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Array Processor Memory Size 
W. D. Cotton

Introduction

In many of the recent discussions of future NRAO 
computing plans there has been an implicit assumption that 
large memories (and address spaces) will make a significant 
increase in array processor preformance. In this memo I will 
investigate the effects of array processor memory size on 
tasks currently available in AIPS and then suggest possible 
improvments that could be made using other methods explicitly 
designed for large memory size machines. Since AIPS has 
developed using FPS array processors which are limited to a 
6 4 kword address space, many of the methods used are designed 
to circumvent the more serious effects of the small AP memory 
size.

There are two kinds of problems caused by small memory 
size. First and most serious is the threshold type of 
problem in which an operation cannot be done with less than a 
minimum memory size. An example of this is gridding. A 
finite number of rows in the grid must be kept in memory; 
the gridding routine in MX using an FPS AP with 6 4 kwords can 
only grid rows 4096 pixels long if the usual 7 rows are 
required by the convolving function support width.

The second kind of problem due to small memory size is 
inefficiency. (With some thought threshold problems can 
usually be changed to this class.) The inefficiency is 
usually the result of doing an operation a piece at a time 
and using the host memory or disk as temporary storage. An 
example of this is the disk based two dimensional FFT used in 
AIPS. If the transform does not all fit in the AP memory a 
two pass method is employed. In the first pass as many rows 
as will fit into the AP are read in, the rows are FFTed and 
the result is partially transposed and written to the host 
disk. The second pass reads in the partially transposed 
blocks, completes the transpose, FFTs the columns and sends 
the result to the host. This operation is inefficient 
because it requires an extra round trip for the data between 
the AP and the host.

Timings far the aips task MX.
In the following section I will evaluate the cost of the 

inefficiencies imposed on AIPS by a small AP memory size. 
For the purposes of comparision I will use timings on the VAX 
for the new AIPS routine MX. MX is a good task to use for 
this purpose for two reasons 1) it is our fastest method of 
producing deconvolved images and 2) it does most of the 
operations we currently do in the AP (FFT, gridding, model 
computation etc.). Since we cannot make our AP bigger, the 
tests were done telling MX that the AP was smaller. Table 1 
shows the results of three runs of MX doing an identical
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CLEAN on a 256 X 256 image CLEANing a 240 X 240 region.

Table 1 
MX timings (256x256 CLEAN)

AP size # maj. cycles REAL(sec) CPU(sec) Real ratio CPU ratio
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64 k 5 438 145.12 1 1
32 k 6 483 166.22 1.10 1.14
16 k 6 473 159.02 1.08 1.10

1. FFT timing
The principle effect shown in Table 1 is that for 

the smaller AP sizes an extra major cycle is required. 
It is important to note that the FFT is done entirely in 
the AP for the 6 4k case but requires a disk based 
transpose for smaller APs. The effects of this are not 
noticible in the overall timing. Table 2 shows the 
average times in the three runs in Table 1 for gridding, 
FFTing and correction the image.

Table 2
Map (grid, FFT, correct) time

AP size REAL(sec) CPU(sec) Real ratio CPU ratio

64 k 30.8 13.2 1 1
32 k 33.8 14.1 1.10 1.07
16 k 33.0 13.8 1.07 1.05

Table 2 shows that the disk based transpose does add
a small amount to the time for making the maps although 
the AP size does not seem to matter once the size is 
smaller than that needed for the entire image. In fact 
the smaller size seems to give slightly better results. 
Table 2 is consistent with timing measurments for just 
the FFT which show 7 sec Real time (3.92 sec CPU) for the 
6 4 k AP and 10 sec Real time (4.77 sec CPU) for the 16 k 
AP.

