
j AIPS MEMO NO. - 3 Z

CHAPTER 14

TABLES IN AIPS

14.1 OVERVIEW

This chapter is an attempt to describe the format design for
tabular extension files in AIPS. These files are organized in the
usual rows and columns. Each column has a specified format and is
stored in the appropriate binary form for the local computer. The
columns are ordered on disk in an order appropriate to computer
addressing, but are accessed in any desired logical column order via a
look up list. The extension file contains not only the rows and
columns, but also a variety of other information. Each column has an
associated 24-character column "title" and an 8-character "units"
field. Each row has a "selection" flag which allows the user to
access temporarily a subset of his table. The strings used to specify
the current selection are stored in the file for display. The file
may also contain general information applying to the full table in the
form of keyword/value pairs. This information will be called the
table "header" data.

14.2 THE FORMAT DETAILS

14.2.1 Row Data

The row data are stored as an integer number of rows per disk
record (512 bytes) or as an integer number of disk records per row.
The columns are given a physical order appropriate to addressing on
all computers. The logical order is carried in the file header record
(physical record 1, see below) and in a set of array indices for
addressing by the programs. The type of data is specified by code
numbers. These codes and the physical ordering are as follows:

ORDER ARRAY BASIC CODE + LENGTH
double precision floating R8 1 -

single precision floating R4 2 -

character (4 / floating) R4 3 + 10 * 1
long integer 14 4 -

logical L2 5 -

integer 12 6 -

bit (NBITWD / integer) 12 7 + 10 * 1
select flag 12 9 -

TABLES IN AIPS
THE FORMAT DETAILS

Declarations:
INTEGER*2 12(*)
INTEGER*4 I4(*)
LOGICAL*2 L2 (*)
REAL*4 R 4 (*)
REAL*8 R 8 (*)
EQUIVALENCE (12, 14, L2, R4, R8)

The ordering is chosen to allow some machines to preprocess the
LOGICAL*2 statement into a L0GICAL*4 if needed. More esoteric
preprocessing may be required on less standard machines.

14.2.2 Physical File Format

The data, control, and header information are written in the
Table file via ZFIO in 512-byte (256-integer) blocks. The order on
disk, by physical record number, is:
record 1 : Control info / lookup table (see later)

2 : DATPTR(128) subscript of the appropriate array for
logical column n

DATYPE(128) type code for logical column n
3 - 4 : Selection strings now in force
5 - m : Titles (6 R*4s, 4 chars/R*4) in physical column order

“ i • Units (2 R*4s, 4 chars/R*4) in physical column order
i+1 - k : Table header (keyword/value pairs, see below)
k+1 - * : Row data in n rows/record or n records/row

where
m = 5 + NCOL / (256 / (6 * NWDPFP))
i = m + 1 + NCOL / (256 / (2 * NWDPFP))
k = i + 1 + NKEY / (256 / (4 * NWDPFP))
NCOL = number logical columns not including the select column
NKEY = maximum number of keyword/value pairs

14.2.3 Control Information

Physical record one contains file control data needed to do the
I/O operations and maintain the physical file. It is prepared by
subroutine TABINI and modified by TAB10. The latter subroutine
returns the record to disk on OPCODE = 'CLOS1. Its contents are:

(1*4) Number 512-byte records now in file
(1*4) Max number rows allowed in current file
(1*4) Number rows (logical records) now in file

Number of bytes/value (2 for TA files)
values/logical (# I*2s/row incl. select for TA)
> 0 => number rows / physical record
< 0 => number physical records / row
Number logical columns/row (not including selection
column)
Creation date: ZDATE(ll), ZTIME(14)
Physical file name (set on each TABINI call)
Creation task name (2 chars / integer)
Disk number

1 - 2
3 - 4
5 - 6
7
8
9

10

11 - 16
17 - 28
29 - 31
32

Page 14-2
20 Jun 84

TABLES IN AIPS
THE FORMAT DETAILS Page 14-3

20 Jun 84

33 - 38 Last write access date: ZDATE(33), ZTIME(36)
39 - 41 Last write access task name (2 chars / integer)
42 Number logical records to extend file if needed
43 Sort order: logical column # of primary sorting
44 Sort order: logical column # of secondary sorting

0 => unknown, < 0 => descending order
45 Disk record number for column data pointers (2)
46 Disk record number for row selection strings (3)
47 Disk record number for 1st record of titles (5)
48 Disk record number for 1st record of units
49 Disk record number for 1st record of keywords
50 Disk record number for 1st record of table data
51 DATPTR (row selection column)
52 Maximum number of keyword/value pairs allowed
53 Current number of keyword/value pairs in file

* * * * * * * * * * *

54 - 60 Reserved
* * * * * * * * * * *
61 Number of selection strings now in file
62 Next available R*4 address for a selection string
63 First R*4 address of selection string 1
64 First R*4 address of selection string 2
65 First R*4 address of selection string 3
66 First R*4 address of selection string 4
67 First R*4 address of selection string 5
68 First R*4 address of selection string 6
69 First R*4 address of selection string 7
70 First R*4 address of selection string 8

********** for t ABIO / TABINI use only **********
71 10P : 1 => read, 2 => writ
7 2 Number 1*2 words per logical record (incl. select)
7 3 - 7 4 (1*4) Current table row physical record in BUFFER

7 5 - 7 6 (1*4) Current table row logical record in BUFFER

77 Type of current record in BUFFER (0 - 5)
7 8 Current control physical record number in BUFFER

7 9 Current control logical record number in BUFFER

80 Type of current control record in BUFFER

81 File logical unit number (LUN)
82 FTAB pointer for open file (IND)

* * * * * * * * * * *

83 -100 Reserved
* * * * * * * * * * *
101 -128 Table title (4 chars / real)
129 -256 lookup table as COLPTR(logical column) = phys column

14.2.4 Keyword/value Records

The keyword/value pairs are stored in 4 single precision floating
locations, 256 / (4 * NWDPFP) per physical record. The keyword is an
8-character string stored as 4 characters per real. It is left
justified and the first character must imply the data type used for
the value. The value is stored left justified in the 3rd and 4th
reals using as many integer words as needed (see table below).

TABLES IN AIPS
THE FORMAT DETAILS Page 14-4

20 Jun 84

The first character of the keyword must specify the type of the
binary value as:

D double precision floating point
F single precision floating point
C 8-character string in 4 chars / real
J long integer
L logical
I integer

In the call sequence to TAB10r the variable RECORD is an integer array
used to convey the data to the I/O operations. For keyword/value
pairs, RECORD is divided as follows:

RECORD(1) 1st 4 chars of the keyword
RECORD(1+NWDPFP) 2nd 4 chars of keyword
RECORD(1+2*NWDPFP) value

where the value occupies the following number of integer words
type D NWDPDP

F NWDPFP
C 2 * NWDPFP
J NWDPLI
L NWDPLO
I 1

14.2.5 I/O Buffers

The call to TABINI specifies two buffers, one for I/O scratch and
control and the other for the data pointers which will be used by the
calling program to access the column data. The first, called BUFFER,
is used as

BUFFER(1)-BU FFER(128) control pointers
BUFFER(129)^BUFFER(256) lookup table
BU FFER(257)-BU FFER(***) current physical record(s) of table data

where *** = 512 if there are >= 1 rows/rec,
*** = (n+1) * 256 if there are n recs/row.

