
AIPS MEMO NO. J £ 1

National Radio Astronomy Observatory
Edgemont Road, Charlottesville, Virginia 22903-2475 

804-296-0211 (FTS 938-1271); TW X  910-997-0174
22 August 1986
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S u bject: Installing NRAO’s AIPS on Vector Computers

About 15 AIPS tasks were originally (circa 1980) designed to utilize a Floating Point Systems AP-120B array 
processor when one is available. In order to use such tasks on machines which do not have an FPS AP, NRAO 
developed the concept o f a “pseudo-AP” , in which a Fortran COMMON is used as the AP memory, and a library 
of Fortran and assembly language routines operate on data in this COMMON. These routines have exactly the same 
names, arguments, and functionality as the corresponding routines in the subroutine library which invokes the FPS 
AP. There is only one version of each o f the tasks which use the AP; the choice o f whether it uses a true AP or the 
pseudo-AP is made by link editing it with the appropriate subroutine library. Thus, the “pseudo-AP” concept in 
AIPS amounts to defining a “virtual device interface” for vector processing.

The pseudo-AP interface in AIPS is often called the “ Q-routines” , because the names of the subroutines all 
start with Q. The formal description of the interface is in Chapter 12 (Using the Array Processors) in Volume Two 
of “ Going AIPS: A Programmer’s Guide to the NRAO Astronomical Image Processing System” , which is available 
from the AIPS Group at the address given above. Knowledge of the content of this chapter is not a prerequisite for 
an AIPS installation on a new vector architecture.

The vectorizing compilers o f vector computers can generally recognize and exploit the inherent parallelism of 
the Fortran code of the pseudo-AP, which emulates the original AP microcode. Special features or limitations of 
particular architectures or compilers can be handled by creating custom versions o f the Q-routines. NRAO currently 
supports Q-routine implementations for the FPS 38-bit APs, the Cray X-MP, and the Convex C -l. NRAO also 
developed Q-routines for the Alliant F X /8  during its 1985 benchmarking campaign, and several AIPS user sites have 
developed Q-routine implementations for other architectures. For example, the PS AIPS project at Pennsylvania State 
Univ. has developed an implementation for the Sky Warrior AP. The Cray, Convex, and Alliant implementations 
are nearly identical, because most o f the adaptation to each of these vector computer architectures is handled by the 
vectorizing compilers.

Analysts should be aware that almost all of the heavy computing burden of AIPS image synthesis, self-calibration, 
and deconvolution is concentrated precisely in the Q-routine library. In fact, a satisfactory installation of AIPS on a 
vector computer can be made by vectorizing only the Q-routines, leaving the main programs and main application 
libraries compiled in scalar. The current Q-routine library has 97 Fortran subroutines. Most are simple vector 
operators or utility routines which vectorize immediately and optimally on all architectures, requiring no analyst 
effort at all. A few of the routines present special problems, and because of their great importance in the synthesis 
mapping application, need some customization. The purpose of this memo is to expose the character of these routines 
and the level o f customization required.

The Q-routine library includes Fourier Transforms; AIPS needs 1-D complex and real-to-complex routines, with 
lengths up 8192. The distributed AIPS code contains an FFT which will vectorize reasonably well, but custom 
implementations are likely to improve upon it by as much as a factor of two. Analysts should note that overall 
AIPS performance is not dominated by FFTs— the FFT supplied with AIPS is generally good enough for an initial 
implementation, but should be replaced with a custom routine eventually (by calling the local routine from within 
a subroutine with the same name, arguments and functionality as the AIPS Q-routine).

AIPS uses very few standard signal processing algorithms, other than the FFT, and AIPS does not assume the 
existance o f any libraries such as IMSL, NAG, SSL, LINPACK, etc., although specific routines from several public 
domain libraries (LINPACK and MINPACK in particular) are included in the bodies of certain AIPS tasks. None 
of these are really critical to the overall performance of AIPS implementations on vector architectures (if they were
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critical they would be in the Q-routine library!). The signal processing algorithms which are critical in AIPS are 
peculiar to radio astronomy. Two of these, “gridding” and “ CLEANing” , are especially important and are discussed 
below.

