
AIPS MEMO NO. b Q

An Overview of the A IPS T V Servers
Chris Flatters (Updated by Dean M. Schlemmer)

February 4, 1991
National Radio Astronom y Observatory

Edgemont Road, Charlottesville, VA 22903-2475
Phone: (804) 296-0211 Fax: (804) 296-0278
Internet: aipsm ailfinrao.edu Bitnet: aipsraailflnrao

INTRODUCTION
This document gives an overview of the M V S TV servers that are available for Unix workstations. It

is oriented towards the «/4TPS manager who wishes to set up one of these servers and should be read in
conjunction with the the Unix M V S installation guide. If you are not familiar with M V S TV concepts you
should read Chapter 10 of Going J^LVS before continuing.

The M V S TV servers allow a window on a workstation screen to be used as an M V S TV by an AXVS
running on the workstation, an JKLVS running on a remote machine or both. They currently work only
under BSD Unix and other flavours of Unix systems that have BSD networking extensions (XAS should also
work under VAX/VMS using mailbox communications but NRAO does not have the hardware necessary to
test or maintain this option).

The following section explains the basic priciples of the TV servers.

Page 2
February 4, 1991

ATPS T V Servers
THE BASIC OPERATION OF A N AT P S TV SERVER

THE BASIC OPERATION OF AN M VS TV SERVER
As is the case with many networked applications, the workstation implementations of ATPS TV devices

conform to the client-server model. The TV server “owns” a window on the workstation screen and is
responsible for maintaining it in the workstation’s windowing environment. The server must typically respond
to requests to move the window on the screen, place it in front of or behind other windows, change its size,
or to shrink it to an icon.

The window maintained by the server is used as an ATPS TV by the server’s client programs (the main
AIPS program and the TV tasks). The client programs may run on the workstation on which the server is
running or may run on any machine that can access the server via a network. The clients may not access
the TV window directly but must request the server to perform the TV operations and return the results, if
any. This achieves two things: the client is insulated from the actual mechanics of interacting with a window
on a workstation and the window is protected from two or more clients trying to make simultaneous, and
possibly irreconcilable, changes to it.

In order for the server and clients to be able to communicate both the server and the client must use
the same network protocol. The network protocol determines how messages are passed between programs.
The ATPS TV servers support the Internet transmission control protocol (TCP) and an alternate protocol
that provides faster communications between programs that are running on the same machine but excludes
access from other machines. Both protocols are connection oriented which means that a connection must be
established between two programs before they can send messages to each other. This is similar to the way
in which a connection must be made between two telephones (at an exchange) before two people can use
them to talk to one another.

In BSD Unix the two ends of a connection are known as sockets. A socket is completely specified by its
domain (the INET domain corresponds to TCP and the UNIX domain corresponds to the faster, internal
protocol), the machine on which the socket exists and a unique address. The address need only be unique
on the machine on which the socket exists; it need not be unique on the network. INET domain addresses
are port numbers, integers between 0 and 65535 while UNIX domain addresses are file pathnames.

If the client is to be able to establish a connection with the server the client must have enough information
to completely specify the server’s socket. In the INET domain the server is started with a prearranged port
number and the machine on which the server is running is supplied to the client (via an environmental
variable) at run-time. Rather than hard-coding a port number into the server and clients a symbolic service
name is used. The mapping between service names and port numbers is defined by the file /e t c / s e r v ic e s
on each machine. This file is normally maintained by the system manager. If Network Information Services
(NIS), also known by the older name of Yellow Pages, is running then the same / e t c / s e r v ic e s file may
define the mapping for several machines. In the UNIX domain, the server uses a prearranged pathname
(usually a file in /tmp) and the machine on which the server is running is implicitly the same as that on
which the client is running.

When a client wishes to access the TV it sends a message to the server requesting a connection. It
then waits for the server to establish the connection. Once the connection has been established the client
sends instructions to the server and waits for any return messages. When the interaction is complete the
connection is destroyed so that another client may access the TV.