The call sequence of TABINI has an argument NBUF which gives the
length of BUFFER. This is used solely to check that BUFFER is large
enough to handle the present table file. BUFFER is also provided by
the programmer to TAB10 which will modify the control and data
portions. The programmer should not modify BUFFER between the call to
TABINI and the call to TAB10 with OPCODE 1CLOS' except to insert a
title for the table in words 101 - 128 or to correct the sort order
information.

The second buffer, called TABP, is used by the non-I/0 portions
of the table package. TABP(1,1) - TABP(128,1) contains the subscript
of the appropriate array for the logical columns. TABP(1,2)
TABP(128,2) contains the data type for each logical column. The
programmer must fill in TABP(1,2) - TABP(NCOL,2) before calling TABINI
when TABINI is to create the table extension file. TABINI will return
a complete set of TABP under all circumstances.

TABLES IN AIPS
SUBROUTINES Page 14-5

20 Jun 84

14.3 SUBROUTINES
14.3.1 TAB IN I

SUBROUTINE TABINI (OPCODE, PTYP, VOL, CNO, VER, CATBLK, LUN,
* NKEY, NREC, NCOL, DATP, NBUF, BUFFER, IERR)

TABINI creates/opens
it is catalogued by a
Input:

OPCODE R*4
PTYPE 1*2
VOL 1*2
CNO 1*2
VER 1*2

CATBLK 1*2(256)
LUN 1*2
NKEY 1*2

NREC 1*2
NCOL 1*2

DATP 1*2(128,2)
NBUF 1*2
BUFFER 1*2(*)
IERR 1*2

a table extension file. If a file is created,
call to CATIO which saves the updated CATBLK.
'READ' only, 'WRIT' read or write
File physical type: 2 characters
Disk number
Primary file catalog number
Version number: <= 0 highest on READ
highest+1 on WRIT (i.e. create one)
output: version number used
Primary file catalog header record
Logical unit number to use
Maximum number of keyword/value pairs
input: used on create, checked on WRIT
(<= recorded); output: actual
Number rows for create/extend
input: used on WRIT only.
Number of logical columns (not incl select)
input: used on create, checked on WRIT
(0 => any); output: actual
DATPTR, DATYPE: DATYPE input on create,
output actual for both
Number 1*2 words in BUFFER
I/O buffer (* >= 512 as needed)
Error codes: 0 => OK,

-1 => OK, new file created,
1 => bad input,
2 => cannot find/open,
3 => I/O error
4 => create error

14.3.2 TAB10

SUBROUTINE TAB10 (OPCODE, IRCODE, IRNO, RECORD, BUFFER, IERR)
TAB10 does random access I/O to Tables extension files. Mixed
reads and writes are allowed if TABINI was called 'WRIT1. Writes
are limited by the size of the structure (i.e. # columns for units
and titles) or to the current maximum logical record plus one.
Files opened for WRITe are updated and compressed on CLOS.

OPCODE R*4 'READ', 'CLOS1,
'WRIT' write with row selected
'FLAG' write with row de-selected

IRCODE 1*2 Type of record: 0 => table row
1 => DATPTR/DATYPE record
2 => data selection string
3 => titles

TABLES IN AIPS
SUBROUTINES

Page 14-6
20 Jun 84

IRNO

RECORD

BUFFER

IE R R

1*4 (!)

1 * 2 (*)

1*20=768)
1*2

4 => units
5 => keyword/value pairs

Logical record number:
IRCODE = 0 => row number
IRCODE = 1 => ignored
IRCODE = 2 => string number
IRCODE = 3 => column number
IRCODE = 4 => column number
IRCODE = 5 = > keyword number

Appropriate data (input or output):
IRCODE = 0 => row
IRCODE = 1 => DATP
IRCODE = 2 => select string
IRCODE = 3 => column title
IRCODE = 4 = > column units
IRCODE = 5 => keyword/value

I/O control, scratch buffer (in/out)
Error code: 0 => ok

-1 => row read, but it is flagged
1 file not open, 2 input error
3 I/O error 4 logical EOF
5 error in file expansion

14.3.3 TABCOP

SUBROUTINE TABCOP (TYPE, INVER, OUTVER, LUNOLD, LUNNEW, VOLOLD,
* VOLNEW, CNOOLD, CNONEW, CATNEW, BUFFI, BUFF2, IRET)

EXTCOP copies
new extension
must be opened
updated on dis
Inputs:
TYPE 1*2
INVER 1*2
OUTVER 1*2

LUNOLD 1*2
LUNNEW 1*2
VOLOLD 1*2
VOLNEW 1*2
CNOOLD 1*2
CNONEW 1*2

In/out:
CATNEW(256)

Output:
BUFFI(256) I*
BUFF2(256) I*
IRET I*

Table extension file(s). The output file must be a
- old ones cannot be rewritten. The output file
WRIT in the catalog and will have its CATBLK

k .

Extension file type (e.g. ’C C ^ ' A N 1)
Version number to copy, 0 => copy all.
Version number on output file, if more than one
copied (INVER=0) this will be the number of the
first file. If OUTVER = 0, it will be taken as
1 higher than the previous highest version.
LUN for old file
LUN for new file
Disk number for old file.
Disk number for new file.
Catalog slot number for old file
Catalog slot number for new file

1*2 Catalog header for new file.
2 Work buffer
2 Work buffer - will have CATBLK of old file
2 Return error code 0 => ok

1 => files the same, no copy.
2 => no input files exist

TABLES IN AIPS
SUBROUTINES Page 14-7

20 Jun 84

3 => failed
4 => no output files created.
5 => failed to update CATNEW

14.3.4 GETCOL

SUBROUTINE GETCOL (IRNOr ICOL, DATP, BUFFER, RTYPE, RESULT,
* SCRTCH, IERR)

GETCOL returns the value
at the specified logical
Inputs: IRNO

ICOL
DATP

In/out: BUFFER

RESULT
SCRTCH
I ERR

1*4
1*2
1*2(256)
1 * 2 (*)

Output: RTYPE 1*2

9 9 9

1 * 2 (*)