In order to evaluate the time used by different 
portions of the FFT routines, a special program was 
written which does FFTs on a zero filled file. Three 
versions of the AIPS routine DSKFFT (with associated 
versions of PASS1 and PASS2) were written to time three 
operations: 1) Full FFTf 2) an FFT omitting all calls to 
the array processor and 3) an FFT omitting all calls to 
the disk I/O routines. The latter two functions willr of 
course, produce nothing of interest but will allow the 
determination of the cost of functions omitted.

In addition to the three operations times, maps of 
three different sizes were FFTed; 256X256, 512X512 and 
1024X1024. The 256x256 transform was done entirely in 
the AP memory and the two larger transforms used a disk 
based transpose. The FFTs were half plane complex to
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full plane real as are most of the FFTs in APCLN and MX.

Since use of the array processor is not included in 
the CPU charges and disk head and other I/O conflicts 
will slow down the operation both real and CPU times used 
are of interest. Both real and CPU times are sensitive 
to the current loading on the machine the timing test 
were done in different usage environments. Table 3 shows 
the results for a moderately busy machine and Table 4 
shows the timings in an otherwise emtpy machine. For 
reference, the last column in Tables 3 and 4 give the 
time required for the AP to do the FFT (FFTs plus two 
swaps of each word).

Table 3
Moderately Busy VAX Timings, Real (CPU) in sec. 

Image size Full No AP No Disk AP time

256X256 6.5 (3.81) 2.2 (0.33) 4.5 (3.41) 0.51
512X512 25.5 (10.9) 14.0 (1.75) 16.5 (8.56) 2.IS

1024X1024 85. (24.9) 57. (6.15) 47. (19.3) 8.94

Table 4
Empty VAX Timings, Real (CPU) in sec.

Image size Full No AP No Disk AP time

256X256 6.3 (3.78) 2.5 (0.36) 5.0 (3.39) 0.51 
512X512 25.0(10.0) 14.0(1.69) 15.0(8.03) 2.13 

1024X1024 83. (24. 8) 56. (6.15) 47. (19.2) 8.94

There are several results from Tables 3 and 4. The 
most important is that the total real time to do the FFT 
is about ten times the time it takes the array processor 
to do the FFT and shuffle the data. Thus there is plenty 
of room for improvment. It is interesting to note that 
the timings do not seem to be affected much by moderate 
use. This is probably due, in part, to the fact that the 
FFT routines spend at least half of their time waiting on 
either the disk or AP I/O.

A second result from Tables 3 and 4 is that most of 
the CPU time used is in talking to the AP. This could be 
reduced by chaining AP calls through use of the Vector 
Function Chainer.

A third result is that AP operations and disk 
operations for FFTs requiring a disk transpose take about 
the same amount of real time. This results in an 
approximately 50% increase in the time to do an FFT if a 
disk based transposed is used.

2. In-AP CLEAN timing
The results given above indicate that the speed of 

MX is not seriously affected by the AP memory size in
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doing the FFT. The FFT itself is about 40 % slower but 
when diluted by the other operations being done this 
effect becomes relatively insignificant. What did appear 
to slow the program was the increase in the number of 
major cycles imposed by the limited number of residuals 
and limited beam patch that could be put into the AP. 
The number of major cycles required appears to be a 
rather weak function of AP memory size. If the size of 
the AP is sufficiently large that all of the residual 
points and the entire beam can be put into the AP, a 
classical CLEAN can be done and the operation takes only 
one major cycle. Reducing the number of cycles will 
significantly speed up the CLEAN; unless the in-AP CLEAN 
gets too expensive.

Numerous timing tests have shown that the in-AP 
CLEAN takes about 3 microsec per map residual point per 
component. Table 5 shows the time required to find 1000 
components using different numbers of residual points.
It should be noted that the process of finding CLEAN 
components is computation limited rather than I/O rate 
limited and the times quoted in Table 5 are quite close 
to the times based on counting cycles in the microcode.

Table 5
Time to find 1000 components

Size of residual image in AP Real time per 1000 comp.

