
AIPS MEMO NO. _ Z
NATIO NAL RADIO A S T R O N O M Y O B SE R V A TO R Y

E D G E M O N T R Q A D C H A R L O T T E S V IL L E . V IR G IN IA 2 2 3 0 1

T E L E P H O N E 0 0 4 2 9 G 0 2 1 1 T W X 5 1 0 5 B ~7 5 4 B 2

September 3, 1982

To: Whom it may concern
From: WaWa
For: Whom the bell tolls
Re: Suggested changes in AIPS to make life easier on users, programmers, managers

I. FORTRAN 77
Why don’t we make FORTRAN 77 (extended) the AIPS standard instead of the
current FORTRAN 66?
Advantages:

A. Easier character string manipulations—You can declare CHARACTER
variables or arrays and use character assign, compare, substring
and concatenation operations.

B. IF-THEN-ELSE constructions
C. Some generalizations of FOR 66 that we might or might not use,

e.g., multiple entry and return in subroutines, zero or negative
array bounds, real variables in DO parameters, PARAMETER
statements...

Disadvantages:
A. In some cases the advantages of the CHARACTER variables cannot

be realized because you can’t mix them in structures with non
character variables (viz. our headers). This is basically
because the length in bytes of a CHAR variable is unpredictable.

B. ENCODE and DECODE are not standard FOR 77 (neither are they
standard FOR 66). They are extensions on the VAX version but
are probably not supported on MODCOMP and definitely not
supported on IBM versions. There is, however, a relatively
simple substitute ("internal transmission").

C. INTEGER*2 is not supported on MODCOMPS as presently advertised.
It is supported on VAX and IBM.

Recommendations:
I think advantages A, B, and C far outweigh disadvantages A and B.
Disadvantage C is fairly serious, but seeing as (1) the MODCOMP will
probably be phased out during next year, and (2) I think later
versions of MODCOMP FORTRAN 77 will probably support INTEGER*2, I
think we should start using FORTRAN 77 experimentally starting the
beginning of next year.

II. Pseudo INTEGERS
Why not drop Pseudo-I*4 and just use normal 1*4?
Advantages:

A. Pseudo-I*4 is a pain in the ass.
Disadvantages:

A. You can’t (or couldn’t) use normal 1*4 on PDP-lls. This may
become important if you want to use AIPS on the pipeline.

B. Pseudo-I*4 is convenient for addressing the FPS-120B array
processor. Without it you have to use unsigned 16 bit
arithmetic or some other such nonsense. Perhaps the A P’s
could be reprogrammed (actually the host interfaces) to use
real 1*4.

O P E R A T E D B Y A S S O C IA T E D U N IV E R S IT IE S , INC..

U N D E R C O N T R A C T W I T H T H E N A T IO N A L S C IE N C E F O U N D A T IO N

2 .

Recommendation:
Research the problems of the PDP-11's and the AP's. If these are
not major, drop Pseudo-I*4.

III. Headers

There is a need to store various pieces of information that must be
machine readable, must be fairly easy to access quickly and unambig
uously, but that vary in size and structure from application to
application. Examples of these are: steering and phase stopping
centers if different from the tangent point, scaling factors for
individual maps in a data cube, and as yet unspecified parameters for

kinds of specialized applications such as optical data. It has
been suggested that we put this stuff in the history file, but this
suggestion fails the tests of quick access and unambiguity. The need
for flexibility suggests the use of keyword-coded, character string
entries (e.g., RA-STEER=193.14563/ MAXIMA=32.3,44,-12.553.../) rather
than the current position-coded, binary entries.

If we were starting ab initio I would suggest making the entire catalog
headers keyword-coded, but the labor involved in restructuring the
whole system to accomodate this seems excessive. Instead I suggest
retaining the current binary header for defining the basic structure
of the data in the file, and adding a new type of header/history
record which is keyword-coded/character string but where it is the
programmer’s explicit responsibility to maintain brevity, consistency
and unambiguity, and to document the keywords and formats he/she uses.
These new records could be placed (1) in a new type of ZMIO-access
file, (2) in our current catalog file as extensions to the current
records, (3) in our current history file in specially marked (possibly
linked) records.

I think any of these three would work but (1) seems the most confusing.
(3) is probably the simplest.

Recommendation:

Do it (either (2) or (3)) on a timescale consistent with the
incorporation of FORTRAN 77, since this will simplify access to
the new records. FOR 77 is of course not necessary to use the
new records, so the suggestions are not strongly coupled.

IV. Utility Tasks

There are a number of utility tasks that AIPS programmers, station
managers and more advanced users often need. These include SETPAR,
FILINI (or whatever it’s called nowadays), and one or more local
system text editors such as SOS or SEDIT. There should be versions
of these tasks that can be run as standard AIPS tasks so you don't
need to continually enter and exit AIPS. We should try to make the
commands to FILINI or SETPAR look more like standard AlPSese; e.g.,
use free format entry of numbers and more verb-like entry of commands.

Recommendation: Do it.

Addressable terminals
Most of the terminals we use are random access addressable, i.e.,
alphanumeric data can be sent to specific locations on the displays
where it replaces, in a legible fashion, older data there. We should
make some use of this.

Advantages:
Information of essentially different types can be put in
different parts of the screen for legibility, or convenience.
For example, you might let the task roll-off information
appear at the bottom of the screen (at some low-budget
installations, they only allocate one terminal to AIPS). Very
important messages on task status might appear in a special
area (e.g., APCLN running, or crashed, or waiting for new
input...). Rapidly changing data such as present cursor
location might appear in a dedicated area until you finalize
it by hitting a button.

Disadvantages:
You can’t do it on a TEK 4012, which was our original minimum
terminal. You would have to put enough information in ZDCH
and SETPAR to characterize the terminals in use. It would be
fairly complicated.

Recommendation:
Think about it for a while, probably do it in the long run.

More general AIPS responsibilities
The present main AIPS task doesn't do much except use POPS to
interpret input information, and run a few verbs. In principle,
while waiting for input, which is what AIPS is doing most of the
time, it could perform some background duties, of which the most
important would be to maintain better control over spawned tasks.
Examples might be:

Compare a list of tasks which should be running with those found
by a spy-like search in order to find those which have crashed.

Clean up scratch files for crashed tasks.

Query tasks to see if any want additional input. If so, manage
the use of the terminal to avoid confusion.

Recommendation: Think about it.

