
AIPS MEMO NO. _ 3 £

Certifioation and Benchmarking of AIPS

on the Convex C-l and Alliant FX/8

Kerry C. Hilldrup, Donald C. Wells, William D. Cotton

National Radio Astronomy Observatory [1]
Edgemont Road, Charlottesville, VA 22903-2475
(804)296-0211, FTS=938-1271, TWX=910-997-0174

24 December 1985 [2]

Abstract

The 15APR85 release of AIPS has been installed on the
Convex C-l vector computer and on the Alliant FX/8
vector/concurrent computer. Both have been certified
using the PFT benchmarking and certification test.
Although a small number of compiler bugs were encountered
in each, the AIPS application code was installed with
only minimal modifications, and computed results agreed
well with other implementations of AIPS. In the course
of the implementations, the technology of the Clark CLEAN
algorithm was advanced considerably; the final vectorized
CLEAN algorithm on both systems is about three times as
fast as the current microcode algorithm on the FPS
AP-120B array processor. Similar improvements were
observed for other highly vectorized tasks. Programs
which were not vectorized generally executed on both in
comparable CPU times and faster real times than they
achieved on the DEC VAX-8600. The FX/8 with 6
computational elements (CEs) generally outperformed the
C-l by a little in CPU time, but was significantly slower
in real time. The performance of the FX/8 as a function
of the number of CEs is also described.

[1] NRAO is operated by Associated Universities, Inc., under contract
with the U. S. National Science Foundation.

[2] this report entirely supersedes and replaces a previous version
which was dated 18 July 1985 and was marked as "AIPS Memo No. 37".

Benchmarking AIPS on the Convex C-l and Alliant FX/8 Page 2
24 December 1985

CONTENTS

1 INTRODUCTION ... 3
2 ABOUT THE CERTIFICATION AND BENCHMARKING PACKAGE . . 3
3 A HISTORY OF NRAO'S 1985 BENCHMARKING CAMPAIGN . . . 4
4 THE AIPS PFT BENCHMARKING R E S U L T S 6
4.1 Notes For The "Normal" PFT T r i a l s6
4.2 The "Soaled-Up" PFT T r i a l s 7
4.3 Conclusions Drawn From The PFT Measurements . . . 8
5 VECTORIZATION ISSUES 12
6 THE PROCUREMENT DECISION 13
7 A P P E N D I C E S ... 14
7.1 Reviews Of The Two M a c h i n e s 14
7.1.1 Convex C - l .. 14
7.1.2 Alliant F X / 815
7.2 Suggestions For Improvements 17
7.2.1 Suggested Improvements For U n i x 17
7.2.2 Fortran Compiler Improvements 18
7.2.3 Specific Suggestions For Convex 19
7.2.4 Specific Suggestions For Alliant 19
7.3 Alliant FX/n Performance In November 1985 . . . 20
7.4 Measurements Of "Alliant Concurrency" 24

Benchmarking AIPS on the Convex C-l and Alliant FX/8 Page 3
INTRODUCTION 24 December 1985

1 INTRODUCTION

NRAO tested both the Convex C-l vector computer and the Alliant
FX/8 vector/concurrent computer as candidates for the replacement of
the IBM and Modcomp systems in Charlottesville. The goals of the tests
were to assure that these candidate systems would execute AIPS
properly, and to assess their performance relative to each other and to
other machines, including the VAX-ll/780s which NRAO already owns and
the VAX-8600, another candidate for the procurement [3].

2 ABOUT THE CERTIFICATION AND BENCHMARKING PACKAGE

"[our evaluation] was not designed to be
a 100-yard dash for computer systems...
it was intended as a decathlon..." [4]

NRAO's programming group in Charlottesville has a standard
procedure for assessing a computer system for use with AIPS: install
AIPS ("Astronomical Image Processing System") on it and run the AIPS
oertification and benchmarking test package. Successful execution of
the test certifies that the computer hardware, the FORTRAN compiler,
the operating system components, and the interface between AIPS and the
operating system (the "Z-routines") all behave correctly. Benchmarking
data can be extracted from the time stamps recorded in the AIPS message
file and from the accounting listings produced by the AIPS utility
PRTACC. Since the test procedures are written in the AIPS command
language called POPS ("People-Oriented Parsing System") and read a
binary data tape written in FITS ("Flexible Image Transport System")
format, they are inherently machine- and operating system- independent.
In a procurement situation, the aim is to perform exactly the same test
on all of the machines which are under consideration. Note that this
does not mean that all of the code of the test is the same on all
machines. Only the portable portions of the application programs, the
POPS procedures, and the FITS files must be invariant; it is not only
permissible but even desirable that the system-dependent portions of
AIPS should be customized to achieve the best performance on each
separate host system.

The tests discussed in this memo were all performed with an
experimental version of the test package, which was named "PFT" (the
production release of the package will be similar, but will be called
"DDT"). The package consists of two command language scripts, called
"RUN files" in AIPS parlance (a total of about 400 lines of text), and
a tape containing "master" data and comparison images. The first
script compiles the test procedures and the second script executes
them. The PFT test executes twelve different AIPS programs (AIPS,

[3] see AIPS Memo No. 36, "Certification and Benchmarking of AIPS on
the VAX-8600", 24 June 1985.

[4] R . P . Colwell, C .Y .Hitchcock, E.D.Jensen, and H.M.Brinkley Sprunt, in
"Open Channel", Computer . Vol. 18, No. 12, December 1985, p. 93.

Benchmarking AIPS on the Convex C-l and Alliant FX/8 Page 4
ABOUT THE CERTIFICATION AND BENCHMARKING PACKAGE 24 December 1985

IMLOD, UVLOD, UVSRT, UVMAP, COMB, APCLN, SUBIM, ASCAL, MX, CNVRT, and
VM). These programs, often referred to as the "Dirty Dozen", are used
to process a real dataset of fringe visibilities collected with NRAO's
Very Large Array (VLA) telescope. At each step where an image is
computed, it is compared against the respective master image and
residuals are summarized. A full description of the details of the
test package is beyond the scope of this report; it is sufficient to
say that the package reasonably reflects the actual use of AIPS on real
data. Some parts of it are I/O limited, some are CPU-bound, and some
are sensitive to various sources of overhead such as creating, opening,
truncating, closing, and cataloging files. The CPU-bound tasks test a
diverse range of heavy vector computing problems.

The statistics obtained from comparing the master and computed PFT
answers must be construed with care. Some residuals are due to
differences in floating point hardware, others are due to differences
in the algorithms in various releases of AIPS, and some residuals may
actually indicate errors of implementation on the machine being tested.
In particular, maps computed in a host computer will almost always give
non-zero residuals when they are compared to those computed with an FPS
AP-120B, because the AP uses 28 bit floating point fractions, while
32-bit hosts (e.g., VAX, C-l, FX/8) compute with 24 bit fractions.
This situation occurred in the present trials, because the master data
files for the test were generated on a VAX-780 using an AP-120B. The
AIPS certification procedure is not concerned with assuring that an
algorithm tells the "Truth" about the sky; rather, its goal is to
ascertain whether two computers "tell the same lie", within an
acceptable tolerance.

3 A HISTORY OF NRAO'S 1985 BENCHMARKING CAMPAIGN

Two of the authors (KCH £? DCW) spent two days, 30-31 May, at
Convex Computer Corporation's factory in Richardson, TX, to make the
initial installation of AIPS on the C—1. One particular compiler bug
involving computed-GO-TOs with INTEGER*2 variables caused a delay of
about 24 hours in the installation process, but, by the end of the
second day, five of the twelve programs tested by PFT had passed the
test. The initial installation did not exploit the vector computing
capability of the C-l. During the next three weeks the authors worked
through dialup modems to track down the remaining compiler bugs and
AIPS bugs, but mostly to significantly improve the vectorization of the
pseudo array processor library. By the 20th of June the C-l had
demonstrated speed 2-3x faster than the FPS AP-120B on several AIPS
tasks, and the entire dozen tasks of the PFT test had passed the
certification test.

