
Object-Oriented Programming in AIPS Fortran
W . D. Cotton, N.R.A.O.

1 June 1992

A B S T R A C T

This document describes a object oriented system running in the AIPS environment. The
implementation was done using the AIPS Fortran preprocessor and results in many of the benefits
of languages with explicit object oriented support.

1 Introduction
This document describes a partial implementation of an object oriented interface to AIPS data structures
using the AIPS Fortran preprocessor. This implementation was intended to Explore the possibilities of object
oriented programming (OOP) in AIPS. These interfaces include image and tables data structures. Aspects
of object oriented programming are present in this implementation but the general style is best described as
object based.

2 Object Oriented Programming (OOP)
The meaning of the term “object oriented programming” varies depending on the context but there are several
aspects that need to be considered. These are 1) classes, 2) encapsulation, 3) inheritance, 4) polymorphism,
and 5) instances of class (objects).

2.1 Classes
A class is an external definition of a data entity (public members) and the functions (member functions)
which allow external access to, and manipulation of, this data entity. The run time realization of a class is
an object. In this implementation, a class consists of a set of routines in a single file. Examples of classes are
images, pixel arrays, and tables. The more complex classes such as images are composed of simpler classes
such as pixel arrays. Any needed I /O and manipulation of AIPS catalogs are handled by the class member
function transparently to the clients of these routines.

2.2 Encapsulation
A synonym for encapsulation is data hiding. Since data structures tend to change with time or application
it is desirable to localize the knowledge of these structures to a well defined set of routines called a module
or class. For this to work, these routines need to have data which they share with each other but is hidden
from other access. Hiding of the details of the internal data structure allows changes in these structures
to be transparent outside of the class. Hiding of class private data is difficult in n on -00 languages, in
Fortran, named commons are visible to all and the only viable approach is to put all the functions of a class
into a single routine with many entry points. The AIPS Fortran preprocessor has a facility for a “LOCAL
INCLUDE” file which can declare commons which are only available to routines in that file. This facility,
which allows data to be shared by routines in a given file but hidden from other routines, has been used
extensively in the implementation described in this document.

2.3 Inheritance
Inheritance is the ability to create new classes from existing classes and using the features of the existing
classes if they are appropriate. Inheritance clearly is not a feature supported by Fortran 77 and the system

described by this document cannot support true inheritance. Much of the functionality can be obtained by
having a “derived” class “contain” an object of the base class rather than “be” an object o f the base class as
is the case with true inheritance. Derived classes in this system are somewhere between these two cases as
the classes contained in the derived class do not have independent existence as objects but are parts of the
derived object. This leads to behavior similar to true inheritance; for example, the image class is derived from
the array class and the array member o f the image object can be accessed as though the object were an array.
The names for class members reflect their derivation. For example, the dimensionality member of the array
descriptor member o f the pixel array member o f an image is named: “ARRAY.ARRAYJ3ESC.NAXIS” .
There are obvious limits to how far this naming convention can be carried.

2.4 Polymorphism
Polymorphism is the ability to deal with objects of different classes where the class of the object may be
determined at run time. The ability to call the correct routine for a given object at run time is known as
dynamic binding. There is obviously no support from Fortran 77 for this kind of operation so the use of
“generic” functions is necessary. These generic functions determine the class of the object and call either
a class specific function or, if possible, a truly generic function. Examples of these generic functions are
creating, destroying and copying objects.

2.5 Instances of Class (Objects)
In most OOP languages objects are created and destroyed dynamically. In the implementation described in
this document this is also the case. An object consists of a labeled collection of information (including the
class name). Objects are given character string names and may be passed to subroutines or class member
functions. Members of an object are addressed through a character string “keyword” which specifies the
name and possibly the inheritance path of the element. It is possible to add relatively arbitrary information
to an object. This allows attaching control information, such as windows in images, directly to the object.
This control information can be accessed by any routine processing the object or ignored if it is not needed.
This feature removes one of the primary difficulties of AIPS, that of passing this control information from
the user to the routine where it is needed. The POPS adverbs passed are accessed as an “input” object.
Members of input objects can be copied, and possibly renamed, to other arbitrary objects or the history file
associated with an object. This greatly simplifies handling control information.

3 The Object Manager and Class I/O
The heart of this system is the object manager on top of which all classes are built. An object in this
implementation consists primarily of a list of labeled information. Most of this information is kept in a
linked list although some object specific information may kept elsewhere. For some classes some information
is stored as part of an AIPS catalog header record (although this is nearly invisible at higher levels). Heavy
use is made of the AIPS Fortran preprocessor LOCAL INCLUDE facility to provide data which is only
available to the object manager. All access is through object manager functions. The Object manager is
used only by Class modules and should not be visible at the applications level.

Relatively arbitrary collections of labeled information can be kept by the object manager. Items can be
arrays (2 dimensions are actually supported but more could easily be implemented). Supported data types
are double and single precision, character strings, integers and logicals.

Although I /O to disk resident files are hidden from the applications level the class routines must still
transfer data to and from disk as necessary. The buffers and control information are kept in the include
file CLASSIO.INC. This include should NEVER appear in applications level routines. The values of various
parameters used in the class I /O buffers and other system arrays are set in the include OBJPARM.INC
which should also never be used outside of the object manager and class libraries.

2

4 History
History information is dealt with as text strings that are written to an object. This operation is only really
defined for permanent, disk resident objects. Lists of labeled information can be copied from an arbitrary
object, usually the inputs object, to the history of another object. The description of the history utility
routines is described later in this document.

5 Class Interfaces
Each class has its own layer of interface routines. These interface routines can be used directly on objects of
a derived type. In many cases these interface routines merely allow access to members of an object but in
other cases support unary and binary operations on objects. An example of this is image arithmetic. There
is also a generic set of the more common functions which will call the class specific routines. In particular
access to data associated with an object can always be done using the generic routines OGET and OPUT.
These routines are described in more detail in a following section.

For classes whose objects may contain much data there is a pair of efficient routines for read and write
access to this data in addition to the more general access. Some of these are demonstrated in the following
sections.

5.1 Generic Interface Routines
The following sections describe the generic routines in detail. Theses routines can be used for most operations
involving AIPS objects although class specific routines may be desirable in some cases for efficiency reasons.

5.1.1 C R E A T E

Creates an image object with specified name and class.

Inputs:

NAME O ? The name of the object.

CLASS C *8 Class of the object

Output:

IERR I Error return code, 0=0K

5.1.2 D E S T R Y

Destroys the object with name “name” ; quasi-permanent forms are unaffected.

Inputs:

NAME C*? The name of the object.

Output:

IERR I Error return code, 0=0K

5.1.3 Z A P

Destroys the object with name “name” ; quasi-permanent forms are deleted.

Inputs:

NAME C*? The name of the object.

Output:

IERR I Error return code, 0*»0K

5.1.4 O C O P Y

Makes a shallow copy of one object to another. The same quasi permanent forms are used for both. This
can be used to read and write to the same object.

3

Inputs:

NAMEIN C*? The name of the input object.

NAMOUT C*? The name of the output object.

Output:

IERR I Error return code, 0=0K

5.1.5 O C LO N E

Clones (makes a deep copy of) an object. Each of the components parts is cloned.

Inputs:

NAMEIN C*? The name of the input object.

NAMOUT O ? The name of the output object.

Output:

IERR I Error return code, 0=0K

5.1.6 O O PEN

Opens an object for access. Obtains header info etc. Any disk resident files^will be created if necessary.

Inputs:

NAME C*? The name of the object.

STATUS C*4 ’READ’, ’VRIT’, ’DEST’ (write but destroy on

failure).

Output:

IERR I Error return code, 0=0K, 5=data invalid

5.1.7 OCLOSE

Closes object updating disk resident information.

Inputs:

NAME C*? The name of the object.

Output:

IERR I Error return c ode, 0=0K

5.1.8 O G E T

Returns the dimensionality and value(s) associated with a given object member. Parameters in PAOOF.INC
can be used for data type codes. The value returned will be VALUE or VALUEC depending on the value of
TYPE, the other is undefined.

Inputs:

NAME O ?

KEYVRD O ?

Outputs:

TYPE I

DIM !(*)

VALUE ?(*)

VALUEC C*?

IERR I

The name of the object.

The name of the keyword in form 'MEM1.MEM2...’

Data type: 1=D, 2=R, 3 =C, 4=1, 5=L

Dimensionality of value, an axis dimension of zero

means that that dimension and higher are

undefined.

The value associated with keyword.

