
Going AIPS:
A Programmer’s Guide to the NRAO

Astronomical Image Processing System
Version 15 April 90

VOLUME 2

ABSTRACT
This manual is designed for persons wishing to write programs using the NRAO Astronomical

Image Processing System (AIPS). It should be useful for a wide range of applications, from making
minor changes in existing programs to writing m ajor new applications routines. All basic aspects
of AIPS programming are dealt with in some detail.

AIPS programmers:
— Image construction and applications routines
— Spectroscopy
— Polarization and VLBI
— TVs and AIPS
— UNIX and Cray COS implementations
— D ata formats
— VLBI
— Imaging
— IATj?X conversion
— AIPS software adm inistrator

Bill Cotton
Phil Diamond
Chris Flatters
Eric Greisen
Kerry Hilldrup
Gareth Hunt
Bill Junor
Glen Langston
Nancy Maddalena
Dean Schlemmer

Contents

9 D evices 9—9
9.1 Overview ..9-9
9.2 Tape D riv e s ...9-9

9.2.1 Opening Tape Files (T A P IO) ..9-9
9.2.2 Positioning T a p e s ...9-10
9.2.3 I/O to Tape Files (T A P IO) ...9-10
9.2.4 Tape D ata S tru c tu re .. 9-11
9.2.5 Tape D ata Formats .. 9-11

9.3 Graphics Displays ...9-12
9.3.1 Opening the Graphics T erm ina l.. 9-12
9.3.2 Writing to the Graphics T erm inal...9-12
9.3.3 Activating and Reading the C u rso r ... 9-13
9.3.4 Updating the Image Catalog ..9-13
9.3.5 An Example ..9-13

9.4 IN C L U D E S.. 9-15
9.4.1 D T K S .IN C ...9-15
9.4.2 D D C H .IN C ...9-15

9.5 R ou tines... 9-15
9.5.1 TAPIO ..9-15
9.5.2 TEKFLS .. 9-17
9.5.3 T E K V E C .. 9-17
9.5.4 T K C A T L .. 9-18
9.5.5 T K C H A R .. 9-18
9.5.6 T K C L R ..9-18
9.5.7 T K C U R S .. 9-19
9.5.8 T K D V E C .. 9-19
9.5.9 V B O U T ..9-19
9.5.10 ZC8CL ..9-19
9.5.11 ZCLC8 ..9-20
9.5.12 Z I 8 I L ... 9-20
9.5.13 Z I16IL ... 9-20
9.5.14 Z IL I16... 9-21
9.5.15 Z I32IL ... 9-21
9.5.16 Z IL I32 ... 9-21
9.5.17 Z R 32R L ..9-21
9.5.18 Z R L R 32..9-22
9.5.19 Z R 64R L ..9-22
9.5.20 Z R LR 64..9-23
9.5.21 Z T A P E ..9-23
9.5.22 ZTKCLS .. 9-24
9.5.23 Z T K O P N .. 9-24
9.5.24 ZTPCLS .. 9-25

i

9.5.25 ZTPMIO ..9-25
9.5.26 Z T P O P N ..9-25
9.5.27 Z T P W A T9-26

10 U sing th e T V D isp lay 10-1
10.1 Overview ... 10-1

10.1.1 Why Use (or not use) the TV D is p la y .. : ...10-1
10.1.2 The AIPS Model of a TV Display D e v ic e ..10-1

10.2 Fundamentals of the C o d in g ..10-3
10.2.1 The Param eter Commons and their M ain tenance...10-3
10.2.2 The I/O Routines ... 10-5
10.2.3 The Y R outines..10-6

10.3 Current A pplications... 10-11
10.3.1 Status Setting ..10-12
10.3.2 Load Images, Label10-13
10.3.3 UVMAP ..10-14
10.3.4 APCLN, VTESS, MX, et al.. 10-15
10.3:5 Plot Files (T V P L) ...10-18
10.3.6 Transfer Function Modification, Z o o m in g ..10-18
10.3.7 Object location, window se ttin g ..10-20
10.3.8 Blotch Setting, U se ... 10-22
10.3.9 R o a m 10-22
10.3.10Movie, B l i n k ... 10-23
10.3.11 T a s k s ...10-23
10.3.12Non-Standard T a s k s ..10-23

