
COMPUTER PLANNING NOTES #49

AIPS MEMO NO.

Gridding Synthesis Data on Vector Machines

Donald C. Wells and William D. Cotton
National Radio Astronomy Observatory [1]
Edgemont Road, Charlottesville, VA 22901

(804)296-0211, FTS=938-1271
30 January 1985

Abstract
An algorithm which is intended to grid aperture synthesis
visibility measurements efficiently on vector computers,
especially on 'long vector' machines, is described. The
algorithm is parameterized to enable it to adapt to the
properties of various CPUs and APs. The chief technical
problem which is discussed is 'vector dependency'; both the
statistics of oocurrence of dependency in real synthesis data
and the technical options for coping with it in real vector
machines are treated in detail.

Table of Contents
1.0 INTRODUCTION ... 2
2.0 "SCALAR" GRIDDING (SUBROUTINE QGRD4) 4
2.1 Discussion Of Subroutine QGRD4 6
2.2 Related "Q-Subroutines" 7
3.0 VECTORIZED GRIDDING 8
3.1 Overview Of The New A l g o r i t h m 9
3.2 The Veotorized QGRD4 In F o r t r a n 10
3.3 The "Natural" Partition Method 13
3.3.1 Distribution Of "Natural" Partition Lengths . . 14
3.4 The "Soatter/Compress" Method 15
3.4.1 Cell Hit S t a t i s t i c s 18
4.0 VECTOR OPERATORS 19
5.0 REAL M A C H I N E S21
6.0 FUTURE W O R K25
7.0 BIBLIOGRAPHY.......................................26

The National Radio Astronomy Observatory is operated by Associated
Universities, Inc., under contract with the U. S. National Science
Foundation.

Gridding on Vector Machines
INTRODUCTION

Page 2
30 Jan 85

1.0 INTRODUCTION
Present implementations of NRAO's Astronomical Image Processing

System (hereafter AIPS) depend critically on Floating Point Systems'
AP-120B array processors (now repackaged and renamed as their 5105 and
5205 models). Many of the FPS library functions are used by AIPS
(e.g., vector add, vector max/min, FFT, etc.). In addition, two
specialized functions which NRAO has microcoded for the AP-120B,
"gridding" and “cleaning", are profoundly important in radio synthesis
data processing. This paper addresses the problem of programming the
gridding operation on vector machines (coding of the CLEAN algorithm
for such machines will be the subjeot of a future paper). Gridding is
a time-consuming part of two of the "workhorse" programs in AIPS, UVMAP
and MX (MX actually grids and re-grids data in an iterative loop). The
gridding operation must be coded carefully for any new vector processor
if NRAO is to produce an effeotive implementation of AIPS on that
processor. We begin our discussion of vector gridding by giving some
•historical background.

The AIPS programmers began trying to find new array processors for
AIPS during 1983. There were three motivations for this: (1) we
wanted to find cheaper APs, (2) we wanted APs for host CPUs which FPS
declined to support, and (3) we wanted to obtain higher performance if
possible. Three APs were studied extensively (Analogic AP-500,
Numerix MARS-432, Masscomp AP-501). Our conclusion was that the best
approach to the new APs would be to implement new versions of the FPS
library routines which would have the same names, arguments, and
functionality, but which would be optimized for the peculiarities of
each AP (see Cotton and Wells 1983).

In January 1984 the AIPS programmers submitted a formal proposal
inside NRAO for funds and authorization to obtain a Masscomp AP-501
array processor and other image processing peripherals to be installed
on a Masscomp MC-500 computer which was to be purchased for another
project. This proposal led to an elaborate evaluation (January-March
1984) of ALL aspects of the Masscomp MC-500 and the AP-501 in an effort
to estimate the probable performance and price-performance ratio
advantage of this new technology (supermicros plus APs). It soon
became obvious that the AP-501 has an architecture which is quite
different from that of the FPS AP-120B. This made it very difficult to
predict the probable system performance by analogy to the 120B on a
VAX. We were forced to assume that, at best, the system would only
work about half as well as a 120B. Because the system price was about
half that of a VAX-750/FPS-5105 combination, and because the project
goal was to obtain a price-performance advantage of TWO, it followed
that the system would need two AP-501S. Unfortunately, in practice,
the MC-500 could not be configured with two AP-501S. Reluctantly, the
proposal was withdrwawn in March 1984.

The uncertainties about the AP-501 performance did not involve the
standard vector operators such as addition, finding maxima, and FFTs.
We were, and still are, convinced that the MC-500/AP-501 combination is
a formidable competitor for a VAX-750/FPS-5105 combination in such
applications. Rather, the problem lay in the unique, critical

Gridding on Vector Machines
INTRODUCTION Page 3

30 Jan 85

algorithms of aperture synthesis: gridding and oleaning. We chose
gridding as our architectural test problem (we think cleaning is
probably not really as difficult as it appears to be on first
examination), and we defined the goal to be: "make subroutine
QGRD4 [2] run well in the vector machine". It was obvious in March
1984 that the conventional QGRD4 algorithm was poorly suited to the
AP-501, and there was no assurance at that time that there was any
better approach to the gridding problem. This was the chief technical
reason why the Masscomp supermicro-plus-AP proposal was abandoned.
During the subsequent months we studied how to modify QGRD4 in order to
improve vectorization (our knowledge of the AP-501 architecture, gained
on non-disclosure terms, was very important in this process).

Meanwhile, in April 1984 we began to study the CDG Cyber 205
supercomputer and the Star ST-100 "super" array processor as potential
hosts for AIPS, and we encountered similar problems with QGRD4! More
recently, the Pennsylvania State PSAIPS group has begun implementing
AIPS for the Sky "Warrior" AP, which is architecturally similar to the
AP-501. All of these machines can be categorized as "long vector"
machines. By this we mean that they operate most efficiently on
vectors of length 100 or more. The 120B runs efficiently on vectors of
length less than 5. The Cray and Convex machines are an intermediate
case: they are efficient on vectors of length 10-20 (but their
efficiency is significantly improved for longer vectors). So, the
challenge became: "design a generic version of QGRD4 for long vector
architectures". During the period April-October 1984 we evolved an
approach to this problem, and we present it in this paper.

We conjecture that this new "vectorized" QGRD4 algorithm may turn
out to be the best approach for all vector machines which need vectors
longer than about 7 to be efficient, from APs (Masscomp [3] and Sky)
thru super-APs (Star) and mini-supercomputers (Convex) to
supercomputers (CDC and Cray). During our evaluations of this whole
range of vector hardware, we have become convinced that QGRD4 is a very
effective test case: it tends to expose and accentuate differences
between the architectures. This is because all vector systems perform
operations like the FFT efficiently, but performance on real total
applications tends to be determined by the fraction of each application
which cannot be vectorized on the various systems. QGRD4 is a rather
good general indicator of the capabilities of an architecture for

[2] Fortran emulations of the AIPS AP-120B microcode are available in
the AIPS "pseudo-AP" library. These Fortran subroutines are much
easier to analyze and port than the 120B microcode. During 1984
the gridding subroutine we analyzed was called APGRD4. In the
15JAN85 release of AIPS, it has been renamed as QGRD4. The other
AP-emulation subroutines have also been given names that start with
"Q"; the purpose is to formally establish a virtual vector
hardware interface in AIPS. As a part of this change, the integer
subscripts being passed as arguments are now 32-bit integers rather
than 16-bit.

[3] Obviously, if we had known in March 1984 what we now know, the
Masscomp project decision might have been different.

Gridding on Vector Machines
INTRODUCTION

Page 4
30 Jan 85

handling the "difficult" fraction of all problems, and it is an especially good indicator for our synthesis mapping application.

2.0 "SCALAR" GRIDDING (SUBROUTINE QGRD4)
In this section we present and then discuss the

machine-independent Fortran subroutine QGRD4.FOR from the
"Q-subroutine" library of AIPS (15JAN85 version). The data declaration
INCLUDES have been expanded in the listing shown below. The include
file ZVND.INC before the inner DO-loop is contains the "no-dependency"
compiler directive for vectorizing compilers ("CDIR$ IVDEP" for the CFT
compiler on Crays, "C$DIR NO_RECURRENCE" on Convex). Without such a
declaration these compilers will almost certainly refuse to vectorize
this DO-loop. Array APCOREO is dimensioned elsewhere (in subroutine
QINIT.FOR) to be 65536 R*4 cells. This dimension could be changed for
machines with large memories.

