
An Overview of AIPS++ Design
The State of the Project Classes at the End of April 1993

AIPS++ Implementation Memo 109

14 November 1993

R. M. Hjellming and B. E. Glendenning

Copyright © 1993 AIPS++

Chapter 1: Purpose of This Overview

1 Purpose of This Overview

1.1 Design Approach and Status

This document is a summary of the design of classes for AIPS++ as they are at the end of
April 1993. Since the prime goal of AIPS++ is the development of an extensive library of classes
for astronomical data processing, this summarizes the state of the most important part of the
project. This document is an updating or supplement to the Software Design sectioni of the Project
Bookshelf. While some of the classes mentioned or described here, particularly the infrastructure,
math, and table classes, have been implemented, for most classes the header (declaration) files and
associated code have not been written. Thus in many cases the prototyping may result in minor
or major changes in class design.

In this document we follow the AIPS++ Project requirement that design be described in terms of
the Object, Functional, and Dynamical Models of the Object Modeling Technigue of Rumbaugh et.
al. (1991). The reader will note that, while there are high to middle-level Object Model diagrams
for all the areas discussed, there are still deficiencies in the design description: few diagrams exist
at the lower level corresponding to the essentials of C++ header files; only a few Functional Models
have yet been developed; and there are no Dynamical Models. The major exceptions involve
the Bottomly (1993) document on transforming telescope data sources, like magnetic tapes, into
telescope data associations, and the Measure-ReferenceFrame class system.

Thus the reader must understand that much of this design has not been tested by either proto¬
typing or the level of design required by the Object Modeling Technique.

During the period September 1992 to April 1993 there were piecemeal developments in the
design, but these changes did not constitute a sufficient degree of completeness to make it easy to
update the Design section of the Project Bookshelf (nee Project Book). Because of the necessity
of producing a design summary for the Design Review and Prototyping Workshop in Socorro, NM,
April 26 - June 4, 1993, we are writing this draft Design Summary for the Workshop. A version
will be put into the AIPS++ Implementation Memo series, and the document will be updated and
evolved during the Workshop, resulting in another Design Summary in June 1993. After this the
Design Section of the Project Bookshelf will be updated to represent, once again, the "current"
design of the Project.

Chapter 1: Purpose of This Overview

1.2 The Point of View Taken for Class Development

1.2.1 Radiation Measurement

Classes designed in an object-oriented software system are strongly dependent upon the point
of view taken in the design of these classes. Since January 1992 (Hjellming and Glenndening
1992), and expressed in fairly complete form in the report of the February 1992 Workshop in Green
Bank (Shone and Cornwell 1992), the point of view of class design in AIPS++ has emphasized
the measurements of radiation made by telescopes (particularly radio telescopes), the essential
properties of these telescopes, and the reconstruction of radiation measurements of the sky in the
form of intensities, spectra, images, etc.

1.2.2 Mathematical Classes

The most valuable classes are those that represent such powerful abstractions that they can
be used for many purposes in a wide range of applications. It does not take much cogitation to
conclude that classes accomplishing mathematical defined operations on numbers and arrays of
numbers should be very important. Since September 1992 the AIPS++ Project has emphasized
the development of such mathematical classes beginning with the very general Array class from
which Vector, Matrix, Cube, etc. classes can be derived with their own uniquely valid operations.
These can then be used to do higher level mathematical classes. Linear algebra classes are obvious
derivatives from the Vector and Matrix classes, and as of the end of April most of these have been
implemented for real and complex arrays. The GridTool and FFTServer classes are amongst the
next level of obvious classes in which un-gridded data can be gridded into regular arrays, regular
arrays can be interpolated back to un-gridded data coordinates, and regular arrays of different
dimensionality can be Fourier transformed and reverse Fourier transformed.

In addition to their general usefulness, some of these math classes will appear in design diagrams
as the most general case from which conceptually important classes are derived. The most obvious
examples of this are in the area of array objects that constitute spectra, images, etc.

1.2.3 Table Classes

While a reasonably sophisticated and efficient data base system with a programmer-friendly
data base manager is essential for AIPS++, it was decided in September 1992, at the same time
the emphasis on mathematical class development was begun, that classes based upon tables of

Chapter 1: Purpose of This Overview

data would be sufficient for initial prototyping. As this is written at the end of April 1993 the
system of classes that constitute the initial Table system have been prototyped. For the purposes
of this design document, many classes use the inherited properties of the Table class, particularly in
objects like tables of measurement data, series with uneven coordinate intervals, and images with
uneven coordinate intervals.

1.2.4 Comprehensive List of Major Classes

In Appendix 1 there is a list of the major classes in the current AIPS++ design. The classes
are listed in alphabetical order with short definitions and, where appropriate, a description of its
relationship to other classes. This is a class-oriented "data dictionary", largely at the level used
at the design stage of Chapter 8 of Rumbaugh et. al. (1991). In this data dictionary we use the
convention followed in all design diagrams in this document whereby class names are distinguished,
by convention, from class features (attributes and operations) by making the first letter of the
names upper and lower case, respectively.

Chapter 2: Major Subsystems

2 Major Subsystems

2.1 Major Subsystem Components

Figure 1 is a high level Object Model diagram for a number of the important classes in the current
AIPS++ design. It corresponds to the upper level of design diagram emphasized in Chapter 8 of
Rumbaugh et. al. (1991). It reflects the initial priority given to telescope data handling, including
calibration and editing.

In Figure 1 the most important classes are: DataSource, Measurement Set, TelescopeModel,
TDAViewer, MeasurementModel, and MeasurementEquation. The DataSource class contains the
methods for taking telescope measurement data and associated information, all of which are con¬
sidered to be measurements, from a variety of sources such as telescope data tapes (TelDataMedia
in general), real time data acquisition systems (RealTimeSystem), and simulation programs (Tel-
SystemSimulator), and putting them in a TelescopeDataAssociation - which is the Associator class
for an aggregation of tables containing measurements in a Measurement Set and the tables modeling
various aspects of behavior of the telescope (or telescope array) in TelescopeModel. Information
about the telescope during the measurement process, calibration tables based upon one or more of
a variety of models for the telescope's measurement equation (MeasurementEquation), and data
quality measures (flags) associated with the measurements by either the data source or the user are
included in the information maintained in TelescopeModel. The TelescopeModel: :solve operation is
the method whereby data with assumed models of the radiation distribution (RadiationDistModel)
on the sky are used in connection with the appropriate equations derived from MeasurementE¬
quation to determine the calibration parameters of the particular components of TelescopeModel.
The TelescopeModel:rinterpolate operation determines, and writes calibration information into,
TelescopeModel tables for measurement coordinates (like time and possibly frequency) which are
different from those for which that are obtained from the TM.solve operation. Finally, the TM.apply
operation is the method whereby selected measurements are extracted in calibrated as opposed to
uncalibrated form, that is "inverse" measurement equations and "data" in calibration tables are
used to apply calibration to the measurement data.

TelescopeDataAssociation not only maintains the necessary association information between
objects in Measurement Set (MS) and TelescopeModel (TM), it has TDA::readDataSource methods
whereby DataSource for particular telescopes read data and write it into MS and TM tables.
In Figure 1 each DataSource object can be optionally associated with an ObservingLog which is
summary or index of measurements in that object. ObservingLog is closely related to the optionally
available ObservingSchedule which, in some telescope systems, is used to control the telescope
observations that produced the measurements in DataSource.

Chapter 2: Major Subsystems

RadiationDistModel
time

position
frequency

polarization
intensityPredict

Sampled by
Models distribution

TelSystemSimulator

measurementPredict

MeasurementSet
TelescopeModel

Solve
Interpolate

Apply

5 Contains

TelescopeDataAssociation

readDataSource

Has

MeasurementEquation

Identifies

RealTimeSystem TelDataMedia

ObservingSchedule

I
DataSource

Source of
data for

TDAViewer

ObservingLog

Reconstructs

Spectrum

A
VisSet Image

MeasurementModel

1
Figure 1 — Major class "subsystems"

The design of DataSource and its mapping into a TelescopeDataAssociation has been carried to
the most detailed level yet in AIPS++ design, short of prototype coding. The status of this design,
for both general cases and the case of VLA interferometric data, is described in a document by
Bottomly (1993). Therefore we will not discuss it further in this document.