The TV server responds to a limited set of commands that fall into the two classes of display requests
(e.0., display a row or column of pixels) and information requests (e.g., return the current cursor coordinates).
It does not maintain an image catalogue: image catalogues are maintained by the clients (via the Y-routines).

ATPS T V Servers
IMAGE CATALOGUES AND TV MON

Page 3
February 4, 1991

IMAGE CATALOGUES AND TVMON
The image catalogue is an important part of the ATPS TV model. Each TV display should have its

own image catalogue which records what images are displayed, where they are displayed on the screen, what
the astronomical coordinate system is for each image and the relation between the brightness or color on
the screen and physical units of brightness. This allows multiple AIPS tasks to collaborate in dealing with
images on the screen.

The obvious consequence of having the Y-routines handle the image catalogue rather than the TV server
is that the image catalogue resides on the same machine as A IV S itself. This is not a problem if ATPS
and the TV server are both on the same machine {e.g., a standalone workstation) since there is only one
display and one image catalogue. Similarly it is not a problem if ATPS resides on one machine and the TV
server resides on only one remote workstation. The case where there are several workstations is somewhat
more complicated since each workstation must be assigned to a different TV number in order to have its
own catalogue (although this becomes unwieldy if there are many workstations).

The real problem occurs if the same workstation acts as the display for copies of ATPS running on
several machines. In this case each copy of ATPS has its own separate image catalogue despite the fact that
each of these catalogues refers to the same device. Consequently the image catalogues can easily get out of
step with respect to what is displayed on the screen if any two (or more) ATPS try to share the display.
This is not a critical problem but it is clearly undesirable.

The TVMON program is intended to solve this problem. TVMON is an A TPS program that sits
between the A T PS clients and a TV server. TVMON usually resides on the same machine as the server
and handles all the Y-routine instructions from the client, including those that address the image catalogue.
TVMON, therefore maintains the image catalogue. It may also be used to make the more old-fashioned kind
of display (represented by the I2S) available over a network. The disadvantages of TVMON are that it is a
FORTRAN program that must be linked with the ATPS libraries and that it requires some part of A TPS to
be running on the same machine (in order to create and maintain image catalogues). You can not, therefore,
use TVMON if your display workstation has no FORTRAN compiler or has insufficient diskspace to install
a minimal subset of A IP S (you will need at least 200 Megabytes of disk space for a minimal AIPS and
between 300 and 350 Megabytes for a full installation; if sharable libraries can be used the full installation
will shrink to about 200 Megabytes).

If, however, you have a FORTRAN compiler on your display workstation and sufficient disk space to
install A T V S it is strongly recommended that you install both ATPS and TVMON. Among other things you
will find that operations that require feedback through the cursor, such as TVFIDDLE and TVPSEUDO,
are much faster if they are done using an ATPS local to the display workstation than using a remote ATPS
because there is a significant overhead involved in sending messages back and forth over the network. This
mode of operation is impossible without TVMON.

INSTALLING AND CONFIGURING ATPS WITH TVMON
There are two steps to installing and configuring ATPS with TVMON. First, you must install A TPS on

the client machines in such a way that it can talk to TVMON. You must then install AIPS and TVMON on
the display workstation, configured appropriately for the server or TV device you are using. Before installing
either A T V S , however there are some preliminaries which will be explained following the explanation of the
various window system servers below.

Page 4
February 4, 1991

ATPS T V Servers
THE WINDOW SYSTEM SERVERS

THE WINDOW SYSTEM SERVERS
We shall now briefly describe the three window system servers currently supported by ATPS. The server

you will use will depend on which window system which you are currently running on your computers and
how many options you wish to utilize.

SSS — The SunView Screen Server
If you are currently using the Sunview window system (Sun Microsystems’ proprietary, kernel-based

windowing system for Sun Workstations) on your computer, then you MUST use the SunView Screen Server
(SSS).