128 X 128 49 sec = 0.8 min
256 X 256 197 3.3
512 X 512 786 13.1

1024 X 1024 3146 52.4

It is evident from Table 5 that, if many more than 
about 128**2 residual points are used (about the limit 
for FPS APs), the time to find the components will 
dominate the process. In many cases it would be faster 
to search fewer residual points and do more major cycles 
than to try to do the entire CLEAN in one cycle. Other 
reasons that multiple cycles are desirable are that MX 
removes aliased sidelobes and can CLEAN nearly the full 
field if multiple cycles are done. The ability to do 
full field CLEANS allows MX to make images a factor of 4 
smaller than the UVMAP - APCLN combination and accounts 
for most of the speed of MX.
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III. Suggestions f_QX Improvement
The above timing numbers suggest that simply adding a 

larger AP to a system running the current version of AIPS 
would not improve its preformance significantly and in fact 
in the case of CLEAN the total run times could increase. In 
this section I will discuss various possible methods to 
improve the current system in order of increasing expense 
(and hopefully payoff).

1. Improvments to AIPS with an FPS AP.
Currently in AIPS there are a number of routines in 

which modest restructuring could allow the number of 
calls to the AP to be reduced by means of a Vector 
Function Chainer (VFC) routine. Each call to the AP 
takes a minimum of 3 milliseconds on the VAX-FPS 
combination and reducing the number of calls could 
improve performance. Most of AIPS I/O is done in the 
double buffered mode and calls to the AP are overlapped 
with disk I/O. This disk I/O is in general more 
expensive and the improvment made from reducing the 
number of AP calls might not be very noticible in an 
otherwise empty machine but probably would be noticible 
in a busy machine.

2. Large memory methods.
If AIPS were provided with array processors with 

memory sizes modestly (say 10 times) larger than the FPS 
AP120B devices then methods could be developed which 
could make explicit use of the large size. One (and the 
only) specific example that comes to mind is an 
improvment to the gridding routines. If the entire grid 
to be transformed could be kept in memory, the data would 
not have to be sorted. This would probably not make the 
gridding run much faster but the sort step could be 
omitted.

The effect of eliminating sorting can be estimated 
from the AIPS accounting files. Table 6 gives the 
fraction of the real and CPU times used in sorting on 
various NRAO systems expressed both as a fraction of all 
AIPS processing and as a fraction of the most expensive 
single operation (APCLN+PHCLN for VLA processing and 
fringe fitting for VLBI).

Table 6
Fraction of Time Used for Sorting

Total Largest
System Real CPU Real CPU

CVAX::-VLB 0.013 0.043 0.24 0.18
CVAX::-VLA 0.056 0.023 0.07 0.07
AIPS:: 0.042 0.120 0.34 0.45
VAX3:: 0.031 0.0 93 0.22 0.29
Modcomp 0.018 0.084 0.14 0.24
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These numbers indicate that sorting takes on the 
order of 10% of the of the current AIPS processing and 
uses 20 to 40% of the time used by the largest single 
operation. Eliminating sorting in our current systems 
would be a significant but not major savings. However, 
future improvements in mapping, CLEANing etc. would make 
sorting a more critical item unless there are comparable 
improvments in sorting. In fact, the effects of MX on 
the system performance are not reflected in Table 6 and 
in many cases it is a factor of 2 faster than the UVMAP - 
APCLN combination. Fred Schwab points out the large 
memory could be used to make sorting more efficient.

The VLBA may further complicate this analysis. The 
VLBA will, in the observing modes currently envisioned, 
produce large amounts of data but may often require 
relatively small images (512 or 1024 pixels**2). Since 
sorting is done more frequently for VLB than VLA data 
(more self cal) , the sort time may become a significant 
portion of the computing load. In this case the full 
gridding capability becomes more important.