The subroutine QGRD4.FOR interpolates complex visibility samples onto a regular grid. The grid is required in 
order to allow the use o f the Fast Fourier Transform (FFT) to compute the map. QGRD4 uses an interpolating kernel 
which is typically 7 X 7 in size, although the size is either larger (up to 11-square) or smaller (down to 3-square) in 
some special applications. The key technical problem of QGRD4 for vector architectures is that the kernel dimensions 
are small, comparable to n i (the vector half-length), thus tending to prevent achievement o f the full performance 
of vector/parallel architectures. The outer DO-loop (label 300) has a long length (typically NVIS >  100), but the 
co-addition of the visibilities to the grid array produces a nasty dependency which prevents permuting the order of 
the DO-loops. In the implementation shown below, an index vector is used to access the 49 cells of a 7-square kernel 
using gather/scatter. This allows the multiply and add operations to execute with a vector length o f 49, and makes 
sense if gather/scatter operations are fast enough. The code shown here presumes that the vectorizing compiler is 
able to vectorize the indirect addressing in the D0-200 loop (both the Convex and the Alliant do so). An alternative 
QGRD4 design concept for the case of “long-vector” architectures (n i >  100) is discussed in AIPS Memo No. 33, 
Gridding Synthesis Data in Vector Machines” (30 January 1985). This long-vector gridding algorithm has not yet

been implemented by NRAO because the Cray, Convex and Alliant vector architectures all have relatively small
values of n i .i

CLEAN is an iterative non-linear deconvolution algorithm which is used extensively in aperture synthesis radio 
mapping. Its purpose is to decompose an image into an ensemble o f 6-functions which, when convolved with the 
beam (the point source response of the interferometer array) will be equal to the original data. When the iterative 
decomposition process has converged, the 6-functions are reassembled into a new map in the which the confusing 
sidelobe structures o f the original “dirty” map are eliminated. Radio astronomers refer to the new map as the “clean 
map” . The most efficient version of CLEAN was designed by Barry Clark of NRAO for the FPS AP-120B. The 
heart of his algorithm is contained in a microcode subroutine called CLNSUB, which subtracts one component from 
the current residual map and then finds the next component to be subtracted. It is called many thousands of times 
during the iterative decomposition process for a typical map. In the AIPS implementation of Clark’s algorithm 
CLNSUB is renamed QCLNSU, and pseudo-AP Fortran versions are provided to complement Clark’s microcode version 
for the 120B.

The original pseudo-AP version of the beam subtraction loop of QCLNSU (the D0-200 loop) had an IF-statement 
inside the loop. Unfortunately, the “ truth-ratio” of this IF is low, and because most current vectorizing compilers 
compile such a loop using masking register logic, efficiency is low. Therefore, the implementation shown here calls 
a highly optimized subroutine WHNALT to construct an index vector of loop indices for which the IF succeeded, and 
then the beam subtraction loop uses indirect addressing (gather/scatter) to access the proper elements. Note’ that 
the search for the new largest residual is also performed by a highly optimized custom code, which is LINPACK’s 
ISAMAX.

Subroutine WHNALT is quite similar to WHENILT in the Cray library (the only exception being the absolute value). 
If a WHENILT is available, the analyst can get a fairly good implementation of WHNALT by computing a scratch array 
of absolute value of the argument array, and then calling WHENILT. For peak efficiency a custom assembly language 
variation on WHENILT can be constructed; a version for the Convex C -l is shown below as an example.

Analysts should note the presence of the statement “ INCLUDE ’ INCS: ZVND. INC before many o f the DO-loops. 
The purpose of this is to insert the appropriate host-dependent version of the “no-vector-dependency” directive (for 
the Convex the statement is “ C$DIR NO-RECURRENCE” ; for the Cray it is “CDIR$ IVDEP” ). Almost all DO-loops in 
the AIPS Q-routine library contain apparent vector dependencies because data in the pseudo-AP COMMON block is 
addressed using symbolic offsets whose values are not known at compile-time. The ZVD.INC directive before D0-300 
in QGRD4 orders the compiler to compile that loop in scalar, because of the real dependency contained within that 
loop. An analyst doing a new vector machine implementation of AIPS needs to put his compiler’s directives into the 
ZVND and ZVD files in the INCS directory so that the compiler (or an INCLUDE preprocessor) can insert them.