SSS is the oldest of the A TPS screen servers. It was originally written by Brian Glendenning, who is
currently at the National Radio Astronomy Observatory. SSS emulates a TV with a width of 1142 pixels
and a height of 803 pixels. It provides 2 image planes and 4 graphics overlay planes. It requires an 8-bit
color or grey-scale display and can display up to 112 colors or levels of grey-scale. The size of the TV and
the number of grey-scale planes (up to a maximum of 4) may be changed by modifying #d ef ine statements
in the file header.h .

The A TPS buttons A through D are tied to the function keys F3 through F6 on the keyboard. Function
keys F2 and F7 may be used to switch between a large and small display window. The larger window is
fixed at the maximum size of the TV while the smaller window may be resized by the user from the SunView
window menu.

Unfortunately SunView only allows one cursor to be displayed and this must be the window system
cursor. This means that there is no visible ATPS TV cursor. However, pressing or holding down the left-
hand mouse button while the cursor is in the TV window forces the ATPS cursor to the same position as
the window system cursor.

ATPS T V Servers
THE WINDOW SYSTEM SERVERS

Page 5
February 4, 1991

XAS — The X Window System ATPS Server
If you are currently using the X-Window windowing system on your computer, you may use either this

screen server or the XVSS server system (described in the next section). This system is not as versatile as
XVSS, but is simpler, faster, and does not require an X toolkit. XAS will ONLY run on displays that are
8-bits deep. If you do have X-Windows installed, read BOTH this and the next section on XVSS before
deciding on which server to use.

XAS is a generic ATPS TV server for the X Window System originally written by Tom Pauls and Ralph
Gaum at the Naval Research Labs in Washington. It uses the low-level Xlib library but does not use any X
toolkit.

XAS emulates a TV with a width of 1024 pixels and a height of 720 pixels and provides 2 image planes
and one graphics overlay plane. It requires an 8-bit color display with a pseudocolor visual and can display
up to 64 different colors. The TV size and the number of grey-scale planes may be changed by modifying
#d efin e statements in xas.h .

Like SSS, XAS maps the A IP S buttons to function keys F3 through F6 . Unlike SSS, however, there
is no size toggle. Users may resize the window in any way appropriate to their preferred window manager.
Cursor handling is identical to that of SSS.

XAS will work with any window manager that complies with the inter-client communications conventions
manual (ICCCM) recommendations. Examples are twin (X11R4 release), olwm and mwm.

Page 6
February 4, 1991

ATPS T V Servers
THE WINDOW SYSTEM SERVERS

XVSS — The XView Screen Server
If you are currently using the X-Window windowing system on your computer, you may use this server.

Although some operations may be slower, XVSS is more versatile than XAS. However, you will also need
the XView toolkit available for installation; Otherwise, you MUST use XAS. Here is some background:

Like XAS, XVSS is an X Window System based screen server. UNLIKE XAS, it uses an X toolkit. The
particular toolkit used here is the XView toolkit from Sun Microsystems. XView is freely available in source
form and will run on most BSD compatible Unix systems. XVSS requires release 2.0 or later of the XView
toolkit, and this release is available via anonymous ftp from e x p o .lc s .m it .e d u (18.30.0.212) and requires
15 to 20 Mbytes of disk space to build.

XVSS provides a screen size of 1024 by 720 pixels with 2 image planes and one graphics overlay. The
display size and number of image planes (up to 4) may be changed by modifying #d ef in e statements in
header .h. XVSS is the only screen server that will run on displays that are not 8-bits deep. By default XVSS
is configured to provide 63 but can be easily modified to display more colors if it is used on a screen that can
display a total of more than 256. The maximum number of colors available to XVSS can be calculated by
dividing the maximum number of colors on the display by 4 (e.g., 64 = 256/4). The ability of XVSS to run
on machines with displays that use an unusual number of bit-planes results in it being somewhat slower than
XAS on a 256-color display if A TPS resides on the same machine as the server (the typical ration of speeds
is 2/3). If used remotely the speeds of both servers are dominated by network I/O and are consequently
almost identical.