SUBROUTINE QGRD4 (UV, VIS, WT, GRID, CONX, CONY, N02, M, LROW
INC, NVIS)

Ccccccccccccccccccccccccccc
c

UV
VIS
WT

1*4
1*4
1*4

GRID 1*4

Pseudo-AP version
Convolves visibility data onto a grid.
A single channel is gridded at a time.
It assumes that NO points lie within one half the
convolving function support size of the outside edge.
Inputs:

Location of (u,v) values in cells.
Location of (complex) visibilities.
Weight for data. Assumes any tapering
has already been done.
Base address of gridded data.
Order assumed to be the following
for each of the M rows:
1) 2 * LROW visibilities

Base address of X convolving fn.
Base address of Y convolving fn.
INT((# cells used on a row) / 2)
Number of rows kept in the AP.
Length of a row (max. X).
Increment for UV, VIS and WT
Number of visibilities to grid.

In the above, X refers to rows and y to columns
in the gridded data, NOT on the sky. The total
numbers of rows and cells used on a row should
be odd.
All AP memory I/O values are assumed floating.
It is assumed that all values of v correspond to row M/2.

CONX
CONY
N02
M
LROW
INC
NVIS

1*4
1*4
1*4
1*4
1*4
1*4
1*4

Gridding on Vector Machines
"SCALAR" GRIDDING (SUBROUTINE QGRD4) Page 5

30 Jan 85

INTEGER*4 UV, VIS, WT, GRID, CONX, CONY, N02, M, LROW, INC,
* NVIS, N, INCR, HAF, IX, IY
INTEGER*4 JUV, JVIS, JWT, JGRID, JCONX, JCONY, JCX, JCY,
* JG, JJCX, JJLOOP, IFIX, IRND
REAL*4 AIM, RE, RRE, AAIM, X, XX, XWT, Y, RHALF, SIGN
INCLUDE 'INCS:DAPC.INC'
REAL * 4 APCORE(1), RWORK(4096)
INTEGER*4 APCORI(l), IWORK(4096), SPAD(16)
COMPLEX CWORK(2048)
INCLUDE 'INCS:CAPC.INC'
COMMON /APFAKE/RWORK, APCORE
COMMON /SPF/ SPAD
INCLUDE 'INCS:EAPC.INC'
EQUIVALENCE (APCORE, APCORI), (RWORK, IWORK, CWORK)
DATA RHALF /0.5/

Include DAPC

End DAPC
Include CAPC

End CAPC
Include EAPC
End EAPC

IRND(XX) = IFIX (XX + SIGN (RHALF, XX))
Convert addresses to 1 rel.JUV = UV + 1

JVIS = VIS + 1
JWT = WT + 1
JGRID = GRID + 1
JCONX = CONX + 1
JCONY = CONY + 1
N = N02 * 2 + 1
HAF = LROW / 2 - N02
INCR = 2 * LROW - 2 * N
DO 300 JJLOOP = 1,NVIS

XWT = APCORE(JWT)
IF (XWT.LE.0.0) GO TO 300
X = APCORE(JUV+1)
Y = APCORE(JUV)
JCX = JCONX + IRND (100. *
JCY = JCONY + IRND (100. *
JG = JGRID + 2 * (IRND (X)
JJCX = JCX
RE = APCORE(JVIS) * XWT
AIM = APCORE(JVIS+1) * XWT

Loop over visibilities.
Check weight.

Determine location.

Deter, conv. fn loc.
(IRND (X) - X - 0.5)) + 100
(IRND (Y) - Y - 0.5)) + 100

Determine grid loc.
+ HAF)

Save JCX.

Get visibility.

Gridding on Vector Machines
"SCALAR" GRIDDING (SUBROUTINE QGRD4) Page 6

30 Jan 85

G Gridding loop.DO 200 IY = 1,M
JCX = JJCX
RRE = RE * APCORE(JCY)
AAIM = AIM * APCORE(JCY)

INCLUDE 'INCS:ZVND.INC'
DO 100 IX = 1,N

C Sum to grid.
APCORE(JG) = APCORE(JG) + APCORE(JCX) * RRE
APCORE(JG+1) = APCORE(JG+1) + APCORE(JCX) * AAIM

^ Update pointers.JCX = JCX + 100
JG = JG + 2

100 CONTINUE
C Update pointers.JCY = JCY + 100

JG = JG + INCR
200 CONTINUE

C Update for next vis.JUV = JUV + INC
JVIS = JVIS + INC
JWT = JWT + INC

300 CONTINUE
C
999 RETURN

END

2.1 Discussion Of Subroutine QGRD4

QGRD4 convolves complex visibility samples onto a regular grid.
The grid is required in order to allow the use of the Fast Fourier
Transform (FFT) to compute the map. There are three main problems in
vectorizing QGRD4 in various types of vector machines: data dependent
addressing, short vectors, and vector dependencies.
1. Data Dependent Addressing

The integer subscripts JCX, JCY, and JG are computed in the outer
DO 300 loop from the U-V coordinates of the visibility
measurements. These subscripts are then used inside the DO 200
and DO 100 loops to access arrays in APCOREQ. Some APs have
trouble passing addresses computed in floating point back to their
addressing generators. This is generally not a problem in
supercomputers.

2. Short Vectors

The values of variables M and N, which are the loop limits of the
DO 200 loop and the DO 100 loop, are generally of order 7 in AIPS
applications (i.e., a 7x7 convolution kernel is used). This code
executes efficiently in an AP-120B because the pipelines are short
(only 2-3 clock cycles) and memory access can be overlapped well

Gridding on Vector Machines
"SCALAR" GRIDDING (SUBROUTINE QGRD4) Page 7

30 Jan 85

with pipeline operations. Because the Numerix MARS-432 is very
similar architecturally, we can confidently predict that it will
be at least as effective as the AP-120B. But many other vector
machines are not very efficient when processing vectors of length
7. The Cray machines are a notable exception; they will probably
perform with at least 30% efficiency on this code on the first try
because their vector pipelines have a low startup overhead [4].
But the Cyber 205, a long vector machine, has a vector half length
of about 50; its efficiency will be less than 15% on this code.
Thus, the goal is now established: we must increase the vector
lengths in the innermost loop if QGRD4 is to run efficiently in
long vector machines.

3. Vector Dependencies

A pipeline processor can only overlap the beginning of processing
one vector with the end of processing the previous one if the two
vectors do not overlap in memory. If this rule is violated,
improper computations may result. In QGRD4, dependency arises
because we are co-adding visibility data to the grid and because
successive visibilities may need to co-add to the same cells. In
practice, the code as presented above has little trouble with
dependencies; we must merely assure that the last store operation
on the last cycle of the outer loop is completed BEFORE the
beginning of the first load operation of the first cycle of the
outer loop for the next visibility.

The real problem comes when we try to increase the vector length
by permuting the order of the DO-loops. In particular, the outer
loop which processes visibilities can be arbitrarily long, but the
dependency is in this loop, and we will move the dependency into
our innermost loop (the worst place!) if we bring this loop to the
inside. It is precisely this problem which motivates this entire
paper; we will see that vector instructions can be used to detect
the presence of dependencies in order to avoid producing erroneous
results.

2.2 Related "Q-Subroutines“

Subroutine QGRD4 is called by routine Q1GRD; these are the
gridding routines for AIPS task MX. Other gridding tasks have slightly
different requirements, and hence they have different Q-routines.
Routines QGRD1, QGRD2, and QGRD3 each process only one visibility at a

[4] Actually, the "half length" of the Cray pipes is about 7; the
inner loop efficiency should be 50%. We choose to apply a systems
analyst's rule-of-thumb of 60%, and get 30% as the estimated
performance. The "half length" is the number of dock ticks it
takes to start the pipe, i.e., the vector length for which the pipe
runs at 50% efficiency (Hockney Jesshope 1981).