In general, obtaining a good implementation of the AIPS Q-routine library on a new vector computer, especially 
one with small or modest n i ,  will probably be easy; almost all of the work has already been done in the previous 
ports. Much of the code will also perform well on long-vector architectures, but the gridding subroutine shown here 
is likely to require some work in order to achieve ultimate performance.
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UMAO : [AIPS. 15JAN87. Q . DEV. PSAP. CVEX] QGRD4. FOR; 3 li-Ar
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SUBROUTINE QGRD4 (UV, VIS, WT, GRID, CONX, CONY, N02, M, LROW,
* ROW, INC, NVIS)

Vector compiler version.
Depends on gather/scatter and will probably be slower than the 
scalar version on scalar machines.
The vector length in the vectorized loop here will typically be 49 
but will never be less than 9.
Convolves visibility data onto a grid.
A single channel is gridded at a time.
It assumes that NO points lie within one half the convolving 
function support size of the outside edge.
Also assumes that the convolving support function contains no more 
than 512 pixels (32*16).
Inputs:

Location of (u,v) values in cells.
Location of (complex) visibilities.
Weight for data. Assumes any tapering 
has already been done.
address of base address of gridded data.
Order assumed to be the following 
for each of the M rows:
1) 2 * LROW visibilities 

address of base address of X convolving fn. 
address of base address of Y convolving fn.
INT( (# cells used on a row) / 2 ) 
number of rows kept in the AP. 
length of a row ( max. X). 
address of lowest central row number.
(contents of ROW subtracted from Y) 
increment for UV, VIS and WT 
number of visibilities to grid.

In the above, X refers to rows and y to columns 
in the gridded data, NOT on the sky. The total 
numbers of rows and cells used on a row should be odd.
All AP memory I/O values are assumed floating.
It is assumed that all values of v correspond to row M/2.
Uses work vector WKVEC7

GRID 1*4

CONX
CONY
N02
M
LROW
ROW
INC
NVIS

1*4
1*4
1*4
1*4
1*4
1*4
1*4
1*4

INTEGER*4 UV, VIS, WT, GRID, CONX, CONY, N02, M, LROW, ROW, INC,
* NVIS, N, INCR, HAF, IX, IY, LOOP, LIMIT
INTEGER*4 JUV, JVIS, JWT, JGRID, JCONX, JCONY, JCX, JCY,
* JG, JJCX, JJLOOP, IFIX, IRND, ICX, ICY, IG
INTEGER*4 INCX(512), INCY(512), INCG(512), OLDM, OLDN, OLDLRO 
REAL*4 AIM, RE, RRE, AAIM, X, XX, XWT, Y, RHALF, SIGN, ZERO,
* WWT, RROW
INCLUDE 'INCS:DAPC.INC'
INCLUDE 'INCS:CAPC.INC'
INCLUDE 'INCS:EAPC.INC'

Store increment table in WKVEC7 EQUIVALENCE (OLDM, IWVEC7(1)), (OLDN, IWVEC7(2)),
* (OLDLRO,IWVEC7(3)), (INCX, IWVEC7(515)),
* (INCY, IWVEC7(1028)), (INCG, IWVEC7(1541))
DATA ZERO, RHALF /0.0.0.5/
IRND(XX) = IFIX (XX + SIGN (RHALF, XX))

Convert addresses to 1 rel.



UMAO:[AIPS.15JAN87.Q .DEV.PSAP.CVEX]QGRD4.FOR;3 11-*
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JUV = UV + 1 
JVIS = VIS + 1
jwt = wt + 1
JGRID = APCORE(GRID+1) 
JCONX = APCORE(CONX+1) 
JCONY = APCORE(CONY+1) 
RROW = APCORE(ROW+1)
N = N02 * 2 + 1  
HAF = LROW / 2 - N02 
INCR = 2 * LROW 
LIMIT = N * M 
IF ((OLDN.EQ.N) .AND.
OLDN = N
OLDM = M
OLDLRO = LROW
DO 50 LOOP = 1,LIMIT

(OLDM.EQ.M) .AND. (OLDLRO.EQ.LROW)) GO TO 70 
Fill increment tables

IY = (LOOP-1) / 
IX = (LOOP-1) -
INCX(LOOP)
INCY(LOOP)
INCG(LOOP)
CONTINUE

= IX 
= IY 
= IX

N
IY
*

N
100 
100 
2  + IY * INCR

INCLUDE 'INCS:ZVD.INC'
DO 300 JJLOOP = 1,NVIS

XWT = MAX (ZERO, APCORE(JWT))

Loop over visibilities.
Tliis loop contains dependencies.