XVSS has identical button assignments and cursor handling to SSS. However, it also provides a control
panel with a resize button and buttons A, B, C and D. The user may click on any of these buttons as an
alternative to using the function keys.

XVSS allows the user (or, more often, the AIPS manager) to choose the color of the graphics overlay
at run time. This is not currently possible for EITHER of the other two servers. It also has on-line help
available and can take advantage of shared memory to speed up image transfer operations if it is available.
These special features of XVSS will be described following the instructions for installing a screen server.

XVSS will work with any ICCCM compliant window manager that allows colormaps to be associated
with subwindows using the XA_WM_COLORMAP_WINDOWS property (examples are olwm and mwm). It
will normally work with other ICCCM compliant window managers (e.g., twm) provided that there are at
least 128 free entries in the default colormap, depending on the properties of the X Window server.

ATPS T V Servers
PRELIMINARIES

Page 7
February 4, 1991

Which Server Should I Use?
Clearly, if you have a Sun Workstation WITHOUT X-Windows, you have no choice but to use SSS.
Of the two X Window System based servers, most users will prefer XVSS, since the visible control panel

makes it easier to use (at least for beginners). However, you cannot run it if you do not have XView available
(or cannot install it for some reason).

If you need to run TVMOVIE, XAS might be preferred anyway because of its greater speed. However,
if you have an unusual number of bit-planes (other than 8), then you cannot use XAS.

With these criteria, you should now be able to narrow your choice of TV servers to one. The rest of
this document is broken into three basic sets of instruction (one for each server), and you need only read
those sections which pertain to the server which is correct for your configuration. If you are using a single,
stand-alone workstation, SKIP all sections pertaining to CLIENTS only.

PRELIMINARIES
Before installing ATPS (on either the display or client machines), there are some preliminary steps to

be performed. These are listed below; Subsection titles indicate which machine(s) these steps are to be
performed on; Skip those steps which do not apply.

The following section applies to clients and servers ONLY if you are networking between the two. If you
have a stand-alone system, SKIP this section on modifications to / e t c / s e r v ic e s ENTIRELY:

Page 8
February 4, 1991

ALPS T V Servers
PRELIMINARIES

Modify /etc /serv ices (clients AND servers):
TVMON only operates in the INET domain. It therefore requires its port number to be known both

on the display workstation and on all possible client machines. This is done by adding the line

to the file / e t c / s e r v i c e s on EACH MACHINE (all clients AND servers).
NOTE: If you have network information services (NIS — formerly known as yellow pages) running on

your system, you need only modify / e t c / s e r v i c e s on the NIS host machine. The number is arbitrary but
must be greater than or equal to 5000 and must not exceed 65535. It is recommended that you use 5001
for compatibility with other ALPS sites; this way you may use your workstation to display images from a
remote site via Internet or a remote user may display images from your machine.

Normally the superuser is the only person who may change / e t c / s e r v i c e s so you may have to get your
system manager to make the changes.

If you are NOT using TVMON, you will also need to add the line:

VTVIN 5 0 0 1 /tcp

SSSIN 5 0 0 0 /tcp
to the / e t c / s e r v i c e s file, if you are using either SSS or XVSS , or alternately the line:

XASIN 5 0 0 0 /tcp
if you are using XAS.

ATVS T V Servers
PRELIMINARIES

Page 9
February Jt, 1991

Client Machines ONLY:
Before compiling A IV S on the clients, you should modify the file $SYSL0CAL/LIBR.DAT so that A IV S

is linked with the Y-routines in the $YVTV area. For example, assuming that the remote server display is
the only display available or is TV device 1, LIBR.DAT should contain the following specification for the
Y-routine library:
V ir tu a l TV Y -ro u tin es
$LIBR/YVTV/SUBLIB:0 :$YVTV
$LIBR/YVTV/SUBLIB:0 :$YGEN
[Note: having :0: insures that the executables will be in the area $LOAD. However, if you are going to
have, say, one ADDITIONAL display device (for a total of TWO alternates), you would ADD ANOTHER
set of lines like the above two, instead replacing the “:0 :” with “ :2 :” , and also /YVTV/ and $YVTV with
appropriate directory and logical names; This will place THOSE executables in the area $L0AD/ALT2. If
you require even more display devices (probably unlikely), :#: can be increased further (again, see the full
installation guide for more details).]

