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Abstract

The 15APR85 release of AIPS has been installed on the 
Convex C-l vector computer and on the Alliant FX/8 
vector/concurrent computer. Both have been certified 
using the PFT benchmarking and certification test. 
Although a small number of compiler bugs were encountered 
in each, the AIPS application code was installed with 
only minimal modifications, and computed results agreed 
well with other implementations of AIPS. In the course 
of the implementations, the technology of the Clark CLEAN 
algorithm was advanced considerably; the final vectorized 
CLEAN algorithm on both systems is about three times as 
fast as the current microcode algorithm on the FPS 
AP-120B array processor. Similar improvements were 
observed for other highly vectorized tasks. Programs 
which were not vectorized generally executed on both in 
comparable CPU times and faster real times than they 
achieved on the DEC VAX-8600. The FX/8 with 6 
computational elements (CEs) generally outperformed the 
C-l by a little in CPU time, but was significantly slower 
in real time. The performance of the FX/8 as a function 
of the number of CEs is also described.

[1] NRAO is operated by Associated Universities, Inc., under contract 
with the U. S. National Science Foundation.

[2] this report entirely supersedes and replaces a previous version 
which was dated 18 July 1985 and was marked as "AIPS Memo No. 37".
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1 INTRODUCTION

NRAO tested both the Convex C-l vector computer and the Alliant 
FX/8 vector/concurrent computer as candidates for the replacement of 
the IBM and Modcomp systems in Charlottesville. The goals of the tests 
were to assure that these candidate systems would execute AIPS 
properly, and to assess their performance relative to each other and to 
other machines, including the VAX-ll/780s which NRAO already owns and 
the VAX-8600, another candidate for the procurement [3].

2 ABOUT THE CERTIFICATION AND BENCHMARKING PACKAGE

"[our evaluation] was not designed to be
a 100-yard dash for computer systems...
it was intended as a decathlon..." [4]

NRAO's programming group in Charlottesville has a standard 
procedure for assessing a computer system for use with AIPS: install 
AIPS ("Astronomical Image Processing System") on it and run the AIPS 
oertification and benchmarking test package. Successful execution of 
the test certifies that the computer hardware, the FORTRAN compiler, 
the operating system components, and the interface between AIPS and the 
operating system (the "Z-routines") all behave correctly. Benchmarking 
data can be extracted from the time stamps recorded in the AIPS message 
file and from the accounting listings produced by the AIPS utility 
PRTACC. Since the test procedures are written in the AIPS command 
language called POPS ("People-Oriented Parsing System") and read a 
binary data tape written in FITS ("Flexible Image Transport System") 
format, they are inherently machine- and operating system- independent. 
In a procurement situation, the aim is to perform exactly the same test 
on all of the machines which are under consideration. Note that this 
does not mean that all of the code of the test is the same on all 
machines. Only the portable portions of the application programs, the 
POPS procedures, and the FITS files must be invariant; it is not only 
permissible but even desirable that the system-dependent portions of 
AIPS should be customized to achieve the best performance on each 
separate host system.

The tests discussed in this memo were all performed with an 
experimental version of the test package, which was named "PFT" (the 
production release of the package will be similar, but will be called 
"DDT"). The package consists of two command language scripts, called 
"RUN files" in AIPS parlance (a total of about 400 lines of text), and 
a tape containing "master" data and comparison images. The first 
script compiles the test procedures and the second script executes 
them. The PFT test executes twelve different AIPS programs (AIPS,

[3] see AIPS Memo No. 36, "Certification and Benchmarking of AIPS on 
the VAX-8600", 24 June 1985.

[4] R . P . Colwell, C .Y .Hitchcock, E.D.Jensen, and H.M.Brinkley Sprunt, in 
"Open Channel", Computer . Vol. 18, No. 12, December 1985, p. 93.
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IMLOD, UVLOD, UVSRT, UVMAP, COMB, APCLN, SUBIM, ASCAL, MX, CNVRT, and 
VM). These programs, often referred to as the "Dirty Dozen", are used 
to process a real dataset of fringe visibilities collected with NRAO's 
Very Large Array (VLA) telescope. At each step where an image is 
computed, it is compared against the respective master image and 
residuals are summarized. A full description of the details of the 
test package is beyond the scope of this report; it is sufficient to 
say that the package reasonably reflects the actual use of AIPS on real 
data. Some parts of it are I/O limited, some are CPU-bound, and some 
are sensitive to various sources of overhead such as creating, opening, 
truncating, closing, and cataloging files. The CPU-bound tasks test a 
diverse range of heavy vector computing problems.

The statistics obtained from comparing the master and computed PFT 
answers must be construed with care. Some residuals are due to 
differences in floating point hardware, others are due to differences 
in the algorithms in various releases of AIPS, and some residuals may 
actually indicate errors of implementation on the machine being tested. 
In particular, maps computed in a host computer will almost always give 
non-zero residuals when they are compared to those computed with an FPS 
AP-120B, because the AP uses 28 bit floating point fractions, while 
32-bit hosts (e.g., VAX, C-l, FX/8) compute with 24 bit fractions. 
This situation occurred in the present trials, because the master data 
files for the test were generated on a VAX-780 using an AP-120B. The 
AIPS certification procedure is not concerned with assuring that an 
algorithm tells the "Truth" about the sky; rather, its goal is to 
ascertain whether two computers "tell the same lie", within an 
acceptable tolerance.

3 A HISTORY OF NRAO'S 1985 BENCHMARKING CAMPAIGN

Two of the authors (KCH £? DCW) spent two days, 30-31 May, at 
Convex Computer Corporation's factory in Richardson, TX, to make the 
initial installation of AIPS on the C—1. One particular compiler bug 
involving computed-GO-TOs with INTEGER*2 variables caused a delay of 
about 24 hours in the installation process, but, by the end of the 
second day, five of the twelve programs tested by PFT had passed the 
test. The initial installation did not exploit the vector computing 
capability of the C-l. During the next three weeks the authors worked 
through dialup modems to track down the remaining compiler bugs and 
AIPS bugs, but mostly to significantly improve the vectorization of the 
pseudo array processor library. By the 20th of June the C-l had 
demonstrated speed 2-3x faster than the FPS AP-120B on several AIPS 
tasks, and the entire dozen tasks of the PFT test had passed the 
certification test.

The Unix version of AIPS which was installed on the C-l was very 
similar to the 15APR85 release of AIPS, which was the version used to 
test the VAX-8600 on 29 April. This Unix AIPS version was copied from 
15APR85 on 5 February, two weeks before 19 February when the master 
test case of PFT was computed. The reason for using the February 
version of the test package for these tests rather than more recent
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versions was not only that it matched the AIPS version, but also that 
the February test tape has been used to test a number of different 
machines during 1985 and it is desirable to be able to intercompare all 
results.

Early in July, NRAO learned of the existence of Alliant Computer 
Corporation and their FX/8 computer. One of the authors [DCW] attended 
the announcement for this machine on 24 July in Boston, and spent
25 July at the factory in Acton, MA. Early in August, the entire set 
of AIPS files was transported from the Convex C-l to the Alliant FX/8, 
and was then modified to run on that machine. There was approximately 
a ten day delay in the installation due to an inability of Fortran 
modules to call Z-routines written in C-language. Fortunately, a 
library of Fortran-callable routines was available that, in many cases, 
could be used to serve the same purpose as the otherwise unreachable C 
library functions. For the remainder, Alliant provided an assembler 
interface (or "wrapper") routine which could be cloned to call the 
C-language routines distributed as part of the standard AIPS 
installation kits for Unix systems. Several minor bugs, again 
involving INTEGER*2 variables, were uncovered in the compiler and 
fixed. Essentially all of AIPS was then compiled with the optimizer 
fully enabled. By late August AIPS was operational on the FX/8, and 
had passed the PFT test.

