
AX VS Memo 80
Remote Tapes in AIPS

Eric W. Greisen

June 30, 1992

1 In troduction
The management of magnetic tape devices in M L V S has been complicated by the wide diversity of tape
formats and manufacturers and the lack of any widespread standards for returned condition codes and other
structures indicative of the tape position and condition. A X V S needs to have considerable control over
tapes. In particular, it must not only read and write, but also do the tape operations of rewind, forward-
file, backward-file, and write-end-of-file. The operations of forward-record and backward-record were used
previously, but now only MK3TX uses forward-record. “Error” conditions including end-of-file, beginning-of-
medium, and end-of-medium, as well as non-specific true tape errors, must be detected and reported reliably to the higher-level software.
M V S support for a diversity of tape devices has always been suspect. The Z routines to drive tapes must
be host operating system dependent, but we have assumed that they have to support only one tape device
ŷp®i or family of device types with identical data structures and condition codes. In the real world, this is

not always the case. The IBM computer called lemur in Charlottesville has, for example three tape devices
supporting 12-inch 1600/6250-bpi reels, Exabytes, and DATs. Fortunately, all seem to use the same driver,
or at least the same return codes. Some of our user sites have not been so fortunate, and have had to develop
local versions of the Z routines to support different or diverse tape devices. The obvious solution for this
dilemma is to pass character strings to the Z routines describing the tape device types, allowing them to
branch as needed to support them all. This solution is in the process of being implemented in the 150CT92
release of M V S .
The uncertainty of M V S support for multiple tape devices was made even more evident with the advent of
computer networking. Tape devices are used too infrequently to justify the expense of putting one on each
workstation in the local area network. Thus, users wish to read and write tape devices located on one of
more “public” computers from their own computer. The “standard” UNIX solution to the “remote tape”
problem was tried in A 1 V S for a while using rmt and other remote procedures. This solution worked well
— between certain cpu’s and certain tape devices — but failed in other combinations due to the lack of
standard condition codes and tape-position data structures. A more A X V S -like solution for remote tapes is
described in this memo and was first installed in M V S at the end of 1991 (15APR92 release). The next two
sections of this memo deal with the structure and details of processing tape function calls remotely. Section
4 of this memo describes the underlying Berkeley socket implementation used for the actual communication
including some tests of the details which can have a drastic affect on the performance.

2 T P M O N
The tape monitor program called TPMON is at the heart of the new remote tape system. It operates as
a dasmon process on the computer which actually provides the tape drive service. Since every computer
supports a disk-file-based virtual tape device, at least one copy of TPMON runs on every computer under the
name TPMON 1. Additional copies of TPMON run on those computers which have real tape devices under the
name(s) TPMONn, where n — 2 . . . N supports M LVS tape drives 1. . . (N — 1) in the obvious order.

1

2 Page Remote Tapes in A IPS A X V S Memo 80

TPMQN is fairly simple in structure. When it begins, it determines its name and thereby which tape, or pseudo­
tape, device it is to support. Then it uses the Z routine ZVTPRO to open a communications channel to await
requests from a client. When one comes along, TPMON moves to the subroutine TPMONI which is virtually an
infinite loop. It uses subroutine ZVTPRX to read the transmission from the client. Extracting the subroutine
name and the in and out word counts from this transmission, TPMONI calls internal subroutine kxxxxx to
support a request from A X V S Z routine Zxxxxx. At present, ZMOUNT, ZTAPE, ZTPCLS, ZTPMIO, and ZTPOPN
are the only routines which need to be supported in TPMON. Each of the kxxxxx subroutines (1) unpacks the
buffer from the client, (2) checks the arguments for inconsistencies, (3) calls the corresponding local (real) Z
routine using the arguments provided by the client, and (4) packs any return data into the buffer. TPMONI
then calls ZVTPRX to return the error code and any words of returned data. Then the read/pro cess/return cycle is repeated ad infinitum.

Actually ad infinitum usually ends fairly quickly, in a sense, when the client program terminates its
connection. ZVTPRX sees this as an end-of-file condition to which it responds by closing the actual tape
device (if it was still open) and then calling routine ZVTPGC to terminate the old connection and wait for anew one.
From the client side, the process is also relatively straightforward. For magnetic tapes, much of the real
action is put in the verb MOUNT which has two new adverbs REMHOST, the remote host name, and REMTAPE,
the A X V S tape drive desired on the remote system. Subroutine ZMOUNT begins the mount by translating
the logical TAPEn, where n is the requested tape drive number. If that translation is the string “REMOTE”,
then a common variable is set to hostname, the value of REMHOST converted to lowercase, and the logical
name AMTOn is set to AIPSMTn: hostname. Otherwise, the common variable is set to “LOCAL” and AMTOn is
set to the translation of TAPEn. For remote tapes, subroutine ZMOUNR opens up a communication channel,
sends the mount request to the desired TPMON on hostname, and closes the channel. For local tapes, the
subroutine ZM0UN2 does the actual mount, which can be a no-op, a lock-file operation (e.g., Suns), or a complex manipulation of the tape (e.g., Convex).
All of the client-side tape Z routines, ZTPOPN, ZTPMIO, ZTPWAT, ZTAPE, and ZMOUNT have lower-level associated
routines whose names end in R for remote tapes and in 2 for local magnetic tapes. The upper level routines
perform generic functions and then call the appropriate lower level routine to do the real work. The ZTxxxK
routines are the exact reverse of the kTxxxx routines inside TPMON. Since all remote tape reading and writing
are forced to be synchronous, ZTPWAR only returns data lengths and error codes put in the FTAB by ZTPMIR.
Pseudo-tape disk files are never mounted. Instead, ZTPOPN detects the use of pseudo-tape via the logical unit
number and then checks the file name to determine whether to use local or remote techniques. File names
beginning with some characters followed by a double colon are taken to be remote with those characters
taken as the remote host name. The remaining characters in the file name are passed to the remote TPMON to
be used as the file name in the usual way. The only difficulty is that the logical name portion of the file name
will be interpreted by the remote TPMON and, hence, will almost certainly have to be some widely known
logical symbol such as FITS. If you use, for example, HOME, then you will get the area which was “home” to
the process which started the remote TPMON, not necessarily your home area or even A X V S 's home area.