All the programs in the areas $AIPPGM, $QYPGM, $QYPGN0T, $YPGM, and $YPGN0T must also be linked to
the alternate version o iA T P S . Look through LIBR.DAT for the sections containing the links to these areas
and add appropriate versions of the $LIBR/YVTV/SUBLIB line. For example, under the $AIPPGM area, add
the line $LIBR/YVTV/SUBLIB:0:$AIPPGM, and so on for the rest of the specified areas.

Also, be sure that your version ofLIBR.DAT does NOT include a linkage specification for area $YPGVDEV
(the area containing the virtual TV server programs); Comment it out if it does exist, as it is reserved only
for the server.

You may then compile and link A TPS on the client machines as described in the installation guide.
In order to use TVMON, you must also define the ATVS logical name of the TV device. For safety,

this definition must be placed in BOTH $SYSLOCAL/ASSNLOCAL. ??? (where ??? is SH or CSH) and $SYS-
LOCAL/AIPS. If there is not a copy of AIPS in the $SYSL0CAL area, copy one from the $SYSUNIX area and
then edit it. The line to be added is VTVIN: machine, where machine specifies the display machine. Machine
can be either an Internet name (e.g., cholla.aoc.nrao.edu), an abbreviated name (e.g., cholla), or an Internet
address (e.g., 192.43.204.2).

As an example, IF YOU ARE USING THE BOURNE-SIIELL and the remote display is to be called
TV device 1, ASSNLOCAL.SH and the A IV S start-up script AIPS should contain the lines:
TVDEV1=VTVIN:m ydisplay
export TVDEV1

If, however, you are using the c-shell, you need only add the line:
se ten v TVDEV1 VTVIM:m ydisplay
In either of these cases, the TV device will be defined automatically at login.

The above step is sufficient for your TV logical definition. If, however, you want a more flexible way to
choose between multiple possible displays, you can have the user type in the machine he wants at login. If
you would like to have this option AND ARE USING THE BOURNE-SHELL, replace the first line in the
two BOURNE specifications above with:

Page 10
February 4, 1991

ALPS T V Servers
INSTALL THE SCREEN SERVER

echo "Enter th e name o f th e d is p la y machine"
read name
TVDEV1=VTVIN:$name
in the start-up script AIPS. The user will then be prompted for the device at login. (Note, however, that
some extra shell programming will be necessary to avoid having the user crash AL P S if he mistypes the
machine name.)

NOTE that you must give TVDEV1 a value in ASSNLOCAL.SH, even if you are going to change it later.

Server Machines ONLY:
On the server, you must configure the file $SYSLOCAL/LIBR. DAT which will be used to generate and

link the appropriate Y-routines for the device you will be using. Look for the area $YPGVDEV (one of the
areas for Y-routine link specifications) in the program section ofLIBR.DAT and be sure it includes the Y-
routine library linkage specification which is correct for your server system. For example, if you are using
the SunView Screen Server, you should have the following line in the $YPGVDEV section ofLIBR.DAT:
$LIBR/YSS/SUBLIB:0 :YPGVDEV

If you are using one of the other systems, replace YSS in the line above with either XAS or XVSS. This
will ensure that TVMON is built when AIPS is compiled.

You must also provide a means of starting TVMON with the appropriate logicals defined. The following
Bourne shell script will start TVMON; The following lines must be added at either the end of the ALPS
start-up script $SYSLOCAL/AIPS;
VTVDEV1=VTVIN:dummy
export VTVDEV1
TVDEV1=/tmp/aips jscreen
export TVDEV1
ps -a x I grep TVMON | grep
i f t e s t "$?" = "1"
then $LOAD/TVMON. EXE &
f i
IF YOU HAVE NO CLIENT MACINES, replace all references to TVMON in the lines above with the name
of the screen server you are using (SSS, XAS, or XVSS). See the next section for more details.

