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Abstract
An algorithm which is intended to grid aperture synthesis 
visibility measurements efficiently on vector computers, 
especially on 'long vector' machines, is described. The 
algorithm is parameterized to enable it to adapt to the 
properties of various CPUs and APs. The chief technical 
problem which is discussed is 'vector dependency'; both the 
statistics of oocurrence of dependency in real synthesis data 
and the technical options for coping with it in real vector 
machines are treated in detail.
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1.0 INTRODUCTION
Present implementations of NRAO's Astronomical Image Processing 

System (hereafter AIPS) depend critically on Floating Point Systems' 
AP-120B array processors (now repackaged and renamed as their 5105 and 
5205 models). Many of the FPS library functions are used by AIPS 
(e.g., vector add, vector max/min, FFT, etc.). In addition, two 
specialized functions which NRAO has microcoded for the AP-120B, 
"gridding" and “cleaning", are profoundly important in radio synthesis 
data processing. This paper addresses the problem of programming the 
gridding operation on vector machines (coding of the CLEAN algorithm 
for such machines will be the subjeot of a future paper). Gridding is 
a time-consuming part of two of the "workhorse" programs in AIPS, UVMAP 
and MX (MX actually grids and re-grids data in an iterative loop). The 
gridding operation must be coded carefully for any new vector processor 
if NRAO is to produce an effeotive implementation of AIPS on that 
processor. We begin our discussion of vector gridding by giving some 
•historical background.

The AIPS programmers began trying to find new array processors for 
AIPS during 1983. There were three motivations for this: (1) we 
wanted to find cheaper APs, (2) we wanted APs for host CPUs which FPS 
declined to support, and (3) we wanted to obtain higher performance if 
possible. Three APs were studied extensively (Analogic AP-500, 
Numerix MARS-432, Masscomp AP-501). Our conclusion was that the best 
approach to the new APs would be to implement new versions of the FPS 
library routines which would have the same names, arguments, and 
functionality, but which would be optimized for the peculiarities of 
each AP (see Cotton and Wells 1983).

In January 1984 the AIPS programmers submitted a formal proposal 
inside NRAO for funds and authorization to obtain a Masscomp AP-501 
array processor and other image processing peripherals to be installed 
on a Masscomp MC-500 computer which was to be purchased for another 
project. This proposal led to an elaborate evaluation (January-March 
1984) of ALL aspects of the Masscomp MC-500 and the AP-501 in an effort 
to estimate the probable performance and price-performance ratio 
advantage of this new technology (supermicros plus APs). It soon 
became obvious that the AP-501 has an architecture which is quite 
different from that of the FPS AP-120B. This made it very difficult to 
predict the probable system performance by analogy to the 120B on a 
VAX. We were forced to assume that, at best, the system would only 
work about half as well as a 120B. Because the system price was about 
half that of a VAX-750/FPS-5105 combination, and because the project 
goal was to obtain a price-performance advantage of TWO, it followed 
that the system would need two AP-501S. Unfortunately, in practice, 
the MC-500 could not be configured with two AP-501S. Reluctantly, the 
proposal was withdrwawn in March 1984.

The uncertainties about the AP-501 performance did not involve the 
standard vector operators such as addition, finding maxima, and FFTs. 
We were, and still are, convinced that the MC-500/AP-501 combination is 
a formidable competitor for a VAX-750/FPS-5105 combination in such 
applications. Rather, the problem lay in the unique, critical
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algorithms of aperture synthesis: gridding and oleaning. We chose 
gridding as our architectural test problem (we think cleaning is 
probably not really as difficult as it appears to be on first 
examination), and we defined the goal to be: "make subroutine 
QGRD4 [2] run well in the vector machine". It was obvious in March 
1984 that the conventional QGRD4 algorithm was poorly suited to the 
AP-501, and there was no assurance at that time that there was any 
better approach to the gridding problem. This was the chief technical 
reason why the Masscomp supermicro-plus-AP proposal was abandoned. 
During the subsequent months we studied how to modify QGRD4 in order to 
improve vectorization (our knowledge of the AP-501 architecture, gained 
on non-disclosure terms, was very important in this process).

Meanwhile, in April 1984 we began to study the CDG Cyber 205 
supercomputer and the Star ST-100 "super" array processor as potential 
hosts for AIPS, and we encountered similar problems with QGRD4! More 
recently, the Pennsylvania State PSAIPS group has begun implementing 
AIPS for the Sky "Warrior" AP, which is architecturally similar to the 
AP-501. All of these machines can be categorized as "long vector" 
machines. By this we mean that they operate most efficiently on 
vectors of length 100 or more. The 120B runs efficiently on vectors of 
length less than 5. The Cray and Convex machines are an intermediate 
case: they are efficient on vectors of length 10-20 (but their 
efficiency is significantly improved for longer vectors). So, the 
challenge became: "design a generic version of QGRD4 for long vector 
architectures". During the period April-October 1984 we evolved an 
approach to this problem, and we present it in this paper.

We conjecture that this new "vectorized" QGRD4 algorithm may turn 
out to be the best approach for all vector machines which need vectors 
longer than about 7 to be efficient, from APs (Masscomp [3] and Sky) 
thru super-APs (Star) and mini-supercomputers (Convex) to 
supercomputers (CDC and Cray). During our evaluations of this whole 
range of vector hardware, we have become convinced that QGRD4 is a very 
effective test case: it tends to expose and accentuate differences 
between the architectures. This is because all vector systems perform 
operations like the FFT efficiently, but performance on real total 
applications tends to be determined by the fraction of each application 
which cannot be vectorized on the various systems. QGRD4 is a rather 
good general indicator of the capabilities of an architecture for

[2] Fortran emulations of the AIPS AP-120B microcode are available in 
the AIPS "pseudo-AP" library. These Fortran subroutines are much 
easier to analyze and port than the 120B microcode. During 1984 
the gridding subroutine we analyzed was called APGRD4. In the 
15JAN85 release of AIPS, it has been renamed as QGRD4. The other 
AP-emulation subroutines have also been given names that start with 
"Q"; the purpose is to formally establish a virtual vector 
hardware interface in AIPS. As a part of this change, the integer 
subscripts being passed as arguments are now 32-bit integers rather 
than 16-bit.

[3] Obviously, if we had known in March 1984 what we now know, the 
Masscomp project decision might have been different.
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handling the "difficult" fraction of all problems, and it is an especially good indicator for our synthesis mapping application.

2.0 "SCALAR" GRIDDING (SUBROUTINE QGRD4)
In this section we present and then discuss the 

machine-independent Fortran subroutine QGRD4.FOR from the 
"Q-subroutine" library of AIPS (15JAN85 version). The data declaration 
INCLUDES have been expanded in the listing shown below. The include 
file ZVND.INC before the inner DO-loop is contains the "no-dependency" 
compiler directive for vectorizing compilers ("CDIR$ IVDEP" for the CFT 
compiler on Crays, "C$DIR NO_RECURRENCE" on Convex). Without such a 
declaration these compilers will almost certainly refuse to vectorize 
this DO-loop. Array APCOREO is dimensioned elsewhere (in subroutine 
QINIT.FOR) to be 65536 R*4 cells. This dimension could be changed for 
machines with large memories.