10.4 In c lu d e s .. 10-24
10.4.1 D T V C .IN C .. 10-24
10.4.2 D T V D .IN C .. 10-24
10.4.3 Y D E A .IN C .. 10-24

J.0.5 Y-Routine Precursor R em ark s.. 10-25
10.5.1 Level 0,.. 10-25
10.5.2 Level 1 10-31
10.5.3 Level 2.(Used as level 1 in non-standard t a s k s) .. 10-35
10.5.4 Level 3 (selected ones of some general in te r e s t) .. 10-37

10.6 Selected Applications Subroutines .. 10-39
10.6.1 Basic TV I/O O p e ra tio n s ..10-39
10.6.2 TV I/O U t i l i t i e s ..,......................... 10-41
10.6.3 Non-I/O U tilitie s .. 10-44

11 P lo t t in g 1 1-1
11.1 Overview ...11-1
11.2 PLOT F IL E S .. 11-1

11.2.1 General C om m en ts...11-1
11.2.2 Structure of a Plot F i l e ... 11-2
11.2.3 Types of Plot File Logical R e c o rd s ... 11-2
11.2.4 Other Plotting C u s to m s ...11-5

11.3 Plot Paraform T a s k s ... 11-6
11.3.1 Introduction ... 11-6
11.3.2 Getting S ta r te d ..11-6
11.3.3 Labeling the P l o t .. 11-6
11.3.4 P lo t t in g ... 11-7
11.3.5 Map I/O ..11-7
11.3.6 Cleaning Up ... 11-8
11.3.7 The Three Paraform Plot T ask s ..11-8

11

11.4 Plotting to D ev ices...11-10
11.4.1 V ersa tec ..11-11
11.4.2 QMS Laser P r in te r ..11-11

11.5 In c lu d e s ...11-12
11.5.1 D L O C .IN C ...11-12
11.5.2 D G P H .IN C ...11-13
11.5.3 D P L T .IN C11-13

11.6 R ou tines... 11-14
11.6.1 CHNTIC .. 11-14
11.6.2 C L A B 1 ..11-14
11.6.3 C L A B 2 ..11-14
11.6.4 C O M L A B .. 11-15
11.6.5 CONDRW ...11-15
11.6.6 C T IC S ...11-16
11.6.7 G C H A R ..11-16
11.6.8 GETROW ...11-17
11.6.9 G F IN IS ..11-17
11.6.10 GINIT .. 11-17
11.6.11 GINITG ...11-18
11.6.12 G IN IT L .. 11-19
11.6.13 G M C A T ...11-19
11.6.14 G P O S ..11-20
11.6.15 G R A Y PX ...11-20
11.6.16 GVEC .. 11-20
11.6.17 H I P L O T ...11-21
11.6.18 I N T M I O ...11-21
11.6.19 L A B IN I.. 11-22
11.6.20 P L E N D .. 11-22
11.6.21 P L G R Y .. 11-23
11.6.22 PL M A K E ...11-23

11.6.23 P L P O S 11-23
11.6.24 P L V E C .. 11-24
11.6.25 R E I M I O ...11-24
11.6.26 S T A R P L 11-24

12 U sing th e A rra y P ro c e sso rs 12-1
12.1 Overview ..12-1

12.1.1 Why use the Array Processor? .. 12-1
12.1.2 When to Use, and Not to Use, the A P ...12-1

12.2 The AIPS Model of an Array Processor ...12-2
12.3 How to Use the Array Processor .. 12-3

12.3.1 AP Data Addresses .. 12-3
12.3.2 Assigning the AP ..12-4
12.3.3 Data Transfers To and From the AP ...12-4
12.3.4 Loading and Executing AP P r o g r a m s ...12-5
12.3.5 Timing C a l l s ..12-5
12.3.6 Writing AP Routines ...12-5
12.3.7 FFTs ... 12-6