It was obvious that both the C-l and the FX/8 were viable 
candidates for the procurement, and that a controlled comparison was 
required. Accordingly, late in August NRAO resumed the Convex tests; 
after the last few compiler bugs were found, the September version of 
the Convex compiler was able to compile essentially all of AIPS with 
the highest level of optimization enabled. The major change in the 
Convex operating system between June and September was the availability 
of "disk striping" [5]. Also, the C-l tested in September had a 
9.5 MHz clock (the June machine was 9.0).

During the first two weeks of September, the Alliant FX/8 and 
Convex C-l systems were compared in detail, simultaneously, using the 
same application code and the same certification and benchmarking test 
kit as had been used to test the VAX-8600 in April. Both vector 
machines passed the certification test, and both were accepted as 
viable candidates for the procurement. The final trials for the 
purpose of the procurement were run on 13 September; the results are 
shown below in Tables 1 and 2, and discussed in Section 4.3. The basic

[5] The term "striping" refers to DMA (direct memory access) 
transmissions from two or more disk controllers reading into a 
common (double) buffer concurrently. The sectors of the disk file 
are divided among the available drives; for a two-disk stripe, 
sectors 1,3,5... are on the first drive and 2,4,6... are on the 
second. Simultaneous interleaved reading or writing of the sectors 
with independent DMA controllers will double the transfer rate, 
thus synthesizing a double-performance disk out of two lower 
performance devices. The Convex C-l tested in September was 
configured with a four-disk stripe, which quadrupled performance.
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procurement decision was made soon after the completion of those 
trials.

Subsequently Alliant made certain changes in their I/O system 
which they believed would improve performance, and they asked NRAO to 
rerun the test suite as a courtesy (not for the procurement 
evaluation). The final runs of this set of tests were made on 
24 November; they are summarized below in an appendix.

4 THE AIPS PFT BENCHMARKING RESULTS

The trials of the Convex and Alliant machines were made with 
essentially the procurement configurations. In the case of the Convex, 
this meant 32 MB of memory and a four-way striped disk system. For 
Alliant,^ it meant 32 MB of memory and up to 8 CEs [6], with sufficient 
IP and disk capacity (the NRAO proposed procurement configuration was 
6 CEs). The results of the "normal" PFT trials appear in Table 1 
below, along with comparison measurements made on a number of other 
machines (780, 8600, 780+AP, FX/1 [7], and Cray X-MP). The first three 
data columns (780, 8600, and 780+AP) of Table 1 below are taken from 
the corresponding table in AIPS Memo No. 36 (see footnote [3]).

4.1 Notes For The "Normal" PFT Trials

When examining the tables below the reader will want to keep the 
following facts in mind:

1. Tests showed that when the output being sent to the terminal was 
sent to the Unix "null" device instead, the real times decreased 
significantly, demonstrating that performance was degraded by 
terminal I/O limitations (all tests were made with telephone lines 
at 1200 baud). The real-time numbers in Table 1 do not include 
any oorreotions for this phenomenon; they are the actual values 
measured in the formal PFT trials.

[6] Alliant s "FX/8" model is composed of 1-8 separate, identical
computational elements" (CEs). In this report the notations FX/1,

FX/2, FX/4, FX/6, FX/8, and FX/n refer to the FX/8 model with 
1-8 CEs.

[7] The FX/1 tested by NRAO is an FX/8 configuration with only 1 CE
active. Alliant's "FX/1" model is a special configuration which
can only have one CE, and which has a different arrangement of
cache memory from the FX/8. The authors assume that the CPU
performance of the two 1-CE configurations is approximately equal,
and that I/O performance is mainly determined by the peripherals’
rather than the CPU. Therefore, NRAO's "FX/1" measurements should
be useful as an approximate guide to the performance of the real 
FX/1. — _
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2. It should be noted that the 780 and 8600 AIPS installations make 
use of "asynchronous I/O" [8], whereas this feature was not 
available in either the C-l or the FX/n at the time of the trials.

3. The CPU/Real ratios in Table 1 are all just the CPU time in that 
table divided by the corresponding real time (note that when an AP 
is involved, the CPU time includes no contribution from the AP 
itself except for the handler). The ratios indicate the extent to 
which a task exhibits un-overlapped I/O or operating system 
overhead. Some tasks, a good example is MX with pseudo-AP on the 
780, manage to almost completely hide heavy I/O activity behind 
their CPU operations, whereas others, VM and UVMAP for example, 
have rather low CPU/Real ratios. Some tasks are I/O dominated and 
exhibit quite low ratios; UVSRT and SUBIM are good examples (UVSRT 
does a disk merge sort and SUBIM is effectively a file copy 
operation). I/O dominated tasks like CNVRT, COMB, SUBIM, and 
UVSRT will gain little if any advantage from vectorization or 
concurrency.

4. Tasks APCLN, APRES, ASCAL, MXMAP, MXCLN, UVMAP, and VM are the 
"AP-tasks" in the PFT trial. They all gain directly from 
vectorization or concurrency.

5. Task ASCAL is the most highly vectorized AIPS task; it is also 
especially indicative of vector sine/cosine performance. Note 
that the FPS 120B array processor uses special lookup tables to 
evaluate sines and cosines; this makes it unusually effective for 
ASCAL, compared to its peak floating point pipeline capability.

6. Task VM (maximum entropy image deconvolution) only uses the "AP" 
for 2-D FFTs; the timings in Table 1 under-represent its ultimate 
performance on these machines.

7. The authors consider the MXCLN timings to be the best single AIPS 
performance index, because task MX in its cleaning (deconvolution) 
mode does a little bit of everything (gridding, transforming, 
cleaning, and UV-subtracting).

[8] The term "asynchronous I/O" refers to DMA (direct memory access) 
transmission from a disk controller into a double buffer in the 
address space of the program, with the transmission occurring 
concurrently with CPU execution in other parts of the address 
space; this gives optimum real-time and CPU-time performance. Unix 
systems traditionally offer only "synchronous I/O", in which 
execution of a program stops while any I/O transmission into the 
program's address space is in progress; this degrades real-time 
performance. In addition, Unix systems traditionally use a form of 
"move-mode I/O" in which all transmissions are made by copying from 
a buffer in the operating system's space to the buffer in the 
program's space; this degrades CPU-time performance, even though 
read-ahead and write-behind in the OS buffer helps real-time 
performance.
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4.2 The "Scaled-Up" PFT Trials

The basic PFT test is a modest synthesis mapping problem in the 
context of the VLA (of course, any problem which consumes 19,000 
seconds on a VAX—780 is hardly a "modest" problem in an absolute 
sense). During the course of the September trials the question arose 
of whether important performance differences between systems would 
appear in a much larger—sized problem. Practical limitations prevented 
the processing of larger datasets on remote machines, but the AIPS 
tasks could be ordered to do more work on the available dataset. This 
was done, by making minor modifications in the command language test 
procedures. The resulting measurements appear in Table 2 below.

4.3 Conclusions Drawn From The PFT Measurements

The following conclusions can be drawn from these data:

1. The VAX-8600 is 4-5x faster than the 780 in CPU-time (but 
I/O-limited tasks are only slightly faster in real-time because 
the two machines use the same disks), and the C-l and the FX/1 are 
about equal to the 8600 in scalar performance.