The Unix version of AIPS which was installed on the C-l was very
similar to the 15APR85 release of AIPS, which was the version used to
test the VAX-8600 on 29 April. This Unix AIPS version was copied from
15APR85 on 5 February, two weeks before 19 February when the master
test case of PFT was computed. The reason for using the February
version of the test package for these tests rather than more recent

Benchmarking AIPS on the Convex C-l and Alliant FX/8 Page 5
A HISTORY OF NRAO'S 1985 BENCHMARKING CAMPAIGN 24 December 1985

versions was not only that it matched the AIPS version, but also that
the February test tape has been used to test a number of different
machines during 1985 and it is desirable to be able to intercompare all
results.

Early in July, NRAO learned of the existence of Alliant Computer
Corporation and their FX/8 computer. One of the authors [DCW] attended
the announcement for this machine on 24 July in Boston, and spent
25 July at the factory in Acton, MA. Early in August, the entire set
of AIPS files was transported from the Convex C-l to the Alliant FX/8,
and was then modified to run on that machine. There was approximately
a ten day delay in the installation due to an inability of Fortran
modules to call Z-routines written in C-language. Fortunately, a
library of Fortran-callable routines was available that, in many cases,
could be used to serve the same purpose as the otherwise unreachable C
library functions. For the remainder, Alliant provided an assembler
interface (or "wrapper") routine which could be cloned to call the
C-language routines distributed as part of the standard AIPS
installation kits for Unix systems. Several minor bugs, again
involving INTEGER*2 variables, were uncovered in the compiler and
fixed. Essentially all of AIPS was then compiled with the optimizer
fully enabled. By late August AIPS was operational on the FX/8, and
had passed the PFT test.

It was obvious that both the C-l and the FX/8 were viable
candidates for the procurement, and that a controlled comparison was
required. Accordingly, late in August NRAO resumed the Convex tests;
after the last few compiler bugs were found, the September version of
the Convex compiler was able to compile essentially all of AIPS with
the highest level of optimization enabled. The major change in the
Convex operating system between June and September was the availability
of "disk striping" [5]. Also, the C-l tested in September had a
9.5 MHz clock (the June machine was 9.0).

During the first two weeks of September, the Alliant FX/8 and
Convex C-l systems were compared in detail, simultaneously, using the
same application code and the same certification and benchmarking test
kit as had been used to test the VAX-8600 in April. Both vector
machines passed the certification test, and both were accepted as
viable candidates for the procurement. The final trials for the
purpose of the procurement were run on 13 September; the results are
shown below in Tables 1 and 2, and discussed in Section 4.3. The basic

[5] The term "striping" refers to DMA (direct memory access)
transmissions from two or more disk controllers reading into a
common (double) buffer concurrently. The sectors of the disk file
are divided among the available drives; for a two-disk stripe,
sectors 1,3,5... are on the first drive and 2,4,6... are on the
second. Simultaneous interleaved reading or writing of the sectors
with independent DMA controllers will double the transfer rate,
thus synthesizing a double-performance disk out of two lower
performance devices. The Convex C-l tested in September was
configured with a four-disk stripe, which quadrupled performance.

Benchmarking AIPS on the Convex C-l and Alliant FX/8 Page 6
A HISTORY OF NRAO'S 1985 BENCHMARKING CAMPAIGN 24 December 1985

procurement decision was made soon after the completion of those
trials.

Subsequently Alliant made certain changes in their I/O system
which they believed would improve performance, and they asked NRAO to
rerun the test suite as a courtesy (not for the procurement
evaluation). The final runs of this set of tests were made on
24 November; they are summarized below in an appendix.

4 THE AIPS PFT BENCHMARKING RESULTS

The trials of the Convex and Alliant machines were made with
essentially the procurement configurations. In the case of the Convex,
this meant 32 MB of memory and a four-way striped disk system. For
Alliant,^ it meant 32 MB of memory and up to 8 CEs [6], with sufficient
IP and disk capacity (the NRAO proposed procurement configuration was
6 CEs). The results of the "normal" PFT trials appear in Table 1
below, along with comparison measurements made on a number of other
machines (780, 8600, 780+AP, FX/1 [7], and Cray X-MP). The first three
data columns (780, 8600, and 780+AP) of Table 1 below are taken from
the corresponding table in AIPS Memo No. 36 (see footnote [3]).

4.1 Notes For The "Normal" PFT Trials

When examining the tables below the reader will want to keep the
following facts in mind:

1. Tests showed that when the output being sent to the terminal was
sent to the Unix "null" device instead, the real times decreased
significantly, demonstrating that performance was degraded by
terminal I/O limitations (all tests were made with telephone lines
at 1200 baud). The real-time numbers in Table 1 do not include
any oorreotions for this phenomenon; they are the actual values
measured in the formal PFT trials.

[6] Alliant s "FX/8" model is composed of 1-8 separate, identical
computational elements" (CEs). In this report the notations FX/1,

FX/2, FX/4, FX/6, FX/8, and FX/n refer to the FX/8 model with
1-8 CEs.

[7] The FX/1 tested by NRAO is an FX/8 configuration with only 1 CE
active. Alliant's "FX/1" model is a special configuration which
can only have one CE, and which has a different arrangement of
cache memory from the FX/8. The authors assume that the CPU
performance of the two 1-CE configurations is approximately equal,
and that I/O performance is mainly determined by the peripherals’
rather than the CPU. Therefore, NRAO's "FX/1" measurements should
be useful as an approximate guide to the performance of the real
FX/1. — _

Benchmarking AIPS on the Convex C-l and Alliant FX/8 Page 7
THE AIPS PFT BENCHMARKING RESULTS 24 December 1985

2. It should be noted that the 780 and 8600 AIPS installations make
use of "asynchronous I/O" [8], whereas this feature was not
available in either the C-l or the FX/n at the time of the trials.

3. The CPU/Real ratios in Table 1 are all just the CPU time in that
table divided by the corresponding real time (note that when an AP
is involved, the CPU time includes no contribution from the AP
itself except for the handler). The ratios indicate the extent to
which a task exhibits un-overlapped I/O or operating system
overhead. Some tasks, a good example is MX with pseudo-AP on the
780, manage to almost completely hide heavy I/O activity behind
their CPU operations, whereas others, VM and UVMAP for example,
have rather low CPU/Real ratios. Some tasks are I/O dominated and
exhibit quite low ratios; UVSRT and SUBIM are good examples (UVSRT
does a disk merge sort and SUBIM is effectively a file copy
operation). I/O dominated tasks like CNVRT, COMB, SUBIM, and
UVSRT will gain little if any advantage from vectorization or
concurrency.

4. Tasks APCLN, APRES, ASCAL, MXMAP, MXCLN, UVMAP, and VM are the
"AP-tasks" in the PFT trial. They all gain directly from
vectorization or concurrency.

5. Task ASCAL is the most highly vectorized AIPS task; it is also
especially indicative of vector sine/cosine performance. Note
that the FPS 120B array processor uses special lookup tables to
evaluate sines and cosines; this makes it unusually effective for
ASCAL, compared to its peak floating point pipeline capability.

6. Task VM (maximum entropy image deconvolution) only uses the "AP"
for 2-D FFTs; the timings in Table 1 under-represent its ultimate
performance on these machines.

7. The authors consider the MXCLN timings to be the best single AIPS
performance index, because task MX in its cleaning (deconvolution)
mode does a little bit of everything (gridding, transforming,
cleaning, and UV-subtracting).