The RadiationDistModel, TelSystemSimulator, and ObservingSchedule classes are all associ¬
ated with the capability to compute models of measurements. These may be used as part of the

Chapter 2: Major Subsystems

calibration or self-calibration process, or they may be used during analysis where physical source
models are used to generate measurments, spectra, images, etc., for comparison with equivalents
determined by measurement data.

The TDAViewer class may turn out to be just an abstract label, rather than even a base class,
but it is a major conceptual development that was discussed for months early in the AIPS++ analy¬
sis and design process; however, it was clearly defined under the name ApplicationDataObject only
during the mini-workshop in Charlottesville and Green Bank in November 1992. Discussion has
indicated that this name should be changed, so in this document we are now calling it TDAViewer,
indicating that it allows views of the data in a TelescopeDataAssociation, or an ImageDataAssocia-
tion, as seen in an application program. Selection criteria, including those based upon data editing
and/or application of calibration expressed in user-oriented terms (rather than data base specifiers)
are used to create views of data for processing. These views can be synchronized with the data in
the TDA or IDA, that is, a change of value in the TDAViewer results in a simultaneous change
in value in the DataAssociation; or in an TDAViewer can, by averaging or some other operation,
produce new TFAViewer objects that can be optionally written into new tables in the TDA.

Two of the important TDAViewers related to a TDA are the Spectrum and VisSet classes, both
of which can be described as major infrastructure classes for AIPS++ data processing, because
of large number of other classes using data of these types will be built inheriting the properties
of Spectrum and VisSet. These will be discussed in more detail later, particularly the VisSet
class. The Spectrum class, for example, will have both the methods for selecting and extracting
spectra from measurements in a TDA and the methods for doing obvious things with these spectra
in addition to application of calibration. This class can be used for total power observations or
interferometric observations in their respective TDAs. VisSet is the major class for building all
visibility data sets as used in particular applications.

Figure 1, at the moment, does not show Images as parts of an ImageDataAssociation, partly
because they can in principle be just added components in a TelescopeDataAssociation. The choice
between these forms of organization have not been made, and it is likely that both will be useful.

The MeasurementModel class was called the ImagingModel class in early discussions, but at¬
tempts to take a unified approach towards processing both single dish and interferometric data led
to using this name for the class which uses application data objects of all kinds (VisSet, Image,
etc.) to produce different aspects or forms of measurements. Principle solution imaging, CLEAN
deconvolution, MEM deconvolution, self-calibration, spectral component fitting, solution of cali¬
bration equations, etc., are specific cases of the general MeasurementModel. The utility of a single
class for this wide range of "things" is one of the results of the conceptual analysis of imaging and
calibration in AIPS++ by Cornwell (1992a and 1992b, Implementation Notes 147 and 148). It will

Chapter 2: Major Subsystems

be discussed in more detail later in this document. If validated by prototyping, it is possibly the
single most important base class in AIPS++.

2.2 An Operator Notation for the Major Processes or Classes

Up until Cornwell (1992a, 1992b) expressed imaging and calibration in a simple operator no¬
tation based upon concepts from linear algebra, all the the ideas about MeasurementSet, Images,
MeasurementModel, TelescopeModel, etc., were discussed in a highly unstructured form. The oper¬
ator notation he proposed has been adopted as an effective means of describing essential operations,
and turns out to have a close relationship to the the major classes discussed in the previous section.
Let us summarize this formulation using slightly different symbols and name descriptors that reflect
the current use in design discussions.

Radiation distributions on the sky are represented by S (replacing the / used by Cornwell (1992a)
to avoid confusion with the identity operator). Measurement data produced by telescopes are
identified with Dus, or a MeasurementSet. The MeasurementEquation for a telescope or telescope
system is identified with an operator A, so the basic equation whereby Telescopes produce data is

AS = D MS

The sky distribution S may be viewed as the projection of the true sky intensity distribution Strue

on the telescope by using a projection operator P(.S'true) as argue(l for by Redman (1993). For
present purposes we will let S have a number of identities ranging from the true sky distribution
(with implied dimension including all polarization) to model distributions 5modei- The AS = JDMS

equation turns into a form closely matching the major classes of the AIPS++ design if one separates
A into a MeasurementModel part and a TelescopeModel part, so that

ATMAMM S = .DMS-

This formulation now shows the essential role of MeasurementSet (MS), TelescopeModel(TM),
and MeasurementModel(MM) in relating real or model sky distributions to the production of
measurements such as visibilities, total powers, spectra, etc. The next step is to recognize that
the above deal only with uncalibrated measurements. The process of determining calibration and
turning measurements into calibrated form (CalMS) can be written as

mveTse(ATM)ATMAMM S = -DcaiMs = inverse(ATM)-DMS

ignoring for now such details such as whether inverse(j4.TM) is a true linear inverse operator, or is
derived from solution of non-linear equations (the general case). By definition inverse(ATM)^TM = 1
so with calibrated data the reconstruction process for S is based upon

S = D CalMS-

Chapter 2: Major Subsystems

Cornwell (1992a) showed that most telescopes have measurement equations represented by simple
measurement models, and that most of single dish and interferometric reconstruction of measure¬
ments (images in most cases) fits into the same approach. As we will describe in more detail later,
there is a base class we call MeasurementModel that has exactly the methods his memo required
for a generalized approach to measurement (image) reconstruction.

In order to provide a notational basis for more important details, and the classes that embody
them, let us note that, in general, a measurement set DMS with consiste of a data array as a
function of a data coordinate vector u (embodying time, frequency, u-v-w for visibilities, etc.).
Sky radiation distributions, real or modeled, have radiation coordinates x (embodying space-time
"position", frequency). We will use these notational distinctions in our more detailed discussion of
MeasurementModel classes.

These u and x coordinates will have representations (spherical polar, cartesian, plane-projected,
etc.) within some reference frame (solar system barycentric, geocentric, topocentric, celestial sphere
tangent plane, proper, ...). This characteristic of representations within some reference frame
is shared by radiation measures like (IQUV) that can be transformed to (/RR,/LL»^RL»^LR) or
(/xx> ATYJ JXY>-JYX)> or Poincare sphere representations of polarization. Thus we have introduced
into AIPS+-I- design a Measure class that contains the essential properties of measurements of
all types, including units, but which most importanly has all transformation properties embodied
in associated ReferenceFrame and Representation classes. This can be described with a notation
whereby Trf^m) = m', where the rf,r denotes potential reference frame and/or representation
changes in the same measurement, and m can be a measure of sky intensity, sky coordinates, space-
time coordinates, baseline coordinates, or any quantities usefully associated with unit, reference
frame, and/or representation changes.

Before continuing with more detailed discussions of higher to mid-level classes, let us discuss
some general but basic classes that have been developed for AIPS++.

Chapter 3: Infrastructure Classes

3 Infrastructure Classes

The classes discussed in this chapter have been implemented. However, not all implemented
classes are discussed here. Classes which are mostly of use in building other classes are generally
not mentioned, nor are functions or classes which make up the array or table system (these do,
however, have some discussion in later chapters).

3.1 Containers

A container is a class which can contain objects of another type. The containers we have
implemented do this with templates.

Array The array classes can be considered to be a type of container in which objects are
accessed by a (generally multidimensional) index.

Block A Block is a very simple one-dimensional array container. It will most likely be used
as a building block rather than as a class for application programmers.

Map A Map, also known as an "associative array" or "dictionary" is used to store key/value
pairs where key and value can be of different (arbitrary) types. A simple example of a
Map would be using a string as a key for a catalog entry. Note that Map is an abstract
base class; there are various implementations (e.g. linked list).

Slist A Slist is a singly linked list. Multiple cursors (iterators) may be attached to the list.

Stack A stack is a "last in first out" data structure. Useful for, e.g., evaluating expressions.