3 C om m unication form at
The communication between server (TPMON) and client (some A X V S task such as AIPS or PRTTP) requires
buffers which consist of 5 words of header information followed by n words of call sequence data, where n
varies with the call sequence and with the data which are to be read from or written to the tape. All words
in the buffer are in FITS-standard format (ASCII characters, 32-bit big-endian integers, IEEE floating, etc.)
except the data directly transmitted to/from the tape. That is treated as a byte stream and not translated
in any way. This convention allows computers of dissimilar binary formats to serve each other with remote tapes.
The formats are listed in Table 1.

A I V S Memo 80 Remote Tapes in AIPS Page 3

Word Usage

Header 1-2
3
4
5

Subroutine name (6 characters used)
Number data words from client to server
Number data words from server to client
Error code (0 means okay)

ZMOUNT 6 1 for mount, else dismount
7 Tape drive number
8 Tape density
9 Remote user’s V O V S number — ignored
10 Remote user’s A L V S number

for input to TPMON and returns
6 System error code

7-26 System error message (80 characters)
ZTPOPN 6 Logical unit number

7 Tape drive number
8 Operation code (4 characters)

9-20 Disk file name (pseudo-tape) (48 characters)
for input to TPMON and returns no data

ZTAPE 6 Operation code (4 characters)
7 Logical unit number
8 Operation count

for input to TPMON and returns no data
ZTPMIO 6 Operation code (4 characters)

7 Logical unit number
8 Number of 8-bit bytes
9 Buffer number to use
10 Record number (used in pseudo-tape I/O)

11-71 Data to be written to tape
for input to TPMON and returns

6 System error from FTAB
7 Bytes actually transferred
8 Record number

9-n Data read from tape
and adjusts the header count of words from TPMON to client on reads

ZTPCLS 6 Logical unit number
for input to TPMON and returns no data

Table 1 : Communication formats

4 Page Remote Tapes in AIPS A I V S Memo 80

4 Network Z routines — D iscussion
The full text of the $APLBERK network routines for doing the remote tape I/O via Berkeley sockets appears
in Section 5. The most unusual aspect of socket I/O is that, when one attempts to read or write n bytes of
data, one gets only m < n bytes. Therefore, ZVTPX2 and ZVTPX3 are obliged to loop until the desired number
of bytes has been achieved. Socket I/O is done from the user’s buffers to internal (mostly) hidden buffers
after which the data are broken into segments and transmitted. The maximum segment size is determined
by the two hosts by agreement and cannot exceed 1460 bytes on Ethernet connections. The default sizes of
the hidden send and receive buffers is 4096 bytes.
When the A I V S remote tape system was first put into use, I naively had the headers written and read
separately from the data, although the two are consecutive in the buffers provided to ZVTPX2 and ZVTPX3.
Furthermore, I broke the data transmissions up into 1024-byte blocks. This turned out to be rather inefficient.
In one sequence of tests, using PRTTP on a particular tape, I found a real time of 109 seconds with a directly
connected tape and 182 seconds with TPMON. Changing the data transmissions either to 512-byte blocks or to
the number of bytes actually desired (28800) increased the remote real times to around 255 seconds. With
1024-byte segments, but with the headers and data combined in write operations only, the real time fell to
129 seconds. I don’t really understand this since this only changed the number of I /O ’s in one direction from
30 to 29 while changing the number in the other direction from 2 to 1.
In a later sequence of tests, using PRTTP on a different tape, I found a real time of 152 seconds for directly
connected tapes and 272 seconds for tapes connected via TPMON (with header and data written separately in
1024-byte maximum blocks). Changing only TPMON to use 1460-byte records (the agreed maximum segment
size) and to concatenate header and data on writes reduced the real time to 192 seconds. Making the same
changes to PRTTP brought the time down to 150 seconds, virtually the same as the direct connection. Via
PRTTP the cpu time was 20 seconds while the direct connection used only 4. It is possible to raise the size of
the “hidden” system buffer, an option used by Unix utilities such as rdump. Doing this allowed me to change
the reads and writes from < 1460 bytes to the actual number desired with an improvement in the cpu time
to about 15 seconds with no change in the real times.
After testing a variety of tape devices and a variety of cpus, Rick Perley wrote in a mail message of 26 June,
1992 “There is almost no measurable difference between writing on a local tape and writing onto a remote
one.” He found that IPCs were almost 50% slower than IPXs when writing multiple-file FITS Exabyte tapes
and that one CoCOMP 8500 Exabyte on host laguna was peculiarly inefficient. A I V S tasks PRTTP and
FITTP were used to test both reading and writing. I hope that the routines below can now stand the further
tests of time.