[8] The term "asynchronous I/O" refers to DMA (direct memory access)
transmission from a disk controller into a double buffer in the
address space of the program, with the transmission occurring
concurrently with CPU execution in other parts of the address
space; this gives optimum real-time and CPU-time performance. Unix
systems traditionally offer only "synchronous I/O", in which
execution of a program stops while any I/O transmission into the
program's address space is in progress; this degrades real-time
performance. In addition, Unix systems traditionally use a form of
"move-mode I/O" in which all transmissions are made by copying from
a buffer in the operating system's space to the buffer in the
program's space; this degrades CPU-time performance, even though
read-ahead and write-behind in the OS buffer helps real-time
performance.

Benchmarking AIPS on the Convex C-l and Alliant FX/8 Pa£e 8
THE AIPS PFT BENCHMARKING RESULTS 24 December 1985

4.2 The "Scaled-Up" PFT Trials

The basic PFT test is a modest synthesis mapping problem in the
context of the VLA (of course, any problem which consumes 19,000
seconds on a VAX—780 is hardly a "modest" problem in an absolute
sense). During the course of the September trials the question arose
of whether important performance differences between systems would
appear in a much larger—sized problem. Practical limitations prevented
the processing of larger datasets on remote machines, but the AIPS
tasks could be ordered to do more work on the available dataset. This
was done, by making minor modifications in the command language test
procedures. The resulting measurements appear in Table 2 below.

4.3 Conclusions Drawn From The PFT Measurements

The following conclusions can be drawn from these data:

1. The VAX-8600 is 4-5x faster than the 780 in CPU-time (but
I/O-limited tasks are only slightly faster in real-time because
the two machines use the same disks), and the C-l and the FX/1 are
about equal to the 8600 in scalar performance.

2. For AP-tasks, the 780+AP is 8-14x faster than the 780, and the C-l
and FX/6 are about 3x faster than the 780+AP.

3. The C-l disks are about 3x faster than the 8600 disk; the authors
speculate that this performance advantage is due to the use of
disk striping in the C-l. Note the high CPU/Real ratios exhibited
by the C-l (total across the PFT test suite of 90%).

4. The X-MP uniprocessor is approximately 5-10x faster than the C-l
and FX/6 for AIPS computing. The numbers shown for the X-MP
represent the performance of NRAO's X-MP/COS implementation as it
stood in mid-September 1985. The PFT run was made during mid-day
on a loaded machine; therefore any intercomparison of real times
is meaningless. Both the overall performance of the X-MP/COS
implementation, and the performance of individual tasks, have been
somewhat enhanced since that time.

Benchmarking AIPS on the Convex C-l and Alliant FX/8 Page 9
THE AIPS PFT BENCHMARKING RESULTS 24 December 1985

5. Regarding the C-l versus FX/6 comparison, there is no easy,
clearcut technical choice:

The FX/6 is generally faster than the C-l in CPU-time,

but

the C-l is generally faster than the FX/6 in real-time.

In the "scaled-up" problem, the CPU-time advantage of the FX/6
was mostly attenuated, while the real-time advantage of the
C-l became even more pronounced. Note that the FX/6 remained
superior for ASCAL; indeed its lead increased for this task.
This illustrates the high performance of concurrent-scalar
transcendental operators in the FX/8 (see Section 7.4 below).

NOTE

It is obvious that various ratios between the computing
performance of the C-l or FX/6 and that of the 780 or
8600 can be derived from the data in the tables. For
example, the MXCLN problem used 9921 seconds CPU time
on the 780, and only 221 on the C-l, for a speed ratio
of 44.9x. Or, ASCAL ran 1058 seconds on the 8600, but
only 81 on the FX/6, for a ratio of 13.Ix. It is
tempting to assume that such ratios will apply to all
engineering-scientific computing applications, but the
authors caution that these ratios should not be quoted
£ut of their context. The reason is twofold:
(1) fundamentally they only apply to the specific
algorithms of AIPS, and only to the specific
implementations of AIPS that were made during the
limited period of time during the summer of 1985, and
(2) for the pure scalar machines, they represent the
speed achieved by the publicly distributed versions of
the Q-routine library for the 15APR85 release of AIPS,
not the speed which the vectorized CLEAN would have if
it executed on the scalar machines.

Table 1

Alliant and Convex PFT Benchmarks, "Normal" Problem,
with comparison to several other machines,

as of mid-September 1985

780 8600 780 + AP FX/1 FX/6 C1 <6> FX6/C1 CRAY X-MP
TASK IOCNT REAL CPU REAL CPU REAL CPU REAL CPU REAL CPU REAL CPU REAL CPU REAL<3> CPU

AIPS 380 ? ? 5371 ? 2306 ? <2> 131 .2 1158 128.1 845 117.5 1 .37 1 .09 5503 23.1

CNVRT 25 8 5.9 4 1 .7 8 5.9 4 2.1 4 1 .4 3 1 .9 1 .33 .74 4 .2
COMB 33 32 22.7 13 4.9 32 22.7 9 6.9 8 5.7 6 5.4 1 .33 1 .06 11 1 .0
SUBIM 19 14 6.4 13 2.1 14 6.4 6 2.8 4 2.3 3 2.1 1 .33 1.10 6 .4
UVSRT 96 39 20.8 27 5.1 39 20.8 25 10.1 25 9.0 9 6.6 2.78 1 .36 35 1 .0

APCLN 267 4577 4486.0 963 931 .0 340 144.4<1> 307 264.6 134 86.6 133 122.3 1 .01 0.71 160 21 .2
APRES 82 113 91 .8 35 23.7 60 32.5<1> 28 17.6 24 12.2 13 10.1 1 .85 1 .21 102 1 .4
ASCAL 136 3509 3398.0 1088 1058.0 154 35.2<1> 410 394.8 91 80.5 107 103.7 .85 .78 54 11.1
MXMAP 96 222 191 .9 71 47.7 106 47.4<1> 69 51 .8 38 21 .9 31 27.2 1 .25 .81 112 2.1
MXCLN 481 10033 9921.0 2340 2275.0 712 228.3<1> 639 573.3 262 186.8 236 221 .0 1.11 .85 833 24.9
UVMAP 151 170 151 .9 59 39.7 81 41.5<1> 62 37.6 45 17.8 23 18.3 1 .96 .97 104 2.0
VM 344 320 280.9 116 71 .6 195 126.7<1> 125 64.4 88 41 .5 45 30.0 1 .96 1 .38 653 3.9

ALL<4> 1730 19037 18577.3 4729 4460.5 1741 676.6<1> 1684 1426.0 723 465.7 609 548.6 1.19 .85 2074 69.2

CPU/REAL CPU/REAL CPU/REAL CPU/REAL CPU/REAL CPU/REAL

AIPS N/A N/A N/A N/A N/A N/A

CNVRT .74 .43 .74 .53 .35 .63
COMB .71 .38 .71 .77 .71 .90
SUBIM .46 .16 .46 .47 .58 .70
UVSRT .53 .19 .53 .40 .36 .73

APCLN .98 .97 N/A .86 .65 .92
APRES .81 .68 N/A .63 .51 .78
ASCAL .97 .97 N/A .96 .88 .97
MXMAP .86 .67 N/A .75 .58 .88
MXCLN .99 .97 N/A .90 .71 .94
UVMAP .89 .67 N/A .61 .40 .80
VM .88 .62 N/A .52 .47 .67

ALL<4> CO 00 .94 .60<5> 00 cn .64 .90

CPU/REAL

N/A

N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A
N/A
N/A
N/A

N/A

<1> represents VAX/780 CPU time only; no accounting information for AP CPU time; use REAL times for comparison
<2> tasks initiated standalone to insure a 1 CE environment; AIPS real time is not meaningful. Compiled "vector-only".
<3> loaded machine; typical for mid-afternoon
<4> tasks only (i.e., does not include AIPS itself)
<5> for non-AP tasks only
<6> Convex C-1 executing at 9.5 MHz, with 4-way disk stripe.