3.2 I/O

The major classes which are still required for I/O are those that the data base will need, and
those for handling FITS files. Both of these are in progress. The classes which are now available
include:

Alps 10 AipsIO is a straightforward persistence mechanism for storing binary data. It is gener¬
ally available for most AIPS++ classes, and will generally work properly for the container
classes with any template argument. It uses the familiar operator« and operator>>
functions.

Vif f This class is used to write up to 3-dimensional arrays, with optional location data, into
the "Viff" format which is used by Khoros/Cantata.

Chapter 3: Infrastructure Classes 10

3.3 Errors and Exceptions

We have implemented an exception handling mechanism that acts very much like the exception
handling mechanism that has been proposed for C++. The major features it offers are:

1. An exception may be thrown from "deep" in a program and caught at a "higher" point without
any intervening code being written.

2. The destructors for objects which go out of scope are called (i.e., it cleans up after itself).

3. An exception may be of essentially arbitrary type, and hence it can be used to carry any
desired information from the point of error to where it is handled.

4. You can not only catch a specified type, but you can also catch any type derived from it.

The major classes are:

Cleanup In the current implementation, all classes whose resources you want to be freed up
during an exception should be derived from this class.

AipsError

This class is the root of the normal exception class hierarchy (for example, ArrayError
is derived from it). There is a fairly rich hierarchy of error classes.

Assert [Not really a class]. This is like the normal "C" assert mechanism, only it uses excep¬
tions instead.

3.4 Miscellaneous

Input This class (and its associated Param class are used to interpret 'keyword=input' or
'-keyword value' pairs. It also allows the keywords to have defaults and help strings,
and to output a "pane" file for interfacing a program to Khoros.

Plot This is used to print a very simple scatter-plot; generally Khoros should be used for
plotting instead.

Timer Used as a "stopwatch" for timing (real and cpu) programs or parts of programs.

Chapter 4: Mathematical Array and Array-based Classes 11

4 Mathematical Array and Array-based Classes

The array classes discussed in this chapter have been implemented.

4.1 Fundamental Classes and Functions

The fundamental array classes are an n-Dimensional Array class as well as specializations
(Vector, Matrix, Cube) which are inherited from it, as shown in Figure 2.

Array
Origin
Shape
Index
Slice

Arithmetic

/\

Vector

i
Matrix

{Ordered}

I Position >—G
i

I Position List

CountedBlock
Nrefs

The countedBlock actually
holds the storage (possibly for
many arrays in the presence of
slicing).

Cube

An (position is an "integral position" vector which can be
used to index into, and define positions in, Arrays. An
IPositionList is a collection of (Positions.

Figure 2 — Object model diagram for Array-based classes.

The specializations allow more convenient (and more efficient) access to pixels and regions in
arrays. Without them, one would always have to access these using IPosition objects, which are
vectors whose elements are integers.

Chapter 4: Mathematical Array and Array-based Classes 12

The array classes have a variable origin (defined as the value of the location of the first pixel),
and they are fully templated. The arrays also have a shape — i.e. an IPosition vector which
gives the length of each axis.

Because the array classes refer to a common Block of (reference counted) memory, it is possible
for several arrays to have a common "view" of some pixels. This is mainly used to implement array
sections ("slices").

All the normal arithmetic functions are defined, including transcendental functions. These
operate element by element1. There are also miscellaneous functions, for example finding the
minimum and maximum values in an array.

Functions are provided to resize and reshape arrays in various ways.

Various comparison (<= etc.) operators are available. Currently the yield a Bool result, e.g. a
<= b is true if every element of "a" is less than or equal to every element of b. Functionality to
return a "mask" where the comparison is true will be provided shortly.

4.2 Iteration

While the multidimensional Array classes are very powerful, it is in general not very convenient
or efficient to deal with an array of arbitrary dimensionality. Thus the concept of an Arraylterator
has been introduced; the object model for the relationship of this class to other classes is shown in
Figure 3.

i <»- a=b*c is not a matrix multiply even if a,b,c are matrices

Chapter 4: Mathematical Array and Array-based Classes 13

Cursor pos

ArrayPositionlterator

Origin

IPosition Shape
Iteration Dimension

next
pastEnd

An ArrayPositionlterator is used to advance an
IPosition "cursor" (which could in turn be used
to index Into arrays, etc.). It steps from bottom
to top using an Origin and Shape (specified at
construction). It steps by an iteration dimension,
so you can step by scalars, vectors, matrices,
or whatever dimensionality you want.

In the future it would be nice if you could advance
in directions other than just "bottom" to "top", e.g.
"top" to "bottom" or some general transpose order.

Array Cursor value Arraylterator

This array has dimensionality
Iteration Dimension, e.g. f w
are stepping by vectors, it
is dimension 1.

Array which is
iterated through.

Array

An Arraylterator is attached to an array, and the cursor is
not only a position, it includes an output array which is a
"window" into the attached array.

Cursor value

^

Cursor value
Vectortterator Matrixlterator

Vector Iteration Dimension = 1 Matrix Iteration Dimension = 2

Vectortterator and Matrixlterator are for user convenience when you specifically want to iterate through an
array by vectors or matrices. Read only versions of these classes also exist (for when the underlying array
is constant).

Figure 3 — Object Model diagram for the Array Iterator classes.

An ArrayPositionlterator is an IPosition cursor which can be iterated through the array.
While be default it steps through every position in the array, it can also step through the arrays by
vectors, matrices, or any other dimension array (that is less than the dimensionality of the array
being stepped through). While the space the cursor steps through is defined by some array (in
particular, but it's shape and origin). This cursor can, in turn be used to index into one or more
Array objects.

In contrast, an Arraylterator has a cursor which is an actual view of a part of an array, and
hence changing the cursor changes the actual values in the array. An Arraylterator may be of
any dimension (less than the array being iterated through!) so it is anticipated that in practice
people will use either the Vectorlterator or Matrixlterator specializations.

In the current implementation the iterators step through the array from beginning to end in the
obvious way. In the future it will be very useful to have iterators which can step through the array
in some transpose order, and also which can be told to "skip".

Chapter 4: Mathematical Array and Array-based Classes 14

4.3 Other

Aside from the basic array classes, there are some higher level tools. This list should grow
rapidly with time (for example, more fitting of various kinds).

Matrix Math

LU-decomposition, matrix and cross products, determinants, triangularization, least
squares fitting to linear equations, etc.

FFTTool Forwared and reverse Fourier transforms.

GridTool Grids irregularly sampled points onto an n-dimensional grid, and de-grids data by
interpolation from a regular n-dimensional grid to irregular axis coordinates.

Random numbers

A rich set of random number distributions are available.

Chapter 5: Table-based Data Base System 15

5 Table-based Data Base System

5.1 Tables

The material in this section is largely excerpted from the Database reference manual.

The tables classes discussed in this section have a prototype implementation. At the moment the
classes do not have an intelligent storage manager (cf. the next section for a preliminary discussion
of that).

The traditional relational database model has two features that limit its applicability to scientific
data. First, an item of data in a column of a table must be atomic; it must have no internal
structure. A consequence of this restriction is that relational databases are unable to deal with
arrays of data items. Second, an item of data in a column of a table must not have any direct
or implied linkages to other items of data or data aggregates. This restriction makes it difficult
to model complex relationships between collections of data. While these restrictions may make
it easy to define a mathematically complete set of data manipulation operations, they are simply
intolerable in a scientific data-handling context. Multi-dimensional arrays are frequently the most
natural modes in which to discuss and think about scientific data. In addition, scientific data often
requires complex calibration operations that must draw on large bodies of data about equipment
and its performance in various states. The restrictions imposed by the relational model make it
very difficult to deal with complex problems of this nature. We have chosen to base our database
on tables, in particular they may be thought of as extended FITS binary tables.

A FITS binary table, from an abstract perspective, is a collection of rows of data fields, organized
into columns. This structure is familiar to spreadsheet and relational database users. The data
fields under the same column all have similar attributes. A descriptive header is associated with the
table. This header applies to and describes the table as a whole. There is also a set of keywords,
each of which applies to the table as a whole. A keyword is a name plus a data value. The table
header is a set of data items corresponding to a fixed set of attributes; all tables have this set of
attributes. Keywords, on the other hand, are optional and apply only to a particular table.There
are several significant properties of such a table.