12.4 Pseudo-Array Processor and Vector C o m p u te rs ... 12-7
12.4.1 V ecto riza tio n ..12-7
12.4.2 Memory Use ..12-9

12.5 Example of the Use of the AP ... 12—11
12.6 IN C L U D E S.. 12-13

12.6.1 D A P C .IN C ...12-13
iii

12.6.2 D B P R .IN C .. 12-14
12.6.3 D D C H .IN C .. 12-14
12.6.4 Z V N D .IN C .. 12-15
12.6.5 Z V N D .IN C .. 12-15

12.7 Routines ...12-15
12.7.1 Utility Routines .. 12-15
12.7.2 Array Processor R o u tin e s ..12-20
12.7.3 AP Routine Call S eq u en ces .. 12-22

13 T ab les in A IP S 1 3-1
13.1 Overview ...13-1
13.2 General Tables Routines ...13-1

13.3 Specific Tables R o u tin e s .. 13-1
13.4 The Format Details ... 13-2

13.4.1 Row D ata .. 13-2
13.4.2 Physical File Form at .. 13-3
13.4.3 Control In fo rm a tio n ..13-3
13.4.4 Key word/value records ...13-5
13.4.5 I/O b u f f e r s .. 13-5
13.4.6 Fundamental Table Access Subroutines ...13-6
13.4.7 Table Reformating Subroutines .. 13-6

13.5 In c lu d e s .. 13-6
13.5.1 P U V D .IN C .. 13-6

13.6 Routines ...13-7
13.6.1 Routines Applying to All T a b l e s .. 13-7
13.6.2 Routines Applying to Specific Tables .. 13-14

h$ F IT S T ap es 1 4 -1
14.1 Overview ...14-1

14.2 Philosophy ... 14-1
14.3 Image F i l e s ..14-2

14.3.1 Overall Structure ...14-2
14.3.2 Header Records .. 14-2
14.3.3 D ata Records ... 14-7

14.4 Random Group (UV data) F ile s ...14-7
14.4.1 Header R e c o r d ... 14-8
14.4.2 D ata Records ... 14-8
14.4.3 Typical VLA Record S t ru c tu r e ..14-11
14.4.4 Single Dish D a t a .. 14-13

14.5 Extension F i l e s ...14-15
14.5.1 Standard Extension ... 14-16
14.5.2 Tables Extension ...14-17
14.5.3 3- D Tables E x te n s io n ..14-19
14.5.4 Older AIPS Tables ..14-22

14.6 AIPS FITS IN C L U D E S .. 14-23
14.6.1 D F U V .IN C .. 14-23
14.6.2 D F IT .IN C ..14-24
14.6.3 V F U V .IN C .. 14-24
14.6.4 V F IT .IN C ..14-25

14.7 AIPS FITS Parsing R o u t in e s .. 14-26
14.7.1 E X T R E Q ..14-27
14.7.2 FPARSE ..14-28
14.7.3 G E T C R D ..14-28
14.7.4 G E T K E Y ..14-29

iv

14.7.5 G E T L O G 14-29
14.7.6 G E T N U M 14-29
14.7.7 G E T S T R 14-30
14.7.8 G E T S Y M 14-30
14.7.9 GTW CRD 14-30
14.7.10 ID W C R D 14-31
14.7.11 R 3 D T A B 14-31
14.7.12 RWTAB 14-31
14.7.13 T A B A X I... ... 14-32
14.7.14 T A B H D K 14-32
14.7.15 T A B H D R 14-33

14.8 References 14-33
15 The Z Routines 15-1

15.1 Overview15-1
15.1.1 Device Characteristics Common ; . . . 15-2
15.1.2 F T A B15-2
15.1.3 L o g ica ls15-3
15.1.4 Disk Files15-3