SUBROUTINE QGRD4 (UV, VIS, WT, GRID, CONX, CONY, N02, M, LROW 
INC, NVIS)

Ccccccccccccccccccccccccccc
c

UV
VIS
WT

1*4
1*4
1*4

GRID 1*4

Pseudo-AP version
Convolves visibility data onto a grid.
A single channel is gridded at a time.
It assumes that NO points lie within one half the 
convolving function support size of the outside edge.
Inputs:

Location of (u,v) values in cells.
Location of (complex) visibilities.
Weight for data. Assumes any tapering 
has already been done.
Base address of gridded data.
Order assumed to be the following 
for each of the M rows:
1) 2 * LROW visibilities 

Base address of X convolving fn.
Base address of Y convolving fn.
INT( (# cells used on a row) / 2 )
Number of rows kept in the AP.
Length of a row ( max. X).
Increment for UV, VIS and WT 
Number of visibilities to grid.

In the above, X refers to rows and y to columns 
in the gridded data, NOT on the sky. The total 
numbers of rows and cells used on a row should 
be odd.
All AP memory I/O values are assumed floating.
It is assumed that all values of v correspond to row M/2.

CONX
CONY
N02
M
LROW
INC
NVIS

1*4
1*4
1*4
1*4
1*4
1*4
1*4
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INTEGER*4 UV, VIS, WT, GRID, CONX, CONY, N02, M, LROW, INC,
* NVIS, N, INCR, HAF, IX, IY
INTEGER*4 JUV, JVIS, JWT, JGRID, JCONX, JCONY, JCX, JCY,
* JG, JJCX, JJLOOP, IFIX, IRND
REAL*4 AIM, RE, RRE, AAIM, X, XX, XWT, Y, RHALF, SIGN 
INCLUDE 'INCS:DAPC.INC'
REAL * 4 APCORE(1), RWORK(4096)
INTEGER*4 APCORI(l), IWORK(4096), SPAD(16)
COMPLEX CWORK(2048)
INCLUDE 'INCS:CAPC.INC'
COMMON /APFAKE/RWORK, APCORE 
COMMON /SPF/ SPAD
INCLUDE 'INCS:EAPC.INC'
EQUIVALENCE (APCORE, APCORI), (RWORK, IWORK, CWORK) 
DATA RHALF /0.5/

Include DAPC

End DAPC 
Include CAPC

End CAPC 
Include EAPC 
End EAPC

IRND(XX) = IFIX (XX + SIGN (RHALF, XX))
Convert addresses to 1 rel.JUV = UV + 1

JVIS = VIS + 1
JWT = WT + 1
JGRID = GRID + 1
JCONX = CONX + 1
JCONY = CONY + 1
N = N02 * 2 + 1
HAF = LROW / 2 - N02
INCR = 2 * LROW - 2 * N
DO 300 JJLOOP = 1,NVIS

XWT = APCORE(JWT)
IF (XWT.LE.0.0) GO TO 300
X = APCORE(JUV+1)
Y = APCORE(JUV)
JCX = JCONX + IRND (100. * 
JCY = JCONY + IRND (100. *
JG = JGRID + 2 * (IRND (X)
JJCX = JCX
RE = APCORE(JVIS) * XWT 
AIM = APCORE(JVIS+1) * XWT

Loop over visibilities. 
Check weight.

Determine location.

Deter, conv. fn loc. 
(IRND (X) - X - 0.5)) + 100 
(IRND (Y) - Y - 0.5)) + 100 

Determine grid loc.
+ HAF)

Save JCX.

Get visibility.
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G Gridding loop.DO 200 IY = 1,M
JCX = JJCX
RRE = RE * APCORE(JCY)
AAIM = AIM * APCORE(JCY)

INCLUDE 'INCS:ZVND.INC'
DO 100 IX = 1,N 

C Sum to grid.
APCORE(JG) = APCORE(JG) + APCORE(JCX) * RRE 
APCORE(JG+1) = APCORE(JG+1) + APCORE(JCX) * AAIM 

^ Update pointers.JCX = JCX + 100 
JG = JG + 2 

100 CONTINUE
C Update pointers.JCY = JCY + 100 

JG = JG + INCR 
200 CONTINUE

C Update for next vis.JUV = JUV + INC 
JVIS = JVIS + INC 
JWT = JWT + INC 

300 CONTINUE
C
999 RETURN 

END

2.1 Discussion Of Subroutine QGRD4

QGRD4 convolves complex visibility samples onto a regular grid. 
The grid is required in order to allow the use of the Fast Fourier 
Transform (FFT) to compute the map. There are three main problems in 
vectorizing QGRD4 in various types of vector machines: data dependent 
addressing, short vectors, and vector dependencies.
1. Data Dependent Addressing

The integer subscripts JCX, JCY, and JG are computed in the outer 
DO 300 loop from the U-V coordinates of the visibility 
measurements. These subscripts are then used inside the DO 200 
and DO 100 loops to access arrays in APCOREQ. Some APs have 
trouble passing addresses computed in floating point back to their 
addressing generators. This is generally not a problem in 
supercomputers.

2. Short Vectors

The values of variables M and N, which are the loop limits of the 
DO 200 loop and the DO 100 loop, are generally of order 7 in AIPS 
applications (i.e., a 7x7 convolution kernel is used). This code 
executes efficiently in an AP-120B because the pipelines are short 
(only 2-3 clock cycles) and memory access can be overlapped well
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with pipeline operations. Because the Numerix MARS-432 is very 
similar architecturally, we can confidently predict that it will 
be at least as effective as the AP-120B. But many other vector 
machines are not very efficient when processing vectors of length 
7. The Cray machines are a notable exception; they will probably 
perform with at least 30% efficiency on this code on the first try 
because their vector pipelines have a low startup overhead [4]. 
But the Cyber 205, a long vector machine, has a vector half length 
of about 50; its efficiency will be less than 15% on this code. 
Thus, the goal is now established: we must increase the vector 
lengths in the innermost loop if QGRD4 is to run efficiently in 
long vector machines.

3. Vector Dependencies

A pipeline processor can only overlap the beginning of processing 
one vector with the end of processing the previous one if the two 
vectors do not overlap in memory. If this rule is violated, 
improper computations may result. In QGRD4, dependency arises 
because we are co-adding visibility data to the grid and because 
successive visibilities may need to co-add to the same cells. In 
practice, the code as presented above has little trouble with 
dependencies; we must merely assure that the last store operation 
on the last cycle of the outer loop is completed BEFORE the 
beginning of the first load operation of the first cycle of the 
outer loop for the next visibility.

The real problem comes when we try to increase the vector length 
by permuting the order of the DO-loops. In particular, the outer 
loop which processes visibilities can be arbitrarily long, but the 
dependency is in this loop, and we will move the dependency into 
our innermost loop (the worst place!) if we bring this loop to the 
inside. It is precisely this problem which motivates this entire 
paper; we will see that vector instructions can be used to detect 
the presence of dependencies in order to avoid producing erroneous 
results.