2. For AP-tasks, the 780+AP is 8-14x faster than the 780, and the C-l 
and FX/6 are about 3x faster than the 780+AP.

3. The C-l disks are about 3x faster than the 8600 disk; the authors 
speculate that this performance advantage is due to the use of 
disk striping in the C-l. Note the high CPU/Real ratios exhibited 
by the C-l (total across the PFT test suite of 90%).

4. The X-MP uniprocessor is approximately 5-10x faster than the C-l 
and FX/6 for AIPS computing. The numbers shown for the X-MP 
represent the performance of NRAO's X-MP/COS implementation as it 
stood in mid-September 1985. The PFT run was made during mid-day 
on a loaded machine; therefore any intercomparison of real times 
is meaningless. Both the overall performance of the X-MP/COS 
implementation, and the performance of individual tasks, have been 
somewhat enhanced since that time.
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5. Regarding the C-l versus FX/6 comparison, there is no easy, 
clearcut technical choice:

The FX/6 is generally faster than the C-l in CPU-time, 

but

the C-l is generally faster than the FX/6 in real-time.

In the "scaled-up" problem, the CPU-time advantage of the FX/6 
was mostly attenuated, while the real-time advantage of the 
C-l became even more pronounced. Note that the FX/6 remained 
superior for ASCAL; indeed its lead increased for this task. 
This illustrates the high performance of concurrent-scalar 
transcendental operators in the FX/8 (see Section 7.4 below).

NOTE

It is obvious that various ratios between the computing 
performance of the C-l or FX/6 and that of the 780 or 
8600 can be derived from the data in the tables. For 
example, the MXCLN problem used 9921 seconds CPU time 
on the 780, and only 221 on the C-l, for a speed ratio 
of 44.9x. Or, ASCAL ran 1058 seconds on the 8600, but 
only 81 on the FX/6, for a ratio of 13.Ix. It is 
tempting to assume that such ratios will apply to all 
engineering-scientific computing applications, but the 
authors caution that these ratios should not be quoted 
£ut of their context. The reason is twofold:
(1) fundamentally they only apply to the specific 
algorithms of AIPS, and only to the specific 
implementations of AIPS that were made during the 
limited period of time during the summer of 1985, and
(2) for the pure scalar machines, they represent the 
speed achieved by the publicly distributed versions of 
the Q-routine library for the 15APR85 release of AIPS, 
not the speed which the vectorized CLEAN would have if 
it executed on the scalar machines.



Table 1

Alliant and Convex PFT Benchmarks, "Normal" Problem, 
with comparison to several other machines, 

as of mid-September 1985

780 8600 780 + AP FX/1 FX/6 C1 <6> FX6/C1 CRAY X-MP
TASK IOCNT REAL CPU REAL CPU REAL CPU REAL CPU REAL CPU REAL CPU REAL CPU REAL<3> CPU

AIPS 380 ? ? 5371 ? 2306 ? <2> 131 .2 1158 128.1 845 117.5 1 .37 1 .09 5503 23.1

CNVRT 25 8 5.9 4 1 .7 8 5.9 4 2.1 4 1 .4 3 1 .9 1 .33 .74 4 .2
COMB 33 32 22.7 13 4.9 32 22.7 9 6.9 8 5.7 6 5.4 1 .33 1 .06 11 1 .0
SUBIM 19 14 6.4 13 2.1 14 6.4 6 2.8 4 2.3 3 2.1 1 .33 1.10 6 .4
UVSRT 96 39 20.8 27 5.1 39 20.8 25 10.1 25 9.0 9 6.6 2.78 1 .36 35 1 .0

APCLN 267 4577 4486.0 963 931 .0 340 144.4<1> 307 264.6 134 86.6 133 122.3 1 .01 0.71 160 21 .2
APRES 82 113 91 .8 35 23.7 60 32.5<1> 28 17.6 24 12.2 13 10.1 1 .85 1 .21 102 1 .4
ASCAL 136 3509 3398.0 1088 1058.0 154 35.2<1> 410 394.8 91 80.5 107 103.7 .85 .78 54 11.1
MXMAP 96 222 191 .9 71 47.7 106 47.4<1> 69 51 .8 38 21 .9 31 27.2 1 .25 .81 112 2.1
MXCLN 481 10033 9921.0 2340 2275.0 712 228.3<1> 639 573.3 262 186.8 236 221 .0 1.11 .85 833 24.9
UVMAP 151 170 151 .9 59 39.7 81 41.5<1> 62 37.6 45 17.8 23 18.3 1 .96 .97 104 2.0
VM 344 320 280.9 116 71 .6 195 126.7<1> 125 64.4 88 41 .5 45 30.0 1 .96 1 .38 653 3.9

ALL<4> 1730 19037 18577.3 4729 4460.5 1741 676.6<1> 1684 1426.0 723 465.7 609 548.6 1.19 .85 2074 69.2

CPU/REAL CPU/REAL CPU/REAL CPU/REAL CPU/REAL CPU/REAL

AIPS N/A N/A N/A N/A N/A N/A

CNVRT .74 .43 .74 .53 .35 .63
COMB .71 .38 .71 .77 .71 .90
SUBIM .46 .16 .46 .47 .58 .70
UVSRT .53 .19 .53 .40 .36 .73

APCLN .98 .97 N/A .86 .65 .92
APRES .81 .68 N/A .63 .51 .78
ASCAL .97 .97 N/A .96 .88 .97
MXMAP .86 .67 N/A .75 .58 .88
MXCLN .99 .97 N/A .90 .71 .94
UVMAP .89 .67 N/A .61 .40 .80
VM .88 .62 N/A .52 .47 .67

ALL<4> CO 00 .94 .60<5> 00 cn .64 .90

CPU/REAL

N/A

N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A
N/A
N/A
N/A

N/A

<1> represents VAX/780 CPU time only; no accounting information for AP CPU time; use REAL times for comparison
<2> tasks initiated standalone to insure a 1 CE environment; AIPS real time is not meaningful. Compiled "vector-only".
<3> loaded machine; typical for mid-afternoon
<4> tasks only (i.e., does not include AIPS itself)
<5> for non-AP tasks only
<6> Convex C-1 executing at 9.5 MHz, with 4-way disk stripe.
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Table 2

Alliant and Convex PFT Benchmarks, "Scaled-Up" Problem

same number of visibilities; cellsize decreased from 8" to 2" (mapsize up from 256 to 1024); 
CLEAN loop gain decreased from 0.1 to 0.01; number of components increased from 2000 to 4000; 

all task loadings are increased, with the exception of UVSRT. Measurements made mid-September 1985.