Check weight

X = APCORE(JUV+1)
Y = APCORE(JUV)
JCX = JCONX + IRND (100. * 
JCY = JCONY + IRND (100. *
Y = Y - RROW
JG = JGRID + 2 * (IRND (X)
RE = APCORE(JVIS) * XWT 
AIM = APCORE(JVIS+l) * XWT

Determine location.

Deter, conv. fn loc. 
(IRND (X) - X - 0.5)) + 100 
(IRND (Y) - Y - 0.5)) + 100 

Determine grid loc.
+ HAF) + IRND (Y) * LROW * 2 

Get visibility

Gridding loop

200

300

INCLUDE 'INCS:ZVND.INC'
DO 200 LOOP = 1,LIMIT

ICX = JCX + INCX(LOOP)
ICY = JCY + INCY(LOOP)
IG = JG + INCG(LOOP) Sum to grid.
WWT = APCORE(ICX) * APCORE(ICY)
APCORE(IG) = APCORE(IG) + WWT * RE 
APCORE(IG+1) = APCORE(IG+1) + WWT * AIM 
CONTINUE Update for next vis.

JUV = JUV + INC 
JVIS = JVIS + INC 
JWT = JWT + INC 
CONTINUE



UMAO:[AIPS.15JAN87.Q.DEV.PSAP.CVEX]QGRD4.F0R;3 11-AF
999 RETURN 

END

_UMAO:CAIPS.15JAN87.INC.NOTST.CVEX]DAPC.INC;1 31-JA1

INTEGER*4 APSIZE 
PARAMETER (APSIZE=65536) 
REAL*4 APCORE(APSIZE+1),

WKVEC3CAPSIZE/2+1 
WKVEC6CAPSIZE/2+1 
WKVEC9CAPSIZE/2+1 

INTEGER*4 APCORlCl),
* IWVEC1CAPSIZE/2+1
* IWVEC4CAPSIZE/2+1
* IWEC7 CAPSIZE/2+1 COMPLEX
* CWVEC1CAPSIZE/4+1
* CWEC4 C APSIZE/4+1
* CWVEC7 C APSIZE/4+1

Include DAPC 
Include for AP memory and work Cl Version

WKVEC1CAPSIZE/2+1), WKVEC2CAPSIZE/2+1),, wkvec4Capsize/2+1),
, VKVEC7CAPSIZE/2+1), 
SPADC16),
, IWVEC2CAPSIZE/2+1),, IWVEC5CAPSIZE/2+1),, IWEC8CAPSIZE/2+1),
, CWVEC2CAPSIZE/4+1),
, CWVEC5CAPSIZE/4+1),
, CWVEC8CAPSIZE/4+1),

WKVEC5CAPSIZE/2+1), 
WKVEC8CAPSIZE/2+1),

IWEC3CAPSIZE/2+1) , 
IWEC6CAPSIZE/2+1) , 
IWVEC9CAPSIZE/2+1)
CWVEC3CAPSIZE/4+1), 
CWEC6 CAPSIZE/4+1), 
CWEC9CAPSIZE/4+1) 

End DAPC

_UMAO: [AIPS. 15JAN87.INC.NOTST.CVEX]CAPC. INC; 1 31-JA1"
p Include CAPC
~ Include for AP memory and work
u Cl Version

COMMON /APFAKE/ APCORE, WKVEC1, WKVEC2, WKVEC3, WKVEC4, WKVEC5
* WKVEC6, WKVEC7, WKVEC8, WKVEC9 
COMMON /SPF/ SPAD

C End CAPC

_UMA0: [AIPS.15JAN87.INC.NOTST.CVEX]EAPC.INC;1 31-JA1'
C Include EAPC
C Include for AP memory and work
C Cl Version

EQUIVALENCE
* CAPCORE APCORI)
* CWKVEC1! IWVEC1, *CWEC1) , CWKVEC2, IWVEC2, CWEC2) ,
* CWKVEC3, IVVEC3, CWEC3), CWKVEC4, IWVEC4, CWEC4) ,
* CWKVEC5, IWVEC5, CWEC5), CWKVEC6, IWVEC6, CWEC6) ,
* CWKVEC7, IWVEC7, CWEC7), CWKVEC8, IWEC8, CWVEC8),
* CWKVEC9, IWVEC9, CWVEC9)C End EAPC



