
AIPS Memo 84

A Proposed Package to Support the Use of the X
Window System in AIPS Tasks

Chris Flatters
NRAO

November 12, 1993

1 Introduction
NRAO has been asked to write an AIPS task to perform interactive model-
fitting for space VLBI data. This program will use the X Window System to
display a representation o f the model in one window and allow the user to move
or stretch components o f the model using the mouse while changes to the model
visibilities are shown in separate windows. This will require a tighter coupling
between AIPS and X I l 1 than is supported by the current AIPS system.

Since it is likely that the existence o f one X ll-based AIPS task will encourage
a demand for others, I propose to write an AIPS extension that will make it
feasible to write AIPS tasks with X Window System interfaces. Such tasks may
be written using the C programming language or C + + and will have access to
the AIPS libraries. I have performed a number o f experiments to investigate
possible approaches to integrating AIPS with X I 1 and I am confident that this
proposal is feasible and can be implemented by a single programmer in a short
time. I will describe the proposed extension in section 2 and provide some
rationale for it in section 3. I will discuss the amount o f manpower required to
implement this proposal in section 4.

2 The Proposal
I propose that an enhancement package be distributed separately from AIPS or
as an optional part of the AIPS distribution. This package will consist o f the
following items.

11 will indiscriminantly refer to the X W indow System by its full name and as X I 1 through­
out this document.

1

• One or more libraries which provide a ANSI/ISO C interface to a subset
o f the AIPS library routines.

• One or more libraries providing common utilities for programs based on
the O SF/M otif user-interface toolkit.

• A set o f imake configuration files which extend the X I1 imake system by
adding definitions and rules that may be used to build AIPS tasks.

• An imake bootstrap program (analogous to the xmkraf command used by
the X Window System) that invokes imake with the appropriate options
for building makefiles for AIPS tasks.

• An installation script that generates the site-dependent configuration files
for the imake system using information that is obtained automatically or
by quizzing the installer.

The package should be supported on the most common UNIX variants but may
not be made available for other operating systems (although the possibility o f
porting to other operating systems in the future should not be ruled out)..

3 Rationale
In this section I will discuss the package components in more-or-less the order
in which they were introduced in Section 2.

3.1 The A IP S /C Interface
The C programming language has the most mature tools for developing X W in­
dow System user-interfaces o f any language. The only X Consortium library
standards are for C libraries (Xlib and Xt) and the most commonly used user-
interface toolkits are based on C.

Taken together with the fact that there is an ANSI/ISO standard for the
C programming language that ensures code portability between a wide range
o f compilers, the availability o f these tools means that the C programming
language is the programming language of choice for writing programs that use
the X Window System.

There is no fundamental reason why AIPS tasks should not be written in C
(although this is not currently supported) but it is necessary to call the AIPS
libraries, which have a FORTRAN 77 interface from C. Not only would it be
expensive to duplicate some of the algorithms in the AIPS libraries but it is
important to use the AIPS I/O system to access AIPS files so that FORTRAN
tasks and C tasks do not clash over access to files. Unfortunately there are two
problems with calling FORTRAN libraries from C.

2

The first problem is that the conventions for calling FORTRAN from C
and vice versa can vary from compiler to compiler which leads to portability
problems. The second is that the conventions for calling FORTRAN from C
are rather clumsy. Take the example o f writing an AIPS message in C. Under
many UNIX systems this would require code that looks like this.

const int errMsgLevel = 8;

zmsgwr_ ((float *)"An error message", fterrMsgLevel);

Note that although the message level is not altered by zmsgwr_ it must be
passed by reference to be compatible with FORTRAN argument rules which
means that an extra named storage location must be used (errMsgLevel in the
example above). This is rather unnatural in C and it is easy to make mistakes
when doing this. Such mistakes will usually be caught by the compiler but are
still frustrating. In addition the introduction of extra variables and constants
can make the code cluttered and difficult to read.

A C-language interface library would have the advantage o f concentrating
all o f the C /FORTRAN interface code and its potential portability problems
into one place. It would also allow much of the complexity involved in calling
FORTRAN from C to be hidden from the programmer.

The C interfaces would also be useable from C + + . In the longer term it
might be worth redefining the library interfaces in IDL (the CORBA interface
definition language) so that they may be used from any language that has an
IDL binding.