2.2 Related "Q-Subroutines“

Subroutine QGRD4 is called by routine Q1GRD; these are the 
gridding routines for AIPS task MX. Other gridding tasks have slightly 
different requirements, and hence they have different Q-routines. 
Routines QGRD1, QGRD2, and QGRD3 each process only one visibility at a

[4] Actually, the "half length" of the Cray pipes is about 7; the 
inner loop efficiency should be 50%. We choose to apply a systems 
analyst's rule-of-thumb of 60%, and get 30% as the estimated 
performance. The "half length" is the number of dock ticks it 
takes to start the pipe, i.e., the vector length for which the pipe 
runs at 50% efficiency (Hockney Jesshope 1981).
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time; therefore, they have only two DO-loops inside them. The third 
DO-loop is in another Q-routine which calls them. In particular, 
routine QGRID calls QGRD1 and QGRD2, and QGRIDA calls QGRD3 and QGRD2. 
Inspection of the code shows that they are all very similar, and that a 
solution to the "QGRD4 problem" is effectively a solution for the other 
routines as well (presumably QGRID and QGRIDA would have to incorporate 
the three subordinate routines so that the triple DO-loops could be 
permuted).

3.0 VECTORIZED GRIDDING
Two ideas immediately come to mind: "unroll" the inner loop so 

that the length becomes 49 rather than 7, or permute the DO-loops so 
that the outer one over visibilities comes to the inside. Unrolling 
has the problems that the length is still only 49 (not really enough 
for a Cyber 205), and that the convolution support size is hard-coded. 
In addition, we still have the problems that the cells of the kernel 
are not a constant-stride vector (i.e., we need a gather-scatter 
operation), and that we cannot overlap the load of one vector with the 
store of another. We conclude that we would like to permute the 
DO-loops and eliminate the dependency problem in the innermost loop.

The dependency problem is that several visibility points may 
contribute to a given cell and, with the probable use of gather/scatter 
operations, all but the last contribution will be lost. It should be 
noted that if the loop over the visibility is the inner loop, then this 
confliot only occurs if there are several visibilities centered on the 
same grid cell, and that this conflict will then occur over the whole 
convolving function support size.

With this latter point in mind, one solution is to partition the 
input visibility vector into sections which have no dependencies. Then 
as much work as possible is done on the full vector but updating the 
stored grid is done by partition. This will clearly work best in the 
case of completely unsorted data, i.e., the full grid can be kept in 
memory, but will likely give acceptable performance with the current 
practice (a "scrolling" buffer). The following sections outline this 
approach for the full gridding case. It should work very well in cases 
where there are no dependencies and at least do the right thing in the 
other extreme where all data are in the same cell.

Please note that the discussion in this paper applies only to 
uni-processor pipelined vector machines. It is likely that other 
strategies will be more appropriate for multi-CPU machines like the 
Denelcor HEP. We think that the case of a dual or quad CPU (e.g., the 
Cray X-MP) is much easier, but we have not considered it in detail.



3.1 Overview Of The New Algorithm

Note: most of the operations given below are vector operations 
over vectors of length equal to the number of visibilities.

I. The [complex] visibilities are multiplied by the weights.
II. Partitioning the problem.

1. Compute the central cell offset for each visibility.
CENCEL = LX * U + V*2

2. Establish partitions (see following sections for alternate 
methods). Fill arrays ISTART and ISTOP, which are the first 
and last elements in each partition.

3. Initialize ACX and ACY, which are the addresses in the convolving 
function lookup tables for each visibility.

III. Loop over Y convolving function support.
1. Compute CY address (increment ACY by 100).
2. Gather CY (convolving function values).

3. Multiply CY times (visibility * weight) and save in temporary 
vector(s).

4. Loop over X convolving function support.
a. Compute grid cell numbers (CENCEL + scalar).
b. Compute CX address (increment ACX by 100).
c. Gather CX (convolving function values).
d. Multiply CX times (CY * visibility * weight).
e. Loop over the partitions (a test could be done to check 

for short partitions and do these cases in scalar mode).
i. Gather old [complex] grid values (CENCEL).
ii. Sum new contributions into grid values.
iii. Scatter new grid values.
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3.2 The Vectorized QGRD4 In Fortran

The following example gives a hypothetical version of QGRD4 using 
calls to the vector subroutines in the AIPS "Q-routine" library. A 
description of all of these routines is given in section 4.0, entitled 
Vector Operators". Implementation details for various vector systems 

are given in Section 5.0, entitled "Real Machines".

Note that GATHER/SCATTER routines have been used. Note also that 
the call to QGRD4 is assumed to pass the actual arrays (Fortran-style) 
rather than subscript pointers to them in AP memory (which is what the 
QGRD4 in section 2.0 does). The purpose of this example is to show one 
implementation of the procedure outlined above using vector primitive 
operators. Probably the code as given here will not execute 
efficiently on any real computer; in the course of our discussion we 
will outline how the algorithm can be adapted for use with several real 
machines, both APs and supercomputers.

The version given here grids unsorted visibilities onto a full 
grid (i.e., array GRID will usually have a dimension of 2*LROW*LROW). 
For sorted visibilities and a "scrolling" buffer, GRID will have a 
dimension of only 2*LROW*M (as in the present QGRD4). This makes only 
a minor change in the algorithm, as noted below. The default 
dimensions of CONXQ and CONYQ are (100,7) in the present 
implementation (i.e., the convolving functions are tabulated at 
intervals of 0.01 grid cell).

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
Cccc

SUBROUTINE QGRD4 (UV, VIS, WT, GRID, CONX, CONY,
* N02, M, LROW, INC, NVIS)

QGRD4 convolves visibility data onto a grid.
A single channel is gridded at a time.
It assumes that NO points lie within one half the
convolving function support size of the outside edge.
This example assumes that the full grid is available in memory Inputs: 1 ’

array of (u,v) values in cells, 
array of (complex) visibilities, 
weights for data. Assumes any tapering 

has already been done. 
data grid.
X convolving function lookup table.
Y convolving function lookup table.
INT( (# cells used on a row) / 2 ) 
convolution function support size in Y-direction

In the above, X refers to rows and Y to columns 
in the gridded data, NOT on the sky. The total 
numbers of rows and cells used on a row should 
be odd.

length of a row ( max. X, 2*#-complex) 
increment for UV, VIS and WT. 
number of visibility points to grid.

This example can handle up to 1000.

UV
VIS
WT
GRID
CONX
CONY
N02
M

LROW
INC
NVIS
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INTEGER N02, M, LROW, INC, NVIS
REAL UV(INC.NVIS), VIS(INC,NVIS), WT(INC,NVIS), GRID(l),
* CONX(l), CONY(1)

C Declare temporary variables:
C NOTE: In a real implementation
C Many of the arrays could be
c EQUIVALENCEd.

INTEGER I, J, K, N1, NPART, II, NCHK, NX,
* ISTART(IOOO), ISTOP(1000), IX(IOOO), IY(1000), TIX(IOOO)
REAL TSCALR, XMAX, F2,
* VREAL(IOOO), VIMAG(IOOO), ACX(IOOO), ACY(IOOO), CENCEL(IOOO)
* CFN(IOOO), TGRID(IOOO), TVSRE(IOOO), TVSIM(IOOO), TEMP(IOOO)
* X(1000), Y(IOOO), VSRE(IOOO), VSIM(IOOO)
DATA N1 /l/, F2 72.0/

G Multiply visibilities by
G weights. Real part first.