Associated value (character)

Note: this is passed as a 1-D character array

even for multidimensional string arrays.

Error return code, 0=0K

4

5.1.9 O P U T

Stores the dimensionality and value(s) associated with a given object member. Parameters in PAOOF.INC
can be used for data type codes. The value stored will be VALUE or VALUEC depending on the value of
TYPE, the other is ignored.

Inputs:

NAME C*? The name of the object.
KEYVRD C*? The name of the keyword in form 'MEM1.MEM2...'
TYPE I Data type: 1=D, 2=R, 3=C, 4=1, 5=L

DIM I C O Dimensionality of value, an axis dimension of zero

means that that dimension and higher are

undefined.

VALUE ?(*) The value associated with keyword.

VALUEC C*? Associated value (character)

Note: this is passed as a 1-D character array

even for multidimensional string arrays.

Outputs:

IERR I Error return code, 0=0K

5.2 Image Class
An image object consists of a pixel array object and a number of descriptive objects. These are dealt with
as a single object by the object manager. Access to the pixel array can be either by pixel, row, plane or an
entire image. A number of image operations have been defined and implemented. Images may consist of
real or complex (scratch objects only) pixels and may be blanked.

The following is a sample code fragment which adds 1.0 to the elements the pixel array of a 2-D image
object:

INTEGER TYPE, IERR, DIM(7), I, J, LROV, NROV, NAXIS(7)

CHARACTER IN*(*), 0UT*36

REAL RQW(4096)

INCLUDE 'INCS:PAOOF.INC'

C

OUT = ’Temporary1
CALL OCOPY (IN, OUT, IERR)

IF (IERR.NE.O) GO TO 999

C

CALL OOPEN (IN, 'READ’, IERR)

IF (IERR.NE.O) GO TO 999

CALL OOPEN (OUT, 'VRIT', IERR)

IF (IERR.NE.O) GO TO 999

C

DIM(l) = 8
DIM(2) = 1

CALL OPUT (IN, 'ARRAY.ARRAY_PNT.ACCESS', OOACAR, DIM, 'ROW',

* 'ROW', IERR)

IF (IERR.NE.O) GO TO 999

CALL OPUT (OUT, 'ARRAY.ARRAY_PNT.ACCESS', OOACAR, DIM, 'ROW',

* 'ROW', IERR)

IF (IERR.NE.O) GO TO 999

C Determine size

CALL OGET (IN, »ARRAY.ARRAY_DESC.NAXIS', TYPE, DIM, NAXIS,

* NAXIS, IERR)

IF (IERR.NE.O) GO TO 999

LROV « NAXIS(l)

NROV - NAXIS(2)

Shallow copy image for write

Open images

Row access (the default)

5

DO 100 J = l.NROW

CALL ARREAD (IN, DIM, ROW,

IF (IERR.NE.O) GO TO 999

DO 50 I = l.LROW

ROW(I) = ROW(I) + 1.0

50 CONTINUE

CALL ARRWRI (OUT, DIM, ROW, IERR)

IF (IERR.NE.O) GO TO 999

100 CONTINUE

Loop over image

IERR)

CALL ARRCLO (IN, IERR)

IF (IERR.NE.O) GO TO 999

CALL ARRCLO (OUT, IERR)

IF (IERR.NE.O) GO TO 999

CALL OCLOSE (IN, IERR)

IF (IERR.NE.O) GO TO 999

CALL OCLOSE (OUT, IERR)

IF (IERR.NE.O) GO TO 999

Close arrays

Close inages

5.3 Complex Image Class
A complex image class has been implemented as part of a Complex CLEAN task. A complex image consists
consists of a pair of simple images (e.g. Q and U images). In this case, two image objects are members of a
complex image object.

5.4 Inputs Class.
The interface to POPS has been cleaned up with the introduction of the inputs class. An inputs object
contains the labeled POPS adverbs passed to the task. Several arrays describing the passed adverbs can be
filled with DATA statements and passed to AV2INP which does the routine AIPS startup procedures and
returns an inputs object. Class member function IN20BJ will copy a selected list of members of an inputs
object, with possible renaming, to an arbitrary object. Usage of the inputs object is demonstrated in each
of the example tasks given as appendices.

As part of defining the POPS adverbs a numeric data type code is used. The parameter include
PAOOF.INC contains symbolic names for the defined data types: OOAINT = integer, OOARE = real,
OOADP = double precision and OO ACAR = character strings.

5.5 Table Class
A basic table class has been implemented with most of the features of AIPS tables available. The following
fragment demonstrates the use of the tables class. In this fragment all character entries in a specified range
of rows are blanked.

INTEGER TYPE, IERR, DIM(7), I, ROW, NC0L, NR0W, BC, EC

CHARACTER IN*(«0, 0UT*36

C MAXSIZ * «iax table entry size as

C reals or characters.

PARAMETER (MAXSIZ « 50)

REAL NVALS(MAXSIZ)

CHARACTER CVALS*(MAXSIZ)

INCLUDE 'INCS:PA00F.INC *

C Shallow copy table for write

6

OUT = ’Shallow c o p y’

CALL OCOPY (IN, OUT, IERR)

IF (IERR.NE.O) GO TO 999

C Open tables

CALL OOPEN (IN, ’READ’, IERR)

IF (IERR.NE.O) GO TO 999

CALL OOPEN (OUT, 'WRIT', IERR)

IF (IERR.NE.O) GO TO 999

C Get number of entries

CALL OGET (IN, ’NROW', TYPE, DIM, NROV, NROV, IERR)

IF (IERR.NE.O) GO TO 999
C Get number of columns

CALL OGET (IN, ’NCOL’, TYPE, DIM, NCOL, NCOL, IERR)

IF (IERR.NE.O) GO TO 999
C Get range of rows from input

C object.

CALL OGET (IN, ’BCOUNT', TYPE, DIM, BC, BC, IERR)

IF (IERR.NE.O) GO TO 999

BC = MIN (MAX (BC, 1), NROW)

CALL OGET (IN, ’ECOUNT', TYPE, DIM, EC, EC, IERR)

IF (IERR.NE.O) GO TO 999

IF (EC.LE.O) EC = NROW

C Process table

DO 100 ROW = BC.EC

DO 50 I = 1,NCOL

CALL TABDGT (IN, ROW, I, TYPE, DIM, NVALS, CVALS, IERR)

IF (IERR.NE.O) GO TO 999

C Blank any characters

IF (TYPE.EQ.OOACAR) CVALS = ' 1
C Rewrite

CALL TABDPT (OUT, ROW, I, TYPE, DIM, NVALS,

* CVALS, IERR)

IF (IERR.NE.O) GO TO 999

50 CONTINUE

100 CONTINUE
C Close tables

CALL OCLOSE (IN, IERR)

IF (IERR.NE.O) GO TO 999

CALL OCLOSE (OUT, IERR)

IF (IERR.NE.O) GO TO 999

6 Relationship with AIPS System Structure
One of the drawbacks of the object oriented style is that a task that uses a class must contain in its executable
all routines that might possibly be applied to that class whether they are used or not. The AIPS object
oriented routines are kept in special directories; class libraries and utility modules which do not use “Q”
routines are kept in the SAPLOOP directory; those that do are kept in the SQOOP directory. The current
contents of the SQOOP directory are Q AR R AY.FO R and QIM AGE.FOR which contain those routines in
the AR RAY and IM AGE class which use “Q” routines. The routines in these files do not need to and cannot
access the private data of their class. Task using the AIPS object oriented routines kept in the SAPGOOP
directory if they do not use “Q” routines and SQPGNOT if they do. Class libraries and utility are in files
whose name is close, if not identical to, the class or function name.

7

7 Examples
Examples of the use o f these classes are shown in two AIPS tasks. The first, IMTST, does several unary
and binary operations on images including a convolution. The second task, TBTSK, is a paraform task for
simple table operations. The example given will copy a range of rows from one table to a similar table. The
texts o f these tasks are included as appendices. TBTSK is included in the standard distribution. Other
examples of use are given in the section discussing the class interfaces.

8 Discussion
The system presented here has a number of advantages over the more traditional AIPS. Encapsulation of
data is very effective and much of the programming overhead of AIPS I/O , catalog manipulation etc. is
eliminated. Attaching the control information directly to objects virtually eliminates the need for task
specific commons as is used in AIPS. This makes it much simpler to write reuseable software. Many of
the routines in the example tasks given in the appendices could be reused in other applications without
change since they have no task specific connections (i.e. control information passed through a task specific
common). In AIPS, control parameters are frequently passed between tasks0 and packages of related routines
through commons. A change in one of the widely used commons frequently creates other problems. Passing
control information directly attached to objects should signifigantly reduce the maintance costs. The ability
to pass control information attached to objects is probably more important than the more common aspects
of object-oriented programming except possibly the encapsulation of knowledge about data structures.