TASK IOCNT REAL
FX/6
CPU RATIO REAL

C1
CPU RATIO

FX6/C1 
REAL CPU

AIPS 712 12513 386.1 N/A 6554 613.8 N/A 1 .91 .63

CNVRT 93 42 9.4 .22 24 22.2 .93 1 .75 .42
COMB 1466 110 61 .2 .56 66 60.7 .92 1 .67 1 .01
SUBIM 105 51 9.9 .19 15 13.0 .87 3.40 .76
UVSRT 96 29 9.2 .32 8 6.7 .84 3.63 1 .37

APCLN 16743 4320 1364.2 .32 1795 1199.3 .67 2.41 1 .14
APRES 1276 317 124.6 .39 146 108.2 .74 2.17 1 .15
ASCAL 136 160 149.1 .93 221 217.4 .98 .72 .69
MXMAP 1537 324 149.2 .46 214 163.6 .76 1 .51 .91
MXCLN 13351 3520 1832.8 .52 2057 1536.9 .75 1 .71 1 .19
UVMAP 1466 435 138.7 .32 174 141 .2 .81 2.50 .98
VM 7781 1843 569.6 .31 671 406.9 .61 2.75 1 .40

ALL<1> 11151 4417.9 .40 5391 3875.9 .72 2.07 1 .14

<1> tasks only (i.e., does not include AIPS itself)
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5 VECTORIZATION ISSUES

AIPS was originally developed to be used with Floating Point 
Systems array processors, models 100, 120B, 5105, and 5205. For a host 
machine that does not have an AP, the application tasks are linked 
against a library of FORTRAN subroutines which have the same names, 
arguments, and functionality as the library of microcode routines for 
the FPS AP. These "pseudo array processor" routines (also called the 
"Q-routines") emulate operations which execute in a vector manner in 
the FPS A P s ; it follows that they are candidates for vectorization in 
vector machines like the Convex C-l, Alliant FX/8, and Cray X-MP. 
Because many of the major application tasks of AIPS have been 
deliberately designed to do as much of their computing in the AP as is 
possible, it follows that vectorization of the Q —routines effectively 
vectorizes most of the heavy computing of AIPS.

For a vector processor, AIPS performance can be increased by
modifying several of the routines in the Q—routine library. In
particular, the original FORTRAN formulation of the Clark CLEAN
algorithm in the library proved to be slow on the C-l in June. Two of
the authors (DCW Sf WDC) developed a new formulation of the algorithm
for vector computers during the course of the C-l installation. The
algorithm was also used in the Alliant FX/8 and Cray X-MP
installations, with appropriate machine-dependent customizations. This
new CLEAN algorithm is believed to be applicable to other vector
machines in the commercial market (Cray-2, CDC/ETA, Fujitsu/Amdahl, 
IBM...j. ’

Vendor-supplied FFT subroutines were used in the Convex, Alliant, 
and Cray installations. The new CLEAN algorithm depends on the ISAMAX 
subroutine from the LINPACK linear algebra library, and a
X?S*Sr-?upplied version °f ISAMAX was available on each machine. The 
CLEAN also uses the "WHENILT" library routine of the Cray library 
Assembly language versions of WHENILT were prepared by one of the 
authors [DCWJ for both the Convex and Alliant implementations; each was 
subsequently "tuned" by vendor personnel.

Although most of the heavy computing of AIPS is concentrated in 
the vectorized Q-routines, "Amdahl's Law" does apply: the performance 
of parallel machines is ultimately limited mainly by the fraction of 
the code which executes in non-parallel mode [9]. Many DO-loops in 
AIPS programs and subroutines did not vectorize initially due to 
references to equivalenced variables, or due to use of subscript 
offsets whose values are not known at compile time. Vectorizing 
compilers refuse to vectorize such cases of apparent dependency in the 
code. The most common cure is to introduce compiler directives into 
the^ text of the subroutines, especially the "NO_RECURRENCE" directive 
(this is the Convex name; it is called "IVDEP" by Cray and "NODEPCHK"

[9] see p. 11 of: O.Lubeck, J.Moore, and R.Mendez, "A Benchmark 
Comparison of Three Supercomputers: Fujitsu VP-200, Hitachi 
S810/20, and Cray X-MP/2", C o m p u t e r ,  vol. 18, No. 12,’ December 
1985, pp. 10-24.
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by Alliant). The appropriate directives are now INCLUDEd before all 
DO-loops in the Q-routine library which vectorizing compilers suspect 
may contain vector dependencies, but which in fact do not. In some 
cases the code in DO-loops only needed to be rearranged to permit 
greater vectorization. In general, almost any DO-loop anywhere in AIPS 
stands to benefit from such changes. Because the C-l and FX/8 
architectures support vector operations on 8, 16, and 32-bit integers 
as well as floating point, the authors expect that even the processing 
of FITS tapes is capable of at least some vectorization.

6 THE PROCUREMENT DECISION

A good summary of the outcome of NRAO's 1985 procurement trials
i s :

"Three systems were qualified for the procurement using 
the AIPS PFT certification and benchmarking package: DEC 
VAX-8600, Convex C-l, and Alliant FX/n. The test results 
show that the latter two systems are clearly superior in 
performance to the 8600. Both the Alliant and the Convex 
systems make fine AIPS machines, and the AIPS Group 
recommends both of them to any group which wants a 
high-performance AIPS computer based on state-of-the-art 
technology. The two systems were judged to be roughly 
equal on overall technical grounds at this particular 
date and f£r this particular procuremen t . so our final 
procurement decision will likely depend on issues other 
than performance alone.... Regardless of which of the 
two vendors is selected for NRAO's procurement, the AIPS 
Group stands ready to assist any AIPS site which 
subsequently chooses either vendor. We also recognize 
that NRAO's evaluation may become obsolete as the 
relative price, performance, and features of these 
relatively new machines evolve in the coming 
months." [10]

The "particular date" for this procurement was approximately 
16 September 1985. Both the Convex C-l and the Alliant FX/n have 
special features and exhibit superior performance in particular cases, 
a situation which can make either of them preferable for specific 
purposes. Unfortunately, it was necessary to select only one of them 
for this procurement; NRAO chose the Convex C-l, and installation was 
scheduled for the last week of December 1985.

[10] AIPSLetter, Vol. V, No. 4, 15 October 1985, pp. 1-2.
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7 APPENDICES

7.1 Reviews Of The Two Machines

The operating systems of both the Convex and the Alliant are based 
on the Berkeley virtual memory version of Unix, commonly known as 
"4.2bsd". The authors made no quantitative measures of the effect of 
timeshared loading on performance, but formed the impression that the 
character of the effects is roughly linear on both machines. Both 
systems support the DOD/ARPA TCP/IP network protocol on Ethernet LANs.

Both compilers are robust, sophisticated products. Both implement 
most of the VMS extensions to Fortran-77, and both attempt to make the 
same interpretation of the language that the VMS compiler does, as far 
as possible. Both are capable of vectorizing DO-loops which contain 
IF-statements. The sophisticated vectorizing compilers make both 
systems attractive for general engineering and scientific computing, 
not just for AIPS. In general, both are much easier to use than array 
processors.

7.1.1 Convex C-l

The C-l is a "vector register" machine; its architecture, which is 
implemented in custom CMOS gate-arrays, resembles that of the Cray-1 in 
many respects [11]. The 8 vector registers are 128 words long; 
supported data types are 8, 16, 32, and 64-bit integers, and 32 and 
64-bit floating point (using the VAX "F" and "G" formats). If only the 
floating add and multiply operators are counted, the maximum speed of 
the C-l is 40 MFlops for 32-bit floating data and 20 MFlops for 64-bit. 
Not only the scalar units but also the vector pipelines operate on all 
of the data types, with 8 and 16-bit data being processed at 32-bit 
rates. The vector pipelines can be "chained", as in the Cray, and 
scalar operations can overlap vector pipeline activity. The scalar 
speed of the C-l is approximately equal to that of the DEC VAX-8600.