CALL QVMUL (VIS(1,1), INC, WT, INC, VREAL, N1, NVIS)
G Imaginary part.

CALL QVMUL (VIS(2,1), INC, WT, INC, VIMAG, N1, NVIS)
c Compute central cell numbers.
c NOTE: the details of computing
C central cell numbers depends
c on whether the full or partial
C grid is kept in memory. Round
c cell numbers in scalar mode.DO 10 I = 1,NVIS

IX(I) - UV(2,1) + SIGN (0.5, UV(2,1)) [5]
IY(I) = UV(1,1) + SIGN (0.5, UV(1,I))

10 CONTINUE
C Float

CALL QVFLT (IX, N1, X, N1, NVIS)
CALL QVFLT (IY, N1, Y, N1, NVIS)

C Convert to cell number.
CALL QVSMUL (X, N1, F2, TEMP, N1, NVIS)
CALL QVSMA (Y, N1, LROW, TEMP, N1, CENCEL, N1, NVIS)-----------------------------------------------------------------------------------

C Insert code here which will establish partitions, fill ISTART,
C ISTOP, and set NPART. See later sections for alternate methods.C

[5] This rounding operation can also be vectorized. The algorithm is: 
compute a Boolean truth vector on the relation [X().GE.0.0] (in a 
Cray or Convex this is done in the Vector Mask register, in a 205 
it is a bit vector), set up temporary vectors of all +0.5 and all 
-0.5, merge them into another temporary conditioned on the Boolean 
vector, add X(), and fix it into IX(). This discussion also 
applies to the DO 100 loop below. Also note that the Masscomp 
pipes can round while fixing, all in one operation.
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£ Offset CENCEL to first cell
^ to use.

TSGALR = - (N02 * LROW + (M/2) * 2)
CALL QVSADD (CENCEL, N1, TSCALR, CENCEL, N1, NVIS)

G Form initial convolving
G function addresses.

CALL QVSUB (X, N1, UV(2,1), INC, X, N1, NVIS)
CALL QVSUB (Y, N1, UV(1,1), INC, Y, N1, NVIS)
TSCALR = -0.5
CALL QVSADD (X, N1, TSCALR, X, N1, NVIS) [6]
CALL QVSADD (Y, N1, TSCALR, Y, N1, NVIS)

G Multiply by 100.TSCALR = 100.0
CALL QVSMUL (X, N1, TSCALR, X, N1, NVIS)
CALL QVSMUL (Y, N1, TSCALR, Y, N1, NVIS)

G Round X, Y.DO 100 I = 1,NVIS
TIX(I) = X(I) + SIGN(0.5, X(I))
IY(I) = Y(I) + SIGN(0.5, Y(I))

100 CONTINUE
G Loop over Y convolving
G function support:DO 600 I = 1,M
C Compute CY address (add 100)
G first restore IX:

CALL QVMOV (TIX, N1, IX, N1, NVIS)
TSCALR =100
CALL QVSADD (IY, N1, TSCALR, IY, Nl, NVIS)

G Gather CY function values.
CALL GATHER (CONY, IY, CFN, Nl, NVIS)

C .̂AT-r ~ , Multiply CY times vis and saveCALL QVMUL (VIS(1,1), INC, CFN, Nl, TVSRE, Nl, NVIS)
CALL QVMUL (VIS(2,1), INC, CFN, Nl, TVSIM, Nl, NVIS)

G Loop over X convolving supportNX = N02 * 2 + 1
DO 500 J = 1,NX

G Compute CX address (add 100). TSCALR =100
CALL QVSADD (IX, Nl, TSCALR, IX, Nl, NVIS)

G Gather CX function values.
CALL GATHER (CONX, IX, CFN, Nl, NVIS)

G Multiply CX.
CALL QVMUL (TVSRE, Nl, CFN, Nl, VSRE, Nl, NVIS)
CALL QVMUL (TVSIM, Nl, CFN, Nl, VSIM, Nl, NVIS)

[6] On Cray and Convex computers several successive vector operations 
of the same length (NVIS in this case), operating on common 
vectors, can be performed in one loop which "strip mines" by the 
vector register length, thus "chaining" the pipes to achieve 
greater speed. The cache memories of the Star, Masscomp and Sky 
APs can be used in a similar fashion. The goal is to increase the 
ratio of pipe cycles to memory cycles.



Gridding on Vector Machines
VECTORIZED GRIDDING Page 13

30 Jan 85

C Loop over partition.
DO 400 K = 1,NPART 

II = ISTART(K)
NCHK = ISTOP(K) - II + 1

C NOTE: could trap short
G partitions here and do in
C scalar mode.
C Gather old real part:

CALL GATHER (GRID, CENCEL(Il), TGRID, N1, NCHK)
C Sum reals.

CALL QVADD (TGRID, N1, VSRE(Il), N1, TGRID, N1, NCHK)
C Scatter new grid values back.

CALL SCATTER (GRID, CENCEL(Il), TGRID, N1, NCHK)
G Gather old imaginary part.

CALL GATHER (GRID(2), CENCEL(Il), TGRID, N1, NCHK)
C Sum imaginaries.

CALL QVADD (TGRID, N1, VSIM(Il), N1, TGRID, N1, NCHK)
C Scatter new grid values back.

CALL SCATTER (GRID(2), CENCEL(Il), TGRID, N1, NCHK)
400 CONTINUE
C Update CENCEL to next cell.TSCALR = 2

CALL QVSADD (CENCEL, N1, TSCALR, CENCEL, N1, NVIS)
500 CONTINUE

C Update CENCEL to start of next
C row.

TSCALR = LROW - M * 2 - 2
CALL QVSADD (CENCEL, N1, TSCALR, CENCEL, N1, NVIS)

600 CONTINUE 
999 RETURN

-----------------------------------------------------------------------------------
END

3.3 The "Natural" Partition Method

The simplest method of establishing partitions is to divide up the 
data, without rearrangement, into partitions with no dependencies. 
Since each element in a partition must be compared with every other 
member, the cost of this method is proportional to the square of the 
partition length. On some machines (such as a Cray) there are utility 
routines which search for the first occurrence in a vector of a value; 
if suoh is available then it should be used. The following gives an 
example of a vectorized method using functions available on an FPS 
array processor (and assumed to be universally available). The 
notation is that used in section 3.2. The REGSIZ parameter used below 
shows an example of how algorithms can be adapted to architectural 
features. In this case, REGSIZ should be 64 for Crays, 128 for the 
Convex C-l,and 65535 for the CDC Cyber 205. Lengths shorter than the 
nominal REGSIZ may be appropriate to balance the N-square search cost 
against the vector pipeline startup cost.
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PARAMETER (REGSIZ = rrrr)
Partitions need not be longer 
than vector register length:

Use CENCEL to construct 
partition table.
Loop over elements:

NPART = 1 
ISTART(1) = 1 
ISTOP(l) = MIN (ISTART 
DO 20 I = 2, NVIS

+ (REGSIZ - 1), NVIS)
Check for short (1) partitions

C
C

c IF (CENCEL(I).EQ.CENCEL(I-l))
Cc

II = ISTART(NPART)
NCHK = 1 - 1 1  
TSCALR = -CENCEL(I)
CALL QVSADD (CENCEL(Il), Nl,

C
CALL QMINMG (TEMP, Nl, XMAX,

C 
C

IF ((XMAX.GT.0.5) .AND.
C
10 ISTOP(NPART) = 1-1

NPART = NPART + 1 
ISTART(NPART) = I 
ISTOP(NPART) = NVIS 

20 CONTINUE

GO TO 10 
Subtract CENCEL(I) from rest of 
array.