This is all that is necessary for the preliminaries.

INSTALL THE SCREEN SERVER
Installation of the three servers consists of the same steps for each, although they differ in minor detail.

In the following example we will describe the installation of XVSS and note any differences for for the
installation of SSS and XAS in italic font.

i t d o e s n 't m atter what comes a f t e r th e co lo n

fo r SSS (s e e below)
-v grep > /d e v /n u l l

ATPS T V Servers
INSTALL THE SCREEN SERVER

Page II
February Jh 1991

Configure the file LIBR.DAT (server AND clients):
The file $SYSLOCAL/LIBR.DAT must be configured to build the necessary Y-routine library and to link

the ATPS tasks with it. This step should be done (as indicated in the AIPS Unix Installation Summary)
prior to running INSTEP2 of the UNIX A TPS installation. If the following lines are not already in $SYS-
LOCAL/LIBR.DAT, add them (these define the libraries):
$LIBR/YSS/SUBLIB:0 :$YSS
$LIBR/YSS/SUBLIB:0 :$YGEN
These two lines are sufficient if you are running EITHER SSS or XVSS.
NOTE: if you are using XAS, use $YXAS instead o/$YSS in the first line above.

You may then install ATVS as normal.

Page 12
February 4, 1991

A1VS T V Servers
INSTALL THE SCREEN SERVER

Build the Screen Server (server machine ONLY):
The source code for the screen servers is packed into three .SHR (which stands for Sllell aRchive) files in

the $YSERV area. The source codes for XVSS, XAS, and SSS are packed into the files XVSS.SHR, XAS.SHR, and
SSS.SHR, respectively. First, move to the $YSERV area and create a directory in which to build the screen
server you will be using (use obvious directory names like SSS, XAS, or XVSS). Then, copy the appropriate
.SHR file into it . (NOTE: If you are building XVSS, you will also want to copy the file $YSERV/XVSS.UU to
xvss.u u in the same subdirectory; It contains the help data for XVSS in an encoded form. The source code
files must then be “unpacked”; On a Unix system, simply type:
sh. XVSS.SHR (or sh XAS.SHR or SSS.SHR)

You will then end up with a variety of files in that directory. [We have noticed that at the beginning
of one of the files created during the “unpack” (h ead er.h), an occasional spurious character(s) may appear;
Check this file and edit out any offending characters.] FOR NON-UNIX SYSTEMS, you will also have to
copy the program UNSHR.FOR from the $YSERV area, compile it, then run it.

Then you will end up with various C source files and a M ak efile in that area. You may want to
inspect the compile-time constants in the .h files and modify them for your system - however, it is NOT
recommended that you do this UNLESS you are sure that you know what you are doing.

While you are still in $YSERV/y our serv er , you should then edit M akefile. You will probably have to
redefine some macros at the top of the file:

1.) FOR ALL THREE SCREEN SERVERS: FLAGS is used to give any other flags which might be needed
by the C compiler you are using. If you are compiling on a Sun 3, this is where you put the floating-point
option, e.g.,
FLAGS = - f 68881

2.) FOR XVSS SERVERS ONLY: DESTDIR is the destination directory for the XVSS binaries (this
should be the same as the area $LOAD if you have installed AXVS on the display machine).

3.) FOR THE XVSS SERVER, the libraries you may need to look for are l ib x v ie w . a and l i b X l l . a. If,
for example, l i b X l l . a is in directory / u s r / X l l / R 4 / l ib and l ib x v ie w .a is in /O p en w in s/lib , you should
modify the LIBDIRS definition in the M ak efile to look like this:
LIBDIRS = - L /u s r /X l l /R 4 / l ib -L /O p en w in s/lib

4.) FOR XAS AND XVSS SERVERS ONLY: LIBDIRS gives the location of any libraries that are not in
the standard directory / u s r / l i b ; Each directory in the LIBDIRS definition should be preceded by -L (there
will likely be some LIBDIRS macro entry already there as an example).