The vector hardware architecture of the C-l includes the full 
complement of advanced vector operators: gather, scatter, comparison, 
mask, compress, and merge. In addition, the C-l includes a nice set of 
vector reduction operators: SUM, PRODUCT, MAX, MIN, AND (ALL), 
OR (ANY), and XOR (PARITY); reduction operations reduce a vector to a 
scalar. For example, the sum-of-vector enables the C-l to chain the 
dot product of two vectors: a vector multiply instruction immediately 
followed by the sum-of-vector accumulates the dot product in one of the

[11] see T. Jones, H.W. Dozier and J. Gruger, "Supercomputer Breaks 
Price Barrier for Vector Processing", Computer Desig n . April 1985, 
pp. 169-176.
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scalar registers at the maximum rates quoted above. Two more essential 
capabilities are provided: population count and trailing zero count. 
The first counts how many comparisons succeeded (i.e., how many bits 
are set in the vector mask register) and the second is used to find the 
first occurrence of a successful comparison in a vector. The compress, 
merge, pop count, and trailing zero count operations are not directly 
expressable in FORTRAN, but they are accessible through the assembly 
language. A programmer can hand-code critical portions of algorithms 
in assembly language subroutines in order to use these advanced vector 
operators; in this way the ultimate performance of the C-l is 
available.

The C-l is a full virtual memory machine; addressing is 
"non-byte-swapped". Current chip technology (256K chips) permits 
128 MB physical memory size. The CPU-to-Memory bandwidth is 80 MB/sec. 
Memory is dual ported, and the I/O system has concurrent bandwidth to 
memory of 80 MB/sec, for a total of 160. The I/O interface is 
IEEE-standard Multibus. In order to get sufficient aggregate I/O 
performance, multiple Multibusses are operated concurrently. The 
Multibusses are connected to the I/O system through up to five "IOPs" 
(I/O Processors), each of which is computer in its own right; the 
device drivers execute in the IOPs, thus reducing interrupt overhead on 
the main CPU. Each IOP can control up to four Multibusses.

The Convex C-l was announced in the fall of 1984. List prices 
begin at about US$500K, and prices for typical large configurations are 
in the neighborhood of $750-800K. For further information, contact:

7.1.2 Alliant FX/8

The FX/8 contains from 1 to 8 "computational elements" (CEs), each 
of which is both a scalar and vector computer approximately equal in 
power to a VAX-8600 plus AP-120B array processor [12]. The scalar 
instruction set is a CMOS gate-array implementation of the Motorola 
68020 architecture, with vector register and concurrency instructions 
added. The scalar floating point instructions include several 
transcendental operations (square root, sine, cosine, logarithm, and 
exponential). Bit and bit-field instructions are available.

The eight vector registers of an Alliant CE are each 32 words 
long. Supported data types are 8, 16, and 32-bit integers, and 32 and 
64-bit floating point (using IEEE-standard formats). An FX/8 system

[12] see S. Lackey, J. Veres and M. Ziegler, "Supercomputer Expands 
Parallel Processing Options", Computer Design, 15 August 1985, 
pp. 76-81.

Convex Computer Corporation 
701 Plano Road 
Richardson, Texas 75081

(214) 952-0200
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with 8 CEs has a peak performance rating for 32-bit data of about 
35 MIPS for scalar-concurrent operations and 94 MFlops for 
vector-concurrent computing (4.45 MIPS and 11.8 MFlops per CE). For 
64-bit data, the numbers are about 29 MIPS and about 47 MFlops. In 
general, scalar operations do not overlap vector pipeline activity.

The vector instruction set is richer than that of the C-l (or the 
Cray-1), because operator combinations are implemented explicitly, 
rather than depending on the "chaining" technique to synthesize them. 
Like the C-l, the FX/8 architecture includes the full complement of 
advanced vector operators (gather, scatter, comparison, mask, compress, 
and merge) and a nice set of vector reduction operators: DOT, SUM, 
PRODUCT, MAX, MIN, AND, OR, and EOR. The FX/8 also supports a 
"polynomial" reduction operator. Population count, leading zero count 
and trailing zero count are available for the vector mask register. 
The mask register is effective in almost all vector instructions, like 
the Fujitsu VP-series and unlike the Crays and the C-l. As with the 
C-l, the full vector architecture can be made available to Fortran 
programs by coding assembly language subroutines.

Up to twelve 68012 computers are used as "interactive processors" 
(IPs) and peripheral controllers (each IP controls one Multibus). The 
IPs have a separate path to main memory, and they generally execute the 
device drivers and timesharing utility operations; one of the IPs 
executes the operating system code to manage queues for the 8 CEs and
11 other IPs. Note that pure-scalar code can execute on either a CE or 
an IP.

Alliant's FX/1 model contains one CE (4.4 MIPS, 11.8 MFlops), and 
either one or two IPs. Cache memory is shared, and because there is 
only one CE, the concurrency logic is not used (the compiler can be 
instructed to compile vector-only code to reduce overheads).

The FX/8 and FX/1 are full virtual memory machines (2 GB virtual 
space, in both CEs and IPs); like all 68000s, addressing is 
"non-byte-swapped". Current chip technology (256K chips) permits up to 
80 MB physical memory size in the FX/8. The main memory has a total 
bus bandwidth of 188 MB/sec, which support two paths at 94 MB/sec each, 
one for the IPs and their I/O devices and one for the CE complex.

Alliant's Fortran compiler automatically generates code to exploit 
the vector and concurrent architecture; concurrent code automatically 
utilizes as many CEs as are available. This compiler represents a 
major technical achievement: it is the first commercially available 
Fortran compiler which supports parallel execution automatically. 
Special compiler directives are provided for the programmer to control 
compilation modes for loops. The compiler also implements the vector 
notation extensions which have been proposed for Fortran-8x.

The concurrent execution of the CE complex depends critically on a 
special hardware "concurrency bus" which interconnects the CEs. It 
permits starting, stopping, and synchronizing CEs on a microsecond 
timescale. Even dependent execution of loop iterations is supported by 
this hardware. Variables in shared memory can also be used for
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intercommunication between CEs (using the coherent cache) and for 
synchronization (the 68000 "test-and-set" instructions work well for 
this purpose).

The Alliant FX/8 and FX/1 were announced in July 1985. List 
prices for the FX/1 start below US$150K; prices for the FX/n range from 
about $270K to about $950K. For further information, contact:

Alliant Computer Systems Corporation (617) 263-9110
42 Nagog Park
Acton, Massachusetts 01720

7.2 Suggestions For Improvements

One duty of any benchmarking project is to point out areas where 
improvements are possible. Suggestions which apply to both vendors 
will be covered first, followed by items specific to each vendor.

7.2.1 Suggested Improvements For Unix -

1. Ability to pre-allocate space for a disk file at the moment of 
creation is desirable, and is not a standard feature of Unix. It 
is unpleasant to compute for an hour generating an output file, 
and then crash due to insufficient space to complete the file!

2. To complement pre-allocation, a means of truncating files is 
highly desirable, and is not a standard feature of Unix (Convex 
provides this capability via the function "ftruncate", an 
extension to the 4.2 bsd UNIX C library). Otherwise, file 
truncation can only be performed under Unix by copying, deleting 
and renaming.

3. The ability of a process to obtain exclusive access to a file is 
desirable, and is not a standard feature of Unix (it is "flock" 
under 4.2bsd and "lockf" under System V; when will they agree?). 
"Lock files" are a mediocre substitute for this fundamental 
functionality.

4. Support for asynchronous device I/O is desirable, and is not a 
standard feature of Unix. Both disk and tape asynchronous I/O 
should be supported. In addition to read and write operations, 
asynchronous tape operation should return block lengths and should 
also support tapemark, BOT and EOT sensing, as well as record and 
tapemark skipping (unload capability would be nice).