• A table consists of a header, an arbitrary number of keyword fields, and a fixed number of
columns of fields organized into rows of a fixed size.

• Keyword fields have the same data types and properties as fields within columns.

• Keyword fields may be attached to individual columns or to the table as a whole.

Chapter 5: Table-based Data Base System 16

• Fields within columns may be stored directly or indirectly.

• Fields may be single data items or multi-dimensional arrays of data items.

• The data types of the fields are an extensible set of types, but include the following: logical, bit,
unsigned, short, long, character strings, float, double, single-precision complex, and double-
precision complex.

• Fields can reference other tables.

As an illustration, the Figure 4 gives a possible layout of VLBA data. N.B. This is not the
layout which will be used by AIPS++

Keywords - Time-Invariant Tables

Time-Variant Tables

Group 1
Group 2
Groups

uv Antenna Calibration Flagging BandPass Baseline Phase-cal ...

w 1 1 1 ' 1 1 1 1 1 1 1 1
E3 1 1 1 1 1 1 1 1 1 1 " 1 n 1 1 1 1 1 1 1 1 1 1 1 1

Time

1^ ^ zfa 1
f

1 1
Figure 4 — VLBA Data as a Table of Tables.

Chapter 5: Table-based Data Base System 17

Four classes form the foundation of the table system. Figure 5 shows their relations. Two classes
are abstract base classes, from which classes can be derived to implement virtual tables.

Baselable

This class represents a table. An individual keyword or column is represented by
class ColField (see below). Basel able defines the possible operations on a table,
so it contains a lot of virtual functions, which in general have to be implemented in
the derived classes. However, a programmer will never use the class BaseTable or
its derived classes directly, since the lightweight class Table forms an interface to the
reference counted table classes. Therefore BaseTable also contains a reference count
and functions to manipulate it.

ColField This class represents a keyword or a column in a table. Of course this class also contains
a lot of virtual functions which have to be implemented in the derived classes.

Derived from these classes are the classes FillTable and FillColField to implement the filled
tables. One can also inherit from these classes, since they offer more functionality than the base
classes. For instance, they offer a table and field description and a mapping of keyword and column
names to ColField objects using the template class OrderedMap.

Furthermore the classes Row and Field play an important role. They glue the BaseTable and
ColField classes to perform operations on a per-row basis. Field is quite simple, but Row is
somewhat more complicated.

Chapter 5: Table-based Data Base System 18

FILLED TABLE SYSTEM

Table
iype
name

get/put(row,fleld)
select/sort

AipsIO
binary row operations

f
Table Description

Rows

f
Keywords

Fields

A

t
KeywordSet ColumnSet

^

Table Int Float

Columns

O O O

The available field types will be:
Char uChar
short unsigned short
Int ulnt
float double
Complex DComplex
Bool String

In the future the following has to be added to the system:
• join operation
- FITS reader and writer
- edtt/show/plot
- query language
- analysis
- optimized storage manager

Figure 5 — The Filled Table Class system.

5.2 Storage Manager

[This area is being actively worked on, and a more fleshed-out proposal should appear during
the workshop. This discussion is from Ger van Diepen and Richard Gooch.]

Currently the only (primitive) way to store AIPS++ tables is AipsIO. This requires that a table
fits entirely in virtual memory, which is fine for small tables, but not for big tables like those to be
used for uv-data or images. For now we have concentrated on the representation of UV-data. We
have been looking into ways to store UV-data in a flexible, but yet efficient way. We have come up
with a scheme which at first makes use of current software, but can be extended.

The storage manager is the layer taking care of storing the data into files and retrieving it in
an efficient way. The table system forms a layer between the user and the storage manager. It is
possible to have several storage managers:

Chapter 5: Table-based Data Base System 19

1. Initially we'll provide the Karma storage manager. Karma is a software package developed in C
by Richard Gooch at CSIRO. It handles storing and retrieving data (using canonical format).
It is in principle based on memory-mapping of files.

2. The current AipsIO storage manager.

3. Later a FITS storage manager can be implemented to handle files in FITS format.

4. Other storage managers may be created to handle specific data formats. In particular the
PLOP-hashing technique (investigated by John Karpovich at UVa) could be useful.

The user has to give information (hints) about the storage manager to use. Some more hints
may also be required, which are described below.

An TDAViewer will be the object talking to the tables containing the uv-data. We propose the
following:

1. The TDAViewer will split the uv-data into 2 tables:

• The uv-data themselves with the coordinates; so this will consists of freq, baseline, time,
polarisation and the complex visibility datum + weight. This will in principle be a filled
table, although you can also think of a virtual table to implement an artificial observation.

• The uvw coordinates for each time/baseline. This can be either a filled table (eg. for the
VLA) or a virtual table (eg. for Westerbork).

The reason for this splitting is twofold:

• It makes it easier to handle cases where uv coordinates are calculated on the fly, in a more
generic way.

• It allows more freedom to store the data in any order. If uvw was stored with the data,
it more or less dictates that the frequency and polarisation were stored at the bottom,
otherwise the uvw had to be repeated too often (it reflects the principle of normalisation
in data bases).

2. The tables mentioned in la and lb will be described as columns of freq, baseline, visibilities,
etc. (but they will not be stored that way). By describing the data as columns, there is
no predefined ordening and the TDAViewer can take slices in any direction. The efficiency
of the slice direction depends on the way the data is stored. However, with good tiling (or
PLOP-hashing) all directions can be more or less equally fast.

3. Storage managers may need additional hints about the way the data should be stored and
possibly about the size. Karma needs the following hints:

• Is the column data, a coordinate in an array or a coordinate in a list? Eg. the VLA case
can be stored as a list (with coordinates time, baseline) of arrays (with coordinates freq
and polarisation) containing the data visibility and weight. The difference between a list
and array is that a list is variable sized, while an array is fixed sized.

Chapter 5: Table-based Data Base System 20

• The dimension sizes have to be given in advance, with optionally tiling information. Also
the coordinates for the array axis have to be given.

• It is possible to specify that a list will be filled in (ascending or descending) order. This
can be used to speed up to retrieval process.

• At a later stage it is possible to specify that an index should be created for list coordinates
to speed up retrieval.

• At first it will be required that the table file will be filled sequentially. Later this can be
made less strict, although it may require that the sizes of lists should also be known in
advance.

So the VLA case could be defined as:

'time' list, ascending

'baseline'

list, ascending

'source-id'

data

'freq' array, 32 (+ possible tiling info)

'pol' array,4

'weight' data

'vis' data

4. The table system and storage manager will have a few main functions.

'Append' to append data to the file. This is intended to fill the file.

'Window' to specify a window for the data to be accessed. A window for the Karma storage
manager is an N-dim array of M start,end pairs. So one can define times tl-t2,t3-
t4,t5-t6 for baselines bl,b2,b3-b4. The table system will allow you to specify the
window in the current "select-syntax", thus as time>=tl && time<=t2 I I etc..

'Next' to get the next part of the data. This can be a N-dim array of data in any direction
(eg. an it-slice, fit-brick, i-series), but only if the array is filled (thus all axes have
same size). The coordinates will also be returned. Note that a 1-dim vector is
always filled, although its length will vary per iteration if the underlying data is
irregular, next will probably need an argument to specify the order (if any) in
which the iteration must be done.

'Update' to update the data last retrieved.

The implementation of this all is not trivial (far from that). Karma needs to be changed in the
following points:

1. Creating a file without first creating it first in memory.

Chapter 5: Table-based Data Base System 21

2. Using the hints specification.

3. Support of the window and iteration mechanism.

The table system needs:

1. Full implementation of the Table Vector.

2. Converting select expression to Karma window specification.

3. Support of multiple storage managers

Areas to be addressed in the future are:

1. File locking and sharing.

2. Indices (B-trees, maybe spatial indices).

3. Client-server?

4. A storage manager supporting tables where rows and columns can be added or deleted.

Chapter 6: Measure, ReferenceFrame, and Representation Classes 22

6 Measure, ReferenceFrame, and Representation
Classes

The Measure class is a fundamental class for dealing with telescope data, images, and most
data processing variables in AIPS++. It is used, in conjunction with the ReferenceFrame and
Representation classes to take care of all of the following for a wide range of measures: units,
transformation properties, and changes in representation. Figure 6 shows the Object Model for
these and related classes.