3.2 The Utility Library
The O SF/M otif user-interface toolkit is now the de facto standard user-interface
toolkit for the X Window System. It has been submitted for approval as an
X /O pen standard interface and is the basis for a proposed IEEE standard (the
Modular Toolkit Environment or MTE — IEEE draft standard P 1295.1). Motif
is shipped as a standard operating system component by almost all o f the major
UNIX vendors2. It is, therefore, reasonable to expect that most AIPS/X11
programs will be written using the O SF/M otif toolkit.

M otif applications are expected to behave as specified by the O SF/M otif
Style Guide. Unfortunately the O SF/M otif toolkit does not provide all o f the
facilities required to make application conform to the style guide. The most
obvious example is that pressing the <Help> key should display context-sensitive
help (item 5-13 o f the O SF/M otif Level One Certification Checklist) but the
O SF /M otif toolkit provides little support for on-line help.

2The most prominent exception is Sun, who provide M otif as an optional extra and will
integrate it into their standard release in 1994.

3

Providing a library o f missing facilities will not only reduce the amount o f
programming effort needed to produce a professional-looking application but
will encourage uniform behaviour.

Such a library could also hold smaller items that tend to crop up repeat­
edly in X I 1 /M otif programming. For example many programs need to use
XmNmodifyVerifyCallback routines to prevent users from typing words into a
numeric fields3.

3.3 The Imake System
The imake system uses the C preprocessor to generate make files using templates
for the make rules. It is often used to isolate system and site dependencies into
a set o f configuration files so that application programmers can supply system-
independent imake files rather that require installers to configure complicated
make files.

The MIT sample implementation of the X Window System provide an imake
configuration that already contains most of the information needed to build
AIPS programs that use X I 1 and most X Window System vendors include this
in their distributions. Only a few extra AlPS-specific definitions are needed
to compile AIPS tasks and these can be provided by modifying the basic M IT
template (Imake.tmpl) to include files containing the extra information needed
for AIPS programs (this requires adding only a few of code to the template). The
imake command can then be instructed to use the modified template instead
o f the original MIT template by setting the appropriate command line flags.
A makefile bootstrap program can be used to invoke imake with the correct
flags rather than expecting a software installer to remember what they are.
The bootstrap program would be used in place of the xmknrf command used to
configure pure X Window System software.

The information that is needed to compile AIPS programs falls into three
classes.

1. System-independent information.

2. Information about the operating system and machine being used.

3. Site-specific information

The first two classes of information can be supplied in the standard distribution
but the third must be added locally to a site configuration file. The site con­
figuration file can be generated by a script or program that examines the site
configuration and asks the person performing the installation about parameters
that it can not determine automatically. This will decrease the possibility of
errors in the site-specific configuration file.

3 M otif text entry widgets have the option of calling a programmer-supplied
XmHmodifyVerifyCallback routine that can check any text that is inserted and veto the change
if it finds the new text inappropriate.

4

The main disadvantage with using the imake system is that some X Window
System vendors still do not provide imake or provide broken versions o f it.
Fortunately the imake system and the X Window System configuration files are
available free o f charge separately from the MIT sample implementation of X I 1.

3.4 Portability Restrictions
UNIX systems tend to be fairly uniform in their handling of C /FO RTRAN inter­
faces. Almost all UNIX FORTRAN compilers retain the FORTRAN subroutine
calling conventions of the Berkeley portable FORTRAN 77 compiler with a few
minor variations (eg. the presence or lack o f a trailing underscore added to
routine names). This means that the same implementation of the C /AIPS in­
terface library could be used on most UNIX machines. This would make it easy
to support most current AIPS installations since UNIX is currently the AIPS
platform of choice for most AIPS sites.

The C interface library could be reimplemented for other operating sys­
tems (eg. OpenVMS or Windows NT) but there is little incentive to invest
manpower in this until there is significant interest in running AIPS on these
operating systems. Porting the make procedures to a non-UNIX system would
be considerably more work.

For the time being, UNIX-only support seems quite sufficient.

4 Manpower Requirements
The system that I have proposed is actually a repackaging o f work that would
have to be done to write a single X ll-based AIPS task. The advantage o f
splitting this work out into a separate packae is that it need not be duplicated
if further X ll-based tasks need to be written. Very little extra manpower is
needed to do this if the C /A IPS interface is written incrementally (ie. if it
initially contains only those interfaces that are needed by the first X ll-based
tasks and is extended as the need arises). I would estimate that an initial
version o f the package would add less than a man-month to the programmer
time required to develop the first X I 1 task with most o f the overhead coming
from the need to document the support routines and compilation procedures
more extensively than would be required if they were part o f a single program.

5