TSCALR, TEMP, Nl, NCHK)
Look for minimum value.

NCHK)
If max.abs.value(XMAX) > 0.5
then no prior use of cell. 

(NCHK.LE.REGSIZ)) GO TO 20
Prior use, start new partition.

3.3.1 Distribution Of "Natural" Partition Lengths
The viability of the "Natural" partitioning scheme depends, at 

some level, on the lengths of the partitions encountered in typical 
data sets. The issue is somewhat complicated by the fact that short 
partition lengths make determining the partition boundaries easier but 
updating the grid more difficult.

In order to determine the partition lengths to be expected with 
VLA observations two sets of data were analyzed. The first set 
contained 6000 visibilities which consisted of several scans; the 
second, and larger, set contained 121,446 visibilities. Two oases were 
considered for each data set: (l) the current case in which one row at 
a time is gridded and the data is completely sorted, and (2) the case 
in which the entire matrix is gridded at once and the data are in 
time-baseline order. In all cases the size of the grid is 512x512 with 
normal sampling.

The data were analyzed to determine the distribution of partition 
lengths which occurred. These results are summarized in Table 1 which 
gives the average partition length and the approximate maximum
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partition length.

Table 1
Distribution of Partition Lengths from Sample Data

Case Average Length Maximum Length
6K vis, sorted

121K vis, sorted
6K vis, unsorted

121K vis, unsorted
44
63

2.2
7.2 35

150
150

9

A more detailed examination of the distribution of partition 
lengths shows that roughly 50% of the data is in partitions of equal or 
greater length than the average length partition. The conclusion that 
can be derived from this table is that the partition lengths expected 
for sorted data are sufficiently short that the updating of the grid 
will not make good use of the vector hardware. For unsorted data, the 
resulting partition sizes will make acceptable length vector operations 
on a short vector machine such as a Cray but not on long vector 
machines such as a Cyber 205.

The above suggests that this partitioning scheme is useful only in 
the case of gridding unsorted data (i.e., much more of the grid than 
the current row-at-a-time method). The case of sorted data may be best 
dealt with by the Scatter/Compress method described in the following 
sections. The typical partition length will increase with the size of 
the image being made.

3.4 The "Scatter/Compress" Method

An alternate scheme for partitioning the input data is to 
rearrange the data to maximize the lengths of the partitions. This is 
done by scattering the indices of the data points onto a work array the 
size of the portion of the grid being worked on, and then compressing 
this vector to obtain a list of indices. The reason this works is that 
when multiple visibilities use the same cell, only the indices of the 
last will be kept; thus, this scheme obtains the maximum length list 
of visibilities which has no dependencies. These visibilities are 
removed from the list and the process is iterated until the list of 
data remaining is exhausted. This method makes extensive use of 
GATHER/SCATTER and COMPRESS operations, and so we refer to it as the 
"Scatter/Compress" scheme for partitioning the data [7]. The algorithm 
creates a large number of temporary vector variables which are

[7] When we first thought of this idea in April 1984, we called it the 
"anti-sorting" algorithm, because sorting visibilities maximizes 
the occurence of vector dependency in gridding, whereas this 
technique minimizes it.
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described below. Consult section 4.0 for a description of the vector 
operators which are used in this algorithm. Note that the algorithm as 
given here only makes sense when gridding sorted data, in which oase it 
is working on only a few rows (usually one).

Vectors: 
RAMP 
INDICES
INDES
CENCEL
WROW
WROW2
MASK
GADR

Arrays:
ISTART 
ISTOP

Scalars:
N
LROW
NPART
VLEN
VLENP

An array initialized to the sequence 1,2,3,...
An array containing the original indices of the input 

visibilities before they are rearranged.
An array which will contain the indices of the input 

visibilities rearranged in sorted partitions.
An array containing the center cell grid addresses of 

the visibilities.
A work array the length of working section of grid
Another work array the length of working section
A mask array indicating members to be compressed from 

the vector.
A work vector of length equal to the number of data 

points to contain the grid addresses.

Array of pointers to the first members of partitions.
Array of pointers to the last members of partitions.

The number of visibilities in the input vector.
The length of a row.
Number of partitions
Length of list of cells left
Length of list of cells left (temporary value)

c----------------------------------------
C
C

NPART = 0 
ISTART(1) = 1
CALL QVMOV (CENCEL, N1, GADR, 
VLEN = N

C
CALL QVFILL (0, WROW, LROW)

C 
C

DO 15 I = 1, N 
15 RAMP(I) = I

CALL QVMOV (RAMP, N1,

Set up partitions using the 
"Scatter/Compress" method.

Nl, N)
Clear row work vector.
Following loop vectorizes on 
many machines:

INDICES, Nl, N)
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Loop until list exhausted:20 CONTINUE
Scatter the ramp 
to row work vector:

CALL SCATTER (RAMP, GADR, WROW, VLEN)
WROW contains indices of the 
last hits in each cell.
Make mask of active cells:

CALL MAKMASK (WROW, MASK, LROW)
Compress them to next partition

NPART = NPART + 1
IF (NPART.GT.l) ISTART(NPART) = IST0P(NPART-1) + 1

first compress cell indices: 
CALL COMPRESS (WROW, MASK, WROW2, LROW)

Get length of partition:
LEN = POPCNT (MASK, LROW)

and gather the partition:
CALL GATHER (INDICES, WR0W2, INDEX(ISTART(NPART)), LEN)
ISTOP(NPART) = ISTART(NPART) + LEN - 1 
VLENP = VLEN 
VLEN = VLEN - LEN

Finished?
IF (VLEN.LE.O) GO TO 25

Clear work vector again:
CALL QVFILL (0, WROW, LROW)

Now remove processed indices. 
Zero indices in partition:

CALL SCATTER (WROW, WROW2, INDICES, LEN)
Mask indices not in partition: 

CALL MAKMASK (INDICES, MASK, VLENP)
Compress indices in partition: 

CALL COMPRESS (INDICES, MASK, INDICES, VLENP)
Compress cell addresses:

CALL COMPRESS (GADR, MASK, GADR, VLENP)
GO TO 20

End of loop:
25 CONTINUE

INDEX now contains indices of 
the input data in the new 
partition order. Rearrange 
the addresses and data:

CALL GATHER (CENCEL, INDEX, GADR, N)
CALL QVMOV (GADR, N1, CENCEL, N1, N)

C Real part.
CALL GATHER (VREAL, INDEX, TVSRE, N)
CALL QVMOV (TVSRE, N1, VREAL, N1, N)

C Imaginary part.
CALL GATHER (VIMAG, INDEX, TVSIM, N)
CALL QVMOV (TVSIM, N1, VIMAG, N1, N)

Note: this scheme will sort data by partition which should 
enhance the performance of the entire gridding process on machines with 
virtual and/or cache memory.
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3.4.1 Cell Hit Statistics
The amount of work the Scatter/Compress method requires depends on 

the frequency of multiple hits on a single cell and, in particular, on 
the maximum number of hits per cell in a given row (assuming 
row-at-a-time gridding). The statistics shown in Table 2 below have 
been derived for the same data sets and in a manner similar to that 
used to obtain the distribution of "Natural" partition lengths 
described above. The table gives the average number of hits per cell, 
an approximate value of the maximum number of hits per row which is 
exceeded 50% of the time and the maximum hits in any cell.