5 Netw ork Z routines — Listings
For the client side of the communication, the $APLBERK ZVTP02.C, ZVTPX2.C, and ZVTPC2.C routines do
open, I/O, and close, respectively. They are:

#include <stdio.h>
#include <errno.h>
#include <ctype.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <netdb.h>

int Z_maxseg, Z_sndbuf, Z_rcvbuf, Z_sndini, Z_rcvini;

zvtpo2_(fcb, plen, pname, ierr)
/*------------------------------ -*/

M V S Memo 80 Remote Tapes in AIPS Page 5

/*! open connection in client to server of remote, real tape */
/*# Tape Z2 */
/* This software is the subject of a User agreement and is */
/* confidential in nature. It shall not be sold or otherwise made */
/* available or disclosed to third parties. */
/*

/* ZVTP02 opens the connection in the Virtual tape program to the */
/* remote computer which provides the actual tape device. */
/* Inputs: */

/* FCB 1 (0 File descriptor */
/* PLEN I Length of PNAME */
/* PNAME H(*) Name of remote port as AIPSMTn:machine where n */
/* is a number 1-NTapes and machine is the remote */
/* machine name. No imbedded blanks */
/* ' * => real tape */
/* Output: */
/* IERR I Error: 0 => okay */
/* Unix Berkely version - bsd sockets. */
/*---*/

int *fcb, *plen, *ierr;
char pname [24] ;
/*---*/

{

/* Offsets to entries in the */
/* file control blocks */

extern int Z_fcbfd, Z_fcberr, Z_mfcb;
extern int errno;
chax device[10], lname[132];
int i, fd, dupfd, optlen;
char *machine_in;
struct sockaddr_in client_in;
struct servent *sp_in;
struct hostent *hp_in;
extern char *getenv();
extern char *index();

/*---

*ierr = 0;
errno = 0;

/* Extract Aips device name */
/* from pname */

for (i=0; i < *plen && i < 131 && pname[i] !='\0' && pname[i] !=' ';
i++)
lnajne[i] = pname [i] ;

lname[i] = ’XO';
for (i=0; i < 10 && lname[i] != kk lname[i] != *\0'; i++)

device [i] = lname[i];
device[i] = '\0' ;
if (pname[i] ==

machine_in = ftlname [i+1];
else {

fprintf(stderr, "ZVTP02: NO REMOTE MACHINE IN '/,s\nM, pname);
*ierr = 2;
goto exit;
>

/* open socket INET domain */
if (strncmp(device."AIPSMT",6)==0) {

6 Page Remote Tapes in AIPS A 1 V S Memo 80

/* malformed names go here */
if (!isalnum(*machine_in)) {

fprintf(stderr, "ZVTP02: MALFORMED NAME '/,s\n" , machine_in) ;
fprintf(stderr, "ZVTP02: FROM */,s\n", lname) ;
*ierr = 2;
goto exit;

>
/* translate name */

if ((sp_in = getservbyname(device,"tcp")) == NULL) {
fprintf (stderr, "ZVTP02: tcp/'/.s not a service\n" .device) ;
*ierr = 2;
goto exit;

>
if ((hp_in = gethostbyname(machine_in)) == NULL) {

fprintf (stderr, "ZVTP02: '/,s: unknown host\n" ,machine_in);
♦ierr = 2;
goto exit;

>
bzero((char *) &client_in, sizeof(client_in));
bcopy(hp_in->h_addr, (char *) &client_in.sin_addr,

hp_in->h_length);
client_in.sin_family = hp_in->h_addrtype;
client_in.sin_port = sp_in->s_port;
if ((fd = (int) socket (AF.INET, SOCK_STREAM, 0)) < 0) {

perror("ZVTP02 socket (INET)");
♦ierr = 1;
goto exit;

}
*(fcb + Z_fcbfd) = fd;
if ((dupfd = dup(fd)) == -1) {

/* Store 2nd buffer info in */
/* 1st buffer FCB for error */
/* processing (kludge) . */

*(fcb + Z_mfcb + Z_fcbfd) = dupfd;
for (i = 0; i < Z_mfcb; i++)

*(fcb + i) = *(fcb + Z_mfcb + i);
*(fcb + Z_fcberr) = errno;
close (fd);
♦ierr = 6;
goto exit;
}

else {
*(fcb + Z_mfcb + Z_fcbfd) = dupfd;