Measure
nElements ■<>

set/get element
set/get error
set/get rep

transformTo(RefFrame)

Elements ErrorElement
error_type
errorvalue

<>
Component

name
nElements

ReferenceFrame
name{Abs}
type{Abs}

canTransformToDirectly{Abs}
transformDirectly(RF){Abs}:Measure

transformlndirectly(RF){Abs}:Measure
copy{Abs}: ReferenceFrame

=(ReferenceFrame)
l=(ReferenceFrame)

Preferred representation

Representation
Units

FrameDescription
component Names

=(FrameDescription)
!=(FrameDescription)

ElementType
genus

species
errorType
setGenus

setSpecies
setErrorType

=(ElementType)
=(ElementType)

y\

Frames we can transform to.

SpaceTimeCoord 3D_Coord

Figure 6 — Measure Class Object Model

Figure 6 illustrates that each Measure object is an aggregation of many possible Elements
(vector-like) each of which is associated with an ErrorElement that describes at least an error
type and value. One of the most common sorts of Measure objects are coordinates and sets of
coordinates, including time, frequency, spatial coordinates, etc. Another example of a Measure
object is the radiation intensities at specific spatial locations, frequencies, and time which can
be described in representations like IQUV, (Irr, Dl, Irl, Ilr), (Ixx, lyy, Ixy, lyx), Poincare sphere
parameterization, etc., and which can be changed by ReferenceFrame changes that include effects
like Doppler shifts in frequency due to motions, etc.

Chapter 6: Measure, ReferenceFrame, and Representation Classes 23

The vector properties of the Measure object are described by a aggregation of components
that can be named and counted, and which are associated with a Representation object for each
ReferenceFrame object. The Representation object allows changes of units, transformation between
different representations of the same Measure (e.g. spherical polar <-> cartesian representations of a
3-D vector Measure object), and each Representation object has an ElementType identifying genus
(transformations between representations with the same genus are possible, those with differing
genus are not possible), species (e.g. spherical polar coordinates, cartesian coordinates) that are
transform possibilities for each genus, and an error type.

As shown in Figure 6 these classes are planned to allow optional error accounting and pro-
pogation for compenents of each measure. Each Measure object, with its Representation object,
is associated with a ReferenceFrame object which takes care of all changes due to change of ref¬
erence frame. These may range from simple Doppler shifts that alter frequencies to relativistic
transformation between things like proper space-time coordinates and the equivalents for particu¬
lar accelerated or non-accelerated reference frames. Changes in (u,v,w) due to geometric changes
are taken care of by the Representation object, but inclusion of relativistic effects affecting an¬
tennas which lie on reference frames accelerated with respect to each other require sophisticate
ReferenceFrame methods. The ReferenceFrame class contains all the methods for direct or indi¬
rect (with intermediate reference frames) transformations of Measure objects, with the associated
Representation class taking care of the transformations within each reference frame.

The classes in Figure 6 should allow us to adopt simple models for potentially complicated
transformation with a smooth evolution path for methods with high levels of complication. The
attempt to allow error transformation in both Representation and ReferenceFrame is hoped to allow
eventually complicated error propagation with methods for ensuring that transformation errors can
be kept within specified bounds.

Figure 7 contains a object model showing a few of the obvious coordinate-oriented reference
frame classes that will be derived from the ReferenceFrame base class. They derived classes are
not complete. It also begins to show how a LocalFrame for a telescope, which may be mainly
Topocentric (surface of the Earth) or OrbitingRF, may be modified to include different models of
the non-spherical, non-uniform Earth (e.g. Earth tides, non-standard potential terms).

Chapter 6: Measure, ReferenceFrame, and Representation Classes 24

ReferenceFrame
name{Abs}
type{Abs}

canTransformToDirectlyfAbs}
transformDirectly(RF){Abs}:Measure

transforrnlndirectly(RF){Abs}:Measure
copy{Abs}: ReferenceFrame

—(ReferenceFrame)
(^(ReferenceFrame)

OrbitingRF

EarthModel

>

A.

Topocentric

LocalFrame

epoch

SolSysBarycentric

Geocentric
Heliocentric

Figure 7 — ReferenceFrame Object Model

Chapter 7: Telescope Data Associations 25

7 Telescope Data Associations

7.1 General TDA Design Considerations

The most advanced stages of AIPS++ design have, since the February 1992 workshop in Green
Bank, been in the area of TelescopeModel and MeasurementSet. We now put them under the name
of a Associator class called TelescopeDataAssociation. MeasurementSet is the current terminology
for a set of measurement data; this name was adopted when it was decided in November 1992 that
Yeg and YegSets were names that caused more communication difficulties than they clarified.

AIPS++ Implementation Note 152 (Shone 1993) contains a summary of the design conclusions
from the November 1992 mini-workshop. It describes both philosophy and details for the mini¬
malist design of attributes for TelescopeModel and MeasurementSet. It also expresses the initial
description of the role of Applications Data Objects, which will be summarized later.

Figure 8 is a detailed version of the Object Model for both MeasurementSet and TelescopeModel.
The principal changes from the discussions in the Software Design section of the Project Bookshelf,
largely a result of the the November 1992 mini-workshop in Charlottesville and Green Bank, are:

• the diagram shows that TelescopeDataAssociation is a aggregation of MeasurementSet and
TelescopeModel

• each TelescopeModel can have one or many Measurement Equations reflecting different models
of the behavior of the telescope

• the full triad of calibration-related methods, TM::solve, TM:interpolate, and TM::apply are
indicated for TelescopeModel

• the main attributes of a "minimalist" approach to the essentials are listed for most classes

• the Instrument class replaces CorrelatorModel as a better general name for either single dish re¬
ceivers or interferometric correlators that produce measurements for ranges of time, frequency,
IF, and frequency channel

• each Receptor and Instrument class is shown as being optionally associated with classes with
separable frequency bandpass and non-frequency dependent classes that may be either tables
or parameterized functions; this separability is assumed for the current prototyping although
in general the system must be designed for non-sepaxable calibration in time and frequency

• each Receptor and Instrument class is also shown as optionally associated with an InterpModel
class used to interpolated calibration information for the cases where the CalSolution and
Bandpass Solution for Receptor or Instrument are stored in table form

Chapter 7: Telescope Data Associations 26

TelescopeDataAssociaton

t
MeasurementSet

time
frequency channel

IF
polarization

AntennaJJst
UserTags

data quality measures
measurement value

MeasurementEquation

TelescopeModel

solve
interpolate

apply

Environment

Zenith Opacity
Weather Measurements

Interference Measurements

Platform

Coord. Ref. System
Time System
Pole Location

Earth Rot. Rate
Orbital Parameters

yy

Receptor Jl
Name

lnvGains(Ant,IF,freq,t)
PrimaryBeam(Ant,IFx,y)

Tsys(Arit,IF)
Tcal(Ant,IF)

RecepCALSolution

Qain(AntlF,t)

- RecepBandpassSoiutlon

Gain(IF.freq,t)

RecepPolMatrix

RecepBPass(Ant,l F.frequency.t)

TelescopeElement

Location wrt Platform
Projection Plane Coord.