Table 2 
Cell Hit Statistics 

Case Avg. hit per cell Prob. row max. Max hit/cell
6K vis sorted 5.7 9 30

121K vis sorted 15.6 20 350

The values in Table 2 indicate that the typical number of 
partitions per row is of the order of a few tens. This number will 
decrease for map sizes larger than 512x512 because the cells in uv 
space become smaller. If the number of visibilities being processed at 
a time (or the number of visibilities on a typical row) is of the order 
of a few thousand, then the typical partition length should be on the 
order of a hundred. The typical partition length is proportional to 
the size of the grid.

It should be noted that this scheme involves operations on a work 
vector the length of the portion of the grid currently being 
accumulated. This is relatively efficient for sorted data being 
gridded onto a single row at a time because the length of the work 
vector is fairly short and will have a higher density of data points. 
In the other extreme, the full grid accumulation of unsorted data, the 
work vector will be exceedingly long and sparsely populated, and this 
method of establishing partitions may become unattractive.



Gridding on Vector Machines
VECTOR OPERATORS Page 19

30 Jan 85

4.0 VECTOR OPERATORS

This section documents all of the vector operators which were used 
in the previous sections. In the first group, we describe the 
functions which have the same names, functionality, and (nearly) the 
same call arguments as those in the AIPS Q-routine library. (NOTE: In 
any actual implementation of the vectorized gridding algorithm, ALL 
details should be checked against Chap. 11 of "Going AIPS".) The 
operators are grouped into classes and a formula is given for the last 
one in each class. Note that we present the operators as accepting the 
vectors themselves as arguments (rather than their addresses), and as 
using zero-based subscripting in order to simplify the notation. 
Another simplification is that the vector operators are regarded as 
being capable of handling either integer or floating point data (for 
example, operator QVSADD is used to increment integer index vectors in 
a number of places in Sections 3.2, 3.3, and 3.4).
Unary operators:

QVMOV (A, IA, B, IB, N) [vector copy operation]
QVFIX (A, IA, BI, IBI, N)
QVFLT (AI, IAI, B, IB, N)

B(m*IB) = (FLOAT (AI(m*IAI))) for m = 0 to N-l
Vector-Vector operators:

QVADD (A, IA, B, IB, C, IC, N)
QVSUB (A, IA, B, IB, C, IC, N)
QVMUL (A, IA, B, IB, C, IC, N)

C(m*IC) = (A(m*IA) * B(m*IB)) for m = 0 to N-l
Vector-Scalar operators:

QVSADD (A, IA, S, B, IB, N)
QVSMUL (A, IA, S, B, IB, N)

B(m*IB) = (A(m*IA) * S) for m = 0 to N-l
"Linked-Triad" operators:

QVSMA (A, IA, B, C, IC, D, ID, N)
D(m*ID) = ((A(m*IA) * B) + C(m*IC)) for m = 0 to N-l

Special unary operators:
QVFILL (A, B, IB, N)

B(m*IB) = (A) for m = 0 to N-l 
QMINMG (A, IA, B, N)

B = (MIN (ABS (A(m*IA)), B)) for m = 0 to N-l
Boolean "Mask" operators:

MAKMASK (A, MASK, LEN) Create a mask vector.
MASK(m) = (A(m) .NE. 0.0) for m = 0 to LEN-1

POPCNT (MASK, LEN) Counts number of TRUEs in MASK.
POPCNT = 0
for m = 0 to LEN-1

If (MASK(m) = TRUE) then POPCNT = POPCNT + 1
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COMPRESS (A, MASK, B, N) Vector compress. [8]
n = 0
for m = 0 to N-l

If MASK(m) = TRUE then B(n) - A(m); n = n + 1
The Gather and Scatter Operators (Indirect Addressing):

SCATTER (A, B, C, N) Vector scatter.
C(B(m)) = (A(m)) for m = 0 to N-l

GATHER (A, B, C, N) Vector gather.
C(m) = (A(B(m))) for m = 0 to N-l

Note: a complete vector hardware system must also implement the EXPAND 
operator (inverse of COMPRESS), and will also need to have several 
forms of Vector Merge operations.

[8] The compress definition presented here is the one used by the 
Cyber 205 and the Convex C-l. Three of the real machines discussed 
in the next section (Cray, Masscomp, and Sky) use a different 
approach. The comparison operator generates an index vector rather 
than a bit vector, and then the compressed vector can be produced 
by a gather operation. In addition, the comparison returns the 
length of the index vector (see notes [11], [13], and [14] in 
Table 3). Remund and Taggart (pp. 402-4 in Kuck, et.al. (1977)) 
have argued that this technique is more efficient for machines that 
lack bit-vector hardware (a CDC 7600 in their case). With this 
approach, the eight statements following statement 20 in the 
Scatter/Compress method would be transformed from:

CALL SCATTER (RAMP, GADR, WROW, VLEN)
CALL MAKMASK (WROW, MASK, LROW)
NPART = NPART + 1
IF (NPART.GT.l) ISTART(NPART) = ISTOP(NPART-1) + 1 
CALL COMPRESS (WROW, MASK, WROW2, LROW)
LEN = POPCNT (MASK, LROW)
CALL GATHER (INDICES, WROW2, INDEX(ISTART(NPART)), LEN)
ISTOP(NPART) = ISTART(NPART) + LEN - 1

to
CALL SCATTER (VLEN, WROW, GADR, RAMP)
CALL WHENNE (LROW, WROW, Nl, 0, MASK, LEN)
NPART = NPART + 1
IF (NPART.GT.l) ISTART(NPART) = IST0P(NPART-1) + 1 
CALL GATHER (LEN, WR0W2, WROW, MASK)
CALL GATHER (LEN, INDEX(ISTART(NPART)), INDICES, WROW2) 
ISTOP(NPART) = ISTART(NPART) + LEN - 1 

for a Cray. Note that the order of the arguments is different for 
the Cray library and that MASK is a vector of indices in this case.
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5.0 REAL MACHINES

"Any attempt at a generalized comparison between the 
CYBER 205 and the Cray-1 is largely irrelevant since 
the performance of each is critically dependent on the 
problem being solved and the way it is mapped onto the 
hardware." [Ibbett (1982), p.163]

In this section we discuss the special features and idiosyncrasies 
of a number of different systems. In Table 3 we give the names of the 
library routines which perform the vector operators on the machines. 
The information in this section was culled from a variety of sources, 
which are listed in the Bibliography.

