - Pari 1, D.L. Shone, March 1992.

91