Benchmarking
AIPS

on
the

Convex
C-l

and
Alliant

FX/8
Page

10
THE

AIPS
PFT

BENCHMARKING
RESULTS

24
December

1985

Table 2

Alliant and Convex PFT Benchmarks, "Scaled-Up" Problem

same number of visibilities; cellsize decreased from 8" to 2" (mapsize up from 256 to 1024);
CLEAN loop gain decreased from 0.1 to 0.01; number of components increased from 2000 to 4000;

all task loadings are increased, with the exception of UVSRT. Measurements made mid-September 1985.

TASK IOCNT REAL
FX/6
CPU RATIO REAL

C1
CPU RATIO

FX6/C1
REAL CPU

AIPS 712 12513 386.1 N/A 6554 613.8 N/A 1 .91 .63

CNVRT 93 42 9.4 .22 24 22.2 .93 1 .75 .42
COMB 1466 110 61 .2 .56 66 60.7 .92 1 .67 1 .01
SUBIM 105 51 9.9 .19 15 13.0 .87 3.40 .76
UVSRT 96 29 9.2 .32 8 6.7 .84 3.63 1 .37

APCLN 16743 4320 1364.2 .32 1795 1199.3 .67 2.41 1 .14
APRES 1276 317 124.6 .39 146 108.2 .74 2.17 1 .15
ASCAL 136 160 149.1 .93 221 217.4 .98 .72 .69
MXMAP 1537 324 149.2 .46 214 163.6 .76 1 .51 .91
MXCLN 13351 3520 1832.8 .52 2057 1536.9 .75 1 .71 1 .19
UVMAP 1466 435 138.7 .32 174 141 .2 .81 2.50 .98
VM 7781 1843 569.6 .31 671 406.9 .61 2.75 1 .40

ALL<1> 11151 4417.9 .40 5391 3875.9 .72 2.07 1 .14

<1> tasks only (i.e., does not include AIPS itself)

Benchmarking
AIPS

on
the

Convex
C-l

and
Alliant

FX/8
Page

11
THE

AIPS
PFT

BENCHMARKING
RESULTS

24
December

1985

Benchmarking AIPS on the Convex C-l and Alliant FX/8 Page 12
VECTORIZATION ISSUES 24 December 1985

5 VECTORIZATION ISSUES

AIPS was originally developed to be used with Floating Point
Systems array processors, models 100, 120B, 5105, and 5205. For a host
machine that does not have an AP, the application tasks are linked
against a library of FORTRAN subroutines which have the same names,
arguments, and functionality as the library of microcode routines for
the FPS AP. These "pseudo array processor" routines (also called the
"Q-routines") emulate operations which execute in a vector manner in
the FPS A P s ; it follows that they are candidates for vectorization in
vector machines like the Convex C-l, Alliant FX/8, and Cray X-MP.
Because many of the major application tasks of AIPS have been
deliberately designed to do as much of their computing in the AP as is
possible, it follows that vectorization of the Q —routines effectively
vectorizes most of the heavy computing of AIPS.

For a vector processor, AIPS performance can be increased by
modifying several of the routines in the Q—routine library. In
particular, the original FORTRAN formulation of the Clark CLEAN
algorithm in the library proved to be slow on the C-l in June. Two of
the authors (DCW Sf WDC) developed a new formulation of the algorithm
for vector computers during the course of the C-l installation. The
algorithm was also used in the Alliant FX/8 and Cray X-MP
installations, with appropriate machine-dependent customizations. This
new CLEAN algorithm is believed to be applicable to other vector
machines in the commercial market (Cray-2, CDC/ETA, Fujitsu/Amdahl,
IBM...j. ’

Vendor-supplied FFT subroutines were used in the Convex, Alliant,
and Cray installations. The new CLEAN algorithm depends on the ISAMAX
subroutine from the LINPACK linear algebra library, and a
X?S*Sr-?upplied version °f ISAMAX was available on each machine. The
CLEAN also uses the "WHENILT" library routine of the Cray library
Assembly language versions of WHENILT were prepared by one of the
authors [DCWJ for both the Convex and Alliant implementations; each was
subsequently "tuned" by vendor personnel.

Although most of the heavy computing of AIPS is concentrated in
the vectorized Q-routines, "Amdahl's Law" does apply: the performance
of parallel machines is ultimately limited mainly by the fraction of
the code which executes in non-parallel mode [9]. Many DO-loops in
AIPS programs and subroutines did not vectorize initially due to
references to equivalenced variables, or due to use of subscript
offsets whose values are not known at compile time. Vectorizing
compilers refuse to vectorize such cases of apparent dependency in the
code. The most common cure is to introduce compiler directives into
the^ text of the subroutines, especially the "NO_RECURRENCE" directive
(this is the Convex name; it is called "IVDEP" by Cray and "NODEPCHK"

[9] see p. 11 of: O.Lubeck, J.Moore, and R.Mendez, "A Benchmark
Comparison of Three Supercomputers: Fujitsu VP-200, Hitachi
S810/20, and Cray X-MP/2", C o m p u t e r , vol. 18, No. 12,’ December
1985, pp. 10-24.

Benchmarking AIPS on the Convex C-l and Alliant FX/8 Page 13
VECTORIZATION ISSUES 24 December 1985

by Alliant). The appropriate directives are now INCLUDEd before all
DO-loops in the Q-routine library which vectorizing compilers suspect
may contain vector dependencies, but which in fact do not. In some
cases the code in DO-loops only needed to be rearranged to permit
greater vectorization. In general, almost any DO-loop anywhere in AIPS
stands to benefit from such changes. Because the C-l and FX/8
architectures support vector operations on 8, 16, and 32-bit integers
as well as floating point, the authors expect that even the processing
of FITS tapes is capable of at least some vectorization.

6 THE PROCUREMENT DECISION

A good summary of the outcome of NRAO's 1985 procurement trials
i s :

"Three systems were qualified for the procurement using
the AIPS PFT certification and benchmarking package: DEC
VAX-8600, Convex C-l, and Alliant FX/n. The test results
show that the latter two systems are clearly superior in
performance to the 8600. Both the Alliant and the Convex
systems make fine AIPS machines, and the AIPS Group
recommends both of them to any group which wants a
high-performance AIPS computer based on state-of-the-art
technology. The two systems were judged to be roughly
equal on overall technical grounds at this particular
date and f£r this particular procuremen t . so our final
procurement decision will likely depend on issues other
than performance alone.... Regardless of which of the
two vendors is selected for NRAO's procurement, the AIPS
Group stands ready to assist any AIPS site which
subsequently chooses either vendor. We also recognize
that NRAO's evaluation may become obsolete as the
relative price, performance, and features of these
relatively new machines evolve in the coming
months." [10]

The "particular date" for this procurement was approximately
16 September 1985. Both the Convex C-l and the Alliant FX/n have
special features and exhibit superior performance in particular cases,
a situation which can make either of them preferable for specific
purposes. Unfortunately, it was necessary to select only one of them
for this procurement; NRAO chose the Convex C-l, and installation was
scheduled for the last week of December 1985.

[10] AIPSLetter, Vol. V, No. 4, 15 October 1985, pp. 1-2.

Benchmarking AIPS on the Convex C-l and Alliant FX/8 Page 14
APPENDICES 24 December 1985

7 APPENDICES

7.1 Reviews Of The Two Machines

The operating systems of both the Convex and the Alliant are based
on the Berkeley virtual memory version of Unix, commonly known as
"4.2bsd". The authors made no quantitative measures of the effect of
timeshared loading on performance, but formed the impression that the
character of the effects is roughly linear on both machines. Both
systems support the DOD/ARPA TCP/IP network protocol on Ethernet LANs.

Both compilers are robust, sophisticated products. Both implement
most of the VMS extensions to Fortran-77, and both attempt to make the
same interpretation of the language that the VMS compiler does, as far
as possible. Both are capable of vectorizing DO-loops which contain
IF-statements. The sophisticated vectorizing compilers make both
systems attractive for general engineering and scientific computing,
not just for AIPS. In general, both are much easier to use than array
processors.