>
if (connect(*fcb, (struct sockaddr *) &client_in,

sizeof(client_in)) < 0) {
perror("ZVTP02 connect (INET)");
*(fcb + Z_fcberr) = errno;
close (fd);
close (dupfd);
♦ierr = 1;
goto exit;

}
optlen = sizeof (Z_sndbuf);
if (getsockopt (fd, S0L_S0CKET, S0_SNDBUF, (char *) &Z_sndbuf,

A I V S Memo 80 Remote Tapes in AIPS Page 7

feoptlen) < 0) {
perror("ZVTP02 SO.SNDBUF get");
Z_sndbuf = 4096;
>

/* else
fprintf (stderr,

"Default S0_SNDBUF is */,d bytes\n", Z_sndbuf); */
optlen = sizeof (Z_rcvbuf);
if (getsockopt (Id, S0L_S0CKET, SO.RCVBUF, (char *) &Z_rcvbuf,

ftoptlen) < 0) {
perror("ZVTP02 S0_RCVBUF get");
Z_rcvbuf = 4096;

>
/* else

fprintf (stderr,
"Default S0_RCVBUF is '/,& bytes\n", Z_rcvbuf); */

optlen = sizeof (Z_maxseg);

if (getsockopt (fd, IPPR0T0_TCP, TCP.MAXSEG, (char *) &Z_maxseg,
ftoptlen) < 0) {
perror("ZVTP02 TCP_MAXSEG get");
Z_maxseg = 1024;
>

/* else
fprintf (stderr,

"Default TCP_MAXSEG is */,d bytes\n", Z_maxseg); */
Z_sndini = Z_sndbuf;
Z_rcvini = Z_rcvbuf;
>

/* not AIPSMTn */
else {

fprintf (stderr, "ZVTP02: NOT TAPE DEVICE = '/.s\n", device);
♦ierr = 2;
>

/* Put system error # in FTAB */
exit:

if (*ierr != 0) *(fcb + Z_fcberr) = errno;
return;

>

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>

zvtpx2_ (fcb, bufsw, bufsr, buffer, ierr)
/*---

/*! writes/reads to/from server for the client (virtual tape) machine */
/*# Tape Z2 */
/* This software is the subject of a User agreement and is */
/* confidential in nature. It shall not be sold or otherwise made */
/* available or disclosed to third paxties. */
/* * /
/* ZVTPX2 transfers data between the clent (virtual tape) machine */
/* and the server (actual tape) computer */
/* Inputs: */
/* fcb I(*) File descriptor */

8 Page Remote Tapes in AIPS A X V S Memo 80

/* buf sw I Number of data words (each 32 bits) to send */
/* beyond the header. */
/* In/out: ♦/
/* buf sr I Number of data words (each 32 bits) to read back*/

/* beyond the header: really set by TPMON */
/* buffer I(*) Data buffer: header + data */
/* Output: */
/* ierr I Error: 0 => okay */
/* UNIX Berkeley version - read/write from socket. */
/* The header format is, in 32-bit words: */
/* 1,2 H(2) Subroutine name */
/* 3 I bufsw */
/* 4 I bufsr */
/* 5 I ierr */
/* Data begins in the 6th 32-bit word in any format agreed between */
/* TPMON and the relevant subroutine. E.g., */
/* ZTAPE: header = ’ZTAPE \ 3, 0, 0 */
/* data in = OPcode, LUN, Count */
/* out = only header word 5 (IERR) used */
/* ZTPMIO: header = *ZTPMI0 \ 4, 2+n, 0 (read) */
/* data in = 'READ', LUN, Nbytes, Buf# */
/* data out = SysError, BytesXfer, buffer(N) */
/* ZTPMIO: header = 'ZTPMIO ', 4+n, 2, 0 (write) */
/* data in = 'WRIT*, LUN, Nbytes, Buf#, buffer(N) */
/* data out = SysError, BytesXfer */
/* where N = # local words to Xfer Nbytes of data */
/* n = # 32-bit words to Xfer Nbytes of data */
/* header word S (IERR) also used on output. */
/*- -♦/
int *fcb, *bufsw, *bufsr, *ierr;
char bufferC] ;

/*-
{

-*/

/* Offsets to entries in the ♦/
/* file control blocks */

extern int Z_fcbfd, Z_fcberr, Z_maxseg, Z_sndbuf, Z_rcvbuf,
Z_sndini , Z_rcvini;

extern int errno;
int nbytes, mbytes, lbytes, sfd, ioff, lwords, iwords, jwords,

kwords, optlen;
char *iaddr;/* ---* /
errno = 0;
sfd = *(fcb + Z_fcbfd) ;
*ierr = 0;

/* write the header + data */
ioff = 0;

/* Loop invariant: elements */
/* 0 to ioff-1 of buffer have */
/* been written to the socket */
/* Transfer data: */

nbytes = 4 * (*bufsw) + 20 ;

if ((Z_sndbuf == Z_sndini) && (nbytes > Z_sndini)) {
optlen = sizeof (Z_sndini);