Gridding on Vector Machines
"SCALAR" GRIDDING (SUBROUTINE QGRD4)

Page 8
30 Jan 85

time; therefore, they have only two DO-loops inside them. The third
DO-loop is in another Q-routine which calls them. In particular,
routine QGRID calls QGRD1 and QGRD2, and QGRIDA calls QGRD3 and QGRD2.
Inspection of the code shows that they are all very similar, and that a
solution to the "QGRD4 problem" is effectively a solution for the other
routines as well (presumably QGRID and QGRIDA would have to incorporate
the three subordinate routines so that the triple DO-loops could be
permuted).

3.0 VECTORIZED GRIDDING
Two ideas immediately come to mind: "unroll" the inner loop so

that the length becomes 49 rather than 7, or permute the DO-loops so
that the outer one over visibilities comes to the inside. Unrolling
has the problems that the length is still only 49 (not really enough
for a Cyber 205), and that the convolution support size is hard-coded.
In addition, we still have the problems that the cells of the kernel
are not a constant-stride vector (i.e., we need a gather-scatter
operation), and that we cannot overlap the load of one vector with the
store of another. We conclude that we would like to permute the
DO-loops and eliminate the dependency problem in the innermost loop.

The dependency problem is that several visibility points may
contribute to a given cell and, with the probable use of gather/scatter
operations, all but the last contribution will be lost. It should be
noted that if the loop over the visibility is the inner loop, then this
confliot only occurs if there are several visibilities centered on the
same grid cell, and that this conflict will then occur over the whole
convolving function support size.

With this latter point in mind, one solution is to partition the
input visibility vector into sections which have no dependencies. Then
as much work as possible is done on the full vector but updating the
stored grid is done by partition. This will clearly work best in the
case of completely unsorted data, i.e., the full grid can be kept in
memory, but will likely give acceptable performance with the current
practice (a "scrolling" buffer). The following sections outline this
approach for the full gridding case. It should work very well in cases
where there are no dependencies and at least do the right thing in the
other extreme where all data are in the same cell.

Please note that the discussion in this paper applies only to
uni-processor pipelined vector machines. It is likely that other
strategies will be more appropriate for multi-CPU machines like the
Denelcor HEP. We think that the case of a dual or quad CPU (e.g., the
Cray X-MP) is much easier, but we have not considered it in detail.

3.1 Overview Of The New Algorithm

Note: most of the operations given below are vector operations
over vectors of length equal to the number of visibilities.

I. The [complex] visibilities are multiplied by the weights.
II. Partitioning the problem.

1. Compute the central cell offset for each visibility.
CENCEL = LX * U + V*2

2. Establish partitions (see following sections for alternate
methods). Fill arrays ISTART and ISTOP, which are the first
and last elements in each partition.

3. Initialize ACX and ACY, which are the addresses in the convolving
function lookup tables for each visibility.

III. Loop over Y convolving function support.
1. Compute CY address (increment ACY by 100).
2. Gather CY (convolving function values).

3. Multiply CY times (visibility * weight) and save in temporary
vector(s).

4. Loop over X convolving function support.
a. Compute grid cell numbers (CENCEL + scalar).
b. Compute CX address (increment ACX by 100).
c. Gather CX (convolving function values).
d. Multiply CX times (CY * visibility * weight).
e. Loop over the partitions (a test could be done to check

for short partitions and do these cases in scalar mode).
i. Gather old [complex] grid values (CENCEL).
ii. Sum new contributions into grid values.
iii. Scatter new grid values.

Gridding on Vector Machines Pa£e 9
VECTORIZED GRIDDING 30 jan 85

Gridding on Vector Machines
VECTORIZED GRIDDING Page 10

30 Jan 85

3.2 The Vectorized QGRD4 In Fortran

The following example gives a hypothetical version of QGRD4 using
calls to the vector subroutines in the AIPS "Q-routine" library. A
description of all of these routines is given in section 4.0, entitled
Vector Operators". Implementation details for various vector systems

are given in Section 5.0, entitled "Real Machines".

Note that GATHER/SCATTER routines have been used. Note also that
the call to QGRD4 is assumed to pass the actual arrays (Fortran-style)
rather than subscript pointers to them in AP memory (which is what the
QGRD4 in section 2.0 does). The purpose of this example is to show one
implementation of the procedure outlined above using vector primitive
operators. Probably the code as given here will not execute
efficiently on any real computer; in the course of our discussion we
will outline how the algorithm can be adapted for use with several real
machines, both APs and supercomputers.

The version given here grids unsorted visibilities onto a full
grid (i.e., array GRID will usually have a dimension of 2*LROW*LROW).
For sorted visibilities and a "scrolling" buffer, GRID will have a
dimension of only 2*LROW*M (as in the present QGRD4). This makes only
a minor change in the algorithm, as noted below. The default
dimensions of CONXQ and CONYQ are (100,7) in the present
implementation (i.e., the convolving functions are tabulated at
intervals of 0.01 grid cell).

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
Cccc

SUBROUTINE QGRD4 (UV, VIS, WT, GRID, CONX, CONY,
* N02, M, LROW, INC, NVIS)

QGRD4 convolves visibility data onto a grid.
A single channel is gridded at a time.
It assumes that NO points lie within one half the
convolving function support size of the outside edge.
This example assumes that the full grid is available in memory Inputs: 1 ’

array of (u,v) values in cells,
array of (complex) visibilities,
weights for data. Assumes any tapering

has already been done.
data grid.
X convolving function lookup table.
Y convolving function lookup table.
INT((# cells used on a row) / 2)
convolution function support size in Y-direction

In the above, X refers to rows and Y to columns
in the gridded data, NOT on the sky. The total
numbers of rows and cells used on a row should
be odd.

length of a row (max. X, 2*#-complex)
increment for UV, VIS and WT.
number of visibility points to grid.

This example can handle up to 1000.

UV
VIS
WT
GRID
CONX
CONY
N02
M

LROW
INC
NVIS

Gridding on Vector Machines Page 11
VECTORIZED GRIDDING 30 Jan 85

INTEGER N02, M, LROW, INC, NVIS
REAL UV(INC.NVIS), VIS(INC,NVIS), WT(INC,NVIS), GRID(l),
* CONX(l), CONY(1)

C Declare temporary variables:
C NOTE: In a real implementation
C Many of the arrays could be
c EQUIVALENCEd.

INTEGER I, J, K, N1, NPART, II, NCHK, NX,
* ISTART(IOOO), ISTOP(1000), IX(IOOO), IY(1000), TIX(IOOO)
REAL TSCALR, XMAX, F2,
* VREAL(IOOO), VIMAG(IOOO), ACX(IOOO), ACY(IOOO), CENCEL(IOOO)
* CFN(IOOO), TGRID(IOOO), TVSRE(IOOO), TVSIM(IOOO), TEMP(IOOO)
* X(1000), Y(IOOO), VSRE(IOOO), VSIM(IOOO)
DATA N1 /l/, F2 72.0/

G Multiply visibilities by
G weights. Real part first.

CALL QVMUL (VIS(1,1), INC, WT, INC, VREAL, N1, NVIS)
G Imaginary part.

CALL QVMUL (VIS(2,1), INC, WT, INC, VIMAG, N1, NVIS)
c Compute central cell numbers.
c NOTE: the details of computing
C central cell numbers depends
c on whether the full or partial
C grid is kept in memory. Round
c cell numbers in scalar mode.DO 10 I = 1,NVIS

IX(I) - UV(2,1) + SIGN (0.5, UV(2,1)) [5]
IY(I) = UV(1,1) + SIGN (0.5, UV(1,I))

10 CONTINUE
C Float

CALL QVFLT (IX, N1, X, N1, NVIS)
CALL QVFLT (IY, N1, Y, N1, NVIS)

C Convert to cell number.
CALL QVSMUL (X, N1, F2, TEMP, N1, NVIS)
CALL QVSMA (Y, N1, LROW, TEMP, N1, CENCEL, N1, NVIS)---

C Insert code here which will establish partitions, fill ISTART,
C ISTOP, and set NPART. See later sections for alternate methods.C

[5] This rounding operation can also be vectorized. The algorithm is:
compute a Boolean truth vector on the relation [X().GE.0.0] (in a
Cray or Convex this is done in the Vector Mask register, in a 205
it is a bit vector), set up temporary vectors of all +0.5 and all
-0.5, merge them into another temporary conditioned on the Boolean
vector, add X(), and fix it into IX(). This discussion also
applies to the DO 100 loop below. Also note that the Masscomp
pipes can round while fixing, all in one operation.