1*2

and value type found in an open table file
column and row.
Table row number: n.b. 1*4
Table column number
Pointer array returned by TABINI
Control area set up by TABINI, used in
TAB 10
Type of column: 1 -> R*8, 2 -> R*4,
4 -> 1*4, 5 -> L*?, 6 -> 1*2
3+10*L -> character length L unpacked
7+10*L -> bit array length L packed
Value of column: use R*8, R*4, 1*4, 1*2
equivalenced arrays
Scratch large enough to hold a row
Error code: 0 => OK.
-1 => OK, but row is flagged
1 file not open, 2 input error
3 I/O error, 4 read past EOF
5 bad data type

14.3.5 FNDCOL

SUBROUTINE FNDCOL (NKEY, KEYS, LKEY, LORDER, BUFFER, KOLS, IERR)

with AIPS Table extension files.FNDCOL is used
logical column
Inputs: NKEY 1*2

KEYS R * 4 (LKEY,N)
LKEY 1*2
LORDER L*2

In/out: BUFFER 1*20512)
Output: KOLS 1*2(NKEY)

IERR 1*2

It locates the

Number columns to be found
Column titles to locate (4 chars/real)
Number R*4 words to check in each
of KEYS (legal values 1 through 6)
T => logical order desired, else phys.
TABINI/TABIO buffer/ header/ work area
Logical column numbers: 0 => none,

-1 => more than one (!)
Error code: 0 => ok, 1 - 1 0 from ZFIO

>10 = 10 + # of failed columns

TABLES IN AIPS Page 14-8
SUBROUTINES 20 Jun 84

14.3.6 CTINI
SUBROUTINE CTINI (LUNr NCOLf VOL, CNO, VER, CATBLK, BUF, IERR)

CTINI creates
CT (components

and/or opens for writing (and reading) a specified
table) file.

LUN 1*2 Logical unit number to use
VOL 1*2 Disk number
CNO 1*2 Catalog number
NCOL 1*2 Number of columns: 3 or 7 are allowed.VER 1*2 Input: desired version number 0 -> new

Output: that used
CATBLK 1*2(256) File catalog header block
BUF 1*2(768) First 512 words required for later

calls to TAB10
IERR 1*2 Error codes from TABINI or TAB10

14.4 USAGE

At this writing (22-July-1984), there are several experimental
tasks which use Tables extension files. These tasks are all similar
to existing tasks designed to use EXTINI / EXTIO on Clean Components
extension files. For the moment, these tasks have funny names and
read/write extension type CT (rather than CC). When they have been
tested enough and when a format conversion program works, they will
replace the existing tasks. These tasks are TACLN (version of APCLN),
TAMX (version of MX), UVTUB (version of UVSUB), TSCAL (version of
ASCAL), and PRTCT (replacement for PRTCC). There is also a new task
called PRTAB which prints the Tables extensions in a very general
fashion. It will be instructive to programmers to examine its coding.

Generalized FITS extensions,
with application to Tables.

Ronald H. Harten

The Netherlands Foundation for Radio Astronomy

Dwingeloo, The Netherlands

Preben Grosb0l

European Southern Observatory

Munich, West Gernany

Keith P. Tritton

Rutherford Appleton Laboratory

Chilton, Didcot, The United Kingdom

Eric W. Greisen, Donald C. Wells

National Radio Astronomy Observatory

Charlottesville, USA

A B ST RA C T

A general design for future extensions to the FITS tape format is proposed. The proposed design

preserves compatibility with existing FITS tapes and software, including the "random groups”

and other extensions of FITS, but its generalized design will permit a wide variety of new types

of extensions files to be designed in the future. As an example of the application of the new

design, specifications are presented for a proposed extension to transmit tables of astronomical
data.

CAUTION: portions of this proposal might be augmented, rescinded, or revised before final
standardization.

1. Introduction

The FITS tape format standard (Wells, Greisen, and Harten 1981, hereafter "Basic FITS”) was

developed to transfer regularly gridded astronomical image data between different locations. It

has been implemented by most of the major observatories of the world and has been endorsed

by working groups for software in both Europe and North America. The design of basic FITS

included several provisions which were intended to permit the format to be extended in order

to transmit new kinds of data structures. The "random-groups* extension of FITS (Greisen and

Harten 1981) exploited these possibilities to produce a tape format design which is useful for

transmitting data which is regularly gridded on some axes and irregularly gridded on other axes.

It has been implemented by several radio observatories for the transfer of radio interferometer

visibility measurements. This extension has been recommended by the North American working

group for use by North American observatories. The FITS tape format was recommended

(resolution Cl) for use by all observatories by Commission 5 at the 1982 meeting of the LAU at

Patras (LAU Information Bulletin No. 49, 1983). Note that the General Assembly of the LAU

adopted (resolution R ll) the recommendations of its commissions, including the FITS resolution.

The concept of utilizing a standard flexible format for the transfer of astronomical data has

proved to be appealing and designers of software systems for astronomy want to be able to apply

it to a variety of data and information structures. For example, during the past two years there

has arisen the proposal that FITS design concepts be utilized in the formatting of catalogs of

astronomical data, such as the star catalogs which are distributed by the astronomical data

centers. Commission 5 of the IAU at the Patras meeting in 1982 appointed a committee to

investigate this concept. During the same period of tima an experimental extension of FITS was

developed to transmit source position lists and calibration tables iD association with image data.

Early in 1983 it became apparent that these two efforts should be combined in order to specify
a single format designed to transmit arbitrary tabular data.

Several FITS extension formats have been designed already and more are expected to be devised.

It is possible that some of them might conflict with each other or with the random-groups format

which has already been endorsed as a standard. This observation has led to the realization that

there is a need for a general set of rules to govern the design of all future FITS extensions. During

several months of discussions such a set of rules evolved and it is presented in this paper. This

paper also presents the proposed tables format as an example of the application of the rules.

2. Terminology

To avoid possible confusion in terminology in this paper and in the future, we shall define a

few terms which will be used in this and future articles. The term "record” refers to the basic

2880 byte unit or piece of information. A FITS file consists of an integral number of records and

extensions always begin with a new record. A record corresponds to a logical record. The term

"block” refers to the physical block size on tape. At present a block is 2880 bytes long (i.e., one

record per block); however, at some future date when record blocking may be allowed, the block

size could be some integral multiple of 2880 bytes. In previous FITS papers the terms record

and block were used interchangeably. In this paper we will be referring to records. Questions of
blocking factors, etc. will not be discussed.

3. Basic Philosophy

The most important rule for designing new extensions to FITS is that existing FITS tapes must

remain valid. We are not permitted to alter the basic format in such a way as to make existing

FITS tapes invalid or unreadable by standard FITS tape reading programs. This does not mean

that the FITS format cannot evolve or change. To avoid this trap, FITS was deliberately designed

to be capable of evolving. Two rules form the basis for all existing or proposed extensions.

• Any number of 2880-byte records may appear after the blocks which transmit the primary

data matrix. These blocks have often been called "special records”. The rule obliges all basic

FITS reading programs to be prepared to skip over such blocks if they are not programmed
to interpret them.