SUBROUTINE QCLNSU (COMP, LMAP, L1MAP, L2MAP, IBX, IBY, JNDEX,* INDEX)

_UMAO:[AIPS.15JAN87.Q.DEV.PSAP.CVEX]QCLNSU.FOR;1

c-
c CRAY version.
c QCLNSU does a CLEAN on a list of residuals using a given beam
c patch
c Inputs:
c COMP(4) R*4 Component vector:
c 0 => intensity
c 1 => x in cells
c 2 => Y in cells
c

LMAP 3 => CLEAN loop gain (fractional)
c 1*4 number of residuals
c L1MAP 1*4 First residual in Y window
c L2MAP 1*4 Last residual in Y window
c IBX,IBY 1*4 Beam patch half width in X and Y
c Residuals with delta X or Y from the component
c

JNDEX position in COMP .GE. IBX,IBY are to be ignored.
c 1*4 0 - rel Index in FLUX, IX, IY of next residual
c to sub.
c Input From Vector Work common:
c IWVEC3 1*4 = IX, X pixel location of residuals
c IWVEC4 1*4 = IY, Y pixel location of residuals
c WKVEC5 R*4 = FLUX, Residual flux density
c WKVEC6,71 R*4 = BEAM, BEAM patch.
c Output:
c INDEX 1*4 Index in FLUX of next residual.
c Useage notes:
c The following common work vectors are used:
c IWVEC8 = IDXRAY => array of x pixel offsets
c
c

IWVEC9 = IB => indirect address array
INTEGER*4 ISAMAX, KMAX, INCX, IDXRAY(l), IB(l), IX(1), IY(1)INTEGER*4; L21MAP, NIB, JNDEXINTEGER*4 LMAP, IBX, IBY, L1MAP, L2MAP, INDEX, BOFF. BEMADR.* LROW, ADDR, LOOP, XCOMP, YCOMP, N1REAL*4 SUBT, C0MP(4), BEAM(l), FLUX(l)INCLUDE 'INCS:DAPC.INC'INCLUDE 'INCS:CAPC.INC'INCLUDE 'INCS:EAPC.INC'
EQUIVALENCE (IX, IWVEC3), (IY, IWVEC4), (FLUX, WKVEC5).* (BEAM, WKVEC6)
EQUIVALENCE (IDXRAY, IWVEC8), (IB, IWVEC9)

c
DATA N1 /!/
LROW = 2 * IBY - 1
BOFF = (IBX-1) * LROW + IBY 
IF (LMAP.LE.O) GO TO 999

Get component to be CLEANedXCOMP = COMP(2) +0.5 
YCOMP = COMP(3) +0.5 
SUBT = COMP(l) * COMP(4)

Get residual offsetsINCLUDE 'INCS:ZVND.INC'
DO 100 LOOP = L1MAP,L2MAP

IDXRAY(LOOP) = IX(LOOP+JNDEX) - XCOMP 100 CONTINUE
Compress x window

30-»
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Q

_UMAO:[AIPS.15JAN87.Q .DEV.PSAP.CVEX]QCLNSU.FOR;1 
L21MAP = L2MAP - L1MAP + 1
CALL WHNALT (L21MAP, IDXRAY(LIMAP), N1, IBX, IB, NIB)

C Subtraction loopINCLUDE 'INCS:ZVND.INC'DO 200 LOOP = 1,NIB
ADDR = IB(LOOP) + L1MAP - 1 

C Get beam addressBEMADR = BOFF + (IDXRAY(ADDR) * LROW)
* + (IY(ADDR+JNDEX) - YCOMP)

FLUX(ADDR+JNDEX) = FLUX(ADDR+JNDEX) - SUBT * BEAM(BEMADR) 200 CONTINUE
Find largest mag. residual 