5. Support for "mapped (virtual) file I/O" is ultimately desirable 
for some applications, although not necessarily for AIPS. It is 
implemented in several modern operating systems, but was not 
included in the Berkeley virtual memory Unix design.
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6. A notable weakness of extant Unix implementations is that the 
available debuggers appear to be inferior to the VAX/VMS debugger 
(especially the VMS 4.0 version). Unix vendors would do well to 
study, and perhaps emulate DEC'S implementation.

7.2.2 Fortran Compiler Improvements -

1. Inability of the Convex and Alliant compilers to optimally 
vectorize a key DO-loop containing an IF forced the authors to 
resort to special coding techniques (WHENILT routine coded in 
assembly language) to get proper performance in the CLEAN 
algorithm. There are three possible ways to vectorize 
IF-statements: masked arithmetic, compress/expand, and 
gather/scatter (which the authors used to vectorize the CLEAN 
algorithm). The Convex and Alliant compilers currently only 
support one of these, masked arithmetic. By comparison, the 
Fujitsu^ compiler supports all three, and apparently can 
automatically produce nearly optimum code [13]. The Convex and 
Alliant compiler groups should consider implementing at least the 
gather/scatter scheme for IF—statements, with activation 
controlled by a compiler directive. The most elegant approach 
would be to implement a "truth ratio" compiler directive, as 
Fujitsu does, and let the compiler decide (automatically) how to 
compile the loop optimally.

2. Compilers should vectorize expressions containing equivalenced 
variables if the programmer asserts the no-dependency directive.

3. It would be a good thing if all vendors of vectorizing compilers 
would agree on the format and meaning of the common compiler 
directives. For example, is there any good reason for Cray's 
compiler to use "IVDEP" while the Convex compiler wants 
"NO_RECURRENCE"? Standardization of directives would be a good 
goal for the ANSI X3J3 (Fortran) committee; perhaps Convex and 
Alliant could join with other vendors to implement this.

4. If a DO-loop has a variable for its limit, a vectorizing compiler 
is forced to assume that the run-time limit may be larger than the 
vector register size. If the loop limit is, in fact, smaller than 
the register size, the long-vector logic is useless, and execution 
of these instructions may degrade performance. Convex and Alliant 
should consider implementing a "SHORTLOOP" directive analogous to 
the one offered by the Cray CFT compiler in order to eliminate the 
useless "strip mining" logic. This may be particularly important 
for Alliant, because less of the scalar overhead is hidden behind

[13] see "Facom Vector Processor System: VP-100/VP-200", by K. Miura 
and K. Uchida, pp. 59-73 of "Supercomputers: Design and 
Applications", ed. K. Hwang, IEEE Computer Society, 1984, 
L0C=QA76.5.T 8 8 , ISBN=0-8186-0581-2.
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the pipes in the FX/n.

7.2.3 Specific Suggestions For Convex -

1. Can the vector sine and cosine routines be improved? NRAO's 
measurements suggest that the present sine/cosine routines are 
little if any faster than those of the FPS AP-120B. Perhaps a 
table-lookup approach, analogous to that in the 120B, could make a 
useful gain?

2. NRAO's measurements showed that about 6% of the cost of executing 
MX went into "vector" fix and float operations (subroutines 
_mth_$vj_cvt_vr and _mth_$vr_cvt_vj); apparently these routines 
actually execute in scalar mode. Perhaps it would be possible to 
add one or more opcodes to the vector pipelines in order to 
produce a higher performance implementation of these functions?

7.2.4 Specific Suggestions For Alliant -

1. Implement a Fortran-callable interface for C procedures.

2. Implement disk striping.

3. The Alliant architecture is complicated (both vector registers and 
fine-grained concurrency); there is usually more than one way to 
code any algorithm, and the complexity means that it is not always 
obvious which way is best. In fact, it appears that the best 
scheme generally depends on the vector lengths and the number of 
CEs currently available in the complex. One way to optimize 
coding would be to generate code for each scheme, and make a 
real-time decision. Memories are now large; the extra code is 
less important than the extra performance enhancement. The 
breakpoints for the real-time test should be determined by a 
detailed execution-cost analysis which the compiler could perform 
(the Fujitsu compiler uses such analyses to make decisions about 
IF-statements in DO-loops).

4. Implement "detached-singleton" CEs. Because each CE is roughly 
equivalent to a VAX-8600, an FX/8 with several detached CEs will 
offer unusually high scalar (plus vector) timesharing performance, 
concurrently with a cluster of CEs offering high vector/concurrent 
computing performance.
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7.3 Alliant FX/n Performance In November 1985

The Convex and Alliant machines are subject to evolution of both 
their hardware and their software; benchmark results for these machines 
are, strictly* valid only for the date of measurement! Alliant made 
certain changes in the FX/8 hardware and software after September, and 
asked NRAO to rerun the test procedures to evaluate the effects of 
these changes. The new tests were run late in November. The only 
significant differences in the FX/n environment for the November 
benchmarks were the use of Alliant'a revision "B" CEs and their 8K file 
system. The 8K file system is different in that the sector sizes are 
8192 bytes instead of the normal 512. The 8K file system was used for 
the storage of AIPS user data only. No changes were made to the AIPS 
source code which had been used for the September run. However, all 
source code was recompiled and all load modules were regenerated. The 
results are shown in Table 3, and lead to the following conclusions:

1. The 8K file system significantly improves I/O performance. The 
ratio of November to September performance on both the "normal" 
PFT and "scaled-up" PFT shows little change in CPU times but a 
general 20% improvement in real times.

2. By ordering the results of the respective PFT tasks in ascending 
CPU/real-time performance, the ratio of November FX/n performance 
to September C-l performance suggests that the 4-6 CE case is 
roughly comparable to the C-l, particularly for the AP tasks. In 
the September runs, it seemed that 6—8 CEs were required to match 
the performance of the C-l.

3. The "scaled-up" PFT problem run was repeated with 6 CEs for the 
sake of comparison with the September results. Despite Alliant's 
improved I/O, the real-time superiority of the C-l still stands.



Table 3

Alliant FX/n Performance Improvements

S e p t e m b e r  198 5 :

FX/1<1> FX/2 FX/4 FX/6 FX/7 FX/8 FX/6<5>
TASK IOCNT REAL CPU REAL CPU REAL CPU REAL CPU REAL CPU REAL CPU REAL CPU

AIPS 380 <2> 131 .2 1549 128.5 1255 128.3 1158 128.1 N/A N/A 1139 131 .1 12513 386.1

CNVRT 25 4 2.1 4 1 .6 4 1 .4 4 1.4 N/A N/A 3 1 .3 41 9.4
COMB 33 9 6.9 9 6.1 9 5.9 8 5.7 N/A N/A 8 5.8 110 61 .2
SUBIM 19 6 2.8 4 2.5 4 2.4 4 2.3 N/A N/A 5 2.5 51 9.9
UVSRT 96 25 10.1 28 9.7 25 9.1 25 9.0 N/A N/A 27 9.4 29 9.2