Gridding on Vector Machines
VECTORIZED GRIDDING Page 12

30 Jan 85

£ Offset CENCEL to first cell
^ to use.

TSGALR = - (N02 * LROW + (M/2) * 2)
CALL QVSADD (CENCEL, N1, TSCALR, CENCEL, N1, NVIS)

G Form initial convolving
G function addresses.

CALL QVSUB (X, N1, UV(2,1), INC, X, N1, NVIS)
CALL QVSUB (Y, N1, UV(1,1), INC, Y, N1, NVIS)
TSCALR = -0.5
CALL QVSADD (X, N1, TSCALR, X, N1, NVIS) [6]
CALL QVSADD (Y, N1, TSCALR, Y, N1, NVIS)

G Multiply by 100.TSCALR = 100.0
CALL QVSMUL (X, N1, TSCALR, X, N1, NVIS)
CALL QVSMUL (Y, N1, TSCALR, Y, N1, NVIS)

G Round X, Y.DO 100 I = 1,NVIS
TIX(I) = X(I) + SIGN(0.5, X(I))
IY(I) = Y(I) + SIGN(0.5, Y(I))

100 CONTINUE
G Loop over Y convolving
G function support:DO 600 I = 1,M
C Compute CY address (add 100)
G first restore IX:

CALL QVMOV (TIX, N1, IX, N1, NVIS)
TSCALR =100
CALL QVSADD (IY, N1, TSCALR, IY, Nl, NVIS)

G Gather CY function values.
CALL GATHER (CONY, IY, CFN, Nl, NVIS)

C .̂AT-r ~ , Multiply CY times vis and saveCALL QVMUL (VIS(1,1), INC, CFN, Nl, TVSRE, Nl, NVIS)
CALL QVMUL (VIS(2,1), INC, CFN, Nl, TVSIM, Nl, NVIS)

G Loop over X convolving supportNX = N02 * 2 + 1
DO 500 J = 1,NX

G Compute CX address (add 100). TSCALR =100
CALL QVSADD (IX, Nl, TSCALR, IX, Nl, NVIS)

G Gather CX function values.
CALL GATHER (CONX, IX, CFN, Nl, NVIS)

G Multiply CX.
CALL QVMUL (TVSRE, Nl, CFN, Nl, VSRE, Nl, NVIS)
CALL QVMUL (TVSIM, Nl, CFN, Nl, VSIM, Nl, NVIS)

[6] On Cray and Convex computers several successive vector operations
of the same length (NVIS in this case), operating on common
vectors, can be performed in one loop which "strip mines" by the
vector register length, thus "chaining" the pipes to achieve
greater speed. The cache memories of the Star, Masscomp and Sky
APs can be used in a similar fashion. The goal is to increase the
ratio of pipe cycles to memory cycles.

Gridding on Vector Machines
VECTORIZED GRIDDING Page 13

30 Jan 85

C Loop over partition.
DO 400 K = 1,NPART

II = ISTART(K)
NCHK = ISTOP(K) - II + 1

C NOTE: could trap short
G partitions here and do in
C scalar mode.
C Gather old real part:

CALL GATHER (GRID, CENCEL(Il), TGRID, N1, NCHK)
C Sum reals.

CALL QVADD (TGRID, N1, VSRE(Il), N1, TGRID, N1, NCHK)
C Scatter new grid values back.

CALL SCATTER (GRID, CENCEL(Il), TGRID, N1, NCHK)
G Gather old imaginary part.

CALL GATHER (GRID(2), CENCEL(Il), TGRID, N1, NCHK)
C Sum imaginaries.

CALL QVADD (TGRID, N1, VSIM(Il), N1, TGRID, N1, NCHK)
C Scatter new grid values back.

CALL SCATTER (GRID(2), CENCEL(Il), TGRID, N1, NCHK)
400 CONTINUE
C Update CENCEL to next cell.TSCALR = 2

CALL QVSADD (CENCEL, N1, TSCALR, CENCEL, N1, NVIS)
500 CONTINUE

C Update CENCEL to start of next
C row.

TSCALR = LROW - M * 2 - 2
CALL QVSADD (CENCEL, N1, TSCALR, CENCEL, N1, NVIS)

600 CONTINUE
999 RETURN

END

3.3 The "Natural" Partition Method

The simplest method of establishing partitions is to divide up the
data, without rearrangement, into partitions with no dependencies.
Since each element in a partition must be compared with every other
member, the cost of this method is proportional to the square of the
partition length. On some machines (such as a Cray) there are utility
routines which search for the first occurrence in a vector of a value;
if suoh is available then it should be used. The following gives an
example of a vectorized method using functions available on an FPS
array processor (and assumed to be universally available). The
notation is that used in section 3.2. The REGSIZ parameter used below
shows an example of how algorithms can be adapted to architectural
features. In this case, REGSIZ should be 64 for Crays, 128 for the
Convex C-l,and 65535 for the CDC Cyber 205. Lengths shorter than the
nominal REGSIZ may be appropriate to balance the N-square search cost
against the vector pipeline startup cost.

Gridding on Vector Machines
VECTORIZED GRIDDING

Page 14
30 Jan 85

PARAMETER (REGSIZ = rrrr)
Partitions need not be longer
than vector register length:

Use CENCEL to construct
partition table.
Loop over elements:

NPART = 1
ISTART(1) = 1
ISTOP(l) = MIN (ISTART
DO 20 I = 2, NVIS

+ (REGSIZ - 1), NVIS)
Check for short (1) partitions

C
C

c IF (CENCEL(I).EQ.CENCEL(I-l))
Cc

II = ISTART(NPART)
NCHK = 1 - 1 1
TSCALR = -CENCEL(I)
CALL QVSADD (CENCEL(Il), Nl,

C
CALL QMINMG (TEMP, Nl, XMAX,

C
C

IF ((XMAX.GT.0.5) .AND.
C
10 ISTOP(NPART) = 1-1

NPART = NPART + 1
ISTART(NPART) = I
ISTOP(NPART) = NVIS

20 CONTINUE

GO TO 10
Subtract CENCEL(I) from rest of
array.

TSCALR, TEMP, Nl, NCHK)
Look for minimum value.

NCHK)
If max.abs.value(XMAX) > 0.5
then no prior use of cell.

(NCHK.LE.REGSIZ)) GO TO 20
Prior use, start new partition.

3.3.1 Distribution Of "Natural" Partition Lengths
The viability of the "Natural" partitioning scheme depends, at

some level, on the lengths of the partitions encountered in typical
data sets. The issue is somewhat complicated by the fact that short
partition lengths make determining the partition boundaries easier but
updating the grid more difficult.

In order to determine the partition lengths to be expected with
VLA observations two sets of data were analyzed. The first set
contained 6000 visibilities which consisted of several scans; the
second, and larger, set contained 121,446 visibilities. Two oases were
considered for each data set: (l) the current case in which one row at
a time is gridded and the data is completely sorted, and (2) the case
in which the entire matrix is gridded at once and the data are in
time-baseline order. In all cases the size of the grid is 512x512 with
normal sampling.

The data were analyzed to determine the distribution of partition
lengths which occurred. These results are summarized in Table 1 which
gives the average partition length and the approximate maximum

Gridding on Vector Machines
VECTORIZED GRIDDING Page 15

30 Jan 85

partition length.