The other macro which may need modification to run under XAS or XVSS is INCDIRS. INCDIRS is similar
to LIBDIRS, but it gives the locations of any standard header files that are not in their standard location
(/u s r / in c lu d e) . Precede each directory with -I. An example might be:
INCDIRS = - I /u s r /X l l /R 4 / in c lu d e -I /O p en w in s/in c lu d e

5.) FOR XVSS ONLY: HELPDIR gives the directory in which the on-line help data will be installed, and
SHMOPT enables the use of the shared memory extension. (See the comments in the makefile and the section
on the special features of XVSS for more information.)

Once all macros are correctly defined, you may then compile the server by typing ‘make’. If the compile
fails, this usually indicates that the above variables have been set incorrectly. Correct them and try again.

A TPS T V Servers
INSTALL THE SCREEN SERVER

Page 13
February J{, 1991

Build a Shell Script to Start the Screen Server
This section gives some brief guidelines on assigning environment variables and path(s) to start up the

screen servers. Read this section before configuring the startup scripts described in the next section.
FOR SSS AND XVSS SERVERS ONLY:

For these two screen servers, the environment variables TVDEV and TVDEVn MUST be set BEFORE the
server is started (here, n is the TV device number). In your case, TVDEV must be DEFINED AS TVDEVn.
This is best done via a shell script which will automatically set the TV variables and then start the server in
the background. If you are using TVMON, you will probably want to start both TVMON AND the server
from the same script.

If you ARE NOT using the server over a network (i.e., ARE NOT using TVMON), TVDEVn should
be set to an absolute pathname (i.e., one beginning with a /); we recommend that you specify a pathname
in /tmp, for example /tm p /a ip sjscreen .

If you ARE using the server over a network but ARE NOT using TVMON, TVDEVn should be defined
as SSSINB: machine, where the B suffix allows certain operations to be buffered for efficiency. Here machine
is the display (server) machine.

If you ARE using TVMON AND the server OVER THE NETWORK (the usual case), give TVDEVn an
absolute pathname like /tm p /a ip sjsc r e e n as described above.

You may use a startup script similar to that shown earlier for TVMON (see next section for sample).
XAS ONLY:

The environment variable AIPSTV must be set before the server is started. When using XAS, n MUST
be 1. This is best done via a shell script that will automatically set the TV variables and then start the
server in the background. If you are using TVMON you will probably want to start both TVMON and the
server from the same script. Enter the lines:
TVDEV=TVDEV 1
AIPSTV=SSSIN
TVDEV1=SSSIN
at end of the A IV S startup script ($SYSLOCAL/AIPS).
If you ARE using the server over the network but ARE NOT using TVMON, you should set AIPSTV AND
TVDEV1 to SSSIN.

If you are NOT using the server over a network, then you should set AIPSTV 1 AND TVDEV 1 to an
absolute pathnam e (i.e., one beginning with a /); we recommend that you specify a pathname in tmp, for
example /tm p /a ip s_ screen .

You may use a startup script similar to that shown earlier for TVMON (see next section for sample).

Page 14
February 4, 1991

ATPS T V Servers
INSTALL THE SCREEN SERVER

Configure ASSNLOCAL.SH or the ATPS Startup Script
First, TVDEVn MUST be given a value in ASSNLOCAL.SH (see guidelines above); You may change it

later in the AIPS script if you wish.
Next are two sample scripts for c-shell or Bourne-shell, whichever you are using, you can either add

the lines at the end of the ATPS startup script (AIPS) or the ASSNLOCAL.SH or ASSNLOCAL.CSH files in
$SYSL0CAL:
For the c-shell:

! /b in /c s h
ps ax I grep SSS I grep -v grep > /d e v /n u ll
i f ($ s ta tu s == 1) th en

echo -n "Sun Screen Server n ot runn ing. S ta r t i t ? (y /n) "
s e t yn = ($<)
i f ($yn == ’y*) th en

$L0AD/SSS ft
e n d if

e n d if

And for the Bourne-shell:
! /b in / s h
ps ax I grep SSS I grep -v grep > /d e v /n u l l
i f ["$?" = "i"] ; th en

echo -n "Sun Screen Server n ot runn ing. S ta r t i t ? (y /n) "
read yn
i f ["$yn" = "y"] ; then

$LOAD/SSS ft
f i

f i

Obviously, SSS would need to be replaced by XAS or XVSS if you were using one of the other servers.