There are still some weaknesses in this system which need to be considered. In Fortran 77 there is no
concept of classes so any dynamic binding must be done explicitly. This means that when new classes are
added the relevant generic interface routines must also be modified. In Fortran 77 overloading of operators
is not supported so all object operations must be explicitly written as routine calls which is less readable
than the more algebraic notation allowed in some 0 0 languages.

The error handling in this system is rather primitive. In some sections of the code half of the executable
statments are error checks making the logic more difficult to follow.

The implementation of objects in this system allows only a relatively small number of large objects.
However, the advantages of a large number of small objects (i.e. the individual pixels in an image array) are
not readily apparent and would probably impose a severe performance penalty in any implementation.

9 Description of System Modules
The following sections describe the major modules of the system especially the object manager, the history
utilities and the various classes. These descriptions include the public interface as well as the internal
structures and functions.

9.1 System includes OBJPARM .INC and CLASSIC).INC
There are two important system wide includes. The first is OBJPARM.INC which defines via PARAMETER
statments various system wide parameters such as the maximum number of objects extant simultaneously.
The text of this include follows:

C Include OBJPARM.

C System Parameter Include for

C AIPS Object Oriented Fortran

C system.

C Parameter include for Objects

C and Class I/O

INTEGER MAXOBJ, MAXSIZ, MAXIO, BUFSIZ, MAXCLS, MAXVKV

C MAXOBJ**max. number of objects

PARAMETER (MAXOBJ - 20)
C MAXSIZ-max. number words of

C object memory.

PARAMETER (MAXSIZ = 8192)

PARAMETER (MAXIO = 5)

PARAMETER (BUFSIZ = 8192)

PARAMETER (MAXCLS = 5)

PARAMETER (MAXVKV = 50)

MAXIO=max. number of I/O

streams.

BUFSIZ=Size of I/O buffer

MAXCLS * the number of

classes defined.

MAXVKV - Max number of

virtual keywords per class.

End OBJPARM.

The other system include is CLASSIO.INC which contains class I /O buffers and other info. The text
follows:

Include CLASSIQ.

Class I/O include for

AIPS Object Oriented Fortran

system.

INTEGER OBJLUN(MAXOBJ) , OBJFIN(MAXOBJ), BUFPNT(MAXOBJ)

LOGICAL OBNUSE(MAXIO)

REAL OBUFFR(BUFSIZ,MAXIO), SBUFF(512)

COMMON /OBJBUF/ OBJLUN, OBJFIN, BUFPNT, OBNUSE, OBUFFR, SBUFF
End CLASSIC.

9.2 Object manager
Private data:

MAXOBJ PI

MAXSIZ PI

NAMTAB C*32(MAXOBJ)

OBJMEM ? (MAXSIZ, MAXOBJ)

Word Type

Maximum number of simultaneous

objects (parameter).

Number of words of memory for sm

object, (parameter)

Object name table, position gives

object slot number.

Object memory, an association list,

referenced under the aliases OBJMEI,

OBJMER, OBJMEH, OBJMEL for I,R,C and

L. D values must be copied.

OBJMEM has the following structure:

Contents

I Address of next cell, .LE. 0 => last entry.

H *8 Keyword as HOLLERITH

I Type: 1=D, 2=R, 3=C, 4=1, 5«L

I First dimension (length of string for char)

I Second dimension

? Data, characters as Hollerith

As many words as necessary for the data.

OBJFRE I(MAXOBJ) Next free word in OBJMEM

OBJCAT 1(256,MAXOBJ)Array of catalog header records

OBJBUF I(MAXOBJ) Buffer number for associated I/O stream.

<0 *> not active.

LUNUSE L(100) True if LUN-index allocated.

OBJCLS C(MAXOBJ) *8 Object class

MEMNXT PI OBJMEM offset for next cell pointer.

MEMKEY PI OBJMEM offset for keyword

MEMTYP PI OBJMEM offset for data type

9

MEMDM1 PI OBJMEM offset for 1st dimension

MEMDM2 PI OBJMEM offset for 2nd dimension

MEMDAT PI OBJMEM offset for start of data

MAXCLS PI Number of classes defined.

MAXVKW PI Maximum number of virtual keywords.

VKWCLS H*8(MAXCLS) Class name for virtual keyword.

VKWNUM I(MAXCLS) Number of defined virtual keywords.

VKWTAB 1 (7 ,MAXVKW,MAXCLS) Virtual keyword information array.

The second dimension is per keyword and the

third is per class. The structure of the

first dimension is:

Word Type Contents

1 H Keyword

3 I Category

4 I Pointer

5 I Data type

6 I Dim(l)

7 I Dim(2)

Where

keyword:

category:

pointer:

data type

dim

name of the virtual keyword as HOLLERITH (2 words = 8
char)

1 * in fixed portion of catalog header, pointer is
pointer into type dependent array. D values must be

copied from R array

2 = in keyword/value portion of catalog header, some
restrictions apply (not more than 2 words of data).
3 = Special derived keywords read access only. Pointer

specifies a class specific function.

pointer to catalog header entry or function.

: 1,2,3,4,5 for D, R, C, I, L data types of associated

data.

Dimensionality of value, an axis dimension of zero

means that that dimension and higher are undefined. For

character strings the length of the string is the first

dimension.

VKTKEY PI VKWTAB col. number for keyword

VKTCAT PI VKWTAB col. number for category

VKTPNT PI VKWTAB col. number for pointer

VKTYPE PI VKWTAB col. number for data type

VKTDM1 PI VKWTAB col. number for dimension

VKTDM2 PI VKWTAB col. number for dimension

Shared data with Class I/O (CLASSIO.INC) •

MAXIO PI Maximum number of I/O simultaneous

streams

BUFSIZ PI Buffer size in words

OBUFFR R(BUFSIZ,MAXIO) I/O buffers

BUFPNT I(MAXIO) Buffer pointer

OBJLUN I(MAXOBJ) LUNs for I/O

OBJFIN I(MAXOBJ) FTAB pointer for I/O

Public functions:

OBINIT (ierr)

Initialize Object manager.

Private functions:

INVINI (ierr)

10

Initialize virtual keywords for inputs class.
IMVINI (ierr)

Initialize virtual keywords for image class.

OBKEYW (objnum, keywrd, keypnt, ierr)

Lookup keyword inOBJMEM; called by OBGET and OBPUT.
OBKEYV (objnum, keywrd, keypnt, ierr)

See if keyword is an object dependent, virtual keyword.

OBRGET (objnum, keywrd, type, dim, value, valuec, ierr)

Fetch the value (array) for a specified real (non-virtual)
keyword.

Shared fmictions with class modules:

OBCREA (name, class, ierr)

Associate an object slot with an object name.
OBFREE (name, ierr)

Free the object slot associated with an object.

OBNAME (name, objnum, ierr)

Look up the object slot number of object with name "name".
OBCLAS (obnum, clasno, name, ierr)

Look up the class number of object number objnum.

OBPUT (objnum, keywrd, type, dim, value, valuec, ierr)

Save an entry in an object creating it if necessary.

OBGET (objnum, keywrd, type, dim, value, valuec, ierr)

Fetch the value (array) for a specified keyword.
OBLUN (lun, ierr)

Find a free LUN.

OBLUFR (lun)

Releases am LUN

OBINFO (name, bufno, ierr)

Look up I/O stream associated with an object.

OBDSKC (name, disk, cno, ierr)

Return Disk and slot information for object.
OBHGET (name, c a t , ierr)

Return catalog header record for an object.

OBHPUT (name, cat, ierr)

Store catalog header record for an object.

OBCOPY (namein, namout, ierr)

Copies one image to another.

OBOPEN (name, ierr)

Assigns a buffer.

OBCLOS (name, ierr)

Closes a buffer associated with an object.

9.3 History

This module contains routines which can he used to manipulate histories associated with objects that
disk resident. Available functions are:

OHCOPY (in, out, iret)

Copies the history from object in the object out. iret“0
indicates success.

OHVRIT (entry, out, iret)

^r ites up to 72 characters from character string entry to the

history associated with object out. iret*=0 indicates success.
OHLIST (in, list, nlist, out, iret)

Writes the names and values of the members of object in specified

by the first nlist elements in the character string array list to

the history associated with object out. iret«0 indicates

are

11

s u c ce s s .