• FITS files may be written in which there is no data matrix, either because the number of

axes is set to zero or because the product of the dimensions of the axes is zero.

Simply stated, all FITS extensions must appear after the main FITS header and its associated

data array and each extension should begin at the start of a new 2880 byte record.

All existing tapes containing extensions to basic FITS conform to these rules of basic FITS

and therefore are valid "FITS tapes”, even though they contain data structures which are not

simple binary matrices. The existing random-groups format is the best-known example of such

an extension. The proposed new rules also conform and they systematize the format of the special

records so that new types of extensions can be devised freely by implementors of FITS software.

The rules allow users to create new extensions with a high Hegree of protection from conflicts

with extensions devised by other implementors, and without obsoleting either the basic FITS
standard or the existing extensions.

The basic structure of a FITS tape is quite flexible. By adding new keywords and data axes, users

can design a data structure to suit their needs. In the past, users have created entire customized

header structures using the HISTORY and COMMENT keywords. These structures were valid in the

FITS format, readable by other users and did not require the approval of a standards committee.

The set of rules for extensions to FITS presented in this paper is designed to provide a framework

in which users can create new data structures to suit their local needs, while still following the
FITS standard.

Many users may wonder why a basic mechanism for FITS extensions is necessary. The answer

to this question is twofold. First, it allows one to transfer data collections which are not images

or single data matrices. Essentially one can create a new extension format for each new type

of information. This structure is possible in spite of the fact that the original FITS format

was created for a particular data organization. This allows us to keep adjusting to new types

of data organization while still adhering to the same set of basic rules. The second reason is

that extensions allow us to transfer collections of related groups of information in an organized

manner, i.e. it is providing us with a simple relational data base capability. In this manner,

tables, lists, etc., associated with a data matrix can be written on tape in a manner in which the

relationship between the different pieces of information is implicitly established.

The only restriction that will have to be placed on the freedom to create new extensions is that

there should be only one approved extension format for each type of data organization. It will

be the function of each user who creates a new extension type to check with the standards

committee to see if an extension already exists for that type of data organization and to propose

one if it is really a new extension type. An important point to remember is that an extension is

a basic format for presenting or describing information and its organization. The contents of an

extension and the optional keywords used, etc. will depend on the particular application. Thus

one can use a table extension for all types of tabular information, without having to define a

new extension type. New extension types have to be created whenever the organization of the

information is such that it cannot be handled by one of the existing extension types. With this

restriction in mind, users should feel free to create new extension types when the need arises.

4. Guidelines and Rules for F ITS Extensions

Before we can specify the details of the extensions to FITS, it is necessary to discuss the

basic guidelines and requirements for extensions. These fall into two broad classes. The first

concerns those requirements which maintain the compatability and flexibility of the existing FITS

standard. The second contains those new features which are desirable to solve the problems for

which the extensions are needed. A list of the guidelines and requirements is given below.

• Existing FITS tapes, including those with existing standard extensions, must be compatible

with the new extension standard. FITS files which contain combinations of standard and

new extensions must be allowed in order to facilitate the transition to the new design.

• The presence of a new extension in a FITS file should not affect the operation of a program

which does not know about a particular type of extension.

• Only the binary and character coding conventions specified in the basic FITS standard should

be used in FITS extensions. These are printable ASCII in headers, and 8-bit unsigned, and

18, and 32-bit twos-complement integers without ”byte-swap” in data matrices. The new

tables extension records are regarded as a binary matrix in which the 8-bit "pixels” are
printable ASCII codes.

• Extensions should have the same structure as the basic FITS file, a header plus information.

The extension data structures should be self-defining and readable by both humans and

machines. The same basic rules for creating FITS headers should apply to extension headers,

i.e. they will contain a required subset of standard keywords, consist of ASCII text and may

have any length. This will allow one to reuse the code which interprets the primary FITS
header.

• A program scanning a tape should be able to locate the beginning of any extension and should

be able to skip over the extension, i.e. to find the start of the next one. This requirement

implies that the extension header must specify in some consistent and standardized manner
the total number of data bits which are associated with it.

• It should be possible for extensions to FITS to support hierarchical structuring of various

types of data entities. One needs to be able to transmit tables, etc., which are associated

with the basic data matrix and to maintain the relationship between the tables and the data.

The ability to specify structures more than one level deep is included in order to provide a
framework for future developments.

• It must be possible to devise new types of extensions without prior approval. This implies

that keywords in the primary FITS header may not be used to announce the existence of

a particular type of extension, because these would need to be approved by the standards
committees.

• It should be possible to append any number of extensions to a primary header and its
associated data matrix.

• If there is more than one type of extension in a FITS file then the extensions may appear in
any order.

• Anyone wishing to create a new extension format is free to do so, but should check with the

FITS standards committee to insure that there is no conflict in the extension type naming

and that the proposed format conforms to the rules for FITS extensions.

• Physical tape blocks should continue to be 2880 bytes (23040 bits) long, but no information

in either the primary header or any extension header should ever explicitly refer to the

physical block sizes of FITS tape blocks. This principle, which was followed in the design

of both basic FITS and the random-groups format, will permit the standards committees

to modify the physical blocking specifications of FITS in the future without being obliged

to change the information content of existing FITS files which may be reblocked after such

a change. The physical blocking specifications may eventually have to be changed as tape

densities increase and transmission of data through networks becomes more common.

The above list places a set of minimum requirements on features which must be built into FITS

to be able to handle extensions in a systematic manner. The primary requirements are the

requirement for a mini-header at the beginning of each extension and the ability for a program

to be able to identify the type of an extension or to skip over it even if it does not recognize the
type.

5. An addition to the M a in F ITS Header

Tapes which conform to this standard are required to include the keyword EXTEND in their main

header immediately after the last required keyword of the basic FITS specifications. The value

field should be the logical value true (T) to signify that the file is written in conformance with

the new extension standard. The presence of the keyword does not imply that any conforming

extension records are actually appended to the file but merely that they might be. Note that

EXTEND-T may be used even if random-groups and prototype tables extension records are present

so long as their order conforms to the rules specified in the next section. An example of a minimal
FITS header with a data matrix is:

0...... 1........2....... 3....... 4........5........6.... 7
123456789012345678901234567890123456789012345678901234567890123466789012SIMPLE = T /BITPIX = 16 /NAXIS = 2 /NAXIS1 = 320 /NAXIS2 = 512 /EXTEND = T /

An example of a minimal FITS header w ithout a data matrix is:

0 1........2........3....... 4........5........6.... 7
123456789012345678901234567890123456789012345678901234567890123456789012! !

Note that the presence of EXTEND=T in a primary FITS header merely indicates that the file may
have extensions records and that any special records will conform to the rules given below.