Sky Pointing Pos.
Mount Type
Axis Offsets

Gain(SkyPos)
Primary Beam Gain
Subarray Idenitifier

InterpModel

InstPolMatrix

Bandpass(Ant1 [^nt2].freq ja

InstCalSolutlon

Gain(Ant1,[Ant2,],IF,t)

InstBandpassSolutton

Gain(Ant1[(Ant],IF,freq,t:

MuWComponen

Program! D
Source name

Pointing position
Frequency list

Observing mode
Instrument list
Antenna list

orderSolves
nrrtarApplya

Instrument

lnvGain(Ant1[,Ant1],IF,freq,t)
Closure(Ant1 [,Ant2],IF,freq,t)

[Delay]
[Rate]

Freq. Chan. Width
Freq. Chan. Separation

 BaDduddtt)

I
Table

Figure 8 Telescope Data Associations with TelescopeModel
and MeasurementSet

Figure 9 shows a general FunctionalModel for the Calibration process involving MeasurementSet
and TelescopeModel. In this diagram the TM:solve process is shown as a process using measurement
data and measurements predicted by an assumed model of the radiation distibution involved. This
covers both models for simple calibrators and models for complex sources (and self-calibration).
The calibration solutions are shown as being written into Gain Solution Tables (CalSolution and
BandPassSolution), although in some cases parametric calibration representations may suffice. Fi-

Chapter 7: Telescope Data Associations 27

nally the TM.interpolate process shows inverse Gains written into Receptor and/or Instrument
tables, and these are then used by an "apply" process described as "extract calibrated measure¬
ments" which can be passed on to applications data objects that use them, such as Spectrum for
single dish data and VisSet for interferometric data.

Radiation
Distribution

Models

Source Model

Measurement
Coordinates

redicted
Measurements
vs Coordinates

MeasurementSet

^L
Model

MeasurementSet

X ^
Raw Measurements

vs Coordinates

Predicted
Measurements
vs Coordinates

Measurements
Solve Gain Solutions ■ Gain Solution

Table(s)

Receptor &
InverseGains— Instrument

Models
- InverseGains

TDAViewer

Figure 9 — Functional Model for calibration in Telescope Data Associations

7.2 Single Dish vs Interferometric Telescope Data Associations

One of the principal conclusions of the November 1992 mini-workshop was that when one is
careful about avoiding terminology specific to single dish or interferometric work, a surprisingly
large portion of the design for data handling in these two regims is the same. The similarity and

Chapter 7: Telescope Data Associations 28

differences are described in detail in Shone (1993). An example of this is using a general Instrument
class as one of the classed derived from TelescopeModel to describe both receiver backends in the
single dish domain and correlators in the interferometric domain. However, because there will be a
concentration of interferometric data handling during the Socorro Design Review and Workshop, we
are not detailing the single dish case, although it is in there in all design discussions and diagrams
where specifically interferometric aspects are not mentioned.

Chapter 8: Data Area Viewers 29

8 Data Area Viewers

As first documented in Shone (1993), TDAViewers, which at that time were called Applications-
DataObjects, may be very important classes which are the views on data in a Data Association
that are utilized in other classes and "programs". In this chapter we will summarize some of the
design thinking in these areas. The TDAViewers that are designed to be the applications interfaces
to data associations will be the basis for most applications programing in AIPS++.

8.1 Spectrum

The principle TDAViewer for spectral-line work, whether it be single dish or interferometry,
will be the TDAViewer we are calling Spectrum. As are all TDAViewers, it is a view of data in a
TelescopeData Association, and, in this case, of spectral data.

8.1.1 Construction of a Spectrum Object

Since the data from the spectra to be processed are in underlying table(s) of data, they are
formed from selection criteria supplied by the program/user to the Spectrum constructor. As with
all TDAViewers, the Spectrum object knows how to change its underlying data in its TDA, and in
additon has methods reflecting the useful things that can be done with spectra.

The principal constructed data will appear as vectors of intensity values and vectors of frequen¬
cies that may be derived from extracted channel description information.

8.1.2 Methods of a Spectrum Object

The most important methods of the Spectrum object are those that return matching vectors
of intensities and frequencies, by reference or by value depending upon whether the data are a
synchrononized view of the original TDA valuse or a changed by some operation (like averaging,
gridding, interpolating). The extraction process always involves selection criteria expressed in user-
domain terminology (which may differ from descriptors in the TDA), and may involve a change in
Measure-type if there are changes in units, reference frame, or representation involved. A primary
example involves changes of the vector of frequencies through Doppler shifts implicit in changes of
reference frame. In addition, there will be methods for returning a vector of velocities.

Chapter 8: Data Area Viewers 30

Spectra may have special "coordinates" in the TDA, such as the value of integrationPhase, that
are parts of the collection of spectral data, and the extracted spectra may be formed by arithmetic
on data in the TDA. An obvious example in the single dish domain is (ON - OFF) or other
combinations of data taken at different phases of instrumental state (ON, OFF, REFERENCE,
etc.). There can be comparable formation of "continuum baseline spectra" from specified fits to
some channels and extraction of spectra based upon differencing or dividing. Thus there will
methods for all the reasonable spectral manipulations.

Derived from the Spectrum object will be all the special spectral fitting, analysis, etc. classes that
are incremental additions to the minimalist attributes and methods of the basic Spectrum object.
Spectrum objects can be formed from model computations (represented by TelSystemSimulator in
Figure 1), and derived Spectrum object can involve arithmetic, fitting, etc. between model-derived
and data-derived spectra.

During the discussion in the mini-workshop in November 1992 it was jokingly suggested that
the role of a Spectrum TDAViewer was such that one could write TDAViewers that emulated the
behavior of many single dish data handling systems, which are largely systems for editing and
arithmetic on vectors of data. It is now being seriously discussed whether the prototyping of an
TDAViewer class call UniPOPS might be an interesting test of AIPS++ TDA and TDAViewer
design.

8.2 VisSet

For interferometric TelescopeDataAssociations the current concept is that all applications using
these data will access them through VisSet, or classes derived from VisSet, where VisSet is an
application data object which has all the methods for fundamental operations on visibility data.
Figure 10 shows an Object Model diagram of VisSet.

Chapter 8: Data Area Viewers 31

EZZ

Also will have a
baseline dass.

<>

VisSet
TDA_namelist
frequencyJist

polarizationjist
flaaStatus
selectVis

reselectVis
shiftVisPhaseRef

assessVis
average Vis

gridVls
dMdeVis

useCalibration

These are all TableVectors

Time Freq

cn
Pos'n Source

PoTn
1 1

Vis DQM

Integration VisSet
phase_ref.position

time_rai

putMeas

I
Spoke VisSet

uvPositionAngle

fitphaseGracfient
radialTransform

^.

I Table I

Z^.
MeasurementSet

TelescopeModel

TDA

TrackVisSet
phase_ref_position

antenna_palr

getMeas
putMeas

ModelVis
name

moclellmage(s)
make VisSet

Figure 10 — VisSet Object Model

8.3 Editing Data Quality Measures and Other Data

8.3.1 Editing Application Data Objects

The initial design for editing data in a Telescope Data Association is based upon editing
TDAViewers that are a user-specified view of the TDA. This may be a view of all or part, cali¬
brated or uncalibrated, forms of the data in the TDA. Figure 11 shows a Functional Model diagram
for one way to change (edit) data in a TelescopeDataAssociation using methods that operate on
application data objects in general, but which we represent by VisSet/Spectrum. The principal
concept is that from a VisSet/Spectrum TDAViewer formed as a view of the TDA, a subset (or
copy) is formed called a WorkSet, and with each WorkSet an OriginMap is created that desribes
the mapping between data values in the original TDAViewer and the WorkSet. The Workset is

Chapter 8: Data Area Viewers 32

modified and examined by appropriate processes shown in Figure 11, and when appropriate the
current state of WorkSet and the OriginMap are used to apply changes in the TDA by passing the
appropriate change descriptors to change/editing methods in the VisSet/Spectrum TDAViewer.

TelescopeDataAssociation

TDA Data Changes

view of changed
WorkSet data

:xamine anc
jpecify Change)

in WorkSet

change
descriptors

Change Data
[DQMs, other)

Figure 11 — Functional Model of Changing (Editing) TDA DATA

8.3.2 Editing Tables

It is planned to have special Application Data Objects for Editing Tables themselves independent
of their relationship to other Tables. This will allow immediate and relatively low level access
to data. The philosophy is to implement the sort of table editing, table arithmetic, etc. that
is described in the previous section, but for tables themselves rather than associations of tables
oriented to specific types of application data objects. This TableEditor will mainly need to use the
Table classes and the Measure class to interpret each column in a Table in terms of its measure-
type. This should provide the type of data access for both de-bugging and user manipulation that
has been very successful in MIDAS.