OHTIME (out, iret)

Adds task name and time and date stamp to history associated with

object out. iret=0 indicates success. Assures that a history

file exists.

9.4 Array Class
Array Class: name “AR RAY1’

An array is a regular array of values with several descriptive base classes. General access to members is
through ARRGET and ARRPUT although efficient access to the array may be had through ARREAD and
ARRWRI. Access may be by element, row, plane or image. Arrays may contain either real or complex data
type elements. Blanking is also allowed.

Class Data:

array R (* ,*...)

ARRAY.PNT class

ARRAY_DESC class

ARRAY_STAT class

Array of Pixel values. May be memory or disk

resident.

Array access pointer

Array description

Array statistical information

Private class data:

ARRFDV I(*,MAXIO) Internal array for I/O routine

ARRTYP I(MAXIO) Access type: l=pixel, 2=row, 3=plane,

4=array.

ARRPT I(MAXIO) Row element pointer

ARRDIM I (7,MAXIO) Dimension of window in array

Public functions:

ARRGET (name, keywrd, type, dim, value, valuec, ierr)

Return array subarray. Access may be by pixel, row, plane or

array as determined from ARRAY_DESC.

ARRPUT (name, keywrd, type, dim, value, valuec, ierr)

Store array subarray. Access may be by pixel, row, plane or

array as determined from ARRAY_DESC.

ARREAD (name, dim, data, ierr)

Read a section of an array

ARRWRI (name, dim, data, ierr)

Write a section of an array

ARRCLO (name, ierr)

Close I/O to an array

ARROPN (name, ierr)

Setup for I/O to an array

CHKBLK (n, data, valid)

Checks an array for blanking and returns a validity array

SETBLK (n, valid, data)

Blanks an array on the basis of a validity array.

ARRNEG (in, out, ierr)

Negate the values of an input array and write an output

array.

ARRFFT (dir, in, out, ierr)

FFT an array.

ARRADD (ini, in2, out, ierr)

Adds two arrays.

ARRMUL (ini, in2, out, ierr)

Multiplies two arrays.

ARRPAD (in, out, ierr)

Copy one array to another with zero padding.

12

ARRSCL (In, factor, out, ierr)

Scale an array with a factor.

Private Function:

ARRCHK (ini, i n 2 , ierr)

Check that two arrays acre compatible.

ARRWIN (name, blc, trc, dim, ierr)

Returns window information about am array

ARRIO (opcode, name, fdvec, ibuff, ipnt, ierr)

Handles I/O to disk resident array

ARRMEM (????) Not yet implemented

Handles access to memory resident array.

9.5 Array descriptor Class
Array descriptor class: name = “ARRAYJDESC”

The array descriptor contains information about the dimensionality and data type of an array.

Class data:

NDIM I Number of dimensions in the array

NAXIS I(*) Dimension of each axis

TRC I(*) Top right corner of subimage, 0 ’s*>all

BLC I («0 Bottom left c o m e r of subimage, 0 ’s=>all

DATATYPE C *8 Element type, ’REAL’, ’COMPLEX’

ANAME C *8 Name of array if memory resident

FNAME C*48? Physical name of array file if disk resident.

FDISK I Disk number for FNAME.

BLANK R If 0.0 or absent then the array has no blanking

Public functions:

ARDGET (name, keywrd, type, dim, value, valuec, ierr)

Return array descriptor member.

ARDPUT (name, keywrd, type, dim, value, valuec, ierr)

Store array descriptor member.

9.6 Array Pointer class
Array pointer Class: name “ARRAY_PNT”

The array pointer class keeps track of the access type and the location in an array of the last access to
support sequential access of an array.

Class Data:

POSN 1(7) Element number on each axis of first element of

last read or next write.

ACCESS C *8 Array access type: 'PIXEL’, ’ROW', ’PLANE’,

’ARRAY’

Public functions:

ARPGET (name, keywrd, type, dim, value, valuec, ierr)

Return array pointer.

ARPPUT (name, keywrd, type, dim, value, valuec, ierr)

Store array pointer.

9.7 Array Statistics Class
Array Statistics class: nam e=“ARRAYJSTAT”

The array statistics class provides various statistical data about an array.

Class data:

DATAMAX R Maximum value

PIXMAX I(*) Position of maximum value

DATAMIN R Mininum value

13

PIXMIN I(*) Position of minimum value

DATARMS R RMS value

Public functions:

ARSGET (name, keywrd, type, dim, value, valuec, ierr)

Return array statistics member.

ARSPUT (name, keywrd, type, dim, value, valuec, ierr)

Store array statistics member.

9.8 Convolving Beam Class
Beam Class: name = “BEAM ”

This class contains information about CLEANing that has been done and the restoring beam size.

Class Data:

PRODUCT I Clean product code.

NITER I Number of Clean components

BMAJ R Clean beam major axis

BMIN R Clean beaus minor axis

BPA R Clean beam position single

Public functions:

BEMGET (name, keywrd, type, dim, value, valuec, ierr)

Return beam member.

BEMPUT (name, keywrd, type, dim, value, valuec, ierr)

Store beam member.

9.9 Complex Image Class
Complex Image Class: name “C X JM A G E ”

A complex image consists of a pair of real images. The real and imaginary parts of the object are accessed
by prepending ’R E AL.’ or ’IM A G .’ to the element name e.g. “REAL.ARRAY.ARRAYJDESC.NAXIS” is
the name of the dimension array for the real image. Access to rows of the complex image are to member
’AR R AY’ although CIG ETX and CIPUTX allow more efficient access.

Class public members:

ARRAY C X (* ,*,*)

REAL image object

IMAG image object

REALPART C*32

IMAGPART C*32

Class private members:

CXIOBJ C (2,MAXOBJ) *32 Name of the real and imaginary member

objects as a function of the complex image

object number.

CXIOBN I (2,MAXOBJ) Object numbers of the real and imaginary

member objects

CXIDIM I(7,MAXI0) Array dimension per I/O stream

IOACTV L(MAXOBJ) If true image I/O is active

Public functions:

CIMCRE (name, real, imag, iret)

Creates a complex image object with name "name" and whose real

and imaginary components are "real" and "imag".

CIMDES (name, ierr)

Destroys the image object with name "name"; quasi-permanent

forms are unaffected.

CIMZAP (name, ierr)

Destroys the image object with name "name"; quasi-permanent

forms are deleted.

Array(s) of complex pixels

Real part of the complex image

Imaginary part of the complex image

Name of REAL

Name of IMAG

14

CIMCOP (namein, namout, ierr)

Copys one object to another. The same quasi permanent forms
are used for both.

CIMCLN (namein, namout, ierr)

CLONES an object. The component parts are cloned.

CIGET (name, keywrd, type, dim, value, valuec, ierr)

Return keyword value.

CIPUT (name, keywrd, type, dim, value, valuec, ierr)

Store keyword value.

CIMOPN (name, status, ierr)

Opens a complex image for array access

CIMCLO (name, ierr)

Closes a complex image for array access

CIGETX (name, dim, row, ierr)

Return complex row.

CIPUTX (name, dim, row, ierr)

Stores complex row.

Private functions:

GETBAS (name, keywrd, base, object, mem, ierr)

Checks base class reference and returns relevant information.

CHKBAS (type, bascls, name, ierr)

Checks that data type is valid for the base class.

CIMIO (name, dim, data, ierr)

Fetches or stores a row of a complex image.

9.10 File Name Class
File name class: name = “FILE_NAME”

The file name class contains the information about a disk resident data structure.

Class data:

FTYPE C *8 Type of file (e.g. AIPS, FITS)

Following for files:

NAME C*12 AIPS adverb file name

CLASS C *6 AIPS adverb file class

NAMCLSTY C*20 AIPS Name (12 char), class (6 char) and TYPE

(2 char)
IMSEQ I AIPS sequence number

DISK I AIPS disk number

CNO I AIPS catalog slot number

Public functions:

FNAGET (name, keywrd, type, dim, value, valuec, ierr)

Return array file name member.

FNAPUT (name, keywrd, type, dim, value, valuec, ierr)

Store array file name member.

9.11 File Status Class
File Status: name = “FILE_STATUS”

The file status class contains information about the status and validity of a disk resident data structure.

Class data:

STATUS C*4 'READ’, ’WRI T’, ’DEST* (write but destroy on

failure) or * *

VALID L .TRUE, if file contains valid data.