6. Structure of Files Including Extension Records

The solution to the problem of compatibility with previously existing extension formats is to
specify three new rules:

• If NAXIS1=0 and the random groups keywords are present in the primary header then the

random-groups data records (see Greisen and Harten 1981) are present and they come
immediately after the primary header.

• Extension records of the new type must follow the primary matrix or random groups records.

Each extension should begin with a FITS-like header which is described below. This header

specifies the "type” for the extension and a length which is computed by the usual FITS

rules. The header may be arbitrarily long and is terminated by END in the same manner

as a primary FITS header. Following the extension header, the specified number of records

will appear containing the extension information. The next extension follows immediately

after the previous one. Each new extension header must begin with a new record. As many
extensions may be included in a FITS file as are required.

• Records of any nonstandard extensions should appear at the end of the file. A reading

program should be prepared to encounter such records in any position which would ordinarily

contain the first record of a standard extension header and when it does it can assume that

the remaining special records of the file are non-standard. The program should examine the

first eight bytes of the first record of the putative extension header. If they are the string

XTENSION, then the block is the beginning of a standard extension header. If they are not,
then it is the first of the non-standard special records.

7. The Extension Header

END

SIMPLEBITPIXNAXIS
EXTENDEND

T /
8 /
0 / T /

Each extension will begin at the start of a new record (2880 bytes per block). It will contain a

standard FITS header except that the first line of the header (normally SIMPLE=T) is replaced by

the new keyword XTENSION=’type ’ in order to identify the type of the extension. The required

FITS keywords BITPIX, NAXIS, and NAXISnnn are used to specify the dimensions of the binary

data matrix of the extension data. Only printable ASCII codes, 8-bit unsigned integer, and 16-

and 32-bit twos-complement, non-byte-swapped integers will be acceptable for data interchange.

The new extension standard allows other values of BITPIX to be used for special purposes, but

these are considered to be nonstandard usage.

In order to permit random-groups data structures to be written in the new extensions without the

inelegant NAXIS1=0 convention, which had to be adopted for the original random-groups format,

we require that all extension headers must incorporate the PCOUNT and GCOUNT keywords. For

simple matrices their values should be PC0UNT=0 and GC0UNT=1. The number of bits which the

extension data will occupy will be computed with the following formula:

NBITS = BITPIX * GCOUNT * (PCOUNT + NAXIS1 * NAXIS2 * ... * NAXISn)
If NAXIS=0 then the NAXISi terms in the above formula are all zero. Note that this calculation

may cause an integer overflow if it is performed with insufficient precision (1*2 rather than 1*4,

for example). The number of standard FITS records (2880 bytes, 23040 bits) which the data will

occupy will be computed with this formula:

NRECORDS = INT ((NBITS + 23039) / 23040)
Please note that these calculations will apply to all extensions regardless of the type of data

structure. This permits designers to utilize BITPIX, GCOUNT, PCOUNT, and the NAXISn in any

way which seems appropriate to define their data structures, subject to the constraint that the

number of bits computed by the formula above must be correct. The extension header will end

with an END statement in the usual fashion.

The inclusion of GCOUNT and PCOUNT in the extensions allows users considerable flexibility in

designing extensions for data which has a semi-regular structure, i.e. the information table or

data has a regular size, but there are a few values which are associated with each sub-set of the

information and these vary in value with each group. The power of this option is discussed in

the first FITS extension paper by Greisen and Harten (1981).

Implementors should note that the extension mechanism should not be used to transmit a 3-

dimensional matrix as a sequence of 2-dimensional matrices in separate extension records. Instead,

the generalized tools of FITS, in this case the ability to transmit n-dimensional matrices in

the basic FITS header and data matrix, should be used. The freedom provided in the new

extension design does not remove from implementors the obligation to use good taste and

standard conventions in their designs. Extensions are meant to be used for other kinds of data

such as tables, lists, text files, etc. Implementors of FITS writing programs should always be

aware of the limitations of recipients. The primary objective of the FITS standard remains the

reliable, unambiguous transmission of data to recipients. Esoteric, complex data structures should

be avoided as much as possible. The watchword of the implementor should be: keep it simple.

A typical extension header with no associated data records is:

0 1 2......... 3 4 5 6 7
123466789012345678901234667890123456789012346678901234667890123456789012. ..
XTENSI0N= ’type ’ / the type of the extension
BITPIX = 8 /
NAXIS = 0 /
PCOUNT = 0 /
GCOUNT = 1 /

END

In the case shown above the extension information is contained solely inside the extension header
itself. A typical extension header with associated data records is:

0...... 1........2........3....... 4....... 5........6... 7
123456789012345678901234567890123456789012345678901234567890123456789012!.XTENSION- ’type ’ ^ / the type of the extension
NAXIS = 1 /
SiSSSSJ = 12345 / number of bytes in the data records
rlsUUJNl = 0 /
GCQUNT = 1 /

END

This second example would be accompanied by five data records

NRECORDS = INT ((8 * 12346 + 23039) / 23040)
containing an arbitrary stream of 8-bit unsigned integers 12345 bytes long. Such a one­

dimensional matrix could be appropriate for transmitting a text file. It is expected that a format

to transmit text files will probably be the next extension design to be considered.

The tables extension discussed below defines a table to be a two-dimensional matrix of 8-bit
bytes which will be used to convey printable ASCII text.

8. Three New Optional Keywords

Three new optional keywords are defined for the extension standard:

• EXTNAME=’name’
• EXTVER=n

These two keywords are provided for use in the new extension headers to give unique

names and version numbers to individual extensions. This means that a FITS file might

contain, for example, three different tables extensions (XTENSI0N= ’ TABLE’). The first might

be called EXTNAliE=’BS83’ with EXTVER=1, the second might also be EXTNAME= ’ BS83 ’ but

with EXTVER=3, and the third might be EXTNAME= ’AGK3 ’ with EXTVER=83. I.e., more than

one extension of the same type and same name might occur and would be distinguished by

unique version numbers, and version numbers need not start with one or be consecutive. If

EXTVER is not specified a default value of one should be assumed by a reading program.

The name can also be used to establish a relational type of data base in the same man­

ner as sub-directory names in some file systems. In this case the relationship between

the different extensions is established directly. Names such as "mapl.cleancompl” or

”N1234.field2.starlist” can be used to establish easy to understand relationships between

different extensions and even between extensions in different FITS files.

• EXTLEVEL=n
This keyword specifies the level of the current extension header in a heirarchical structure of

extension headers. The first level of extension headers has the value set to one. Any level-two

headers are subordinate to the last previous level-one header, and any level-three headers are

subordinate to the last previous level-two header, etc. This concept permits the transmission

of arbitrary heirarchical data structures and file systems in FITS. We recommend that

the initial implementations of the new extension design all utilize EXTLEVEL=1 exclusively

until experimental trials have demonstrated feasibility of this concept. If EXTLEVEL is not

specified, a default value of one should be assumed by a reading program. If the recipient

data processing system is unable to represent the heirarchical structure and encounters an

extension with EXTLEVEL greater than one, it should act as though EXTLEVEL is one.