7.1.1 Convex C-l

The C-l is a "vector register" machine; its architecture, which is
implemented in custom CMOS gate-arrays, resembles that of the Cray-1 in
many respects [11]. The 8 vector registers are 128 words long;
supported data types are 8, 16, 32, and 64-bit integers, and 32 and
64-bit floating point (using the VAX "F" and "G" formats). If only the
floating add and multiply operators are counted, the maximum speed of
the C-l is 40 MFlops for 32-bit floating data and 20 MFlops for 64-bit.
Not only the scalar units but also the vector pipelines operate on all
of the data types, with 8 and 16-bit data being processed at 32-bit
rates. The vector pipelines can be "chained", as in the Cray, and
scalar operations can overlap vector pipeline activity. The scalar
speed of the C-l is approximately equal to that of the DEC VAX-8600.

The vector hardware architecture of the C-l includes the full
complement of advanced vector operators: gather, scatter, comparison,
mask, compress, and merge. In addition, the C-l includes a nice set of
vector reduction operators: SUM, PRODUCT, MAX, MIN, AND (ALL),
OR (ANY), and XOR (PARITY); reduction operations reduce a vector to a
scalar. For example, the sum-of-vector enables the C-l to chain the
dot product of two vectors: a vector multiply instruction immediately
followed by the sum-of-vector accumulates the dot product in one of the

[11] see T. Jones, H.W. Dozier and J. Gruger, "Supercomputer Breaks
Price Barrier for Vector Processing", Computer Desig n . April 1985,
pp. 169-176.

Benchmarking AIPS on the Convex C-l and Alliant FX/8
APPENDICES

Page 15
24 December 1985

scalar registers at the maximum rates quoted above. Two more essential
capabilities are provided: population count and trailing zero count.
The first counts how many comparisons succeeded (i.e., how many bits
are set in the vector mask register) and the second is used to find the
first occurrence of a successful comparison in a vector. The compress,
merge, pop count, and trailing zero count operations are not directly
expressable in FORTRAN, but they are accessible through the assembly
language. A programmer can hand-code critical portions of algorithms
in assembly language subroutines in order to use these advanced vector
operators; in this way the ultimate performance of the C-l is
available.

The C-l is a full virtual memory machine; addressing is
"non-byte-swapped". Current chip technology (256K chips) permits
128 MB physical memory size. The CPU-to-Memory bandwidth is 80 MB/sec.
Memory is dual ported, and the I/O system has concurrent bandwidth to
memory of 80 MB/sec, for a total of 160. The I/O interface is
IEEE-standard Multibus. In order to get sufficient aggregate I/O
performance, multiple Multibusses are operated concurrently. The
Multibusses are connected to the I/O system through up to five "IOPs"
(I/O Processors), each of which is computer in its own right; the
device drivers execute in the IOPs, thus reducing interrupt overhead on
the main CPU. Each IOP can control up to four Multibusses.

The Convex C-l was announced in the fall of 1984. List prices
begin at about US$500K, and prices for typical large configurations are
in the neighborhood of $750-800K. For further information, contact:

7.1.2 Alliant FX/8

The FX/8 contains from 1 to 8 "computational elements" (CEs), each
of which is both a scalar and vector computer approximately equal in
power to a VAX-8600 plus AP-120B array processor [12]. The scalar
instruction set is a CMOS gate-array implementation of the Motorola
68020 architecture, with vector register and concurrency instructions
added. The scalar floating point instructions include several
transcendental operations (square root, sine, cosine, logarithm, and
exponential). Bit and bit-field instructions are available.

The eight vector registers of an Alliant CE are each 32 words
long. Supported data types are 8, 16, and 32-bit integers, and 32 and
64-bit floating point (using IEEE-standard formats). An FX/8 system

[12] see S. Lackey, J. Veres and M. Ziegler, "Supercomputer Expands
Parallel Processing Options", Computer Design, 15 August 1985,
pp. 76-81.

Convex Computer Corporation
701 Plano Road
Richardson, Texas 75081

(214) 952-0200

Benchmarking AIPS on the Convex C-l and Alliant FX/8 Page 16
APPENDICES 24 December 1985

with 8 CEs has a peak performance rating for 32-bit data of about
35 MIPS for scalar-concurrent operations and 94 MFlops for
vector-concurrent computing (4.45 MIPS and 11.8 MFlops per CE). For
64-bit data, the numbers are about 29 MIPS and about 47 MFlops. In
general, scalar operations do not overlap vector pipeline activity.

The vector instruction set is richer than that of the C-l (or the
Cray-1), because operator combinations are implemented explicitly,
rather than depending on the "chaining" technique to synthesize them.
Like the C-l, the FX/8 architecture includes the full complement of
advanced vector operators (gather, scatter, comparison, mask, compress,
and merge) and a nice set of vector reduction operators: DOT, SUM,
PRODUCT, MAX, MIN, AND, OR, and EOR. The FX/8 also supports a
"polynomial" reduction operator. Population count, leading zero count
and trailing zero count are available for the vector mask register.
The mask register is effective in almost all vector instructions, like
the Fujitsu VP-series and unlike the Crays and the C-l. As with the
C-l, the full vector architecture can be made available to Fortran
programs by coding assembly language subroutines.

Up to twelve 68012 computers are used as "interactive processors"
(IPs) and peripheral controllers (each IP controls one Multibus). The
IPs have a separate path to main memory, and they generally execute the
device drivers and timesharing utility operations; one of the IPs
executes the operating system code to manage queues for the 8 CEs and
11 other IPs. Note that pure-scalar code can execute on either a CE or
an IP.

Alliant's FX/1 model contains one CE (4.4 MIPS, 11.8 MFlops), and
either one or two IPs. Cache memory is shared, and because there is
only one CE, the concurrency logic is not used (the compiler can be
instructed to compile vector-only code to reduce overheads).

The FX/8 and FX/1 are full virtual memory machines (2 GB virtual
space, in both CEs and IPs); like all 68000s, addressing is
"non-byte-swapped". Current chip technology (256K chips) permits up to
80 MB physical memory size in the FX/8. The main memory has a total
bus bandwidth of 188 MB/sec, which support two paths at 94 MB/sec each,
one for the IPs and their I/O devices and one for the CE complex.

Alliant's Fortran compiler automatically generates code to exploit
the vector and concurrent architecture; concurrent code automatically
utilizes as many CEs as are available. This compiler represents a
major technical achievement: it is the first commercially available
Fortran compiler which supports parallel execution automatically.
Special compiler directives are provided for the programmer to control
compilation modes for loops. The compiler also implements the vector
notation extensions which have been proposed for Fortran-8x.

The concurrent execution of the CE complex depends critically on a
special hardware "concurrency bus" which interconnects the CEs. It
permits starting, stopping, and synchronizing CEs on a microsecond
timescale. Even dependent execution of loop iterations is supported by
this hardware. Variables in shared memory can also be used for

Benchmarking AIPS on the Convex C-l and Alliant FX/8 Page 17
APPENDICES 24 December 1985

intercommunication between CEs (using the coherent cache) and for
synchronization (the 68000 "test-and-set" instructions work well for
this purpose).

The Alliant FX/8 and FX/1 were announced in July 1985. List
prices for the FX/1 start below US$150K; prices for the FX/n range from
about $270K to about $950K. For further information, contact:

Alliant Computer Systems Corporation (617) 263-9110
42 Nagog Park
Acton, Massachusetts 01720

7.2 Suggestions For Improvements

One duty of any benchmarking project is to point out areas where
improvements are possible. Suggestions which apply to both vendors
will be covered first, followed by items specific to each vendor.

7.2.1 Suggested Improvements For Unix -

1. Ability to pre-allocate space for a disk file at the moment of
creation is desirable, and is not a standard feature of Unix. It
is unpleasant to compute for an hour generating an output file,
and then crash due to insufficient space to complete the file!