Public functions:

15

FSTGET (name, keywrd, type, dim, value, valuec, ierr)

Return array file status member.

FSTPUT (name, keywrd, type, dim, value, valuec, ierr)

Store array file status member.

9.12 Image Class
Image Class: name “IM AGE”

An image consists of a pixel array as well as a number of base classes for descriptive information. General
access is through IM GET and IMPUT although efficient access to the array member can be had directly
through ARREAD and ARRWRI. ARRCLO should be used to close the access if ARREAD and/or ARRWRI
are used.

Class data:

MAXROV PI

R0W1 R(*)

R0V2 R(*)

R0V3 R(*)

Maximum length of an image row

Row Buffer 1

Row Buffer 2

Row Buffer 3

Class base classes:

ARRAY

FILE.NAME

FILE_STATUS

IMAGE_DESC

VELOCITY

POSITION

TABLE

BEAM

Array of pixel values

File name information

File status information

Descriptive information about the image

Information for the conversion of frequency to

velocity.

Celestial position information

Tables

Beam size / deconvolution information

Public functions:

IMGCRE (name, ierr)

Creates an image object with name "name".

IMGDES (name, ierr)

Destroys the image object with name "name"; quasi-permanent

forms aure unaffected.

IMGZAP (name, ierr)

Destroys the image object with naime "name"; quasi-permanent

forms are deleted.

IMGCOP (namein, namout, ierr)

Copys one object to another. The same quasi permanent forms

aare used for both.

IMGCLN (namein, naunout, ierr)

CLONES an object. A new object is created and any associated

quasi-permanent forms are created. The name, class etc. for

the output quasi-permanent catalog entries aure given by

keywords OUTNAME, OUTCLASS, OUTSEQ and OUTDISK associated with

namein. The output image will represent the specified subimage

in the input image.

IMGSCR (name, dim, ierr)

Creates an image scratch object of the size and structure given

by dim.

IMGOPN (name, status, ierr)

Opens an image object. Checks for valid data.

IMGCLO (name, ierr)

Closes am image object. Updates data validity.

IMGET (name, keywrd, type, dim, value, valuec, ierr)

Return keyword value.

16

IMPUT (name, keywrd, type, dim, value, valuec, ierr)

Store keyword value.

IMGATT (name, docrea, ierr)
Attach an AIPS catalog data file to an object. The name, class

etc. for the output quasi-permanent catalog entries are given

by keywords NAME, CLASS, SEQ and DISK associated with “name".

Creates the file if necessary.

IMCSET (name, status, ierr)

Sets any file status)

IMCCLR (name, ierr)

Clears any file status)

IMGADD (ini, in2, out, ierr)

Adds two image objects.

IMGCVL (ini, in2, factor, out, ierr)

Convolves two images

IMGSUB (ini, in2, out, ierr)

Subtracts in2 from ini image objects

IMGMUL (ini, in2, out, ierr)

Multiplies in2 by ini image objects

IMGDIV (ini, in2, out, ierr)

Divides ini by in2 image objects

IMGNEG (in, out, ierr)

Negate the values of an image object.

IMGFFT (dir, in, out, ierr)

FFT an image

IMGPAD (in, out, ierr)
Copy one image to another with zero padding.

IMGSCL (in, factor, out, ierr)

Scale an image with a factor.

FFTPAD (in, out, ierr)
Creates a scratch image suitable for FFTing an image and copies

the selected subset of the input image into the scratch image

with zero padding around the edges. The scratch image is made

twice the size of the input image if possible.

Shared with derived classes

IMGCHK (ini, in2, ierr)
Checks that two images have compatible size and position.

IMGWIN (ini, b l c , trc, naxis, ierr)

Determine specified window in an image.

Private functions:

CFLSET (name, disk, cno, status, ierr)

Set AIPS catalog status, DFIL.INC common

CFLCLR (name, disk, cno, status, ierr)

Clear AIPS catalog status, DFIL.INC common

IMCREA (name, ierr)
Creates file structures for image "name1*

IMBGET (name, keywrd, type, dim, value, valuec, ierr)

Fetches member of a base class of image class

IMBPUT (name, keywrd, type, dim, value, valuec, ierr)

Stores member of a base class of image class

9.13 Image Descriptor Class
Image descriptor class: name = “IMAGEJDESC.”

The image descriptor contains descriptive information about an image.

Class public members;

17

OBJECT C*8 Source najne

TELESCOP C*8 Telescope najne

INSTRUKE C*8 Receiver name

DATA-OBS C*8 Observing date as dd/mm/yy

DATA-MAP C*8 Creation date as dd/mm/yy

DOCHECK L True if array labeling should be compared before

binary operations with other arrays.

BUNIT C *8 Units of the array

CTYPE C*8 (*) Label for each axis

CRVAL D(*) Coordinate value at reference pixel

CDELT R(*) Coordinate increment

CRPIX R(*) Reference pixel for axis

CROTA R(*) Coordinate rotation for each axis.

Public functions:

IMDGET (name, keywrd, type, dim, value, valuec, ierr)

Return image descriptor member.

IMDPUT (name, keywrd, type, dim, value, valuec, ierr)

Store image descriptor member.

9.14 Inputs Class
Inputs Class: Name “INPUTS”

An INPUTS object contains the names and values of the POPS adverbs passed from the user.

Class data:

Passed Adverbs

Public functions:

AV2INP (prgn, nparm, parm, type, dim, out, ierr)

Does AIPS startup and copies AIPS adverbs to an Inputs object.

IN20BJ (in, nkey, inkey, outkey, out, ierr)

Copies a list of keywords to object out with possible renaming.

INGET (name, keywrd, type, dim, value, valuec, ierr)

Return adverb value.

INPUTS (name, keywrd, type, dim, value, valuec, ierr)

Store adverb value.

9.15 Position Class
Observing position class: name = ’POSITION’

The observing position class contains information about the original position and any phase center shifts
of the data.

Class data:

OBSRA D Pointing position: RA (degrees)

OBSDEC D Pointing position: Dec (degrees)

XSHIFT R Phase shift in RA (degrees)

YSHIFT R Phase shift in Dec (degrees)

Public functions:

PSNGET (name, keywrd, type, dim, value, valuec, ierr)

Return position member.

PSNPUT (name, keywrd, type, dim, value, valuec, ierr)

Store position member.

18

9.16 Table Class
Table Class: Name “TABLE”

Tables are rectangular data structures which may contain elements of various data type. Most table
access is through TABG ET and TABPU T but rapid access to row data is possible through TABD G T and
TABDPT.

Class public members:

NAME C*12 Catalog file name
CLASS C *6 Catalog file class

SEq I Catalog file sequence number
DISK I Disk number
TBLTYPE C*2 Table type

VER I Version number

The following must be set before a new table is opened and are unavailable before an existing table is
opened.

LABEL

NCOL

COLABEL

COLUNIT

COLTYPE

COLDIM

C*56

I
C(*)*24

C (*) * 8
I(*)

!(*)

Table label

Number of columns

Column labels

Column units

Column data type: l=double, 2=real,

3=character, 4=integer, 5=logical, 7=bit

arrays.

Column dimension.

The following are available only when the table is open.

NROV I Number of rows

SORT 1 (2) Sort order
CURROV I Current row number, if negative it has not yet

been read.

ENTRY.nn ?(?) table entry for column number nn
KEY.xxxx v table keyword/value pair for keyword xxxx

Class private members:

TBNCOL I(MAXIO)

TBCROV I(MAXIO)

TBTYPE 1(128,MAXIO)

TBDIM 1(128,MAXIO)

TBPTR 1(128,MAXIO)

RECORD I (2048,MAXIO)

Number of columns, per I/O stream.

Current row number, per I/O stream.

Column type codes, one set per I/O stream

Column element count

Column pointer to first element in array

of type.

Record buffer per I/O stream.

Equivalenced to RECR, RECD, RECH and, RECL

for real, double, Hollerith and logical.

Public functions:

TABCRE (name, iret)

Creates a table object.

TABDES (name, ierr)

Destroys the table object with name "name"; quasi-permanent

forms are unaffected.

TABZAP (name, ierr)

Destroys the table object with name "name"; quasi-permanent

forms are deleted.

TABCOP (namein, namout, ierr)

Copys one object to another. The same quasi permanent forms
are used for both.

19

TABCLN (namein, namout, ierr)

CLONES an object. A new table is created.

TABOPN (name, status, ierr)

Opens a table for access.

TABCLO (name, ierr)

Closes a table for access.