9. Extension Data Records

The standard FITS philosophy is to keep headers and data in separate records. The new extension

format adheres to this rule even though it wastes space (the unused bytes at the end of the last

header record). Therefore the extension data begins in the first byte of the next record after the

record containing the END of the extension header.

10. FITS for Catalogs and Tables

There are three main classes of potential applications which have stimulated the development of

the proposed tables extension. First, programmers want to transfer standard catalogs or tables

such as star or source catalogs with self-documenting column headings. The catalogs are typically

in tabular form already and have well defined formats and layout. The second class of application

includes the need to transfer observing information such as logs, calibration tables, intermediate

tables, etc. which have a relation to observational data. The actual observations can easily be put

into a FITS format; however, the amount of auxiliary information is too large to be included easily

as comments and the programmer does not want to give up the tabular form of the information.

The final application is the need to transmit tables of results extracted from observational data

by data analysis software. For example, a number of programs exist which can automatically

detect sources in digital images and write the computed parameters (position, flux, size, spectral

index, polarization, etc.) into output files. If these files could be written to tape in a system

independent form, astronomers would be able to transmit such tabular data to each other and

could utilize software which is designed to manipulate, merge, and intercompare such tables. The

extension to the FITS format discussed in the following sections is designed to enable all three

of these classes of tabular data to be transferred easily from one computing system to another.

When one analyses the structure of catalogs or tables, one finds that they consist of a number

of rows each with a fixed number of elements and a fixed format; however, the entries do not

form a uniform array. What one needs is a means of describing and referring to the contents

of each row in the catalog or table. This can be done in the FITS context by treating the table

as an array of characters and then defining the location and format of each field within a row

of the character array. While this solution requires that all catalogs and tables be stored in

character format, this is actually desirable since the internal number formats of the different

computers differ so widely and the information is easier to handle in character form. Also, most

of the standard catalogs presently available in computer readable form are in character format.

For these reasons, the tables extension is based on the conceptual model of a table, containing

multiple columns of numbers and "words” with headings at the top of the columns, which is

printed on paper using a printer. The printed page is thought of as a bf matrix of ASCII codes,

and the tables extension is designed to transmit and document this matrix, with the headings

being encoded in the extension header.

The tables FITS extension uses the standard FITS rules (see Wells, Greisen, Harten 1981). In

addition it makes use of the new standard for generalized extensions to the basic FITS format,

which has been discussed in the first part of this paper. The catalog is written in an extension

to the main FITS header and is preceded by an extension header which describes the contents

of the catalog. The basic concept is as follows. The catalog or table is stored as a large character

array. Each row of the catalog or table has the same number of characters. Each row consists

of a sequence of fields, and this sequence is the same for each row. The formats of the different

fields need not be the same, but the format of a given field must be the same for all rows. Blanks

are used to fill out unused space within and between fields. When printed out, the character

array should be easily readable and it is recommended that there be a blank between each field

within a row. The number of characters in a row and the number of entries or rows in the table
or catalog defines the size of the character array.

Each field in a row is described by a series of keywords which describe the name, format, character

location within a row, length and units of the information. Using this information, a program

could search via variable name, extract the appropriate characters and convert them to the

desired format and units. Since each field in the table is separately defined and since the length

of characters in each row is fixed, it is possible to transfer catalogs which contain a large amount

of comment information which an automatic decoding program would skip over, yet which can be

read by merely printing the entire row. This is especially useful for observation logs and catalogs

where a fixed region for comments can be provided. The format is quite flexible allowing one to

describe the contents of any standard table or catalog. The only price to be paid is that extra

blank characters may be required to insure that each row contains the same number of characters.

This is not serious since the format is primarily intended for the transfer of information rather
than the storage of the information.

11. The Tables and Catalog Extension Header Form at

The table is written in an extension to the basic FITS image, with XTENSI0N=’TABLE’. In the

case of many catalogs or tables, there will not be an image, only an extension. But even in these

cases, the basic FITS header will still appear in order to preserve compatibility with the older

format and to describe the basic characteristics of the FITS file. The extension begins with an

extension header which will contain information about the size and contents of the table. This

information is provided in the form of keywords, including some of the same keywords as those
used in the main header.

A tables extension header begins at the first byte of a new block and will appear in the form
shown below. The first eight keywords (XTENSIQN through TFIELDS) must appear, and in the
order shown here. The keywords TBCOLmm and TFORMnnn bf must appear somewhere in the
header, up to the value of TFIELDS=kkk, in order to properly define the fields of the table.
The other keywords, EXTLEVEL, EXTNAME, EXTVER, TTYPEmm, TUNITnnn, TSCALnnn, TZEROnnn,
and TNULLnnn, are all optional. If they are missing default values will be assumed by a reading
program:
0 1 2......... 3 4 5 6 7
123456789012345678901234567890123456789012345678901234567890123456789012...
XTENSIQN= ’TABLE ’ / Tells the type of extension
BITPIX = 8 / Printable ASCII codes (8 is required)
NAXIS = 2 / The table is a matrix (2 is required)NAXIS1 = nrnunm / Width of table in characters
NAXIS2 = m u m / Number of entries in table (1 is legal)
PCOUNT = 0 / Random parameter count (default value)
GCOUNT = 1 / Group count (default value)
TFIELDS = kkk / Number of fields in each row

/ (i.e. the number of separate pieces of
/ information in a row, maximum value of
/ nnn in TYPEnnn.)

EXTNAME = ’name
EXTVER =
EXTLEVEL=
TBC0Lnnn=
TF0RMnxm= ’qwrr.dd

/ The name of the table
w / Version number of table "name“ (integer)
hh / Heirarchical level (1 is recommended;

ccc / Starting char. pos. of field nnn
/ Fortran format of field nnn (I.A.E.D)/ (NOTE: wtt is width of field nnn)

TTYPF,nnn= ’type
TUNITnnn= ’unit
TSCALn n n =

TZEROrum=
TNULLnnn= ’bbbbbbbb1

sss.GS
zzz.zz

/ Type (heading) of field irnn
/ Physical units of field n^n
/ Scale factor for field nnn
/ Zero point for field nnn
/ Null Tblank) value for field nnTi
/ (NOTE: exact match left-justified to)
/ (the width is specified by TFORMnnn.)

END

The END card must appear and the remainder of the header record which contains END should

be padded with ASCII blanks. In addition to the keywords shown above the extension header

may contain additional keywords which describe the table, contain comments, etc. We now give

a more extended discussion of the rules associated with the tables keywords.