A X V S Memo 80 Remote Tapes in AIPS Page 9

Z_sndini = 29000;
if (setsockopt (sfd, S0L_S0CKET, S0_SNDBUF, (char *) &2_sndbuf,

optlen) < 0) {
perror ("ZVTPX2 increase sndbuf size");
Z_sndbuf = Z_sndini+1;
>

else

fprintf (stderr, "ZVTPX2 increased send buffer size\n");
>

/* fprintf (stderr,

"ZVTPX2 intends */,d data bytes to TPM0N\n", nbytes); */

for (nbytes = 4 * (*bufsw) + 20 ; nbytes > 0 ; nbytes -= mbytes) {
lbytes = (nbytes > Z_maxseg) ? Z_maxseg : nbytes ;
lbytes = nbytes ;
iaddr = &(buffer[ioff]) ;

if ((mbytes = write(sfd, iaddr, lbytes)) == -1) {
perror("ZVTPX2 WRITE DATA ERROR");
*ierr = 3;
goto exit;

>
ioff += mbytes;

/* fprintf (stderr,

"ZVTPX2 sends '/.d data bytes to TPM0N\n", mbytes); */
>

/* read the header + data */
ioff = 0;

/* Loop invariant: elements */
/* 0 to ioff-1 have been read */
/* from the socket */

/* fprintf (stderr, "ZVTPX2 intends to read header from TPM0N\n"); */

for (nbytes = 20 ; nbytes > 0; nbytes -= mbytes) {
iaddr = &(buffer[ioff]) ;
if ((mbytes = read(sfd, iaddr, nbytes)) <= 0) {

if (mbytes ==0) /* End of file indicator */
*ierr = 4;

else
*ierr = 3;

perror("ZVTPX2 READ HEADER ERROR");
goto exit;
>

ioff += mbytes;

/* fprintf (stderr, "ZVTPX2 reads '/.d bytes from TPM0N\n" .mbytes) ; */
>

/* number data words */
/* FITS byte order here */

iwords = buffer[13] ;
jwords = buffer[14] ;
kwords = buffer[15] ;
if (iwords < 0) iwords = iwords + 256 ;
if (jwords < 0) jwords = jwords + 256 ;
if (kwords < 0) kwords = kwords + 256 ;
Iwords = 256 * (256 * iwords + jwords) + kwords ;

10 Page Remote Tapes in AIPS A I V S Memo 80

♦bufsr = lwords;

nbytes = 4 * (lwords) ;

if ((Z_rcvbuf == Z_rcvini) && (nbytes > Z_rcvini)) {
optlen = sizeof (Z_rcvini);
Z_rcvini = 29000;
if (setsockopt (sfd, S0L_S0CKET, S0_RCVBUF, (char *) &Z_rcvbuf,

optlen) < 0) {
perror ("ZVTPX2 increase rcvbuf size");
Z_rcvbuf = Z_rcvini+1;
>

else
fprintf (stderr, "ZVTPX2 increased receive buffer size\n");

>
/* fprintf (stderr,

"ZVTPX2 intends to read '/.d data bytes from TPM0N\n", nbytes); */

for (nbytes = 4 * lwords ; nbytes > 0; nbytes -= mbytes) {
lbytes = (nbytes > Z_maxseg) ? Z_maxseg : nbytes ;
lbytes = nbytes ;
iaddr = &(buffer [ioff]) ;
if ((mbytes = read(sfd, iaddr, lbytes)) <= 0) {

if (mbytes == 0) /* End of file indicator */
♦ ierr = 4;

else
♦ ierr = 3;

perror("ZVTPX2 READ DATA ERROR");
goto exit;
}

ioff += mbytes;
/♦ fprintf (stderr, "ZVTPX2 reads '/.d bytes from TPM0N\n" .mbytes) ; ♦/

}
exit:

if (*ierr != 0) *(fcb + Z_fcberr) = errno;
return ;

>

zvtpc2_(fcb, ierr)
/*---+/

/*! close virtual tape connection to remote, real-tape computer */
/*# Tape Z2 */
/* This software is the subject of a User agreement and is */
/* confidential in nature. It shall not be sold or otherwise made */
/* available or disclosed to third parties. *// * -- */
/* ZVTPC2 closes the connection in the Virtual tape program to the */
/* remote computer which provides the actual tape device. */
/* In/out: */
/* fcb I(*) File descriptor */
/* Output: */
/* ierr I Error: 0 => okay */
/* BSD 4.2 version */

A L V S Memo 80 Remote Tapes in AIPS Page 11

/* deassigns via 'close1 certain devices i.e. socket *//* --- +/
int *fcb, *ierr;
/*---

{
/* Offsets to entries in the */
/* file control blocks */

extern int Z_fcbfd, Z_fcberr, Z_mfcb;
extern int errno;
int fd;

/*---

♦ ierr = 0;

/♦ Close first buffer file */
/♦ descriptor. ♦/

fd = *(fcb + Z_fcbfd);
if (close (fd) != 0) {

♦ (fcb + Z_fcberr) = errno;
♦ierr = 1;