TABCOL (name, ncol, colab, colnum, ierr)

Returns column numbers for a list of column labels.

TABGET (name, keywrd, type, dim, value, valuec, ierr)

Fetches table member

TABPUT (name, keywrd, type, dim, value, valuec, ierr)

Stores table member

TABDGT (name, row, col, type, dim, value, valuec, ierr)

Fetches table row data

TABDPT (name, row, col, type, dim, value, valuec, ierr)

Stores table row data

TABKGT (name, keys, nkeys, klocs, kvals, ktype, ierr)

Fetches values of specified table keywords. If keys(l) is

blank then all keywords up to a maximum of nkeys is read. On

return nkeys is the number read.

TABKPT (name, keys, nkeys, klocs, kvals, ktype, ierr)

Stores values of specified table keywords.

Private functions:

TBLMEM (keywrd, mem, arg, local, ierr)

Parses keyword into components

TBLKUP (name, tdisk, tcno, ttype, tver, ierr)

Looks up information about table object.

9.17 Vector Class
Vector class: Name “VE CTO R ”

A vector is a one dimensional array of numeric values. Blanking is supported. Arguments INn, and OUT
are Fortran arays, VALINn and VALOUT are logical arrays specifying whether corresponding elements of
INn or OUT are valid. The element count is N and the stride is assumed to the the minimum appropriate
for the given data type. This is more of a utility library than a true class library.

Public functions

RVNEG (IN, OUT, N)

Real Vector negate.

CVNEG (IN, OUT, N)

Complex Vector negate

RVBNEG (IN, VALIN, OUT, VALOUT, N)

Real Vector negate with blanking

CVBNEG (IN, VALIN, OUT, VALOUT, N)

Complex Vector negate with blanking

RVADD (INI, I N2, OUT, N)

Real Vector add

CVADD (INI, I N 2 , OUT, N)

Complex Vector add

RVBADD (INI, VALIN1, IN2, VALIN2, OUT, VALOUT, N)

Real Vector add with blanking

CVBADD (INI, VALIN1, IN2, VALIN2, OUT, VALOUT, N)

Complex Vector add with blanking

RVSUB (INI, I N2, OUT, N)

Real Vector subtract

CVSUB (INI, IN2, OUT, N)

Complex Vector subtract

20

RVBSUB (INI, VALIN1, IN2, VALIN2, OUT, VALOUT, N)

Real Vector subtract with blanking

CVBSUB (INI, VALIN1, IN2, VALIN2, OUT, VALOUT, N)

Complex Vector subtract with blanking

RVMUL (INI, I N 2 , OUT, N)

Real Vector multiply

CVMUL (INI, IN2, OUT, N)

Complex Vector multiply

RVBMUL (INI, VALIN1, IN2, VALIN2, OUT, VALOUT, N)

Real Vector multiply with blanking

CVBMUL (INI, VALIN1, IN2, VALIN2, OUT, VALOUT, N)

Complex Vector multiply with blanking

RVDIV (INI, IN2, OUT, N)

Real Vector divide first by second

CVDIV (INI, I N 2 , OUT, N)

Complex Vector divide first by second

RVBDIV (INI, VALIN1, IN2, VALIN2, OUT, VALOUT, N)

Real Vector divide first by second with blanking

CVBDIV (INI, VALIN1, IN2, VALIN2, OUT, VALOUT, N)

Complex Vector divide first by second with blanking

RVSCL (INI, FACTOR, OUT, N)

Real Scale vector with real

CVSCL (INI, FACTOR, OUT, N)

Complex Scale vector with real

RVBSCL (INI, VALIN1, FACTOR, OUT, VALOUT, N)

Real Scale vector with real with blanking

CVBSCL (INI, VALIN1, FACTOR, OUT, VALOUT, N)

Complex Scale vector with real with blanking

9.18 Velocity Class
Velocity class: name = “VELOCITY”

The velocity class contains informaton necessary for the transformation between frequency and velocity.

Class data:

VELREF I Velocity definition code: 0 => none,
1 - 3 => LSR, Sun, Obs + 256 if radio

ALTRVAL D Alternate reference value : (frequency

in Hz or velocity in m/seic)

ALTRPIX R Alternate reference pixel

RESTFREQ D Line rest frequency (Hz)

Public functions:

VELGET (name, keywrd, type, dim, value, valuec, ierr)

Return velocity member.

VELPUT (name, keywrd, type, dim, value, valuec, ierr)

Store velocity member.

Appendix A
IM TST

Task IMTST will do one o f a number o f simple image operations depending on the value of the POPS
adverb ’OPCODE’ . One option, ’TE ST ’ , negates an image and then adds it to the original allowing a easy
test for correctness since all valid pixels in the output should be zero.

The names and descriptions o f the POPS adverbs passed are declared and DATAed in the LOCAL
INCLUDES INPUT.INC and INPUTDATA.INC. These arrays are passed to AV2INP which returns an
input object. The initialization routine TAFIN then creates the relevant objects and copies adverb values
from the input object to these objects using lists in DATA statments and calls to IN20BJ.

LOCAL INCLUDE ’IMTST.INC’

C Local include for IMTST

CHARACTER 0PC0DE*4, INPUT1*36, INPUT2*36, 0UTPUT*36

COMMON /CHPARM/ OPCODE, INPUT1, INPUT2, OUTPUT

LOCAL END

LOCAL INCLUDE ’INPUT.INC’

C Declarations for inputs

INTEGER NPARMS

PARAMETER (NPARMS=16)

INTEGER AVTYPE(NPARMS), AVDIM(2,NPARMS)

CHARACTER AVNAME(NPARMS) *8
LOCAL END

LOCAL INCLUDE ’INPUTDATA.INC’

C DATA statments defining input

C parameters.

C Uses PAOOF.INC

C 1 2 3 4 5

DATA AVNAME / ’INNAME’ , ’INCLASS’, ’INSEQ’, ’INDISK’, ’IN2NAME’,

C 6 7 8 9 10

* ’IN2CLASS ’ , ’IN2SEQ*, ’IN2DISK’, ’OUTNAME’, ’OUTCLASS’,

C 11 12 13 14 15 16

* ’OUTSEQ’, ’OUTDISK ’, ’B L C’, ’TR C’, ’OPCODE’, ’BADDISK’/

C 1 2 3 4 5 6
DATA AVTYPE /OOACAR, 00ACAR, 00AINT, 00AINT, 00ACAR, 00ACAR,

C 7 8 9 10 11 12 13

* 00AINT, 00AINT, OOACAR, OOACAR, 00AINT, 00AINT, 00AINT,

C 14 15 16

* 00AINT, OOACAR, 00AINT/

C 1 2 3 4 5 6 7 8

DATA AVDIM /12,1, 6,1, 1,1, 1,1, 12,1, 6,1, 1,1, 1,1,

C 9 10 11 12 13 14 15 16

* 12,1, 6,1, 1,1, 1,1, 7,1, 7,1, 4,1, 10,1/

LOCAL END

PROGRAM IMTST

C--

C! Test bed for image class software

C# Map-util Utility

C This software is the subject of a User agreement and is confidential

C in nature. It shall not be sold or otherwise made available or

C disclosed to third parties.
C---

C IMTST is a testbed for prototype image class.

C Inputs:

C AIPS adverb Prg. name. Description.

C INNAME NAMEIN Name of input image.

C INCLASS CLAIN Class of input image.

22

c INSEQ SEQIN Seq. of input image.

c INDISK DISKIN Disk number of input image.

c GUTNAME NAMOUT Name of the output image

c Default output is input image.

c OUTCLASS CLAOUT Class of the output image.

c Default is input class.

C OUTSEQ SEQOUT Seq. number of output image.

c OUTDISK DISKO Disk number of the output image.

c BLC(7) BLC Bottom left corner of subimage

c of input image.

c TRC(7) TRC Top right corner of subimage.

c
c—

OPCODE OPCODE User specified opcode.

CHARACTER PRGM*6
INTEGER IRET

INTEGER INAX(7), IBLC(7). ITRC(7), BUFFI(256)

REAL FACTOR

INCLUDE ’INCS:DFIL.INC’

INCLUDE ’INCS:DMSG.INC *

INCLUDE ’INCS:DDCH.INC’

INCLUDE ’INCS:DHDR.INC’

INCLUDE ’IMTST.INC’

DATA PRGM / ’IMTST ’/
c---
C Startup

CALL IMTIN (PRGM, IRET)

FACTOR = 1 . 0

C Operate on images.