Table 1
Distribution of Partition Lengths from Sample Data

Case Average Length Maximum Length
6K vis, sorted

121K vis, sorted
6K vis, unsorted

121K vis, unsorted
44
63

2.2
7.2 35

150
150

9

A more detailed examination of the distribution of partition
lengths shows that roughly 50% of the data is in partitions of equal or
greater length than the average length partition. The conclusion that
can be derived from this table is that the partition lengths expected
for sorted data are sufficiently short that the updating of the grid
will not make good use of the vector hardware. For unsorted data, the
resulting partition sizes will make acceptable length vector operations
on a short vector machine such as a Cray but not on long vector
machines such as a Cyber 205.

The above suggests that this partitioning scheme is useful only in
the case of gridding unsorted data (i.e., much more of the grid than
the current row-at-a-time method). The case of sorted data may be best
dealt with by the Scatter/Compress method described in the following
sections. The typical partition length will increase with the size of
the image being made.

3.4 The "Scatter/Compress" Method

An alternate scheme for partitioning the input data is to
rearrange the data to maximize the lengths of the partitions. This is
done by scattering the indices of the data points onto a work array the
size of the portion of the grid being worked on, and then compressing
this vector to obtain a list of indices. The reason this works is that
when multiple visibilities use the same cell, only the indices of the
last will be kept; thus, this scheme obtains the maximum length list
of visibilities which has no dependencies. These visibilities are
removed from the list and the process is iterated until the list of
data remaining is exhausted. This method makes extensive use of
GATHER/SCATTER and COMPRESS operations, and so we refer to it as the
"Scatter/Compress" scheme for partitioning the data [7]. The algorithm
creates a large number of temporary vector variables which are

[7] When we first thought of this idea in April 1984, we called it the
"anti-sorting" algorithm, because sorting visibilities maximizes
the occurence of vector dependency in gridding, whereas this
technique minimizes it.

Gridding on Vector Machines
VECTORIZED GRIDDING

Page 16
30 Jan 85

described below. Consult section 4.0 for a description of the vector
operators which are used in this algorithm. Note that the algorithm as
given here only makes sense when gridding sorted data, in which oase it
is working on only a few rows (usually one).

Vectors:
RAMP
INDICES
INDES
CENCEL
WROW
WROW2
MASK
GADR

Arrays:
ISTART
ISTOP

Scalars:
N
LROW
NPART
VLEN
VLENP

An array initialized to the sequence 1,2,3,...
An array containing the original indices of the input

visibilities before they are rearranged.
An array which will contain the indices of the input

visibilities rearranged in sorted partitions.
An array containing the center cell grid addresses of

the visibilities.
A work array the length of working section of grid
Another work array the length of working section
A mask array indicating members to be compressed from

the vector.
A work vector of length equal to the number of data

points to contain the grid addresses.

Array of pointers to the first members of partitions.
Array of pointers to the last members of partitions.

The number of visibilities in the input vector.
The length of a row.
Number of partitions
Length of list of cells left
Length of list of cells left (temporary value)

c--
C
C

NPART = 0
ISTART(1) = 1
CALL QVMOV (CENCEL, N1, GADR,
VLEN = N

C
CALL QVFILL (0, WROW, LROW)

C
C

DO 15 I = 1, N
15 RAMP(I) = I

CALL QVMOV (RAMP, N1,

Set up partitions using the
"Scatter/Compress" method.

Nl, N)
Clear row work vector.
Following loop vectorizes on
many machines:

INDICES, Nl, N)

o
o

o
o

o

o
o

o
o

o
o

o

o
o

o

o
o

o
o

o
o

Gridding on Vector Machines
VECTORIZED GRIDDING Page 17

30 Jan 85

Loop until list exhausted:20 CONTINUE
Scatter the ramp
to row work vector:

CALL SCATTER (RAMP, GADR, WROW, VLEN)
WROW contains indices of the
last hits in each cell.
Make mask of active cells:

CALL MAKMASK (WROW, MASK, LROW)
Compress them to next partition

NPART = NPART + 1
IF (NPART.GT.l) ISTART(NPART) = IST0P(NPART-1) + 1

first compress cell indices:
CALL COMPRESS (WROW, MASK, WROW2, LROW)

Get length of partition:
LEN = POPCNT (MASK, LROW)

and gather the partition:
CALL GATHER (INDICES, WR0W2, INDEX(ISTART(NPART)), LEN)
ISTOP(NPART) = ISTART(NPART) + LEN - 1
VLENP = VLEN
VLEN = VLEN - LEN

Finished?
IF (VLEN.LE.O) GO TO 25

Clear work vector again:
CALL QVFILL (0, WROW, LROW)

Now remove processed indices.
Zero indices in partition:

CALL SCATTER (WROW, WROW2, INDICES, LEN)
Mask indices not in partition:

CALL MAKMASK (INDICES, MASK, VLENP)
Compress indices in partition:

CALL COMPRESS (INDICES, MASK, INDICES, VLENP)
Compress cell addresses:

CALL COMPRESS (GADR, MASK, GADR, VLENP)
GO TO 20

End of loop:
25 CONTINUE

INDEX now contains indices of
the input data in the new
partition order. Rearrange
the addresses and data:

CALL GATHER (CENCEL, INDEX, GADR, N)
CALL QVMOV (GADR, N1, CENCEL, N1, N)

C Real part.
CALL GATHER (VREAL, INDEX, TVSRE, N)
CALL QVMOV (TVSRE, N1, VREAL, N1, N)

C Imaginary part.
CALL GATHER (VIMAG, INDEX, TVSIM, N)
CALL QVMOV (TVSIM, N1, VIMAG, N1, N)

Note: this scheme will sort data by partition which should
enhance the performance of the entire gridding process on machines with
virtual and/or cache memory.

Gridding on Vector Machines
VECTORIZED GRIDDING

Page 18
30 Jan 85

3.4.1 Cell Hit Statistics
The amount of work the Scatter/Compress method requires depends on

the frequency of multiple hits on a single cell and, in particular, on
the maximum number of hits per cell in a given row (assuming
row-at-a-time gridding). The statistics shown in Table 2 below have
been derived for the same data sets and in a manner similar to that
used to obtain the distribution of "Natural" partition lengths
described above. The table gives the average number of hits per cell,
an approximate value of the maximum number of hits per row which is
exceeded 50% of the time and the maximum hits in any cell.

Table 2
Cell Hit Statistics

Case Avg. hit per cell Prob. row max. Max hit/cell
6K vis sorted 5.7 9 30

121K vis sorted 15.6 20 350

The values in Table 2 indicate that the typical number of
partitions per row is of the order of a few tens. This number will
decrease for map sizes larger than 512x512 because the cells in uv
space become smaller. If the number of visibilities being processed at
a time (or the number of visibilities on a typical row) is of the order
of a few thousand, then the typical partition length should be on the
order of a hundred. The typical partition length is proportional to
the size of the grid.

It should be noted that this scheme involves operations on a work
vector the length of the portion of the grid currently being
accumulated. This is relatively efficient for sorted data being
gridded onto a single row at a time because the length of the work
vector is fairly short and will have a higher density of data points.
In the other extreme, the full grid accumulation of unsorted data, the
work vector will be exceedingly long and sparsely populated, and this
method of establishing partitions may become unattractive.