APCLN 267 307 264.6 201 156.9 151 101 .4 134 86.6 N/A N/A 132 84.5<3> .89 75.2 4320 1364.2
APRES 82 28 17.6 24 13.7 21 12.0 24 12.2 N/A N/A 24 12.7<3> .93 11 .9 317 124.6
ASCAL 136 410 394.8 214 202.3 122 110.8 91 80.5 N/A N/A 78 67.1 160 149.1
MXMAP 96 69 51 .8 49 33.0 41 23.8 38 21 .9 N/A N/A 42 23.1<3> .89 20.6 324 149.2
MXCLN 481 639 573.3 408 336.3 299 230.1 262 186.8 N/A N/A 234 171.2<3> .89 152.4 3520 1832.8
UVMAP 151 62 37.6 48 25.2 43 19.0 45 17.8 N/A N/A 44 18.1<3> .90 16.3 435 138.7
VM 344 125 64.4 109 49.2 94 41 .0 88 41 .5 N/A N/A 84 41 .5 1843 569.6

ALL<4> 1730 1684 1426.0 1098 836.5 813 556.9 723 465.7 N/A N/A 681 437.2 11150 4417.9

CPU/REAL CPU/REAL CPU/REAL CPU/REAL CPU/REAL CPU/REAL CPU/REAL
AIPS N/A N/A N/A N/A N/A N/A N/A
CNVRT .53 .40 .35 ,35 N/A .43 .22
COMB .77 .68 ,66 ,71 N/A .73 .56
SUBIM .47 .63 .60 ,58 N/A .27 .19
UVSRT .40 .35 ,36 ,36 N/A .35 .32

APCLN .86 .78 67 .65 N/A .64 .32
APRES .63 .57 57 .51 N/A .53 .39
ASCAL .96 .95 91 ,88 N/A .86 ,93
MXMAP .75 67 58 ,58 N/A .55 ,46
MXCLN .90 .82 77 71 N/A .73 ,52
UVMAP 61 53 44 40 N/A ,41 ,32
VM 52 45 44 47 N/A ,49 31

ALL 85 76 68 64 N/A 64 40

FX1/C1 FX2/C1 FX4/C1 FX6/C1 FX7/C1 FX8/C1 FX6/C1

AIPS 380 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

UVSRT 96 2.78 1 .53 3.11 1 .47 2.78 1 .38 2.78 1 .36 N/A N/A 3.00 1 .42 3.63 .63
CNVRT 25 1 .33 1.11 1 .33 .84 1 .33 .74 1 .33 .74 N/A N/A 1 .00 .68 1 .75 .50
UVMAP 151 2.70 2.05 2.09 1 .38 1 .87 1 .04 1 .96 .97 N/A N/A 1 .91 .89 2.50 .98
VM 344 2.78 2.15 2.42 1 .50 2.09 1 .37 1 .96 1 .38 N/A N/A 1 .87 1 .38 2.75 1 .40
APRES 82 2.15 1 .74 1 .85 1 .36 1 .62 1 .19 1 .85 1 .21 N/A N/A 1 .85 1 .18 2.17 1 .15
SUBIM 19 2.00 1 .33 1 .33 1 .19 1 .33 1 .14 1 .33 1 .10 N/A N/A 1 .67 1 .19 3.40 .76
COMB 33 1 .50 1 .28 1 .50 1.13 1 .50 1 .09 1 .33 1 .06 N/A N/A 1 .33 1 .07 1 .67 1 .01
MXMAP 96 2.23 1 .90 1 .58 1 .21 1 .32 .88 1 .23 .81 N/A N/A 1 .35 .85 1 .51 .91
APCLN 267 2.31 2.16 1 .51 1 .28 1.14 .83 1 .01 .71 N/A N/A .99 .61 2.41 1 .14
MXCLN 481 2.71 2.59 1 .73 1 .52 1 .27 1 .04 1.11 .85 N/A N/A .99 .69 1 .71 1 .19
ASCAL 136 3.83 3.81 2.00 1 .95 1.14 1 .07 .85 .78 N/A N/A .73 .65 .72 .69

ALL<4> 1730 2.77 2.60 1 .80 1 .52 1 .33 1 .02 1 .19 .85 N/A N/A 1.12 .80 2.07 1.14
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Tab Ie 3 (cont i nued) 

November 1985:

FX/1<1> FX/2 FX/4 FX/6 FX/7 FX/8 FX/6<5>
TASK IOCNT REAL CPU REAL CPU REAL CPU REAL CPU REAL CPU REAL CPU REAL CPU

AIPS 380 <2> 126.9 1270 117.8 1110 117.6 961 117.5 962 117.3 904 117.5 8152 387.8

CNVRT 25 4 2.3 3 1 .8 3 1 .8 2 1 .4 2 1 .5 3 1 .5 24 11.1
COMB 33 8 6.9 8 6.1 7 5.9 7 5.9 8 6.0 7 5.9 72 59.6
SUBIM 19 3 2.8 3 2.5 3 2.3 4 2.3 3 2.3 3 2.6 20 10.6
UVSRT 96 20 10.9 19 9.8 19 9.6 17 9.4 17 9.3 20 10.0 19 9.6

APCLN 267 255 242.4 166 153.2 113 99.6 100 85.7 97 82.6 96 80.4 2575 1446.4
APRES 82 21 16.8 18 13.8 15 11 .9 15 12.0 16 12.0 17 11 .9 200 125.5
ASCAL 136 395 390.6 198 196.7 111 108.7 110 107.5 110 108.2 74 68.9 216 213.0
MXMAP 96 56 49.3 36 32.4 30 24.1 26 21 .9 27 21 .0 29 22.1 217 157.5
MXCLN 481 515 500.2 349 333.2 245 228.7 208 190.1 221 194.7 179 161 .7 2342 1840.5
UVMAP 151 46 37.0 35 26.0 31 20.1 31 19.1 30 19.0 31 18.9 296 156.7
VM 344 81 61 .9 57 45.0 55 40.9 62 43.8 65 43.4 53 39.3 1069 625.3

ALL<4> 1730 1404 1321.1 892 820.5 632 553.3 582 499.1 593 500.0 512 423.2 7050 4655.8

CPU/REAL CPU/REAL CPU/REAL CPU/REAL CPU/REAL CPU/REAL CPU/REAL

AIPS N/A N/A N/A N/A N/A N/A N/A

CNVRT .58 .60 .60 .70 .75 .50 .46
COMB .86 .76 .84 .84 .75 .84 .83
SUBIM .93 .83 ,77 ,57 .77 .87 .53
UVSRT .55 .52 .51 .55 .55 .50 ,51

APCLN .95 .92 ,88 .86 .85 ,84 .56
APRES .80 ,77 79 .80 .75 .70 .63
ASCAL .99 99 98 ,98 .98 .93 ,99
MXMAP .88 ,90 80 ,84 ,78 .76 ,73
MXCLN 97 95 93 .91 .92 .90 .79
UVMAP 80 74 65 62 .63 ,61 53
VM 76 79 74 .71 .67 74 58