IF (OPCODE.EQ. ’ADD ’) CALL IMGADD (INPUT1, INPUT2, OUTPUT,

IF (OPCODE.Eq. ’NEG ’) CALL IMGNEG (INPUT1, OUTPUT, IRET)

IF (OPCODE.Eq. ’CONV’) CALL IMGCVL (INPUT1, INPUT2, FACTOR,

IRET)

IF (OPCODE.Eq. ’TEST’) THEN

C Negate an image and add it to

C the original.

CALL IMGWIN (INPUT1, IBLC, ITRC, INAX, IRET)

IF (IRET.NE.O) GO TO 990

CALL IMGSCR (’SCRATCH’, INAX, IRET)

IF (IRET.NE.O) GO TO 990

CALL IMGNEG (INPUT1, ’SCRATCH’, IRET)

IF (IRET.NE.O) GO TO 990

CALL IMGADD (INPUT1, ’SCRATCH’, OUTPUT, IRET)

IF (IRET.NE.O) GO TO 990

END IF

C History

IF (IRET.EQ.O) CALL IMTHIS (INPUT1, INPUT2, OUTPUT)

C Close down files, etc.

990 CALL DIE (IRET, BUFFI)

C

999 STOP

END

SUBROUTINE IMTIN (PRGN, IRET)
c--
C IMTIN gets input parameters for IMTST and creates the input and

C output objects

C Inputs:

C PRGN C *6 Program name

C Output:

C IRET I Error code: 0 => ok

23

INTEGER IRET

CHARACTER PRGN+6

C
INTEGER NOPCO, NKEY1, NKEY2

C NOPCO=number of Opcodes

PARAMETER (N0PC0=4)
C NKEYl=no. adverbs to copy to

c INPUT1

PARAMETER (NKEY1=10)
C NKEY2=no. adverbs to copy to

c INPUT2

PARAMETER (NKEY2=6)

INTEGER IERR, LOOP, ICODE, DIM(7), TYPE

LOGICAL ISUNAR(NOPCO)
CHARACTER OPCO(NOPCO)*4, INK1 (NKEY1)*8 , 0UTK1(NKEY1)*32,

* INK2(NKEY2)*8, 0UTK2(NKEY2)*32

INCLUDE *INCS:DMSG.I NC’

INCLUDE ’INCS:DFIL.INC’

INCLUDE ’IMTST.INC’

INCLUDE ’INPUT.INC’

INCLUDE ’INCS:PA00F.INC’

INCLUDE ’INPUTDATA.INC’
C ISUNAR = .true, if OPCODE is a

C unary function.

C 1 2 3

DATA I S U N A R / .FALSE., .TRUE., .TRUE., .FALSE./

DATA OPCO / ’ADD ’, ’NEG ’TES T’, ’CONV’/
C Adverbs to copy to image objects

C 1 2 3 4 5 6

DATA INK1 / ’INNAME’, ’INCLASS’, ’INSEQ’, ’INDISK’, ’BL C’, ’TR C’,

C 7 8 9 10

* ’OUTNAME’, ’OUTCLASS’, ’OUTSEQ’, ’OUTDISK*/

C 1 2

DATA 0UTK1 / ’FILE_NAME.NAME’, ’FILE_NAME.CLASS’,

C 3 4 5

* ’FILE_NAME.IMSEQ’, ’FILE.NAME.DISK’, ’ARRAY.ARRAY_DESC.BLC’,

C 6 7 8 9

* ’ARRAY.ARRAY_DESC.TRC’, ’OUTNAME’, ’OUTCLASS’, ’OUTSEQ’,

C 10

* ’OUTDISK’/
C 1 2 3 4 5

DATA INK2 / ’IN2NAME’, ’IN2CLASS’, ’IN2SEQ’, ’IN2DISK’, ’B L C’,

C 6
* ’T R C’/

C 1 2

DATA 0UTK2 / ’FILE_NAME.NAME’, ’FILE.NAME.CLASS’,

C 3 4 5

* ’FILE_NAME.IMSEQ’, ’FILE_NAME.DISK’, ’ARRAY.ARRAY_DESC.BLC’,

C 6
* ’ARRAY.ARRAY_DESC.TRC’/

--
C Startup

CALL AV2INP (PRGN, NPARMS, AVNAME, AVTYPE, AVDIM, ’Input’, IRET)

IF (IRET.NE.O) GO TO 990
c BADDISK

CALL OGET (’Input’, ’BADDISK’, TYPE, DIM, IBAD, IBAD, IRET)

IF (IRET.NE.O) GO TO 990
C Lookup OPCODE

24

CALL OGET (’Input’, ’OPCODE’, TYPE, DIM, OPCODE, OPCODE, IRET)

IF (IRET.NE.O) GO TO 990

ICODE = -1

DO 200 LOOP = 1 .NOPCO

IF (OPCODE.EQ.OPCO(LOOP)) ICODE = LOOP
200 CONTINUE

C Recognized OPCODE

IF (ICODE.LE.O) THEN

IRET = 1

MSGTXT - ’UNKNOWN OPCODE: ’ // OPCODE

GO TO 990

END IF

C Create input objects

INPUT1 = ’Image 1’

CALL IMGCRE (INPUT1, IRET)

IF (IRET.NE.O) GO TO 999

C Copy adverbs to object

CALL IN20BJ (’Input’, NKEY1, INK1, 0UTK1, INPUT1, IERR)

C Second input object if binary

C function.

IF (.NOT.ISUNAR(ICODE)) THEN

INPUT2 = ’Image 2 ’

CALL IMGCRE (INPUT2, IRET)

IF (IRET.NE.O) GO TO 999

C Copy adverbs to object

CALL IN20BJ (’Input’, NKEY2, INK2, 0UTK2, INPUT2, IERR)

END IF

C Create Output Object - attached

C output file naming to INPUT1
OUTPUT = ’Output’

CALL OCLONE (INPUT1, OUTPUT, IRET)

IF (IRET.NE.O) GO TO 999

GO TO 999

C

990 CALL MSGWRT (8)
C

999 RETURN

END

SUBROUTINE IMTHIS (INPUT1, INPUT2, OUTPUT)

C--

C Routine to write history file to output image object.

C Inputs:

C INPUT1 C*? First input image

C INPUT2 C*? Second input image

C OUTPUT C*? Output image
C--

CHARACTER INPUT1*(*), INPUT2*(*)f 0UTPUT*(*)

C

INTEGER NADV

PARAMETER (NADV=12)

CHARACTER LIST(NADV)*8 , HILINE*72

INTEGER IERR, TYPE, DIM(7)

REAL SUMQ, SUMU

INCLUDE ’INCS:DMSG.INC’

C Adverbs to copy to history

DATA LIST / ’INNAME’, ’INCLASS’, ’INSEQ*, ’IN2NAME*, ’IN2CLASS’,

* ’IN2SEQ’, ’OUTNAME’, ’OUTCLASS’, ’OUTSEQ’, »BLC*, ’TRC',

* ’OPCODE’/

25

--
C Copy old history

CALL OHCOPY (INPUT1, OUTPUT, IERR)

IF (IERR.NE.O) GO TO 990

CALL OHCOPY (INPUT2, OUTPUT, IERR)

IF (IERR.NE.O) GO TO 990
C New additions - copy adverb

C values.

CALL OHLIST (’Input’, LIST, NADV, OUTPUT, IERR)

IF (IERR.NE.O) GO TO 500

C Error

990 HSGTXT - ’ERROR WRITING HISTORY FOR ’ // OUTPUT

CALL MSGWRT (4)

999 RETURN

END

26

Appendix B
TBTSK

TBTSK is a paraform task for manipulating tables. The example shown copies a range of rows from one table to
another.

LOCAL INCLUDE ’INPUT.INC’

C Declarations for inputs
INTEGER NPARMS

C NPARMS=no. adverbs passed.
PARAMETER (NPARMS=10)

INTEGER AVTYPE(NPARMS), AVDIM(2,NPARMS)

CHARACTER AVNAME(NPARMS) *8
LOCAL END

LOCAL INCLUDE ’INPUTDATA.INC’

C DATA statments defining input

C parameters.