>
/♦ Close second buffer file ♦/
/* descriptor. */

fd = *(fcb + Z_mfcb + Z_fcbfd);
if (close (fd) != 0 && *ierr == 0) {

*(fcb + Z_mfcb + Z_fcberr) = errno;
♦ierr = 1;

>
return;

>

From the server (TPMON) side, the corresponding $APLBERK routines ZVTP03.C, ZVTPX3.C, and ZVTPC3.C
routines do open, I/O, and close, respectively, while ZVTPGC.C closes one connection and waits for the next.
They are:

#include <stdio.h>
#include <errno.h>
#include <ctype.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <netdb.h>

struct sockaddr_un fromb, serverb;
struct sockaddr_in fromb_in, serverb_in;
struct servent *spb_in;
int Z_raaxseg, Z_sndbuf, Z_rcvbuf, Z_sndini, Z_rcvini;

zvtpo3_(hlen, hsock, fcb, ierr)
/*---

/♦! open connection in server (real-TP) to client (virtual-TP) */
/*# Tape Z2 */

/* This software is the subject of a User agreement and is ♦/
/* confidential in nature. It shall not be sold or otherwise made */

12 Page Remote Tapes in A IPS A I V S Memo 80

/♦ available or disclosed to third parties. ♦/
/♦-- ♦/
/♦ ZVTP03 opens the connection in TPMON to the remote machine which ♦/
/♦ is running the AIPS Virtual tape code. ♦/
/♦ Outputs: ♦/
/♦ fcb I(*) File descriptor ♦/
/♦ ierr I Error: 0 => okay ♦/
/♦ 1 => failure ♦/
/♦ 2 => invalid device name ♦/
/♦ SUN (and other Berkeley UNIX ?) version ♦/
/♦ Create a socket to receive commands/requests from remote */
/* computers for TP service. */
/*---*/

int *fcb, *ierr, *hlen;
chair hsock[8];
/*-- */

{
/* Offsets to entries in the */
/* file control blocks */

extern int Z_fcbfd, Z_fcbreq, Z_fcberr, Z_fcbxfr, Z_fcbsiz,
Z_fcbspl, Z_fcbsp2, Z_fcbsp3, Z_fcbsp4;

extern int errno;
char device [48];
int i, len, sfd, cfd, optlen;

/*---*/

♦ierr = 0;
errno = 0;

for (i=0; i < 48 && hsock[i] != kk hsock[i] != 'XO'; i++)
device[i] = hsock[i];

device [i] = '\0';
/♦ open socket, INET domain ♦/

if (strncmp(device,"AIPSMT",6)==0) {
/♦ translate name ♦/

if ((spb_in = getservbyname (device,"tcp")) == NULL) {
fprintf (stderr, "ZVTP03: tcp/'/.s not a service\n", device);
♦ierr = 2;
goto exit;
>

serverb_in.sin_port = spb_in->s_port;
if ((sfd = (int)socket(AF_INET, SOCK.STREAM, 0)) < 0) {

perror("ZVTP03 socket (INET)");
♦ierr = 1;
goto exit;

}
♦(fcb+Z_fcbfd) = sfd;
if (bind(sfd, (struct sockaddr ♦) &serverb_in, sizeof(serverb_in)) < 0) {

perror("ZVTP03 bind (INET)");
♦ierr = 1;
♦(fcb + Z_fcberr) = errno;
goto cleanup;

>
listen(sfd, 5);
len = sizeof(fromb_in);
if ((cfd = accept(sfd, (struct sockaddr ♦) ftfromb_in, ftlen)) < 0) {

perror("ZVTP03 accept (INET)");

A X V S Memo 80 Remote Tapes in AIPS Page 13

♦ierr = 1;
goto cleanup;
>

else {

♦(fcb+Z_fcbspl) = cfd;
>

optlen = sizeof (Z_sndbuf);

if (getsockopt (cfd, SOL.SOCKET, SO.SNDBUF, (char ♦) &Z_sndbuf,
ftoptlen) < 0) {

perror("ZVTP03 SO.SNDBUF get");
Z_sndbuf = 4096;
>

/♦ else

fprintf (stderr,

"Default SO.SNDBUF is '/.d bytes\n", Z_sndbuf); */
optlen = sizeof (Z_rcvbuf);

if (getsockopt (cfd, S0L_S0CKET, SO.RCVBUF, (char *) &Z_rcvbuf,
feoptlen) < 0) {
perror("ZVTP03 S0_RCVBUF get");
Z_rcvbuf = 4096;
>

/♦ else
fprintf (stderr,

"Default S0_RCVBUF is '/.d bytes\n", Z_rcvbuf); ♦/
optlen = sizeof (Z_maxseg);

if (getsockopt (cfd, IPPR0T0_TCP, TCP.MAXSEG, (char *) &Z_maxseg,
ftoptlen) < 0) {

perror("ZVTP03 TCP.MAXSEG get");
Z_maxseg = 1024;
>

/* else

fprintf (stderr,

"Default TCP_MAXSEG is '/,d bytes\n", Z_maxseg); */
Z_sndini = Z_sndbuf;
Z_rcvini = Z_rcvbuf;
>