Gridding on Vector Machines
VECTOR OPERATORS Page 19

30 Jan 85

4.0 VECTOR OPERATORS

This section documents all of the vector operators which were used
in the previous sections. In the first group, we describe the
functions which have the same names, functionality, and (nearly) the
same call arguments as those in the AIPS Q-routine library. (NOTE: In
any actual implementation of the vectorized gridding algorithm, ALL
details should be checked against Chap. 11 of "Going AIPS".) The
operators are grouped into classes and a formula is given for the last
one in each class. Note that we present the operators as accepting the
vectors themselves as arguments (rather than their addresses), and as
using zero-based subscripting in order to simplify the notation.
Another simplification is that the vector operators are regarded as
being capable of handling either integer or floating point data (for
example, operator QVSADD is used to increment integer index vectors in
a number of places in Sections 3.2, 3.3, and 3.4).
Unary operators:

QVMOV (A, IA, B, IB, N) [vector copy operation]
QVFIX (A, IA, BI, IBI, N)
QVFLT (AI, IAI, B, IB, N)

B(m*IB) = (FLOAT (AI(m*IAI))) for m = 0 to N-l
Vector-Vector operators:

QVADD (A, IA, B, IB, C, IC, N)
QVSUB (A, IA, B, IB, C, IC, N)
QVMUL (A, IA, B, IB, C, IC, N)

C(m*IC) = (A(m*IA) * B(m*IB)) for m = 0 to N-l
Vector-Scalar operators:

QVSADD (A, IA, S, B, IB, N)
QVSMUL (A, IA, S, B, IB, N)

B(m*IB) = (A(m*IA) * S) for m = 0 to N-l
"Linked-Triad" operators:

QVSMA (A, IA, B, C, IC, D, ID, N)
D(m*ID) = ((A(m*IA) * B) + C(m*IC)) for m = 0 to N-l

Special unary operators:
QVFILL (A, B, IB, N)

B(m*IB) = (A) for m = 0 to N-l
QMINMG (A, IA, B, N)

B = (MIN (ABS (A(m*IA)), B)) for m = 0 to N-l
Boolean "Mask" operators:

MAKMASK (A, MASK, LEN) Create a mask vector.
MASK(m) = (A(m) .NE. 0.0) for m = 0 to LEN-1

POPCNT (MASK, LEN) Counts number of TRUEs in MASK.
POPCNT = 0
for m = 0 to LEN-1

If (MASK(m) = TRUE) then POPCNT = POPCNT + 1

Gridding on Vector Machines
VECTOR OPERATORS

Page 20
30 Jan 85

COMPRESS (A, MASK, B, N) Vector compress. [8]
n = 0
for m = 0 to N-l

If MASK(m) = TRUE then B(n) - A(m); n = n + 1
The Gather and Scatter Operators (Indirect Addressing):

SCATTER (A, B, C, N) Vector scatter.
C(B(m)) = (A(m)) for m = 0 to N-l

GATHER (A, B, C, N) Vector gather.
C(m) = (A(B(m))) for m = 0 to N-l

Note: a complete vector hardware system must also implement the EXPAND
operator (inverse of COMPRESS), and will also need to have several
forms of Vector Merge operations.

[8] The compress definition presented here is the one used by the
Cyber 205 and the Convex C-l. Three of the real machines discussed
in the next section (Cray, Masscomp, and Sky) use a different
approach. The comparison operator generates an index vector rather
than a bit vector, and then the compressed vector can be produced
by a gather operation. In addition, the comparison returns the
length of the index vector (see notes [11], [13], and [14] in
Table 3). Remund and Taggart (pp. 402-4 in Kuck, et.al. (1977))
have argued that this technique is more efficient for machines that
lack bit-vector hardware (a CDC 7600 in their case). With this
approach, the eight statements following statement 20 in the
Scatter/Compress method would be transformed from:

CALL SCATTER (RAMP, GADR, WROW, VLEN)
CALL MAKMASK (WROW, MASK, LROW)
NPART = NPART + 1
IF (NPART.GT.l) ISTART(NPART) = ISTOP(NPART-1) + 1
CALL COMPRESS (WROW, MASK, WROW2, LROW)
LEN = POPCNT (MASK, LROW)
CALL GATHER (INDICES, WROW2, INDEX(ISTART(NPART)), LEN)
ISTOP(NPART) = ISTART(NPART) + LEN - 1

to
CALL SCATTER (VLEN, WROW, GADR, RAMP)
CALL WHENNE (LROW, WROW, Nl, 0, MASK, LEN)
NPART = NPART + 1
IF (NPART.GT.l) ISTART(NPART) = IST0P(NPART-1) + 1
CALL GATHER (LEN, WR0W2, WROW, MASK)
CALL GATHER (LEN, INDEX(ISTART(NPART)), INDICES, WROW2)
ISTOP(NPART) = ISTART(NPART) + LEN - 1

for a Cray. Note that the order of the arguments is different for
the Cray library and that MASK is a vector of indices in this case.

Gridding on Vector Machines
REAL MACHINES

5.0 REAL MACHINES

"Any attempt at a generalized comparison between the
CYBER 205 and the Cray-1 is largely irrelevant since
the performance of each is critically dependent on the
problem being solved and the way it is mapped onto the
hardware." [Ibbett (1982), p.163]

In this section we discuss the special features and idiosyncrasies
of a number of different systems. In Table 3 we give the names of the
library routines which perform the vector operators on the machines.
The information in this section was culled from a variety of sources,
which are listed in the Bibliography.

FPS AP-120B (now the model 5105 or 5205)
The 120B is the classic horizontally microcoded array processor.

Two pipes clock at 6 MHz for a peak rate of 12 MFlop (but AIPS gets an
effective rate of only about 1 MFlop). COMPRESS and SCATTER are not
available in the library. There is no question of feasibility, but
obviously there is little incentive because this machine has no need
for our vectorized QGRD4 algorithm. Price about $55K. Floating Point
Systems, Inc., Beaverton, OR 97005.

Numerix MARS-432
The MARS-432 is a new horizontally microcoded AP. It was

deliberately designed to be quite similar to the 120B, but to improve
upon it in both performance and in ease of programming. Three pipes
clock at 10 MHz for a peak rate of 30 MFlops. In general, anything you
can do with a 120B can also be done with a 432, and in about the same
way. (This means that the 432 doesn't need our new vectorized QGRD4
algorithm.) The names, arguments, and functionality of the subroutine
library are essentially IDENTICAL to FPS (therefore, we do not present
them in Table 3). Numerix has an optimizing Fortran compiler. Price
about $125K. Numerix Corporation, 320 Needham Street, Newton
MA 02161, (617) 964-2500.

Cray-1 and Cray X-MP
The Crays are the classic vector register machines. They are able

to overlap scalar operations with vector pipe operations. The pipes
are able to "chain" together for increased speed. Cray-ls are often
able to hit 120 or more MFLops in extended bursts, and can sustain
50+ MFlops (even more in the X-MP). The vector register load supports
constant stride. Existing Cray machines have one notable weakness:
gather/scatter and related operators are not supported in the vector
hardware. Future Cray machines (e.g., Cray-2 and advanced X-MP models)
are expected to have such hardware. The Cray optimizing, vectorizing
Fortran compiler has a good reputation; extensive libraries are
available. Price about $10**7. Cray Research, Inc., 1440 Northland

Page 21
30 Jan 85

Gridding on Vector Machines
REAL MACHINES

Page 22
30 Jan 85

Drive, Mendota Heights, MN 55120, (612) 452-6650.

Table 3
Names of the Vector Operators in the Various Systems

This FPS Cray-1 CDC Convex Star Masscomp Sky
paper[1] AP-120B X-MP Cyber205 C-l ST-100 AP-501 Warrior

QVMOV VMOV [2] [3] [2] [4] CPFV VMOV
QVFIX VFIX ii VINT ii AVINT INTIFV VINT
QVFLT VFLT ii VFLOAT ii [5] CVTIFV VI2SP[6]
QVADD VADD a [3] it AVADD ADDFVV VADD
QVSUB VSUB ii II ii AVSUB SBFVV VSUB
QVMUL VMUL ii II ii AVMUL MULFVV VMUL
QVSADD VS ADD ii ll ii AVSADD ADDFVS VS ADD
QVSMUL VSMUL ii II ii AVSMUL MULFSV VSMUL
QVSMA VSMA ii It ii AVSMA MAFSVV VPIV
QVFILL VFILL ii ll ii SVFILL[7] CPFV[8] VSET
QMINMG MINMGV ISAMIN [9] [10] [5] ABMINF VMNMV
MAKMASK LVEQ [11] [12] ii ALVEQ CXFSNE VSCMP
POPCNT SVE li Q8SCNT ii ASVE [13] [14]
COMPRESS [15] ll Q8VCMPRS ii [5] ll ll

SCATTER ii SCATTER Q8VSCATR ii ll MOX[16] [17]
GATHER VINDEX GATHER Q8VGATHR ii ll EXVF[16] VINDX

Notes to Table
[1] The operators listed are only those used in this paper. A

complete set would be larger.
[2] Automatic vectorization of Fortran DO-loops handles this.
[3] Automatic vectorization of Fortran DO-loops handles this

(translates to routines 'Q8fbrm' and 'Q8fsbrm'); alternatively,
use the explicit vector extensions to Fortran.