C NOTE: Uses values in PAOOF.INC

C Adverb names

C 1 2 3 4 5

DATA AVNAME / ’USERID’, ’INNAME’, ’INCLASS’, ’INSEQ’, ’INDISK’,

C 6 7 8 9 10

* ’IN E X T’, ’INVERS’, ’OUTVERS’, ’BCOUNT’ ,’E C O U N T V

C Adverb data types (PAOOF.INC)

C 1 2 3 4 5 6
DATA AVTYPE /00AINT, 00ACAR, 00ACAR, 00AINT, OOAINT, OOACAR,

C 7 8 9 10

* OOAINT, OOAINT, OOAINT, OOAINT/

C Adverb dimensions (as 2D)

C 1 2 3 4 5 6 7 8 9

DATA AVDIM/1,1, 12,1, 6,1, 1 ,1 , 1 ,1 , 2,1, 1,1, 1,1, 1,1, 1,1/

LOCAL END

PROGRAM TBTSK

--
C! Paraform AIPS OOP task processing a table.

C# Calibration VLBI

C This software is the subject of a User agreement and is confidential

C in nature. It shall not be sold or otherwise made available or

C disclosed to third parties.
C--

C Paraform AIPS OOP task processing a table.
C--

CHARACTER PRGM*6 , INTAB*36, 0UTTAB*36

INTEGER IRET, BUFFI(256)

DATA PRGM / ’TBTSK ’/

C--

C Startup

CALL TABTIN (PRGM, INTAB, OUTTAB, IRET)

C Process table

IF (IRET.EQ.O) CALL TABTAB (INTAB, OUTTAB, IRET)

C History

IF (IRET.EQ.O) CALL TABTHI (OUTTAB)

C Close down files, etc.

990 CALL DIE (IRET, BUFFI)

C

999 STOP

END

SUBROUTINE TABTIN (PRGN, INTAB, OUTTAB, IRET)

27

c TABTIN gets input parameters for TBTSK and creates the input and

c output objects

c Inputs:

c PRGN C *6 Program name

c Output:

c IRET I Error code: 0 => ok

C 4 => user routine detected error.

c 5 => catalog troubles

c 8 *=> can’t start

c Commons: /INPARM/ all input adverbs in order given by INPUTS

c file

INTEGER IRET
CHARACTER PRGN*6 , INTAB*36, 0UTTAB*36

c
INTEGER NKEY1, NKEY2

c NKEYl=no. adverbs to copy to

c INTAB

PARAMETER (NKEY1=9)

c NKEY2=no. adverbs to copy to

c OUTTAB

PARAMETER (NKEY2=7)
CHARACTER INK1(NKEY1)*8 , 0UTK1(NKEY1)*32, INK2(NKEY2)*8,

* 0UTK2(NKEY2)*32

INCLUDE ’INCS:DMSG.INC’

INCLUDE ’INPUT.INC’

INCLUDE ’INCS:PAOOF.INC’

INCLUDE ’INPUTDATA.INC’

c Adverbs to copy to INTAB

c 1 2 3 4 5

DATA INK1 / ’USERID’, ’INNAME’, ’INCLASS’, ’INSEQ’, ’INDISK’,

c 6 7 8 9

* ’INEXT’, ’INVERS’, ’BCOUNT’, ’ECOUNT’/

c May rename adverbs to INTAB

c 1 2 3 4 5 6

DATA 0UTK1 / ’USERID’, ’NAME’, ’CLASS’, ’SEQ’, ’DISK’, ’TBLTYPE’,

c 7 8 9

* ’VER’, ’BCOUNT’, ’ECOUNT’/

c Adverbs to copy to OUTTAB

c 1 2 3 4 5

DATA INK2 / ’USERID’, ’INNAME’, ’INCLASS’, ’INSEQ’, ’INDISK’,

c 6 7

* ’INEXT’, ’OUTVERS’/

c May rename adverbs to OUTTAB

c 1 2 3 4 5 6

DATA 0UTK2 / ’USERID’, ’NAME’, ’CLASS’, ’ SEq’ , ’DISK’, ’TBLTYPE’,

c 7

* ’VER’/

C Startup, returns "Input" object

C containing POPS adverbs

CALL AV2INP (PRGN, NPARMS, AVNAME, AVTYPE, AVDIM, ’Input’, IRET)

IF (IRET.NE.O) GO TO 999
C Create input object

INTAB = ’Input table’

CALL CREATE (INTAB, ’TABLE’, IRET)

IF (IRET.NE.O) GO TO 999
0 Copy adverbs to object

28

CALL IN20BJ (’Input’, NKEY1, INK1, 0UTK1, INTAB, IRET)

IF (IRET.NE.O) GO TO 999

Create Output Object

OUTTAB = ’Output table’

CALL CREATE (OUTTAB, ’TABLE’, IRET)

IF (IRET.NE.O) GO TO 999

Copy adverbs to object

CALL IN20BJ (’Input’, NKEY2, INK2, 0UTK2, OUTTAB, IRET)

IF (IRET.NE.O) GO TO 999

999 RETURN

END

SUBROUTINE TABTAB (INTAB, OUTTAB, IERR)

C Convert table.

C This example simply copys one table to another

C Inputs:

C INTAB C* Name of input table object.

C OUTTAB C* Name of output table object.

C Output:

C IERR I Error code: 0 => ok

CHARACTER INTAB*(*), OUTTAB*(*)

INTEGER IERR

INTEGER MAXSIZ

C MAXSIZ = max table entry size as

C reals or characters

PARAMETER (MAXSIZ = 5000)

INTEGER IROV, OROV, NROV, ICOL, NCOL, BC, EC, TYPE, DIM(3)

REAL NVALS(MAXSIZ)

CHARACTER CVALS*(MAXSIZ)

C--

C Example: copy a subset of one

C table to another.

C

C Create output table

C This copies header stuff

C including any keywords.

CALL COPHED (INTAB, OUTTAB, IERR)

IF (IERR.NE.O) GO TO 999

C Open input table

CALL OOPEN (INTAB, ’READ’, IERR)

IF (IERR.NE.O) GO TO 999

C Open output table

CALL OOPEN (OUTTAB, ’WRIT’, IERR)

IF (IERR.NE.O) GO TO 999

C Get number of entries

CALL OGET (INTAB, ’NROV’, TYPE, DIM, NROV. NROV, IERR)

IF (IERR.NE.O) GO TO 999

C Number of columns

CALL OGET (INTAB, ’NCOL’, TYPE, DIM, NCOL, NCOL, IERR)

IF (IERR.NE.O) GO TO 999

C Get range of rows.

CALL OGET (INTAB, ’BCOUNT’, TYPE, DIM, BC, BC, IERR)

IF (IERR.NE.O) GO TO 999

BC - MIN (MAX (BC, 1), NROV)

29

CALL OGET (INTAB, ’ECOUNT’, TYPE, DIM, EC, EC, IERR)

IF (IERR.NE.O) GO TO 999

IF (EC.LE.O) EC = NROW
C Copy selected rows.

OROW = 0

DO 100 IROV = BC.EC

OROW = OROW + 1

DO 50 ICOL = 1,NCOL
CALL TABDGT (INTAB, IROW, ICOL, TYPE, DIM, NVALS, CVALS,

* IERR)

IF (IERR.NE.O) GO TO 999

CALL TABDPT (OUTTAB, OROW, ICOL, TYPE, DIM, NVALS,

* CVALS, IERR)

IF (IERR.NE.O) GO TO 999

50 CONTINUE

100 CONTINUE
C Close tables

CALL OCLOSE (INTAB, IERR)

IF (IERR.NE.O) GO TO 999

CALL OCLOSE (OUTTAB, IERR)

IF (IERR.NE.O) GO TO 999

C

999 RETURN

END

SUBROUTINE TABTHI (OUTTAB)

--
C Routine to write history file to output table object. This assumes

C that a previous history exists and merely adds the information from

C the current task.

C Inputs:

C OUTTAB C*? Output table object

CHARACTER OUTTAB*(*)

INTEGER NADV

PARAMETER (NADV=8)
CHARACTER LIST(NADV)*8
INTEGER IERR

INCLUDE ’INCS:DMSG.INC'
C Adverbs to copy to history

DATA LIST / ’INNAME’, ’INCLASS’, ’INSEQ’, ’INEXT’, ’INVERS’,

* ’OUTVERS’, ’BCOUNT’ ,’ECOUNT’/

C Add task label to history

CALL OHTIME (OUTTAB, IERR)

IF (IERR.NE.O) GO TO 990
C Copy adverb values.

CALL OHLIST (’Input’, LIST, NADV, OUTTAB, IERR)

IF (IERR.NE.O) GO TO 990

GO TO 999
C Error

990 MSGTXT *= ’ERROR WRITING HISTORY FOR ’ // OUTTAB

CALL MSGWRT (4)

999 RETURN

END

30