2. To complement pre-allocation, a means of truncating files is
highly desirable, and is not a standard feature of Unix (Convex
provides this capability via the function "ftruncate", an
extension to the 4.2 bsd UNIX C library). Otherwise, file
truncation can only be performed under Unix by copying, deleting
and renaming.

3. The ability of a process to obtain exclusive access to a file is
desirable, and is not a standard feature of Unix (it is "flock"
under 4.2bsd and "lockf" under System V; when will they agree?).
"Lock files" are a mediocre substitute for this fundamental
functionality.

4. Support for asynchronous device I/O is desirable, and is not a
standard feature of Unix. Both disk and tape asynchronous I/O
should be supported. In addition to read and write operations,
asynchronous tape operation should return block lengths and should
also support tapemark, BOT and EOT sensing, as well as record and
tapemark skipping (unload capability would be nice).

5. Support for "mapped (virtual) file I/O" is ultimately desirable
for some applications, although not necessarily for AIPS. It is
implemented in several modern operating systems, but was not
included in the Berkeley virtual memory Unix design.

Benchmarking AIPS on the Convex C-l and Alliant FX/8 Page 18
APPENDICES 2 4 December 1985

6. A notable weakness of extant Unix implementations is that the
available debuggers appear to be inferior to the VAX/VMS debugger
(especially the VMS 4.0 version). Unix vendors would do well to
study, and perhaps emulate DEC'S implementation.

7.2.2 Fortran Compiler Improvements -

1. Inability of the Convex and Alliant compilers to optimally
vectorize a key DO-loop containing an IF forced the authors to
resort to special coding techniques (WHENILT routine coded in
assembly language) to get proper performance in the CLEAN
algorithm. There are three possible ways to vectorize
IF-statements: masked arithmetic, compress/expand, and
gather/scatter (which the authors used to vectorize the CLEAN
algorithm). The Convex and Alliant compilers currently only
support one of these, masked arithmetic. By comparison, the
Fujitsu^ compiler supports all three, and apparently can
automatically produce nearly optimum code [13]. The Convex and
Alliant compiler groups should consider implementing at least the
gather/scatter scheme for IF—statements, with activation
controlled by a compiler directive. The most elegant approach
would be to implement a "truth ratio" compiler directive, as
Fujitsu does, and let the compiler decide (automatically) how to
compile the loop optimally.

2. Compilers should vectorize expressions containing equivalenced
variables if the programmer asserts the no-dependency directive.

3. It would be a good thing if all vendors of vectorizing compilers
would agree on the format and meaning of the common compiler
directives. For example, is there any good reason for Cray's
compiler to use "IVDEP" while the Convex compiler wants
"NO_RECURRENCE"? Standardization of directives would be a good
goal for the ANSI X3J3 (Fortran) committee; perhaps Convex and
Alliant could join with other vendors to implement this.

4. If a DO-loop has a variable for its limit, a vectorizing compiler
is forced to assume that the run-time limit may be larger than the
vector register size. If the loop limit is, in fact, smaller than
the register size, the long-vector logic is useless, and execution
of these instructions may degrade performance. Convex and Alliant
should consider implementing a "SHORTLOOP" directive analogous to
the one offered by the Cray CFT compiler in order to eliminate the
useless "strip mining" logic. This may be particularly important
for Alliant, because less of the scalar overhead is hidden behind

[13] see "Facom Vector Processor System: VP-100/VP-200", by K. Miura
and K. Uchida, pp. 59-73 of "Supercomputers: Design and
Applications", ed. K. Hwang, IEEE Computer Society, 1984,
L0C=QA76.5.T 8 8 , ISBN=0-8186-0581-2.

Benchmarking AIPS on the Convex C-l and Alliant FX/8 Page 19
APPENDICES 24 December 1985

the pipes in the FX/n.

7.2.3 Specific Suggestions For Convex -

1. Can the vector sine and cosine routines be improved? NRAO's
measurements suggest that the present sine/cosine routines are
little if any faster than those of the FPS AP-120B. Perhaps a
table-lookup approach, analogous to that in the 120B, could make a
useful gain?

2. NRAO's measurements showed that about 6% of the cost of executing
MX went into "vector" fix and float operations (subroutines
mth$vj_cvt_vr and _mth_$vr_cvt_vj); apparently these routines
actually execute in scalar mode. Perhaps it would be possible to
add one or more opcodes to the vector pipelines in order to
produce a higher performance implementation of these functions?

7.2.4 Specific Suggestions For Alliant -

1. Implement a Fortran-callable interface for C procedures.

2. Implement disk striping.

3. The Alliant architecture is complicated (both vector registers and
fine-grained concurrency); there is usually more than one way to
code any algorithm, and the complexity means that it is not always
obvious which way is best. In fact, it appears that the best
scheme generally depends on the vector lengths and the number of
CEs currently available in the complex. One way to optimize
coding would be to generate code for each scheme, and make a
real-time decision. Memories are now large; the extra code is
less important than the extra performance enhancement. The
breakpoints for the real-time test should be determined by a
detailed execution-cost analysis which the compiler could perform
(the Fujitsu compiler uses such analyses to make decisions about
IF-statements in DO-loops).

4. Implement "detached-singleton" CEs. Because each CE is roughly
equivalent to a VAX-8600, an FX/8 with several detached CEs will
offer unusually high scalar (plus vector) timesharing performance,
concurrently with a cluster of CEs offering high vector/concurrent
computing performance.

Benchmarking AIPS on the Convex C-l and Alliant FX/8 Page 20
APPENDICES 24 December 1985

7.3 Alliant FX/n Performance In November 1985

The Convex and Alliant machines are subject to evolution of both
their hardware and their software; benchmark results for these machines
are, strictly* valid only for the date of measurement! Alliant made
certain changes in the FX/8 hardware and software after September, and
asked NRAO to rerun the test procedures to evaluate the effects of
these changes. The new tests were run late in November. The only
significant differences in the FX/n environment for the November
benchmarks were the use of Alliant'a revision "B" CEs and their 8K file
system. The 8K file system is different in that the sector sizes are
8192 bytes instead of the normal 512. The 8K file system was used for
the storage of AIPS user data only. No changes were made to the AIPS
source code which had been used for the September run. However, all
source code was recompiled and all load modules were regenerated. The
results are shown in Table 3, and lead to the following conclusions:

1. The 8K file system significantly improves I/O performance. The
ratio of November to September performance on both the "normal"
PFT and "scaled-up" PFT shows little change in CPU times but a
general 20% improvement in real times.

2. By ordering the results of the respective PFT tasks in ascending
CPU/real-time performance, the ratio of November FX/n performance
to September C-l performance suggests that the 4-6 CE case is
roughly comparable to the C-l, particularly for the AP tasks. In
the September runs, it seemed that 6—8 CEs were required to match
the performance of the C-l.

3. The "scaled-up" PFT problem run was repeated with 6 CEs for the
sake of comparison with the September results. Despite Alliant's
improved I/O, the real-time superiority of the C-l still stands.