[4] Synthesize from SMM2C and SMC2M.
[5] Missing! The ST-100 needs this! No question of feasibility.
[6] Use VD2SP if 1*4.
[7] Use AVFILL in ACP.
[8] Note use of copy with zero stride on source vector!
[9] Synthesize from VABS followed by Q8SMIN.

[10] No library subroutines yet; easy in assembly language.
[11] Synthesize from WHENNE (POPCNT='nval' output) and GATHER.
[12] Use: MASK(1;LEN)=INPUT(1;LEN).NE.0.0 (it's vector Fortran!).
[13] Synthesize from CXAFSEQ (P0PCNT='L1' output) and EXVF.
[14] Synthesize from VMAXG (POPCNT='scalar2' output) and VINDX.
[15] Not available in library; no question of feasibility.
[16] Only in 16 KW AP memory; extension to main memory feasible?
[17] Missing! The Warrior needs this! Probably feasible.

Gridding on Vector Machines
REAL MACHINES

CDC Cyber-205
The 205 inherits all of the tradition of the STAR-100, the

original "long-veotor" supercomputer (the "100" was for 100 MFlops).
The pipes in this architecture always work memory-to-memory (i.e., no
vector registers). A four pipe two million word 205 (one of the
largest configurations) can hit a peak rate of 800 MFlops on very long
vectors of 32-bit data, but sustained rates on most 205 configurations
are generally more like 50 MFlops. Only unit stride vectors are
allowed, but gather/scatter is well supported in the hardware,
including the gather/scatter of constant stride vectors. Cyber 205s
gather or scatter at an average rate of 40 Mwords/sec for random
indices. The 205 has an unusually rich and elegant instruction set.
Note that the Cyber 205 Fortran oompiler supports vector extensions to
Fortran (see chap. 11 of the manual). Regarding footnote [5] in
section 3.2: the VANINT library subroutine delivers the "nearest whole
number" of the elements of a vector. Price about $10**7. Control Data
Corporation, P.O. Box 0, Minneapolis, MN 55440. NOTE: CDC has created
a subsidiary corporation called ETA Systems, Inc., also located in
Minneapolis, which is charged with the mission of building a new
computer to be called the "GF-10", which is expected to implement an
advanced version of the STAR-100/Cyber 205 architecture. A recent
report indicates that CDC will market the machine as the Cyber "250".

Convex C-l
This is a "mini-supercomputer" which was announced in October

1984. Its architecture is a blend of the best features of the
Cyber 205 and the Cray-1. It has vector registers, constant stride
loading, gather/scatter and friends, and can do scalar operations while
vector operations are in progress. Supported data types are byte, 16
and 32-bit integers, and 32 and 64-bit FP (VAX FSfG formats). The
architecture is non-byte-swapped (opposite to the VAX). It can chain
and/or overlap its pipes (at up to 60 MFlop peak rates). The operating
system is 4.2bsd Unix and the optimizing, vectorizing Fortran compiler
accepts VMS-style Fortran, including most VMS extensions! The
CPU-memory bandwidth is 80 MB/sec and the I/O bandwidth is also
80 MB/sec. Currently the gather/scatter and other "exotic" operators
are not supported in a subroutine library, but it should be easy to do
anything that is needed for gridding in assembly language. We
conjecture that the C-l can do any vector operation that the Cyber 205
oan perform, although it will execute several instructions for one on
the 205 to synthesize the operations. Note that the AIPS "sed" script
used for installation on Unix systems could easily be augmented so as
to expand all calls to the QVxxxx operators into inline DO-loops so
that the vectorizing compiler could optimize them. This would
eliminate subroutine CALL overhead. Base price about $500K. CONVEX
Computer Corporation, 1819 Firman, Suite 151, Richardson, TX 75081,
(214) 669-3700.

Page 23
30 Jan 85

Gridding on Vector Machines
REAL MACHINES

Page 24
30 Jan 85

Star ST-100
This "super-AP" is popular with the seismic industry. It was

recently selected by General Electric for a medical image processing
application. Its arithmetic unit (the "ACP") is horizontally
microcoded with a 25 MHz clock, and has four pipelines, resulting in a
peak performance of 100 MFlops (hence the name). It also has a
separate horizontally microcoded "storage move processor" (the SMP)
which also clocks at 25 MHz. This is a very powerful unit for moving
and converting data between main memory (with a very large address
space) and the cache memory (48 KW) which the ACP accesses. A 68000
off to the side sequences the operations of the ACP and SMP, and
performs scalar operations for loop control (its role is much like the
"vector function chainer" of the 120B). On the whole, the ST-100 looks
like the Cray (cache memory equals vector registers), but it has the
powerful memory processing abilities of the Cyber 205 (the SMP can do
anything a 205 can do). Probably the weaknesses of the macro library
just reflect the interests of the first customers of the ST-100, namely
the seismic industry. Base price about $250K. Star Technologies,
Inc., 1200 Benjamin Franklin Plaza, One S. W. Columbia, Portland,
OR 97258, (503) 227-2052.

MassComp AP-501
Masscomp is one of the very few computer companies which have

designed, fabricated, and marketed an integrated AP to attach to their
computers. Their AP-501 was announced in the spring of 1984; first
deliveries were late in the summer of 1984. The AP-501 is probably
just about the minimum AP which is really interesting for use with
AIPS. It can overlap DMA with pipeline operations, and it can hide
most setup overhead behind the pipes. There are two pipes, an adder
and a multiplier, clocking at 5 MHz, for a peak rate of 10 MFlops. It
has a peak bandwidth to the host MC-500 of about 5 MB/seo, which is
very good. Note that Masscomp offers an FPS compatibility mode for the
AP-501 in which the library routines have names VMOV, VFIX, etc., but
this only works in the 16 KW AP memory. Price about $8K as an add-on
device. MASSCOMP, One Technology Park, Westford, MA 01886,
(617) 692-6200.

Sky WARRIOR
The WARRIOR is quite similar to the Masscomp AP-501, but is

intended to be host independent. It was announced in September 1984;
first deliveries are expected to occur early in 1985. Its first
implementation is for the VME buss (and Versabus), but implementations
for other busses are expected soon. It has three pipes, two adders and
a multiplier, clocking at 5 MHz, for a peak rate of 15 MFlops. (It
uses the same Weitek pipeline chips as the AP-501). The WARRIOR has
more chips than the AP-501 and therefore has a somewhat more flexible
and powerful architecture, although it is unclear whether the
difference is really important for AIPS. The PSAIPS project at
Pennsylvania State University expects to implement AIPS on the WARRIOR
attached to their CRDS 68000-based system in the spring of 1985. This
implementation of the Q-routines should also be useful for other hosts

Gridding on Vector Machines
REAL MACHINES Page 25

30 Jan 85

in the future (VAZen maybe?). Price about $15K. Sky Computers, Inc.,
Foot of John Street, Lowell, MA 01852, (617) 454-6200.

"Almost any attempt to predict future developments in
the world of computers is doomed to failure, since
some technological developments which appear promising
fail to materialise, while others perform beyond all
reasonable expectations. What is clear is that in the
past architectural techniques pioneered on large
machines have eventually found their way into small
machines, and there is no sign that this trend is
abating as microprocessors become more complex and
more sophisticated. The manufacturers of high
performance systems constantly strive to produce
better products, and for students of computer
architecture the design of the latest supercomputer
will always be important." [Ibbett (1982), p. 163-4]

6.0 FUTURE WORK

First, no algorithm designed theoretically, as this one is, can be
fully trusted until at least one implementation is functional (several
independent implementations on different architectures would be even
better). A Cray-1 implementation will be a particularly interesting
test case: can this algorithm be configured and tuned in such a way as
to beat the performance of the "scalar" QGRD4 of Section 2.0 on a
Cray-1? This question is interesting because the Cray-1 (and existing
X-MP models) have a short vector half length (i.e., they are close to
being scalar machines), and because they lack gather/scatter hardware
and must perform these operations with library subroutines. We expect
that NRAO programmers will try this experiment on a Cray X-MP within
the next few months.