• TTYPEnnn = ’name’ / The name of the nth field in a row.
(optional, but strongly recommended, default ’ ’)

• TBCOLnnn = value / The beginning column of the field.
(required)

• TFORMnnn = ’format* / A single value Fortran-77 format code.
(required) This may use bf only the Fortran formats Iww, Aww, Eww.dd, and Dww.dd

(i.e., integers, characters, and real numbers). The E-format implies single precision (21 bit

mantissa accuracy, 6 decimal digits) and the D-format implies double precision (53 bit

mantissa accuracy, 16 decimal digits). Note that numbers coded in the F-format style are

processed correctly in the E and D-formats and so we do not need the F-format, whereas

we bf do need to distinguish the floating point precision. Once again: only I, A, E, and D

formats are allowed. Formats such as 212 are not allowed; they should be 12 and 12 (separate

fields) instead. A-format fields should be encoded as plain text, without being enclosed in

string quotes.

• TUNITnnn = ’unit’ / The units of the variable.
(Default: ’ ’) e.g., ’K ’ for degrees Kelvin (see BUNIT in Wells efc ai. 1981)

• TSCALnnn = value / Scale factor applicable to the value.
(Default: 1.0) Note that this keyword is not relevant for A-format fields.

• TZEROnnn = value / Zero offset to be applied to the value.
(Default: 0.0) Note that this keyword is not relevant for A-format fields. The true value of

field nnn is computed as:
(value of field nnn in the table) * TSCALnnn + TZEROnnn

• TNULLnnn = ’null string’ / Character string to indicate a null field.
This allows the program to distinguish between a zero value and a nonexistant one. The

string should be left justified and is implicitly blank filled to the width of the field (standard

Fortran-77 convention). If TNULLnnn is not specified the reading program should not check

field nnn for a null value. Programmers should consider what action their table reading

programs should take when they encounter a value which is illegal. For example, suppose

the value '* * * ’ is present in an 13 field but TNULLnnn has not been specified. Probably the

reading program should report the error and default to supplying its internal null value.

• AUTHOR = ’The name of the author or creator’
• REFERENC = ’The reference to the table or catalog*

The default values are assumed if the keywords are not provided. The keywords TBCOLnnn and

TFORMnnn are required for any fields which are to be defined in the table or catalog. If these

keywords are not specified an automatic decoding routine cannot decode the table.

Note that the width of each field is specified by the width ww given in its format TFORMnnn.

Field nnn begins in character position TBCOLnnn and includes ww characters. The sum of the

ww widths is not required to equal the true width of the lines of the table, NAXIS1. There is no

prohibition against overlapping fields, although we are unable to think of a useful example of

such usage. Reading programs should report an error in cases where a field is specified to extend
beyond the true width NAXIS1.

The format keyword, TFORMnnn, is an area where some degree of common sense must be used by

the user. To keep things manageable and understandable each field must have a separate format

(multiple formats such as 212 are not allowed). If a distinction between +0 and -0 is required (i.e.

declination) then the sign field should be defined separately. This is absolutely necessary since

many computers do not know the difference between +00 and -00. The sign should be defined as

a character field and checked when decoding the associated number field. Thus the declination

defined in degrees/minutes/seconds format would require four fields to be defined, each with its

own TTYPEnnn, TFORMnnn, etc. But a declination defined as a floating point number in degrees
would only require a single field and would conform to standard FITS rules.

It is recommended that the exponents of real numbers consist of a D or E followed by a sign and

2 numeric digits. Character data should be left justified, while integers and reals should be right

justified to prevent the problem of how trailing blanks are treated in different computers. The

fundamental rule is: the Fortran-77 specifications will apply (trailing blanks default to trailing
zeroes!).

For those creating a new catalog or table format, it is recommended that there should be a blank

between the different fields. A general rule should be that the character array containing the

table should be easy to read in itself. This makes it possible to print out a number of rows of

a table (using the header to determine the number of characters per row, etc.). Unfortunately,

some existing catalogs do not have the fields separated by blanks. The FITS format is still valid

and applicable for these catalogs; however, the simple printout option is less attractive.

When creating a table, one may need to distinguish between a ’null’ (or undefined) value and a

zero value. Normally, blanks in a numeric field will be interpreted as zeroes (standard Fortran-77

rules). In those fields where blanks should be considered to be nulls, the keyword TNULLnnn can be

used to specify a ’null’ value. Null values must be separately specified for all fields for which they

are needed (if TNULLmm is not defined for a field, then all values in that field are defined). Note

also that the null value is a character string of the length ww which is specified by TFORMnnn. It

is not required to be decodable by the format specified by TFORMnnn. For example, a null value
of ’ *** * might be used for an 13 field.

Note: the values of TTYPEnnn and TUNITnnn which are shown in the examples in this paper

should be regarded as examples of possible values. The specification of possible values for these

keywords is beyond the scope of this paper. We expect that the IAU FITS committee will produce

a standard list of column headings and will recommend any units other than the standard SI
units which are needed for existing catalogs.

12. Table D a ta Records

The data records are stored as a large character array, NAXIS1 characters across by NAXIS2

characters long and with NAXIS1 varying most rapidly, starting from the upper left corner of

the table. All information is stored as 8-bit printable ASCII characters with the eighth bit (the

”parity” bit) set to zero (i.e., hexadecimal codes in the range 20 through 7E). Special characters

with codes outside this range should be avoided since their meaning can be computer system

dependent. No integer or real data values occur in the data array. Each data record is 2880 8-bit

bytes long. The data records treat the character array as one large bit string. The data records

are written one after the other and no attempt is made to prevent partial rows occurring in a

record. If the user wishes to force the format to provide complete rows in a data record, then

the number of characters per row must be chosen as to divide into 2880 evenly. The final record
of the data should be padded with ASCII blanks.

13. A n Example of the Tables Extension Format

This section contains an example of how one could put part of the AGK3 Star Cat. of Positions

and Proper Motions, ed. W. Dieckvoss, into FITS format. Each row of the catalog contains sixteen

items, which are described in sixteen fields. Two of the fields contain information in character

format and the remaining fields contain numerical data. The FITS header describing the catalog

and data records for three rows in the catalog are shown in the example below.

The formatting of the value fields in the example follows the rules of basic FITS. In particular,

the required keywords obey the required fixed format. The optional keywords in this example

also use a fixed format, and this is a recommended practice. Note that string values are always

written with at least 8 characters, beginning in column 11.