ALL 94 92 88 86 ,84 83 66

FX1/C1 FX2/C1 FX4/C1 FX6/C1 FX7/C1 FX8/C1 FX6/C1

AIPS 380 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

UVSRT 96 2.22 1 .65 2.11 1 .48 2.11 1 .45 1 .89 1 .42 1 .89 1 .41 2.22 1 .52 2.38 1 .43
CNVRT 25 1 .33 1 .21 1 .00 .95 1 .00 .95 .67 .74 .67 .79 1 .00 .79 1 .00 .50
UVMAP 151 2.00 2.02 1 .52 1 .42 1 .35 1 .10 1 .35 1 .04 1 .30 1 .04 1 .35 1 .03 1 .70 1.11
VM 344 1 .80 2.06 1 .27 1 .50 1 .22 1 .36 1 .38 1 .46 1 .44 1 .45 1 .18 1 .31 1 .59 1 .54
APRES 82 1 .62 1 .66 1 .38 1 .37 1 .15 1.18 1 .15 1.19 1 .23 1 .19 1 .31 1.18 1 .37 1.16
SUBIM 19 1 .00 1 .33 1 .00 1 .19 1 .00 1.10 1 .33 1.10 1 .00 1.10 1 .00 1 .24 1 .33 .82
COMB 33 1 .33 1 .28 1 .33 1 .13 1.17 1 .09 1.17 1 .09 1 .33 1.11 1 .17 1 .09 1 .09 .98
MXMAP 96 1 .81 1 .81 1.16 1.19 .97 .89 .84 .81 .87 .77 .94 .81 1 .01 .96
APCLN 267 1 .92 1 .98 1 .25 1 .25 .85 .81 .75 .70 .73 .68 .72 .66 1 .43 1 .21
MXCLN 481 2.18 2.26 1 .48 1 .51 1 .04 1 .03 .88 .86 .94 .88 .76 .73 1 .14 1 .20
ASCAL 136 3.69 3.77 1 .85 1 .90 1 .04 1 .05 1 .03 1 .04 1 .03 1 .04 .69 .66 .98 .98

ALL<4> 1730 2.31 2.41 1 .46 1 .50 1 .04 1 .01 .96 .91 .97 .91 .84 .77 1 .31 1 .20
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Table 3 (conclusion)

FX/1<1> FX/2 FX/4 FX/6 FX/7 FX/8 FX/6<5>
NOV/SEP NOV/SEP NOV/SEP NOV/SEP NOV/SEP NOV/SEP NOV/SEP

AIPS 380 <2> .96

CM00 .92 .88 .92

ro00 .92 .84

cn00 .79 .90 .65 1 .00

CNVRT 25 1 .00 1 .10 .75 1 .13 .75 1 .29 .50 1 .00 N/A N/A 1 .00 1 .15 .59 1 .18

COMB 33 .89 1 .00 .89 1 .00 .78 1 .00 .88 1 .04 N/A N/A .88 1 .02 . 65 .97
SUBIM 19 .50 1 .00 .75 1 .00 .75 .96 1 .00 1 .00 N/A N/A .60 1 .04 . 39 1 .07
UVSRT 96 .80 1 .08 .68 1 .01 .76 1 .05 .68 1 .04 N/A N/A .74 1 .06 .66 .97

APCLN 267 .83 .92 .83 .98 .75 .98 .75 .99 N/A N/A .73 1 .07 .60 1 .06
APRES 82 .75 .95 .75 1 .01 .71 .99 .63 .98 N/A N/A .88 1 .02 . 63 1 .01
ASCAL 136 .96 1 .00 .93 .97 .91 .98 1 .21 1 .34 N/A N/A .95 1 .03 1 .35 1 .43
MXMAP 96 .95 .95 .73 .98 .73 1 .01 .68 1 .00 N/A N/A .69 1 .07 .67 1 .06
MXCLN 481 .81 .87 .86 .99 .73 .99 .79 1 .02 N/A N/A .76 1 .06 .67 1 .00
UVMAP 151 .74 .98 .73 1 .03 .72 1 .06 .69 1 .07 N/A N/A .70 1 .16 .68 1.13
VM 344 .65 .96 .52 .91 .59 1 .00 .70 1 .06 N/A N/A .63 .95 . 58 1.10

ALL<4> 1730 00 GJ .93 .81 CO 00 .78 .99 .80 1 .07 N/A N/A .75 .97 .63 1 .05

<1> compiled with concurrency disabled (trying to simulate an FX/1 environment on an FX/8)
<2> tasks initiated standalone to insure a 1 CE environment; AIPS real time is not meaningful
<3> from an earlier run when routines QMINV and QMAXV were not vector-concurrent; these tasks stand to gain approximately 

10% speedup as shown (8 CEs not available for final run)
<4> tasks only (i.e., does not include AIPS itself); AIPS and its dependencies compiled with concurrency disabled 
<5> scaled up problem (i-e.. CELLSIZE=2 vs 8, IMSIZE=1024 vs 256, GAIN=0.01 vs .1, NITER=4000 vs 2000)
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7.4 Measurements Of "Alliant Concurrency"

The first thing to note is that NRAO's objective was procurement, 
not parallelism research. Measurements of parallelism were made in 
order to gain insight into the behavior of the FX/n, the first 
concurrent_ computer ever tested by NRAO. The measurements are 
presented in Table 3. The discussions of "Alliant Concurrency" in this 
section will refer to the data presented in the "September 1985" 
section of Table 3. Note that the FX/n is still gaining in performance 
for N up to 8 in several programs. The data suggest that 4-6 CEs is a 
good compromise configuration; this would make especially good sense if 
extra CEs could be detached for timesharing support.

The Alliant CEs are capable of surprising performance utilizing 
only their scalar concurrency capability. For example, vector sines 
and cosines are not, in fact, computed in the vector registers. 
Instead they are computed in the scalar floating point hardware. With
8 CEs the resulting speed is impressive: about 4.5 microseconds per CE 
divided by 8 implies about 0.5 microsec/result, more than twice as fast 
as the AP-120B (1.3 microsec/result). Another example: In Table 3 the 
September CPU time for MXCLN with 8 CEs (the "FX/8" column) using the 
vectorized CLEAN algorithm is 171 seconds (ignoring the probable 
speedup if QMINV and QMAXV vectorize). An experimental version of the 
CLEAN algorithm consisting of simple concurrent scalar code in 8 CEs 
executed in September in about 200 seconds. Thus, the 
concurrent—vector technique was only moderately faster than 
concurrent—scalar in this case! The authors infer that concurrent 
scalar compilation is a good choice for loops which are difficult to 
vectorize.

The data in Table 3 include performance measurements for 1, 2, 4,
6 and 8 CEs. The following simple model can be fitted to the data:

CPU_time = (scalar_time + concurrent_time / #CE)

As an example, this formula was solved for the "scalar_time" and 
"concurrent_time" variables using the data for 2 CEs and 6 CEs for the 
three tasks ASCAL, MX-clean and VM; the results are tabulated in 
Table 4 and plotted in Figure 1. The "fraction concurrent" column 
indicates the fraction of each algorithm's work which was capable of 
executing in parallel on the FX/8 (for ASCAL, 0.95 is 363 divided by 
363+21). The "infinity speedup" indicates how much faster than 1 CE 
the Alliant architecture would be if an infinite number of CEs were 
available (for ASCAL, 18.3 is 363+21 divided by 21, i.e. 
concurrent_time asymtotically zero). We see that ASCAL is the most 
highly vectorized/parallelized AIPS task (95% concurrent). MX-clean is 
doing well (80%), but probably could be improved. It is clear that VM
needs work---only 38% of its computing was able to exploit multiple CEs
in the Alliant. Mainly, the version of VM used in this work needed 
vectorization directives inserted into its source in various places. 
Also, certain equivalenced variables were inhibiting vectorization- 
these problems were subsequently fixed in the Cray X-MP implementation
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Table 4

Speedups Limited by Scalar Code ("Amdahl's Law")

task scalar
(secs)

concurrent
(secs)

fraction
concurrent

infinity
speedup

ASCAL 21 363 0.95 18.3
MX-clean 112 447 0.80 5.0
VM 38 23 0.38 1.6

Figure 1

Alliant FX/n concurrency: CPU-time vs. § CEs

number of CEs