A L T 6 T V Servers
INSTALL THE SCREEN SERVER

Page 15
February 4, 1991

RUN SETTVP
Now run the program SETTVP; Type:

RUN SETTVP
anywhere.
The following table gives the appropriate SETTVP values for each server as they are distributed. If you

modify the configuration parameters in the code you should revise the SETTVP parameters to match.

P ara m eter SSS X A S X V S S
No. of grey-scale planes 2 2 2
No. of graphics planes 4 1 1
Images per plane 256 256 256
Size of planes 1142, 803 1024, 720 1024, 720
Max. grey scale intensity 111 63 63
Peak intensity out of LUT 255 255 255
Peak intensity in/out of OFM 255, 255 255, 255 255, 255
X, Y min. scroll increments 1 ,1 1 ,1 1,1
Maximum zoom factor -15 -15 -15
Type of split screen allowed 0 0 0
X-axis write mode 3 3 3
Y-axis write mode 3 3 3
Number of ALUs 0 0 0
Number of ISUs 0 0 0

This completes the installation.

Page 16
February 4, 1991

ATPS T V Servers
SPECIAL FEATURES OF XVSS

SPECIAL FEATURES OF XVSS
This section describes features of XVSS that are not currently available in the other screen servers.

Graphics Plane Colour
By default, XVSS displays overlayed graphics in green. It may be desirable to change this for a variety

of reasons. As an example some Sun 3 workstations are equipped with greyscale displays that are run from
the red signal of the display controller so that green is not visible.

XVSS takes advantage of the X resource database to allow the user to specify the graphics overlay color.
Different workstations may share the same XVSS executable but still display graphics using different colors.
The resource database is read when XVSS is started; future versions may allow the graphics color to be
modified from a properties window while XVSS is running.

XVSS takes the graphics overlay color from the value of the x v ss .graphicsC olor resource. The value
may be any valid X window color specification: either a named color from the color names database or a
hexadecimal RGB specification. The X resource database is maintained in the X server and is initialised
from the .X d e fa u lts file when the X Window System is started. It may be later changed by the xrdb
command. See your local X Window System documentation for further details.
On-Line Help

XVSS interfaces to the OPEN LOOK help system. In order to use this you must set the search path
in the HELPPATH environmental variable to include the directory in which you installed the file x v s s . in fo .
This is best done as part of the startup script. Help is accessed by pressing the help key (normally bound
to FI on the main keyboard).

Shared Memory
XVSS supports the MIT shared memory extension to the X Window System. Your operating system

must be configured to support System V shared memory facilities in order to use this and you must compile
XVSS with the shared memory option set in the makefile.

The shared memory extension should speed up some XVSS operations but may cause severe paging
problems on machines with small memories. Do not try to use it if you do not have at least 16 Mbytes of
physical memory; however, since the use of shared memory can be turned off and on, it does no harm to
compile with the shared memory option enabled if you have System V shared memory (if you don’t you will
get link errors when you build XVSS).

Shared memory is controlled using the X resource database. On startup XVSS reads the boolean resource
xvss.useSharedM emory: if this is true then the shared memory extension is used. If x v s s . SharedMemory is
false or is missing then the shared memory extension will not be used. XVSS will indicate whether or not is
using shared memory in the window footer if you are using an OPEN LOOK window manager.

Not all vendors support the MIT shared memory extension. Use the xdpyinfo command and look for
the identification string “MIT-SHM” to see if it is available. SunOS may be configured to support shared
memory.