FPS AP-120B (now the model 5105 or 5205)
The 120B is the classic horizontally microcoded array processor. 

Two pipes clock at 6 MHz for a peak rate of 12 MFlop (but AIPS gets an 
effective rate of only about 1 MFlop). COMPRESS and SCATTER are not 
available in the library. There is no question of feasibility, but 
obviously there is little incentive because this machine has no need 
for our vectorized QGRD4 algorithm. Price about $55K. Floating Point 
Systems, Inc., Beaverton, OR 97005.

Numerix MARS-432
The MARS-432 is a new horizontally microcoded AP. It was 

deliberately designed to be quite similar to the 120B, but to improve 
upon it in both performance and in ease of programming. Three pipes 
clock at 10 MHz for a peak rate of 30 MFlops. In general, anything you 
can do with a 120B can also be done with a 432, and in about the same 
way. (This means that the 432 doesn't need our new vectorized QGRD4 
algorithm.) The names, arguments, and functionality of the subroutine 
library are essentially IDENTICAL to FPS (therefore, we do not present 
them in Table 3). Numerix has an optimizing Fortran compiler. Price 
about $125K. Numerix Corporation, 320 Needham Street, Newton 
MA 02161, (617) 964-2500.

Cray-1 and Cray X-MP
The Crays are the classic vector register machines. They are able 

to overlap scalar operations with vector pipe operations. The pipes 
are able to "chain" together for increased speed. Cray-ls are often 
able to hit 120 or more MFLops in extended bursts, and can sustain 
50+ MFlops (even more in the X-MP). The vector register load supports 
constant stride. Existing Cray machines have one notable weakness: 
gather/scatter and related operators are not supported in the vector 
hardware. Future Cray machines (e.g., Cray-2 and advanced X-MP models) 
are expected to have such hardware. The Cray optimizing, vectorizing 
Fortran compiler has a good reputation; extensive libraries are 
available. Price about $10**7. Cray Research, Inc., 1440 Northland
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Drive, Mendota Heights, MN 55120, (612) 452-6650.

Table 3
Names of the Vector Operators in the Various Systems

This FPS Cray-1 CDC Convex Star Masscomp Sky
paper[1] AP-120B X-MP Cyber205 C-l ST-100 AP-501 Warrior

QVMOV VMOV [2] [3] [2] [4] CPFV VMOV
QVFIX VFIX ii VINT ii AVINT INTIFV VINT
QVFLT VFLT ii VFLOAT ii [5] CVTIFV VI2SP[6]
QVADD VADD a [3] it AVADD ADDFVV VADD
QVSUB VSUB ii II ii AVSUB SBFVV VSUB
QVMUL VMUL ii II ii AVMUL MULFVV VMUL
QVSADD VS ADD ii ll ii AVSADD ADDFVS VS ADD
QVSMUL VSMUL ii II ii AVSMUL MULFSV VSMUL
QVSMA VSMA ii It ii AVSMA MAFSVV VPIV
QVFILL VFILL ii ll ii SVFILL[7] CPFV[8] VSET
QMINMG MINMGV ISAMIN [9] [10] [5] ABMINF VMNMV
MAKMASK LVEQ [11] [12] ii ALVEQ CXFSNE VSCMP
POPCNT SVE li Q8SCNT ii ASVE [13] [14]
COMPRESS [15] ll Q8VCMPRS ii [5] ll ll

SCATTER ii SCATTER Q8VSCATR ii ll MOX[16] [17]
GATHER VINDEX GATHER Q8VGATHR ii ll EXVF[16] VINDX

Notes to Table
[1] The operators listed are only those used in this paper. A

complete set would be larger.
[2] Automatic vectorization of Fortran DO-loops handles this.
[3] Automatic vectorization of Fortran DO-loops handles this

(translates to routines 'Q8fbrm' and 'Q8fsbrm'); alternatively, 
use the explicit vector extensions to Fortran.

[4] Synthesize from SMM2C and SMC2M.
[5] Missing! The ST-100 needs this! No question of feasibility.
[6] Use VD2SP if 1*4.
[7] Use AVFILL in ACP.
[8] Note use of copy with zero stride on source vector!
[9] Synthesize from VABS followed by Q8SMIN.

[10] No library subroutines yet; easy in assembly language.
[11] Synthesize from WHENNE (POPCNT='nval' output) and GATHER.
[12] Use: MASK(1;LEN)=INPUT(1;LEN).NE.0.0 (it's vector Fortran!).
[13] Synthesize from CXAFSEQ (P0PCNT='L1' output) and EXVF.
[14] Synthesize from VMAXG (POPCNT='scalar2' output) and VINDX.
[15] Not available in library; no question of feasibility.
[16] Only in 16 KW AP memory; extension to main memory feasible?
[17] Missing! The Warrior needs this! Probably feasible.
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CDC Cyber-205
The 205 inherits all of the tradition of the STAR-100, the 

original "long-veotor" supercomputer (the "100" was for 100 MFlops). 
The pipes in this architecture always work memory-to-memory (i.e., no 
vector registers). A four pipe two million word 205 (one of the 
largest configurations) can hit a peak rate of 800 MFlops on very long 
vectors of 32-bit data, but sustained rates on most 205 configurations 
are generally more like 50 MFlops. Only unit stride vectors are 
allowed, but gather/scatter is well supported in the hardware, 
including the gather/scatter of constant stride vectors. Cyber 205s 
gather or scatter at an average rate of 40 Mwords/sec for random 
indices. The 205 has an unusually rich and elegant instruction set. 
Note that the Cyber 205 Fortran oompiler supports vector extensions to 
Fortran (see chap. 11 of the manual). Regarding footnote [5] in 
section 3.2: the VANINT library subroutine delivers the "nearest whole 
number" of the elements of a vector. Price about $10**7. Control Data 
Corporation, P.O. Box 0, Minneapolis, MN 55440. NOTE: CDC has created 
a subsidiary corporation called ETA Systems, Inc., also located in 
Minneapolis, which is charged with the mission of building a new 
computer to be called the "GF-10", which is expected to implement an 
advanced version of the STAR-100/Cyber 205 architecture. A recent 
report indicates that CDC will market the machine as the Cyber "250".