Table 3

Alliant FX/n Performance Improvements

S e p t e m b e r 198 5 :

FX/1<1> FX/2 FX/4 FX/6 FX/7 FX/8 FX/6<5>
TASK IOCNT REAL CPU REAL CPU REAL CPU REAL CPU REAL CPU REAL CPU REAL CPU

AIPS 380 <2> 131 .2 1549 128.5 1255 128.3 1158 128.1 N/A N/A 1139 131 .1 12513 386.1

CNVRT 25 4 2.1 4 1 .6 4 1 .4 4 1.4 N/A N/A 3 1 .3 41 9.4
COMB 33 9 6.9 9 6.1 9 5.9 8 5.7 N/A N/A 8 5.8 110 61 .2
SUBIM 19 6 2.8 4 2.5 4 2.4 4 2.3 N/A N/A 5 2.5 51 9.9
UVSRT 96 25 10.1 28 9.7 25 9.1 25 9.0 N/A N/A 27 9.4 29 9.2

APCLN 267 307 264.6 201 156.9 151 101 .4 134 86.6 N/A N/A 132 84.5<3> .89 75.2 4320 1364.2
APRES 82 28 17.6 24 13.7 21 12.0 24 12.2 N/A N/A 24 12.7<3> .93 11 .9 317 124.6
ASCAL 136 410 394.8 214 202.3 122 110.8 91 80.5 N/A N/A 78 67.1 160 149.1
MXMAP 96 69 51 .8 49 33.0 41 23.8 38 21 .9 N/A N/A 42 23.1<3> .89 20.6 324 149.2
MXCLN 481 639 573.3 408 336.3 299 230.1 262 186.8 N/A N/A 234 171.2<3> .89 152.4 3520 1832.8
UVMAP 151 62 37.6 48 25.2 43 19.0 45 17.8 N/A N/A 44 18.1<3> .90 16.3 435 138.7
VM 344 125 64.4 109 49.2 94 41 .0 88 41 .5 N/A N/A 84 41 .5 1843 569.6

ALL<4> 1730 1684 1426.0 1098 836.5 813 556.9 723 465.7 N/A N/A 681 437.2 11150 4417.9

CPU/REAL CPU/REAL CPU/REAL CPU/REAL CPU/REAL CPU/REAL CPU/REAL
AIPS N/A N/A N/A N/A N/A N/A N/A
CNVRT .53 .40 .35 ,35 N/A .43 .22
COMB .77 .68 ,66 ,71 N/A .73 .56
SUBIM .47 .63 .60 ,58 N/A .27 .19
UVSRT .40 .35 ,36 ,36 N/A .35 .32

APCLN .86 .78 67 .65 N/A .64 .32
APRES .63 .57 57 .51 N/A .53 .39
ASCAL .96 .95 91 ,88 N/A .86 ,93
MXMAP .75 67 58 ,58 N/A .55 ,46
MXCLN .90 .82 77 71 N/A .73 ,52
UVMAP 61 53 44 40 N/A ,41 ,32
VM 52 45 44 47 N/A ,49 31

ALL 85 76 68 64 N/A 64 40

FX1/C1 FX2/C1 FX4/C1 FX6/C1 FX7/C1 FX8/C1 FX6/C1

AIPS 380 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

UVSRT 96 2.78 1 .53 3.11 1 .47 2.78 1 .38 2.78 1 .36 N/A N/A 3.00 1 .42 3.63 .63
CNVRT 25 1 .33 1.11 1 .33 .84 1 .33 .74 1 .33 .74 N/A N/A 1 .00 .68 1 .75 .50
UVMAP 151 2.70 2.05 2.09 1 .38 1 .87 1 .04 1 .96 .97 N/A N/A 1 .91 .89 2.50 .98
VM 344 2.78 2.15 2.42 1 .50 2.09 1 .37 1 .96 1 .38 N/A N/A 1 .87 1 .38 2.75 1 .40
APRES 82 2.15 1 .74 1 .85 1 .36 1 .62 1 .19 1 .85 1 .21 N/A N/A 1 .85 1 .18 2.17 1 .15
SUBIM 19 2.00 1 .33 1 .33 1 .19 1 .33 1 .14 1 .33 1 .10 N/A N/A 1 .67 1 .19 3.40 .76
COMB 33 1 .50 1 .28 1 .50 1.13 1 .50 1 .09 1 .33 1 .06 N/A N/A 1 .33 1 .07 1 .67 1 .01
MXMAP 96 2.23 1 .90 1 .58 1 .21 1 .32 .88 1 .23 .81 N/A N/A 1 .35 .85 1 .51 .91
APCLN 267 2.31 2.16 1 .51 1 .28 1.14 .83 1 .01 .71 N/A N/A .99 .61 2.41 1 .14
MXCLN 481 2.71 2.59 1 .73 1 .52 1 .27 1 .04 1.11 .85 N/A N/A .99 .69 1 .71 1 .19
ASCAL 136 3.83 3.81 2.00 1 .95 1.14 1 .07 .85 .78 N/A N/A .73 .65 .72 .69

ALL<4> 1730 2.77 2.60 1 .80 1 .52 1 .33 1 .02 1 .19 .85 N/A N/A 1.12 .80 2.07 1.14

Benchmarking
AIPS

on
the

Convex
C-l

and
Alliant

FX/8
Page

21
APPENDICES

24
December

1985

Tab Ie 3 (cont i nued)

November 1985:

FX/1<1> FX/2 FX/4 FX/6 FX/7 FX/8 FX/6<5>
TASK IOCNT REAL CPU REAL CPU REAL CPU REAL CPU REAL CPU REAL CPU REAL CPU

AIPS 380 <2> 126.9 1270 117.8 1110 117.6 961 117.5 962 117.3 904 117.5 8152 387.8

CNVRT 25 4 2.3 3 1 .8 3 1 .8 2 1 .4 2 1 .5 3 1 .5 24 11.1
COMB 33 8 6.9 8 6.1 7 5.9 7 5.9 8 6.0 7 5.9 72 59.6
SUBIM 19 3 2.8 3 2.5 3 2.3 4 2.3 3 2.3 3 2.6 20 10.6
UVSRT 96 20 10.9 19 9.8 19 9.6 17 9.4 17 9.3 20 10.0 19 9.6

APCLN 267 255 242.4 166 153.2 113 99.6 100 85.7 97 82.6 96 80.4 2575 1446.4
APRES 82 21 16.8 18 13.8 15 11 .9 15 12.0 16 12.0 17 11 .9 200 125.5
ASCAL 136 395 390.6 198 196.7 111 108.7 110 107.5 110 108.2 74 68.9 216 213.0
MXMAP 96 56 49.3 36 32.4 30 24.1 26 21 .9 27 21 .0 29 22.1 217 157.5
MXCLN 481 515 500.2 349 333.2 245 228.7 208 190.1 221 194.7 179 161 .7 2342 1840.5
UVMAP 151 46 37.0 35 26.0 31 20.1 31 19.1 30 19.0 31 18.9 296 156.7
VM 344 81 61 .9 57 45.0 55 40.9 62 43.8 65 43.4 53 39.3 1069 625.3

ALL<4> 1730 1404 1321.1 892 820.5 632 553.3 582 499.1 593 500.0 512 423.2 7050 4655.8

CPU/REAL CPU/REAL CPU/REAL CPU/REAL CPU/REAL CPU/REAL CPU/REAL

AIPS N/A N/A N/A N/A N/A N/A N/A

CNVRT .58 .60 .60 .70 .75 .50 .46
COMB .86 .76 .84 .84 .75 .84 .83
SUBIM .93 .83 ,77 ,57 .77 .87 .53
UVSRT .55 .52 .51 .55 .55 .50 ,51

APCLN .95 .92 ,88 .86 .85 ,84 .56
APRES .80 ,77 79 .80 .75 .70 .63
ASCAL .99 99 98 ,98 .98 .93 ,99
MXMAP .88 ,90 80 ,84 ,78 .76 ,73
MXCLN 97 95 93 .91 .92 .90 .79
UVMAP 80 74 65 62 .63 ,61 53
VM 76 79 74 .71 .67 74 58