Footnote [6] in Section 3.2 points out that "strip mining" allows
improved chaining in vector register machines. To fully implement this
idea, the variable REGSIZ (see section 3.3) should be used as the third
argument of an outer DO-loop in a number of places in the code and the
order of the operations should be permuted a bit. In the neighborhood
of footnote [6] this would look something like:

DO ssss IFIRST = 1, NVIS, REGSIZ
ILAST = MIN (IFIRST + (REGSIZ - 1), NVIS)
ICOUNT = ILAST - IFIRST + 1
TSCLR1 = -0.5
TSCLR2 = -100.0
CALL QVSADD (X(IFIRST), TSCLR1, X(IFIRST), Nl, ICOUNT)
CALL QVSMUL (X(IFIRST), TSCLR2, X(IFIRST), Nl, ICOUNT)

and similarly for Y...
This rearrangement of the code implies that the adder and multiplier
pipes can CHAIN in a Cray or Convex machine, which reduces memory

Gridding on Vector Machines
FUTURE WORK Page 26

30 Jan 85

traffic (Cray Is really don't have enough memory bandwidth; chaining
P ^ lot)’ A detailed examination will show that the memory

traffic can be reduced even further by making use of more vector
registers to hold temporary vectors. In a real implementation on a
vector register machine it would probably be necessary to express this
concept in assembly language in order to get maximum performance.

Another area for future research is to devise variations on the
theme of section 3.4, the Scatter/Compress method. For example, full
grid operation on unsorted data might make sense if an in-core
pigeon-hole sort" were done. The pigeon-holes would be regions of the

grid small enough that the scatter/compress would be efficient.
Partitions gathered from the separate pigeon-holes could be safelv
concatenated into much larger partitions for the gridding operation.

Finally, the adaptation of all of these ideas to parallel
processors (e.g., the dual X-MP, four-GPU Cray-2, ETA GF-10 and
Denelcor HEP) is bound to become an important research problem during the next few years. 6

7.0 BIBLIOGRAPHY

General Background on Vector Hardware:
The general background sources listed below will be useful as

tutorial material for programmers who are new to vector programming.
For example, a programmer who is assigned to vectorize algorithms for
either a Cray or a CDC machine will find that other programmers have
worked on similar problems on these machines during the past decade
and that they have written descriptions of their experiences and
conclusions. We did not discover most of these references until very
late in our work; we probably would have saved some time if we had read them earlier.

Hockney, R.W., and Jesshope, C.R. , 1981, "Parallel Computers—
Architecture, Programming and Algorithms", Adam Hilger Ltd
Bristol, L0C=QA76.6.H62, ISBN=0-85274-422-6. Good on comparisons
of the architectures of the Cray-1, Cyber 205 and AP-120B
especially concerning the vector half-lengths.

Ibbett, R.N. 1982, "The Architecture of High Performance Computers",
Springer-Verlag, New York, L0C=QA76.9.A73, ISBN-0-387-91215-0!
Good historical source on hardware developments. Good discussion
of Cray-1 architecture in section 6.4. Especially good discussion
of the STAR-100 and Cyber-205 in sections 7.3 and 7.4.

Gridding on Vector Machines
BIBLIOGRAPHY

Kuck, D.J., Lawrie, D.H., and Sameh, A .H . (eds.) 1977, "High Speed
Computer and Algorithm Organization", Academio Press, New York,
L0C=QA76.5.S94, ISBN=0-12-427750-0. A SUPERB reference source!
Contains both facts and food for thought on a variety of issues,
machines, applications, etc. See especially pp. 71-84, "An
Evaluation of the Cray-1 Computer", and pp. 287-298, "A Large
Mathematical Model Implementation on the STAR-100 Computers", and
don't overlook pp. 3-12, "It's Really Not as Much Fun Building a
Supercomputer as it is Simply Inventing One".

Kuhn, R.H., and Padua, D.A. (eds.) 1981, "Tutorial on Parallel
Processing", IEEE Computer Society, LOC=QA76.6.1548. See
especially pp. 464-472, "Sorting on STAR", by H.S. Stone.

Metcalf, M. 1982, "Fortran Optimization", Academic Press, New York,
LOC=QA76.73.F25, ISBN=0-12-492480-8. Mostly concerned with scalar
optimization strategies; somewhat weak on details in places. Note
Chapter 10 ("Fortran Portability"). See especially the Hitachi
Integrated Array Processor discussion in Chapter 11 ("Vector
Processors"), and the brief discussion in Chapter 12 ("Future
Fortran") of the array processing language extensions proposed for
Fortran "8Z" by the ANSI X3J3 committee.

Peterson, W.P. 1983, "Vector Fortran for Numerical Problems on
CRAY-1", Comm. of the A.C.M., vol. 26, pp. 1008-1021. Contains an
excellent discussion of vectorization strategies appropriate for
vector register machines such as Convex and Cray, plus much food
for thought about other architectures.

Rodrigue, G. (ed.), 1982, "Parallel Computations", Academic Press, New
York, LOC=QA76.6.P348, ISBN=0-12-592101-2. An excellent tutorial
source. See especially pp. 129-151, "Swimming Upstream:
Calculating Table Lookups and Piecewise Functions", by P.F. Dubois
(parts of this discussion are reminiscent of our "Scatter/Compress"
method).

Zakharov, V. 1984, "Parallelism and Array Processing", IEEE Trans. on
Computers, vol. C—33, pp. 45-78. Good on history and overview.

Manuals for Particular Systems and Machines:

NRAO AIPS Group, "Going AIPS! (Programmer's Guide)", 15MAY84 edition.
See chapter 11, "Using the Array Processors", which documents the
AIPS model of a virtual vector device (called the "Q-routines" in
the 15JAN85 release).

Page 27
30 Jan 85

Gridding on Vector Machines Page 28
BIBLIOGRAPHY 30 Jan 85

Cotton, W.D. and Wells, D.C., "AIPS and Array Processors", NRAO AIPS
Memo No. 30, 02 December 1983.

Floating Point Systems, "AP Math Library", Vol. 2,
Publ. No. 860-7288-005, November 1979. Documents the AP-120B
library, which is the basis for the AIPS Q-routines.

Cray Research, "X-MP Series Mainframe Reference Manual", Publ. HR-0088,
1984.

Cray Research, "Fortran (CFT) Reference Manual", Publ. SR-0009, 1984.
See the discussion of compiler directives and vectorization in
pp. 1-13 thru 2-16 of part 3 of the manual.

Cray Research, "Library Reference Manual", Publ. SR-0014, 1984. See
GATHER and SCATTER on p. 4-56, ISRCH on p. 4-59, and WHENNE on
p. 4-67.

Control Data, "Model 205 Hardware Reference Manual", Publ. 60256020,
Rev. C, November 1983. Note that most of the capabilities of the
205 hardware are supported by the "Q8" routines of the Fortran
library.

Control Data, "Cyber 200 Fortran Version 2 Reference Manual",
Publ. 60485000, Rev. B, June 1983. See chapter 11 ("Vector
Programming") and the description of the "Q8" subroutines in
chapter 11 ("Predefined Functions").

Convex Computer, "Architecture Handbook", Doc. 080-000120-000, 1984.
See especially chapters 13 thru 16 which document the vector
hardware, including vector mask, merge, compare, gather, and
scatter instructions.

Convex Computer, "FORTRAN Language Reference Manual",
Doc. 720-000150-000, 1984. See Appendix D which documents the
optimization/vectorization compiler directives.

Convex Computer, "FORTRAN User's Guide", Doc. 720-000130-000, 1984.
See chapter 4, "FORTRAN Compiler Optimizations".

Star Technologies, "ST-100 Array Processor, Processor Handbook",
Publ. 90000003, Rev. A, August 1983.

Star Technologies, "Application Support Library User's Guide",
Publ. 90000023, Rev. A, May 1983.

Masscomp, "Array Processor Subroutine Library — Functional
Specification", Rev. 0.3, preliminary version received March 1984.

Sky Computers, "SKYWAR Specifications— Preliminary", received August
1984. See Appendix B, "SKYWAR Subroutine Library".