Convex C-l
This is a "mini-supercomputer" which was announced in October 

1984. Its architecture is a blend of the best features of the 
Cyber 205 and the Cray-1. It has vector registers, constant stride 
loading, gather/scatter and friends, and can do scalar operations while 
vector operations are in progress. Supported data types are byte, 16 
and 32-bit integers, and 32 and 64-bit FP (VAX FSfG formats). The 
architecture is non-byte-swapped (opposite to the VAX). It can chain 
and/or overlap its pipes (at up to 60 MFlop peak rates). The operating 
system is 4.2bsd Unix and the optimizing, vectorizing Fortran compiler 
accepts VMS-style Fortran, including most VMS extensions! The 
CPU-memory bandwidth is 80 MB/sec and the I/O bandwidth is also 
80 MB/sec. Currently the gather/scatter and other "exotic" operators 
are not supported in a subroutine library, but it should be easy to do 
anything that is needed for gridding in assembly language. We 
conjecture that the C-l can do any vector operation that the Cyber 205 
oan perform, although it will execute several instructions for one on 
the 205 to synthesize the operations. Note that the AIPS "sed" script 
used for installation on Unix systems could easily be augmented so as 
to expand all calls to the QVxxxx operators into inline DO-loops so 
that the vectorizing compiler could optimize them. This would 
eliminate subroutine CALL overhead. Base price about $500K. CONVEX 
Computer Corporation, 1819 Firman, Suite 151, Richardson, TX 75081, 
(214) 669-3700.
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Star ST-100
This "super-AP" is popular with the seismic industry. It was 

recently selected by General Electric for a medical image processing 
application. Its arithmetic unit (the "ACP") is horizontally 
microcoded with a 25 MHz clock, and has four pipelines, resulting in a 
peak performance of 100 MFlops (hence the name). It also has a 
separate horizontally microcoded "storage move processor" (the SMP) 
which also clocks at 25 MHz. This is a very powerful unit for moving 
and converting data between main memory (with a very large address 
space) and the cache memory (48 KW) which the ACP accesses. A 68000 
off to the side sequences the operations of the ACP and SMP, and 
performs scalar operations for loop control (its role is much like the 
"vector function chainer" of the 120B). On the whole, the ST-100 looks 
like the Cray (cache memory equals vector registers), but it has the 
powerful memory processing abilities of the Cyber 205 (the SMP can do 
anything a 205 can do). Probably the weaknesses of the macro library 
just reflect the interests of the first customers of the ST-100, namely 
the seismic industry. Base price about $250K. Star Technologies, 
Inc., 1200 Benjamin Franklin Plaza, One S. W. Columbia, Portland, 
OR 97258, (503) 227-2052.

MassComp AP-501
Masscomp is one of the very few computer companies which have 

designed, fabricated, and marketed an integrated AP to attach to their 
computers. Their AP-501 was announced in the spring of 1984; first 
deliveries were late in the summer of 1984. The AP-501 is probably 
just about the minimum AP which is really interesting for use with 
AIPS. It can overlap DMA with pipeline operations, and it can hide 
most setup overhead behind the pipes. There are two pipes, an adder 
and a multiplier, clocking at 5 MHz, for a peak rate of 10 MFlops. It 
has a peak bandwidth to the host MC-500 of about 5 MB/seo, which is 
very good. Note that Masscomp offers an FPS compatibility mode for the 
AP-501 in which the library routines have names VMOV, VFIX, etc., but 
this only works in the 16 KW AP memory. Price about $8K as an add-on 
device. MASSCOMP, One Technology Park, Westford, MA 01886, 
(617) 692-6200.

Sky WARRIOR
The WARRIOR is quite similar to the Masscomp AP-501, but is 

intended to be host independent. It was announced in September 1984; 
first deliveries are expected to occur early in 1985. Its first 
implementation is for the VME buss (and Versabus), but implementations 
for other busses are expected soon. It has three pipes, two adders and 
a multiplier, clocking at 5 MHz, for a peak rate of 15 MFlops. (It 
uses the same Weitek pipeline chips as the AP-501). The WARRIOR has 
more chips than the AP-501 and therefore has a somewhat more flexible 
and powerful architecture, although it is unclear whether the 
difference is really important for AIPS. The PSAIPS project at 
Pennsylvania State University expects to implement AIPS on the WARRIOR 
attached to their CRDS 68000-based system in the spring of 1985. This 
implementation of the Q-routines should also be useful for other hosts
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in the future (VAZen maybe?). Price about $15K. Sky Computers, Inc., 
Foot of John Street, Lowell, MA 01852, (617) 454-6200.

"Almost any attempt to predict future developments in 
the world of computers is doomed to failure, since 
some technological developments which appear promising 
fail to materialise, while others perform beyond all 
reasonable expectations. What is clear is that in the 
past architectural techniques pioneered on large 
machines have eventually found their way into small 
machines, and there is no sign that this trend is 
abating as microprocessors become more complex and 
more sophisticated. The manufacturers of high 
performance systems constantly strive to produce 
better products, and for students of computer 
architecture the design of the latest supercomputer 
will always be important." [Ibbett (1982), p. 163-4]

6.0 FUTURE WORK

First, no algorithm designed theoretically, as this one is, can be 
fully trusted until at least one implementation is functional (several 
independent implementations on different architectures would be even 
better). A Cray-1 implementation will be a particularly interesting 
test case: can this algorithm be configured and tuned in such a way as 
to beat the performance of the "scalar" QGRD4 of Section 2.0 on a 
Cray-1? This question is interesting because the Cray-1 (and existing 
X-MP models) have a short vector half length (i.e., they are close to 
being scalar machines), and because they lack gather/scatter hardware 
and must perform these operations with library subroutines. We expect 
that NRAO programmers will try this experiment on a Cray X-MP within 
the next few months.

Footnote [6] in Section 3.2 points out that "strip mining" allows 
improved chaining in vector register machines. To fully implement this 
idea, the variable REGSIZ (see section 3.3) should be used as the third 
argument of an outer DO-loop in a number of places in the code and the 
order of the operations should be permuted a bit. In the neighborhood 
of footnote [6] this would look something like:

DO ssss IFIRST = 1, NVIS, REGSIZ
ILAST = MIN (IFIRST + (REGSIZ - 1), NVIS)
ICOUNT = ILAST - IFIRST + 1 
TSCLR1 = -0.5 
TSCLR2 = -100.0
CALL QVSADD (X(IFIRST), TSCLR1, X(IFIRST), Nl, ICOUNT)
CALL QVSMUL (X(IFIRST), TSCLR2, X(IFIRST), Nl, ICOUNT) 

and similarly for Y...
This rearrangement of the code implies that the adder and multiplier 
pipes can CHAIN in a Cray or Convex machine, which reduces memory



Gridding on Vector Machines 
FUTURE WORK Page 26

30 Jan 85

traffic (Cray Is really don't have enough memory bandwidth; chaining 
P ^  lot)’ A detailed examination will show that the memory 

traffic can be reduced even further by making use of more vector 
registers to hold temporary vectors. In a real implementation on a 
vector register machine it would probably be necessary to express this 
concept in assembly language in order to get maximum performance.

Another area for future research is to devise variations on the 
theme of section 3.4, the Scatter/Compress method. For example, full 
grid operation on unsorted data might make sense if an in-core 
pigeon-hole sort" were done. The pigeon-holes would be regions of the 

grid small enough that the scatter/compress would be efficient. 
Partitions gathered from the separate pigeon-holes could be safelv 
concatenated into much larger partitions for the gridding operation.

Finally, the adaptation of all of these ideas to parallel 
processors (e.g., the dual X-MP, four-GPU Cray-2, ETA GF-10 and 
Denelcor HEP) is bound to become an important research problem during the next few years. 6
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