/* UNIX domain not in VTP */
else {

fprintf(stderr,"ZVTP03: UNIX domain not supported\n");
♦ierr = 2;
>

/* system error # in FTAB */
exit:

if (*ierr != 0) *(fcb + Z_fcberr) = errno;
goto final;

cleanup:

if (shutdown(sfd, 0) != 0) {
♦ierr += 2;
>

if (close(sfd) != 0) {
♦ierr += 1;
>

final:
return;

14 Page Remote Tapes in AIPS A 1 V S Memo 80

>

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>

zvtpx3_ (fcb, bufsw, buffer, ierr)
/*-- */
/*! reads/writes from/to client (virtual TP) for the server (real TP) */
/*# TP-10 */
/* This software is the subject of a User agreement and is */
/* confidential in nature. It shall not be sold or otherwise made */
/* available or disclosed to third parties. */
/*-- */

/* ZVTPX3 reads into TPMON (on the computer with the real tape) from */
/* the computer running AIPS virtual tape code and returns answers */
/* and error codes. */
/* Inputs: */
/* fcb I File descriptor */
/* bufsw I Number words to send (incl header); if = 0, */
/* implies this is a read instead. */
/* In/out: */
/* buffer I(*) 5-word header plus data buffer: in */
/* FITS-standard 32-bit integer form!!!!! */
/* Output: */
/* ierr I Error: 0 => okay */
/* 3 => 10 error */
/* 4 => End of File */
/* BSD 4.2 version. */

/*-- */
int *fcb, *bufsw, *ierr;
char bufferC];
/*-- */
{

/* Offsets to entries in the */
/* file control blocks */

extern int Z_fcbfd, Z_fcbreq, Z_fcberr, Z_fcbxfr, Z_fcbsiz,
Z_fcbspl, Z_fcbsp2, Z_fcbsp3, Z_fcbsp4;

extern int Z_bytflp, Z_maxseg, Z_sndbuf, Z_rcvbuf, Z_sndini,
Z_rcvini;

int cfd, nbytes, mbytes, lbytes, ioff, Iwords, iwords, jwords,
kwords, optlen;

char *iaddr;
extern int errno;

/*-- */

♦ierr = errno = 0;
cfd = *(fcb + Z_fcbspl);

/* write the header + data */
if (*bufsw > 0) {

ioff = 0;

nbytes = 4 * (*bufsw) ;

if ((Z_sndbuf == Z_sndini) && (nbytes > Z_sndini)) {
optlen = sizeof (Z_sndini);

A I V S Memo 80 Rem ote Tapes in AIPS Page 15
Z_sndini = 29000;

if (setsockopt (cfd, S0L_S0CKET, S0_SNDBUF,
(char *) &Z_sndbuf, optlen) < 0) {
perror ("ZVTPX3 increase sndbuf size");
Z_sndbuf = Z_sndini+1;

>
else

fprintf (stderr, "ZVTPX3 increased send buffer size\nM);

/♦ fprintf (stderr,

"ZVTPX3 to send back */.d data bytes\n", nbytes); ♦/

for (nbytes = 4 * (*bufsw) ; nbytes > 0; nbytes —= mbytes) {
lbytes = (nbytes > Z_maxseg) ? Z_maxseg : nbytes ;
lbytes = nbytes ;
iaddr = &(buffer[ioff]) ;

if ((mbytes = write(cfd, iaddr, lbytes)) == 0) {
perror("ZVTPX3 WRITE DATA ERROR");
♦ierr = 3;
goto exit;

>
ioff += mbytes;

/♦ fprintf (stderr,

"ZVTPX3 sends back '/.d data bytes\n", mbytes); ♦/
>

>

/♦ read new header ♦/
else {

ioff = 0;

/♦ Loop invaricint: elements */
/* 0 to ioff-1 of buffer have */
/* been read from the socket */

/* fprintf (stderr, "ZVTPX3 to read header\n"); */

for (nbytes = 20; nbytes > 0; nbytes -= mbytes) {
iaddr = &(buffer[ioff]);
if ((mbytes = read(cfd, iaddr, nbytes)) <= 0) {

if (mbytes == 0)
♦ierr = 4;

else {
♦ierr = 3;

perror("ZVTPX3 READ HEADER ERROR");
>

goto exit;

>
ioff += mbytes;

/♦ fprintf (stderr, "ZVTPX3 reads */.d header bytes\n".mbytes) ; ♦/

/♦ read new data ♦/
ioff = 20;

/♦ FITS byte order here ♦/
iwords = buffer[9] ;
jwords = buffer[10] ;
kwords = buffer[11] ;

16 Page Remote Tapes in AIPS A X V S Memo 80

if (iwords < 0) iwords = iwords + 256 ;
if (jwords < 0) jwords = jwords + 256 ;
if (kwords < 0) kwords = kwords + 256 ;
Iwords = 256 * (256 * iwords + jwords) + kwords ;