8.3.3 Examining Data in Plots and Listings

During the prototyping phase, use of the Khoros/Cantata User Interface for development pur-

Chapter 8: Data Area Viewers 33

poses implies that the level of examination of data by plots, listings, images, etc., will be involve
preparing data with the Viff class. Eventually, preparing data in the form of plot input objects
that can be handled by the display system will be needed; but these have not yet been designed,
nor has the display or visualization system.

Chapter 9: Image Classes 34

9 Image Classes

In previous discussions we have distinguished between stored images and images as application
data objects. Most images in applications code are applications data objects, that is, they are views
on stored images. Simple as some of them might be, images as classes have not yet been discussed
or designed in detail. However, Figure 12 shows an Object Model diagram with several important
aspects of the image class system.

Image

fX Array

Hypecknage epkna

All images have the
same coordinates

J

(base

changeRefFrame{Abs}
set/getlmeasure{Abs}

set/getSublm{Abs}
grid/degridSublmfAbs

set/getRegion{Abs}
imageAiithmetic{Abs}

i>

.A

Listlmage

Table

5
ImageDataAssociation

§

RefFrame

Measure

Measure

Coordinate

Pixel

RefFrame

Modellmage

I
Mat MathFunction

Figure 12 — Image-related classes

Chapter 9: Image Classes 35

Because most images in astronomy are n-dimensional arrays of "values" as a function of coor¬
dinates with even intervals in each axis, we reserve the class name Image for images of this type,
indicating that they inherit from the Array class. At the same level we distinguish between Listlm¬
age, which is a Table form of image that allows arbitrary coordinate intervals and non-line image
coordinate transformations. We also assume there is a Modellmage class based upon mathematical
functions with parameters, so it is a parameterized model of an image; this is based upon a general
MathFunction class that is a base class for general parameterized functions. An early prototype of
MathFunction has been used in GridTool.

In Figure 12 we show Image, Listlmage, and Modellmage as components of an ImageDataAs¬
sociation. We tentatively assume that the attributes and methods needed for multiple or mosaic
imaging situations are objects which are associated with ImageDataAssociation. However, for cases
of multiple images with the same n-dimensional coordinates, we have the class Hyperlmage.

The most important class in the Image-related class system is Ibase, since it is an abstract base
class for all images. Ibase, as shown in Figure 12, is associated with a Measure for each image
value or pixel and a Measure for each coordinate axis. Both are associated with a ReferenceFrame
(and by implication a Representation object) object. Methods of Ibase carry out operations of the
following type:

• arithmetic operations between images of the same measure-type and shape

• change pixel and coordinate values based upon reference frame changes

• change measure-type pixel and coordinate values

• get and put subset images (Sublmage) of an image

• get and put subset regions (irregular) in an image

Image-related classes need much more design and prototyping before we will be sure essen¬
tial needs are met for a powerful set of general image-related classes that can be used for many
specialized purposes.

Chapter 10: MeasurementModel and Imaging 36

10 MeasurementModel and Imaging

10.1 Mathematical Basis for the MeasurementModel Class

While, on the one hand, there has been extensive work on image computation based upon use
of basic math classes and the higher level GridTool and FFTServer classes, a general class system
for "imaging" has not yet been prototyped. Early discussions of this problem raised the question
of whether "Imager" classes were valid classes. The conclusion at the time was that they were
in the same sense as Coggin's "enzyme" classes, where classes themselves simple produce changes
in other classes. However, as introduced earlier, the Cornwell (1992a) document indicated there
was a simple conceptual system for imaging based upon an operator A that acts on the radiation
distribution the sky, 5, to produce measurement data 2?, and we believe that this leads to a natural
base class we call MeasurementModel. For the current discussion we assume that we are dealing
with calibrated data so the equation on which the measurement (nee imaging) models are based is

^MM S = ^CalMS

so one is dealing with MeasurementModel transformation of the sky's radiation distribution into
calibrated MeasurementSets.

Given that background, let us summarize the mathematical essence of Cornwell (1992a) and
use the results to define the MeasurementModel base class. In addition to the previously defined
quantities we need to define a weight vector W for each measurement set -DcaiMs* Given that,
the following matrix algebra operations are definable that constitute the essential operations of
MeasurementModel:

"predict — -^MM b

given any model distribution for S and a mathematical formution of a MeasurementModel selected
from the MeasurementEquation class inherited from MathFunction. One then uses

Wnorm — -^MM ^-^MM

to compute normalized weights, and

Ssolve = AMM W-DcalMs/Wn

Chapter 10: MeasurementModel and Imaging 37

to produce the principal solution for 5, which is sometimes called the "dirty" image. One then has

'-'observe — AJ^J^J W (AMM ^model)/ Wn

for the computation of an "observed" radiation distribution for any model of the source distribution,
obviously the principle solution point spread function (PSF) or "dirty" beam if the model is that
of a point source.

Many fitting or deconvolution algorithms use the services of methods for computing errors and
error gradients. Errors themselves are determined from

X = (-^MM Smodel — -^CalMs) W (AMM S'model — -^CalMs)

which computes the fit of any model to the data, which may be in image, visibility, etc., domain,
and the gradients to the fit of model and data are computed with

1W _.T
2 dS AfAM WX^MM 5model — DcalMs)-

In Figure 13 we show an Object Model for the MeasurementModel base class with an indicated
association with a MeasurementEquation, and a beginning of the obvious derived classes for prin¬
cipal solution imaging and image deconvolution. In Figure 13 the data vectors D are associated
with coordinate vectors u and the source distribuition on the sky are for source coordinates x.
The principal solution imaging class does all of its work with MM.solve and MM.observe methods
of MeasurementModel. Image deconvolution classes, conceptually, and in reality for methods like
MEM, do most of their work with MM.chisqResid and MM.dchisqdS methods.

Chapter 10: MeasurementModel and Imaging 38

PrincipalSolnlmaging

selectedOata(=D)
assumedWt(=W)

dirtylmage(=Ssolve)
dirtyBeam(=Sobserve)

MeasurementModel
measurements(= D vs u)
sourceCoordinates(=x)

measurementWt(= W vs u)
measurementA(=A)

predict(Smodel):Dpredict
solve(D,W):Ssolve

chisqResid(Smodel, D)
dchisq_dS(Smodel,D)
hDiagonal(W):Wnorm

observe(Smodel,W):Sobserve

MeasurementEquation
AS = D

A.

ImageDeconvolution

dirtylmage(=Ssolve)
dirtyBeam(=Sobserve)

deconvolvedlmage(=Smodel)

Figure 13 — Measurement Models

While the MeasurementModel class seems to be an important beginning to a class system for
algorithms for the reconstrucition and improvement of many types of applications data objects, it
is only a beginning to one of the most important areas of design and prototyping in AIPS-I--I-.

Chapter 11: References 39

11 References

Bottomly, T. 1993 "AIPS+-I- Software Design: Telescope Data Handling, AIPS-I-I- Implemen¬
tation Memo 108. Cornwell, T.J. 1992a, "Recommendations for the AIPS-I-+ Imaging Model",
AIPS++ Implementation Note 147.

Cornwell, T.J. 1992b, "Recommendations for the AIPS+-1- Telescope Model", AIPS-I-+ Imple¬
mentation Note 148.

Hjellming, R.M. and Glendenning, B.E. 1992, "An Initial Design for Major AIPS+-I- Objects",
AlPS-f + Implementation Memo 102.

Shone, D.L. 1993 (ed.), "Measurement and Telescope Data Sets and Applications Objects for Single
Dish Work and Interferometry", AIPS-I-+ Implementation Note 152.

Shone, D.L. and Cornwell, T.J. 1992 (eds.), "Calibration, Imaging, and Datasystems for AIPS++
- Report of the meeting in Green Bank, West Virginia, 3rd-14th February, 1992", AIPS+-I- Im¬
plementation Memo 103.