ALL 94 92 88 86 ,84 83 66

FX1/C1 FX2/C1 FX4/C1 FX6/C1 FX7/C1 FX8/C1 FX6/C1

AIPS 380 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

UVSRT 96 2.22 1 .65 2.11 1 .48 2.11 1 .45 1 .89 1 .42 1 .89 1 .41 2.22 1 .52 2.38 1 .43
CNVRT 25 1 .33 1 .21 1 .00 .95 1 .00 .95 .67 .74 .67 .79 1 .00 .79 1 .00 .50
UVMAP 151 2.00 2.02 1 .52 1 .42 1 .35 1 .10 1 .35 1 .04 1 .30 1 .04 1 .35 1 .03 1 .70 1.11
VM 344 1 .80 2.06 1 .27 1 .50 1 .22 1 .36 1 .38 1 .46 1 .44 1 .45 1 .18 1 .31 1 .59 1 .54
APRES 82 1 .62 1 .66 1 .38 1 .37 1 .15 1.18 1 .15 1.19 1 .23 1 .19 1 .31 1.18 1 .37 1.16
SUBIM 19 1 .00 1 .33 1 .00 1 .19 1 .00 1.10 1 .33 1.10 1 .00 1.10 1 .00 1 .24 1 .33 .82
COMB 33 1 .33 1 .28 1 .33 1 .13 1.17 1 .09 1.17 1 .09 1 .33 1.11 1 .17 1 .09 1 .09 .98
MXMAP 96 1 .81 1 .81 1.16 1.19 .97 .89 .84 .81 .87 .77 .94 .81 1 .01 .96
APCLN 267 1 .92 1 .98 1 .25 1 .25 .85 .81 .75 .70 .73 .68 .72 .66 1 .43 1 .21
MXCLN 481 2.18 2.26 1 .48 1 .51 1 .04 1 .03 .88 .86 .94 .88 .76 .73 1 .14 1 .20
ASCAL 136 3.69 3.77 1 .85 1 .90 1 .04 1 .05 1 .03 1 .04 1 .03 1 .04 .69 .66 .98 .98

ALL<4> 1730 2.31 2.41 1 .46 1 .50 1 .04 1 .01 .96 .91 .97 .91 .84 .77 1 .31 1 .20

Benchmarking
AIPS

on
the

Convex
C-l

and
Alliant

FX/8
Page

22
APPENDICES

24
December

1985

Table 3 (conclusion)

FX/1<1> FX/2 FX/4 FX/6 FX/7 FX/8 FX/6<5>
NOV/SEP NOV/SEP NOV/SEP NOV/SEP NOV/SEP NOV/SEP NOV/SEP

AIPS 380 <2> .96

CM00 .92 .88 .92

ro00 .92 .84

cn00 .79 .90 .65 1 .00

CNVRT 25 1 .00 1 .10 .75 1 .13 .75 1 .29 .50 1 .00 N/A N/A 1 .00 1 .15 .59 1 .18

COMB 33 .89 1 .00 .89 1 .00 .78 1 .00 .88 1 .04 N/A N/A .88 1 .02 . 65 .97
SUBIM 19 .50 1 .00 .75 1 .00 .75 .96 1 .00 1 .00 N/A N/A .60 1 .04 . 39 1 .07
UVSRT 96 .80 1 .08 .68 1 .01 .76 1 .05 .68 1 .04 N/A N/A .74 1 .06 .66 .97

APCLN 267 .83 .92 .83 .98 .75 .98 .75 .99 N/A N/A .73 1 .07 .60 1 .06
APRES 82 .75 .95 .75 1 .01 .71 .99 .63 .98 N/A N/A .88 1 .02 . 63 1 .01
ASCAL 136 .96 1 .00 .93 .97 .91 .98 1 .21 1 .34 N/A N/A .95 1 .03 1 .35 1 .43
MXMAP 96 .95 .95 .73 .98 .73 1 .01 .68 1 .00 N/A N/A .69 1 .07 .67 1 .06
MXCLN 481 .81 .87 .86 .99 .73 .99 .79 1 .02 N/A N/A .76 1 .06 .67 1 .00
UVMAP 151 .74 .98 .73 1 .03 .72 1 .06 .69 1 .07 N/A N/A .70 1 .16 .68 1.13
VM 344 .65 .96 .52 .91 .59 1 .00 .70 1 .06 N/A N/A .63 .95 . 58 1.10

ALL<4> 1730 00 GJ .93 .81 CO 00 .78 .99 .80 1 .07 N/A N/A .75 .97 .63 1 .05

<1> compiled with concurrency disabled (trying to simulate an FX/1 environment on an FX/8)
<2> tasks initiated standalone to insure a 1 CE environment; AIPS real time is not meaningful
<3> from an earlier run when routines QMINV and QMAXV were not vector-concurrent; these tasks stand to gain approximately

10% speedup as shown (8 CEs not available for final run)
<4> tasks only (i.e., does not include AIPS itself); AIPS and its dependencies compiled with concurrency disabled
<5> scaled up problem (i-e.. CELLSIZE=2 vs 8, IMSIZE=1024 vs 256, GAIN=0.01 vs .1, NITER=4000 vs 2000)

Benchmarking
AIPS

on
the

Convex
C-l

and
Alliant

FX/8
Page

23
APPENDICES

24
December

1985

Benchmarking AIPS on the Convex C-l and Alliant FX/8 Page 24
APPENDICES 24 December 1985

7.4 Measurements Of "Alliant Concurrency"

The first thing to note is that NRAO's objective was procurement,
not parallelism research. Measurements of parallelism were made in
order to gain insight into the behavior of the FX/n, the first
concurrent_ computer ever tested by NRAO. The measurements are
presented in Table 3. The discussions of "Alliant Concurrency" in this
section will refer to the data presented in the "September 1985"
section of Table 3. Note that the FX/n is still gaining in performance
for N up to 8 in several programs. The data suggest that 4-6 CEs is a
good compromise configuration; this would make especially good sense if
extra CEs could be detached for timesharing support.

The Alliant CEs are capable of surprising performance utilizing
only their scalar concurrency capability. For example, vector sines
and cosines are not, in fact, computed in the vector registers.
Instead they are computed in the scalar floating point hardware. With
8 CEs the resulting speed is impressive: about 4.5 microseconds per CE
divided by 8 implies about 0.5 microsec/result, more than twice as fast
as the AP-120B (1.3 microsec/result). Another example: In Table 3 the
September CPU time for MXCLN with 8 CEs (the "FX/8" column) using the
vectorized CLEAN algorithm is 171 seconds (ignoring the probable
speedup if QMINV and QMAXV vectorize). An experimental version of the
CLEAN algorithm consisting of simple concurrent scalar code in 8 CEs
executed in September in about 200 seconds. Thus, the
concurrent—vector technique was only moderately faster than
concurrent—scalar in this case! The authors infer that concurrent
scalar compilation is a good choice for loops which are difficult to
vectorize.

The data in Table 3 include performance measurements for 1, 2, 4,
6 and 8 CEs. The following simple model can be fitted to the data:

CPU_time = (scalar_time + concurrent_time / #CE)

As an example, this formula was solved for the "scalar_time" and
"concurrent_time" variables using the data for 2 CEs and 6 CEs for the
three tasks ASCAL, MX-clean and VM; the results are tabulated in
Table 4 and plotted in Figure 1. The "fraction concurrent" column
indicates the fraction of each algorithm's work which was capable of
executing in parallel on the FX/8 (for ASCAL, 0.95 is 363 divided by
363+21). The "infinity speedup" indicates how much faster than 1 CE
the Alliant architecture would be if an infinite number of CEs were
available (for ASCAL, 18.3 is 363+21 divided by 21, i.e.
concurrent_time asymtotically zero). We see that ASCAL is the most
highly vectorized/parallelized AIPS task (95% concurrent). MX-clean is
doing well (80%), but probably could be improved. It is clear that VM
needs work---only 38% of its computing was able to exploit multiple CEs
in the Alliant. Mainly, the version of VM used in this work needed
vectorization directives inserted into its source in various places.
Also, certain equivalenced variables were inhibiting vectorization-
these problems were subsequently fixed in the Cray X-MP implementation

Benchmarking AIPS on the Convex C-l and Alliant FX/8 Page 25
APPENDICES 24 December 1985

Table 4

Speedups Limited by Scalar Code ("Amdahl's Law")

task scalar
(secs)

concurrent
(secs)

fraction
concurrent

infinity
speedup

ASCAL 21 363 0.95 18.3
MX-clean 112 447 0.80 5.0
VM 38 23 0.38 1.6

Figure 1

Alliant FX/n concurrency: CPU-time vs. § CEs

number of CEs