/* Loop invariant: elements */
/* 16 to ioff-1 of buffer */
/* have been read from the */
/* socket */

nbytes = 4 * Iwords;

if ((Z_rcvbuf == Z_rcvini) && (nbytes > Z_rcvini)) {
optlen = sizeof (Z_rcvini);
Z_rcvini = 29000;
if (setsockopt (cfd, S0L_S0CKET, S0_RCVBUF, (char *) &Z_rcvbuf,

optlen) < 0) {
perror ("ZVTPX2 increase rcvbuf size");
Z_rcvbuf = Z_rcvini+1;

>
else

fprintf (stderr, "ZVTPX2 increased receive buffer size\n");

>

/* fprintf (stderr,
"ZVTPX3 intends to read '/,d data bytes\n", nbytes); */

for (nbytes = 4 * Iwords; nbytes > 0; nbytes -= mbytes) {
lbytes = (nbytes > Z_maxseg) ? Z_maxseg : nbytes ;
lbytes = nbytes ;
iaddr = &(buffer [ioff]) ;
if ((mbytes = read(cfd, iaddr, lbytes)) <= 0) {

if (mbytes == 0)
♦ierr = 4;

else
♦ierr = 3;

perror("ZVTPX3 READ DATA ERROR");
goto exit;

>
ioff += mbytes;

/* fprintf (stderr, "ZVTPX3 reads '/.d data bytes\n", mbytes); */

>
>

exit:
return;

>

zvtpc3_(fcb, ierr)
/*---*/

/*! close connection in real-TP computer to client, virtual-TP comp. ♦/
/*# Tape Z2 */
/* This software is the subject of a User agreement and is */
/* confidential in nature. It shall not be sold or otherwise made */
/* available or disclosed to third parties. */

A I V S Memo 80 Remote Tapes in AIPS Page 17

/*---*/

/♦ ZVTPC3 closes the connection in TPMON to the remote machine which ♦/
/♦ is running the AIPS Virtual tape code. ♦/
/♦ Inputs: ♦/
/♦ fcb 1 (0 File descriptor ♦/
/♦ Output: ♦/
/♦ ierr I Error: 0 => okay ♦/
/♦ Berkeley BSD 4.2 version */
/♦ deassigns via 'close' certain devices i.e. tape socket */
/*---*/
int *fcb, *ierr;

/*---*/

/* Offsets to entries in the */
/♦ file control blocks */

extern int Z_fcbfd, Z_fcbreq, Z_fcberr, Z_fcbxfr, Z_fcbsiz,
Z_fcbspl, Z_fcbsp2, Z_fcbsp3, Z_fcbsp4;

extern int errno;
int sfd, cfd;

/ * ---*/

♦ierr = 0;

sfd = *(fcb + Z_fcbfd) ;
cfd = *(fcb + Z_fcbspl) ;

if (shutdown(cfd, 0) != 0) {
*(fcb + Z_fcberr) = errno;
♦ierr += 8;

>
if (close(cfd) != 0) {

♦(fcb + Z_fcberr) = errno;
♦ierr += 4;

>

if (shutdown(sfd, 0) != 0) {
♦(fcb + Z_fcberr) = errno;
♦ierr += 2;

>
if (close(sfd) != 0) {

♦(fcb + Z_fcberr) = errno;
♦ierr += 1;

>

return;

>

#include <stdio.h>
#include <errno.h>
#include <ctype.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <netinet/in.h>
#include <netdb.h>

struct sockaddr_un fromb, serverb;

18 Page Remote Tapes in AIPS A L V S Memo 80

struct sockaddr_in fromb_in, serverb_in;
struct servent *spb_in;

zvtpgc_(fcb, ierr)
/*-- ^

/*! close & reopen connection in server (real-tape) to client (Vtape) */
/*# Tape Z2 */

/* This software is the subject of a User agreement and is */
/* confidential in nature. It shall not be sold or otherwise made */
/* available or disclosed to third parties. */
/*-
/*

/*

/*
/*
/*
/*
/*
/*
/*-
int *fcb, *ierr;
/*---

/* Offsets to entries in the */
/* file control blocks */

extern int Z_fcbfd, Z_fcberr, Z_fcbspl;
extern int errno;
int len, cfd, sfd;

/* char *machine_ in­
struct sockaddr_un client;
struct sockaddr_in client_in;
struct hostent *hp_in;+/

/*

*/
opens the connection in TPMON to the remote machine which is */
running the AIPS Virtual tape code. This differs from ZVTP03 */
in that the socket is already there and an old connection must be */
closed before a new one can be accepted. Called by ZVTPRX. */
In/Outputs: */

fcb I(*) File descriptor */
ierr I Error: 0 => okay */

SUN (and other Berkeley UNIX ?) version */
---w

♦ierr = 0;
errno = 0;
sfd = *(fcb + Z_fcbfd);
cfd = *(fcb + Z_fcbspl);

/* shutdown connection
shutdown(cfd, 0);
close(cfd);

/* accept new connection
len = sizeof(fromb_in);
if ((cfd = accept(sfd, &fromb_in, &len)) < 0) {

perror("ZVTPGC accept (INET) error");
♦ierr = 1;
*(fcb + Z_fcberr) = errno;

>
else {

*(fcb + Z_fcbspl) = cfd;
>

-*/

♦/

*/

return;
}