Call Steve Wallace's routine:INCX = 1
KMAX = ISAMAX (LMAP, FLUX(1+JNDEX), INCX)
COMP(l) = FLUX (KMAX+JNDEX)
C0MP(2) = IXCKMAX+JNDEX)
COMP(3) = IYCKMAX+JNDEX)

c Save index of next max.INDEX = KMAXC
999 RETURN 

END

30-J/



UMAO:[AIPS.15JAN87.Q.DEV.PSAP.CVEX]WHNALT.S;2 
. globl _whnalt_

14-FI

Convex assembly routine
WHNALT returns a list of all locations in an integer array 
for which the integer absolute value is less than a specified 
target value. This is very similar to the Cray library routine 
WHENILT, the only difference being the absolute value. The 
algorithm is equivalent to the following FORTRAN code:

SUBROUTINE WHNALT (N, IARRAY, INC, ITARGET, INDEX, 
(arg_pack offsets: 0 4 8 12 16
INTEGER*4 N, IARRAY, INC, ITARGET, INDEX,
INTEGER*4 I, JNVAL = 0 
J = 1
DO I = 1, N

IF (IABS(IARRAY(J)).LT.ITARGET) THEN 
NVAL = NVAL + 1 
INDEX(NVAL) = I

ENDIF
J = J + INC

ENDDO
RETURN
END

NVAL) 
20 ) 

NVAL

Don Wells, NRAO-CV, 16-18June85.
minor mod to speed up by Steve Wallach, Convex, Sept85. 
minor bug fix and text cleanup by Don Wells, 29Jan86 
trivial syntactic error fixed, DCW 14Feb86.

al
a2
a3
a4
a5

Register assignments: 
INC*4 (stride) si = N counter
IARRAY pointer 
INDEX pointer 
temporary 
INC*4*128

v l52 = ITARGET v2
53 = NVAL counter v3 
s4 = pop_cnt last cmprs v4 
s5 = "iota" bump const v5

"iota" vector 
IARRAY load reg 
INDEX store reg 
negated IARRAY 
IABS() scratch

whnalt

looptop:

Id. w @0(ap),si
Id. w @12(ap),s2
Id. w #0, s3
st. w s3,@20(ap)
It. w #0, si
jbrs.f quit
Id. w #4, vs
Id. w #128,vl
Id. w _mth$j_indx,vl
Id. w 4(ap),a2
Id. w 16(ap),a3Id. w #0, s4Id. w @8(ap),alshf #2,almov. w al, a5shf #7,a5
Id. w #128,s5
mov. w si, vl

get N
get ITARGET 
init NVALii ii
O.LT.N ? 
if not, go quit. 
vs = 4 bytes 
vl = 128
init "iota": 1...128 
init IARRAY() pointer 
init INDEXQ pointer 
prev_popcnt=0 initially get INC
INC*4 (stride in bytes)
INC*4*128 (register stride) 
init "iota" bump constant
vl = N<6..0> (usually 128)



_UMAO:[AIPS.15JAN87.Q .DEV.PSAP.CVEX]WHNALT.S ;2 14-FEE

quit:

mov. w al,vs ; vs = INC*4Id. w (a2),v2 ; load next 128 from IARRAY()neg.w v2,v4 ; get negation of IARRAY(i)It .w v2, v4 ; IARRAY(i).LT.negated_IARRAY(i) ?mask.t v2,v4,v5 ; v4 = v4 if T, v2 if F (IABS op)le.w S2, v5 ; ITARGET.LE.IABS(IARRAY(i)) ?
y following scalar ops execute concurrently
9add. w with, the vector compare instruction:a5, a2 ; IARRAY = IARRAY + INC*4*128add. w s4, S3 ; NVAL = NVAL + prev_vlmov. w S4,a4
Sllf #2,a4 ; words to bytesadd. w a4, a3 ; INDEX = INDEX + prev vl*4sub. w #128,si ; N = N - 128Id. w #4, vs ; vs = unity stride for INDEXO store
9 following vector compress is inhibited until
9 vl, v3 the mask operation above completes:cprs.f ; compress "iota_of_hits" using vmpic. f vm, s4 ; get pop count of non-zeroesmov. w s4, vl ; pop count is result vector lengthst .w v3,(a3) ; store compressed "iota" in INDEX()It .w #0, si ; O.LT.N ?mov. w s5, vl ; vl = 128add. w vl,s5,vl ; iota(i) = iota(i) + 128jbrs.t looptop ; if so, loop back
add. w s4, s3 ; NVAL = NVAL + VLst. w 
rtn S3,@20Cap) ; store NVAL