3. Parallel processing
There are a significant number of data processing 

applications in which parallel processors, ie. a number 
of APs, can be easily ganged onto the same problem. The 
multiple field capability of MX is one such case as is 
the general problem of spectral line data. Gridding, 
transforming and CLEANing multiple fields or spectral 
channels are very parallel operations and could easily 
use a number of APs. With multiple APs the problems of 
communication with the host may be more difficult.

4. Faster I/O and APs.
A relatively simple but costly way to get better 

preformance than the current VAX-FPS combination used for 
AIPS is to use machines with faster I/O and faster APs. 
The faster I/O is the more critical since, in most cases, 
the FPS array processor runs significantly faster than 
the VAX can keep it fed.

The importance of I/O speed is demonstrated by a 
recent timing comparison between the VAX and the MODCOMP 
in Charlottesville on an identical run of APCLN; the 
MODCOMP ran about 20 percent faster in both real and CPU 
time. The MODCOMP has a slower CPU but faster I/O than 
the VAX.

5. Fast disk on the AP
Since the current bottleneck in the system seems to 

be getting data from the host disk to the AP and back 
again, putting a fast disk on the AP would eliminate one 
link in this system. If the AP could talk to the disk 
drive fast enough we could probably achieve much closer 
to the theoretical speed of the AP. In the framework of 
AIPS this would be done by putting much or all of each AP
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task into the AP. This could in principle be done on the 
Numerix or Star AP and perhaps others.

It should be noted that putting much more of the 
computing load into the AP requires getting much of the 
AIPS system to run inside the AP. This requires that the 
operating system inside the AP be as flexible as those in 
general purpose computers. At present we have no 
independent verification that this is the case.

In order to determine the I/O bandwidth to keep the 
AP busyr I have used the quoted times for various 
operations in an FPS AP 120B and then computed the I/O 
rate necessary to read from and return to disk the values 
for and the results from the relevant operations. These 
values are tabulated in Table 7.

Table 7
I/O Rates to Keep an FPS AP 120B Busy.

Operation I/O rate Mbyte/sec

Griding data 1.0
Add two vectors 14.8 
Complex FFT (1 dim)

512 3.0
1024 2.8
2048 2.5

Note: The rate quoted for gridding does not include 
reading out the final grid.

Obviously different operations require different I/O
rates but in general a rate on the order of a few
Mbytes/sec is necessary for an AP the speed of an FPS AP 
120B. Faster APs need correspondingly faster I/O.

Huge AP memory
If the array processor had a truely huge memory, 

perhaps 100's of megabytes, the scratch files used in all 
of the current AIPS AP tasks could be eliminated and 
input data, as well as intermediate results could be 
stored in memory. Of course, the task would have to be 
entirely in the AP. Such an arrangment would eliminate 
all communication with the host and all disk I/O and 
would be limited strictly by the speed of the array 
processor. Implementation of this option awaits future 
hardware developments.
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IV. Concluding Thoughts

The fundamental, inescapable conclusion of the results 
presented above is that modest changes (factors of 10 to 20 
or less) in the memory size of our current array processors 
will not have a strong influence on the overall time it takes 
to process data in AIPS. I can see no reason that this 
result does not also apply to processing radio interferometry 
data in general. For example, increasing the AP memory size 
from the present 6 4 kwords for the FPS APs to a megaword or 
so would only make modest improvements; in fact, the 
CLEANing programs might have to be modified to use less than 
the full AP memory to keep them from actually slowing down.

One possibility, which could not be tested with the 
current hardware, is that with a very large memory size 
significant improvements could be made with modifications to 
the current methods. For example, if the AP were large 
enough that all FFTs could be done entirely in memory for two 
processes simultaneously, then data for one FFT could be read 
in or out of memory while another FFT was being processed. 
Also with a memory this size, the entire uv grid could be 
kept in memory and sorting could be eliminated. If 2048X2048 
maps were typical then the memory required for the data 
arrays for this senario would be at least 8 megaword (32 
megabyte). Such a scheme might be able to double the 
throughput of a computer system.