Chapter 12: Appendix 1 - List of Classes (Data Dictionary) 40

12 Appendix 1 - List of Classes (Data Dictionary)

Once the major classes have been identified, on of the steps in the Rumbaugh OMT is preparation
of a "data dictionary" in which terms are defined. This following is such data dictionary that
matches a number of the current higher level diagrams.

TDAViewer

a lable or an abstract class describing a view on data in a data association with methods
for extracting and changing that data.

Array a class for array handling by indexing n-tuples of integer numbers with methods for a
wide range of operations valid for arrays

BandpassSolution

a table associated with the Receptor class that contains frequency-dependent calibra¬
tion tables with data derived from MeasurementSets and intended to be inserted in
calibration measure columns.

CalSolution

a table associated with the Receptor class that contains time[-frequency]-dependent
calibration tables with data derived from MeasurementSets and intended to be inserted
in calibration measure columns; antenna or antenna-pair based, depending upon the
table to which it is attached.

Cube a class derived from Array implementing mathematical operations valid for 3-D arrays.

DataSource

a source of measurements for a MeasurementSet. May be telescope data media written
by a telescope system, a real time data stream for a telscope system, or a TelescopeSys-
temSimulator

Element a component of an array or measure

ElementType

a class encapsulating the genus, species, and ReferenceFrame identification for a mea¬
sure of a particular type, e.g. coordinates, frequency, space-time vectors, IQUV, etc.

Environment

a class containing direct measurements of the environment of telescope systems during
observations. Environment includes weather, atmospheric parameters (if measured),
and interference data (if measured).

ErrorElement

a class with attributes and methods appropriate for describing errors and their types
in the Measure class

Chapter 12: Appendix 1 - List of Classes (Data Dictionary) 41

FrameDescription

a class associated with ReferenceFrame which contains the attributes for each element
of Measure

Image a class containing data and methods for measures as a function of 1-N dimensional
coordinate tuples with even coordinate intervals, specific genus and species of reference
frame(s), and methods for accessing and transforming these data

IntegrationVisSet

a class derived from VisSet that has organization and methods appropriate to all visi¬
bilities for a single integration time for measurements from an interferometric array.

Instrument

a class derived from TelescopeModel that describes the state of backend information
for a telescope system. For a single dish it describes data and calibration informa¬
tion for spectrometers, etc. For a correlation interferometer it describes the state and
calibration properties of the correlator output.

Matrix a class derived from Array which allows mathematical operattions valid for matrices

Measure a class identifying the value(s), errors(s), and unit(s) for a measure-type with trans¬
formation properties determined by the ReferenceFrame. Time, frequency, position,
velocity, receptorlD, total power, visibilities are all examples of measures with a spe¬
cific genus and transformation rules for that genus.

MeasurementEquat ion

an abstract class which models the measurement equation for how a particular telescope
system produces measurements.

MeasurementModel

an abstract class with data and methods for constructing, or reconstructing measure¬
ments, usually made by a telescope or telescope system. An ImagingModel is an
Imaging-related MeasurementModel that has at various times been called an Imager.

MeasurementSet

a table of measurement data where each column is associated with a measure-type and
a data-type that may be an array or another table.

Mult iComponentModel

a class describing the state of a telescope system as a function of time and other coor¬
dinates which is used to store global information about the observing process and the
telescope(s) and instrument(s) used in the observing process that results in measure¬
ments; it also couples the solve and apply methods of all the components it contains.

ObservingLog

a summary of measurments in a DataSource

Chapter 12: Appendix 1 - List of Classes (Data Dictionary) 42

ObservingSchedule

a class or table prescribing the parameters controlling the observing process for a
telescope or telescope system. Optionally associated with a DataSource.

Platform a class with parameters and methods for time, location, etc., used during the observa¬
tions: type of RefFrame; time parameters; [orbital parameters]; etc.

RadiationDistModel

a table or array radiation intensities as a function of time, position, frequency, and
polarization that is used to supply models of observed astronomical sources of radiation

Receptor a class derived from TelescopeModel that contains antenna-IF based state information
including calibration parameters like complex antenna gains. The later can include
bandpass calibration, and polarization calibration parameters that may be associated
with tables of calibration solutions derived from calibrator data in a MeasurementSet.
Associated with an InterpModel class for interpolation from calibration solution tables
to receptor calbration tables.

Series a basic TDAViewer dealing with two vectors of related data inside a data association

Spectrum a class derived from Series where one vector is data and the other vector contains
frequencies for that data

SpokeVisSet

a class derived from VisSet via Integration Vis Set with data organization and meth¬
ods appropriate to a set of visibilities for a number of antenna-pairs in an East-West
interferometric array.

Table a set of classes for storing values in a structure of rows and columns. The type of all
values in a given column is the same; valid types include arrays and tables. Tables may
be directily associated with one another

TelescopeDataAssociation

an associator organizing an aggregation of MeasurementSet and TelescopeModel(s)
derived from a DataSource of measurement data for a telescope.

TelescopeElement

A class with information describing a particular telescope. Its: location with associated
ReferenceFrame; pointing equation/parameters; mount type; mount axis offsets; known
antenna gain(az,el); known antenna beam shape; and the subarray the antenna is used
in if it is part of an array.

TelescopeModel

a class associated with a MeasurementEquation and a MeasurementSet that describes
the state of the telescope during the collection of the measures in the MeasuremeutSet.
Telescope state information including calibration parameters are included in Telescope¬
Model, which itself can be related to a number of specialized telescope model classes.

Chapter 12: Appendix 1 - List of Classes (Data Dictionary) 43

TelescopeSystemSimulator

a simulation program, or set of programs, that emulates the operation of a telescope
producing measurements.

TrackVisSet

a class derived from VisSet with data organization and methods pecular to a single
baseline-pair or "track" in the u-v plane

Vector a class derived from the Array class with methods valid for 1-D arrays

VisSet a class providing the TDAViewer interface to visibilities and related data stored in an
interferometric TelescopeD at aAssociation

Short Contents

1 Purpose of This Overview 1
2 Major Subsystems 4
3 Infrastructure Classes 9
4 Mathematical Array and Array-based Classes 11
5 Table-based Data Base System 15
6 Measure, ReferenceFrame, and Representation Classes 22
7 Telescope Data Associations 25
8 Data Area Viewers 29
9 Image Classes 34
10 MeasurementModel and Imaging 36
11 References 39
12 Appendix 1 - List of Classes (Data Dictionary) 40

Table of Contents

1 Purpose of This Overview 1
1.1 Design Approach and Status 1
1.2 The Point of View Taken for Class Development 2

1.2.1 Radiation Measurement 2
1.2.2 Mathematical Classes 2
1.2.3 Table Classes 2
1.2.4 Comprehensive List of Major Classes 3

2 Major Subsystems 4
2.1 Major Subsystem Components 4
2.2 An Operator Notation for the Major Processes or Classes 7

3 Infrastructure Classes 9
3.1 Containers 9
3.2 I/O 9
3.3 Errors and Exceptions 10
3.4 Miscellaneous 10

4 Mathematical Array and Array-based Classes 11
4.1 Fundamental Classes and Functions 11
4.2 Iteration 12
4.3 Other 14

5 Table-based Data Base System 15
5.1 Tables 15
5.2 Storage Manager 18

6 Measure, ReferenceFrame, and Representation
Classes 22

7 Telescope Data Associations 25
7.1 General TDA Design Considerations 25
7.2 Single Dish vs Interferometric Telescope Data Associations 27

8 Data Area Viewers 29
8.1 Spectrum 29

m

8.1.1 Construction of a Spectrum Object 29
8.1.2 Methods of a Spectrum Object 29

8.2 VisSet 30
8.3 Editing Data Quality Measures and Other Data 31

8.3.1 Editing Application Data Objects 31
8.3.2 Editing Tables 32
8.3.3 Examining Data in Plots and Listings 32

9 Image Classes 34

10 MeasurementModel and Imaging 36
10.1 Mathematical Basis for the MeasurementModel Class 36

11 References 39

12 Appendix 1 - List of Classes (Data Dictionary) .. 40