The basic FITS header for this catalog would have the following form:

0 1 2 3 4 5 6 7
123456789012345678901234667890123456789012345678901234567890123456789012...
SIMPLE = T / Standard FITS format
BITPIX = 8 / character information
NAXIS = 0 / No image data array present
EXTEND = T / There may be standard extensions
ORIGIN = ’CDS ’ / Site which wrote the tape.
DATE = ’23/09/83’ / Date tape was written
COMMENT AGK3 Astrometric catalog, formatted in FITS Tables Format.
COMMENT see: 1. Dieckvoss, Hamburg-Bergedorf 1975.
END

The extension header begins in a new block:

0 1 2 3 4 5 6 7. .
123456789012345678901234667890123456789012345678901234567890123466789012
— -- ’ / -------XTENSI0N= ’TABLE
BITPIX = 8NAXIS = 2NAXIS1 = 74NAXIS2 = 3
PC0UNT = 0
GCOUNT = 1TFIELDS = 16EXTNAME = ’AGK3
TTYPE1 ’NO
TBC0L1 = 1
TF0RM1 = ’A7
TTYPE2 = ’MGTBC0L2 = 8
TF0RM2 = ’E4.1
TUNIT2 — ’MAG
TTYPE3 — ’SP

Table extension
8-bits per "pixel"
simple 2-D matrix
No. of characters per row (=74)
The number of rows (=3)
No “random" parameters
Only one group,
there are 16 fields per row Name of the catalog
The star number
start in column 1
7 character field
stellar magnitudes
start in column 8
xx.x SP floating point
units are magnitudes

/ spectral type

TBC0L3 =
TF0RM3 = ' A2
TNULL3 = $

TTYPE4 — ’RAHTBC0L4 =
TF0RM4 = •12
TUNIT4 = ’HR
TNULL4 = ’99
TTYPE5 — ’RAXTBC0L5 =
TF0RM6 = *12TUNIT5 = ’MIN
TNULL5 = ’99
TTYPE6 = ’RAS
TBC0L6 =
TF0RM6 = ’E6.3TUNIT6 = •s
TNULL6 = ’99.999
TTYPE7 — ’DECDSIGNTBC0L7 =
TF0RM7 = ’ A1
TTYPE8 = ’DECDTBC0L8 =
TF0RM8 = ■12TUNIT8 = ’DEGTNULL8 = ’99
TTYPE9 - ’DECK
TBC0L9 =
TF0RM9 = ’12TUNIT9 = ’ARC.MINTNULL9 = ’99
TTYPE10 — ’DECS
TBCQL10 =
TFORMIO = ’E5.2
TUNIT10 = ’ARC.SECTNULL10 — ’ 99.99
TTYPE11 — ’EPTBC0L11 =
TF0RM11 = ’ E7.2TUNIT11 = ’YR
TTYPE12 = ’NTBC0L12 =
TF0RM12 = ’11
TTYPE13 - ’RA.PM
TBC0L13 =
TF0RM13 = ’ E4.3TUNIT13 = ’ARC.SECTNULL13 = ’9999
TTYPE14 — ’DEC.PMTBC0L14 =
TF0RM14 = ’ E4.0
TUNIT14 = ’ARC.SECTSCAL14 =
TNULL14 = ’ 9999
TTYPE15 — ’DF(EP) ’TBC0L15 =

start in column 13
2 character field
blank is indefinite value
right ascension hours
start in column 16
2 digit integer
units are hourB
null value
right ascension minutes start in column 19
2 digit integer minutes of time
null value
right ascension seconds
start in column 22
xx.ixx SP floating point seconds of time
null value
declination sign
start in column 29
character field
declination degrees start in column 30
2 digit integer
degrees
null value
declination minutes
start in column 33
2 digit integer
minutes (angle)
null value
declination seconds
start in column 36
xx.xx SP floating point
seconds (angle) null value
epoch of positions start in column 42
xxxx.xx SP floating point units are years
no. photo. obs.
start in column 50
one digit integer
proper motion in r.a.
start in column 52
.xxx SP floating point
units are arc-seconds/jrr null value
proper motion in dec.
start in column 57
xxx. SP floating point
units are arc-seconds/yr scale factor = 0.001
(Note use of scale factor!)
null value
difference in epoch AGK3-AGK2
start in column 62

13

16

19

22

29

30

33

36

42

50

52

57

001

62

TF0RM15 = ’ E 5 .2 / xx.xx SP floating point
TUNIT15 = ’YR / unit is years
TTYPE16 = ■BD / Bonner Durch. star number
TBC0L16 = 68 / start in column 68
TF0RM16 = ’A7 / 7 character field
TNULL16 = » t / blanks indicate null
AUTHOR = ’I. Dieckvoss’ /
REFERENC= ’Hamburg-Bergedorf

’14/07/82’
1975’ /

DATE
END

— / date file was generated

The extension header shown above has 102 lines and therefore will be written in 3 logical records

of 2880 bytes. (The third record will be padded with 6 blank lines.) The actual character data

of the catalog would begin at the start of the next record. The three lines of 74 characters each

(taken from page 48 of Dieckvoss 1975) will be in the first 222 bytes of the record.

0 1 2 3 4 5 6 7 ----
12345878901234567890123456789012345678901234567890123456789012345678901234
+82457 11.4 G5 15 30 57.480 +82 15 06.18 1960.37 2 -005 +006 29.99 +82 459
+82458 11.4 F5 15 32 41.150 +82 10 17.17 1958.36 2 -010 +004 27.97 +82 460
+82459 12.1 15 32 42.107 +82 40 28.83 1960.37 2 -018 +004 29.99 +82 461

Note that the spectral type field of the third line is blank, which is. a null (see keyword TNULL3

above). The remaining 2658 bytes of the record should contain ASCII blanks and a tapemark

will follow. The FITS file will contain a total of five records: the basic header in the first record,

then three extension header records, and finally one table data record.

14. Conclusions

The proposed extension to the FITS format provides an easy to use and convenient means of

transfering catalog and tabular information between different computing facilities. The format

treats the contents of the tables as a character array. The keywords define the different fields

and provide information on the format, units and scale factors. By keying on the field names,

TTYPEnnn, one can create automatic decoding routines which read and selectively decode the

desired fields in the catalog while ignoring the remaining information. This is an excellent means

of interfacing the information contained in catalogs with differing formats to standard reduction

programs which would use the catalog information. For this to be completely successful it will

be useful to agree on a set of standard field names and units for the contents of catalogs. This

will allow users to be able to access automatically a wide range of astronomical data, without

having to write a different program for each catalog. This point is being considered by I.A.U.

Commission 5 which deals with documentation and astronomical data.

15. Acknowledgements

The authors would like to thank F. Ochsenbein and W. Warren for their detailed comments on

early versions of this paper and on the general problem of encoding and distributing tables and

catalogs.

References

Dieckvoss,W.: 1975, AGK3 - Star Catalog of Positions and Proper Motions North of -2.5

Declination Vol. 1, Hamburger Sternwarte, Hamburg.

Greisen,E.W.,Harten,R.H.: 1981, Astron. Astrophys. Suppl. 44, 371

IAU Information Bulletin No. 49, 14, 1983

Wells,D.C.,Greisen,E.W.,Harten,R.H.: 1981, Astron. Astrophys. Suppl. 44, 363