15.2 System Functions 15-4
15.3 Disk I/O and File M anipulation R o u t in e s 15-5
15.4 Device (non-disk) I /O Routines15-6
15.5 D ata M anipulation Routines15-8
15.6 Directory and Text File Routines15-9
15.7 Television I/O 15-10
15.8 Virtual D e v ic e s 15-11
15.9 Miscellaneous 15-11
15.10 IN C LU D ES... ... 15-12

15.10.1 D D C H .IN C 15-12
15.10.2 D M SG .IN C 15-12

15.11 Routines 15-13
15.11.1 S Y S T E M 15-13
15.11.2 Disk I / O 15-17
15.11.3 Non-disk I/O routines 15-25
15.11.4 D ata M anipulation 15-34
15.11.5 Directory and Text File 15-45
15.11.6 Virtual D evices... ,......................15-48
15.11.7 Miscellaneous 15-50

16 Calibration and Editing 16-1
16.1 Introduction16-1
16.2 Multi-source uv D ata Files16-1

16.2.1 Distinguishing Sources16-1
16.2.2 Time Order16-2
16.2.3 Scans 16-2
16.2.4 Subarrays 16-2
16.2.5 Compressed D a ta16-2
16.2.6 Frequency Sets (FQ id)16-2
16.2.7 Tables16-2

16.3 Editing Basics16-3
16.4 Interferometric Calibration Basics16-3

16.4.1 Internal C a l ib ra t io n 16-4
16.4.2 Smoothing16-4
16.4.3 Reference Antennas16-4

V

16.5 Observing M o d e l ..16-5
16.6 Applying Calibration to Interferometer D ata .. 16-5

16.6.1 Amplitude, Phase, Delay and R a t e ...16-5
16.6.2 Baseline Dependent C alib ra tion ..16-5
16.6.3 Bandpass Calibration .. 16-6
16.6.4 Spectral Smoothing ..16-6
16.6.5 Polarization C a lib ra tio n ...16-6

16.7 D ata Selection ... 16-6
16.8 Table Access R o u tin e s ..16-7
16.9 Calibration Table Routines ..16-7
16.10 D ata Access R o u t in e s .. 16-7

16.10.1 Structure of the Interferometer Data Access S y s te m ...16-8
16.10.2 D ata Access R o u tin e s ...16-8

16.11 Example Using U V G E T ... 16-9
16.12 Single Dish D a t a .. 16-12
16.13 Text of INCLUDE files ...16-13

16.13.1 D S E L .IN C ... 16-13
16.13.2 PU V D .IN C ... 16-16

16.14 Routines ..16-17
16.14.1 B L R E F M .. 16-17
16.14.2 B L S E T ..16-17
16.14.3 B P A S E T .. 16-18
16.14.4 B P G E T ..16-18
16.14.5 B P R E F M .. 16-19
16.14.6 C A L C O P .. 16-19
16.14.7 C A L R E F .. 16-20
16.14.8 C G A S E T .. 16-20
16.14.9 C L R E F M .. 16-21
16.14.10 C L U P D A .. 16-22
16.14.11 C S L G E T .. 16-22
16.14.12 D A TBN D .. 16-23
16.14.13 D A T C A L .. 16-24
16.14.14 D A T F L G .. 16-25
16.14.15 D A T G E T .. 16-25
16.14.16 DGGET .. 16-26
16.14.17 DGHEAD ... 16-27
16.14.18 DGINIT .. 16-27
16.14.19 G A C S IN .. 16-28
16.14.20 GAININ .. 16-28
16.14.21 L X Y P O L .. 16-28
16.14.22 N X T F L G .. 16-29
16.14.23 P O L S E T .. 16-30
16.14.24 S C L O A D .. 16-30
16.14.25 SCINTP .. 16-30
16.14.26 S D C G E T .. 16-31
16.14.27 S D C S E T .. 16-31
16.14.28 S D G E T ..16-32
16.14.29 S E T S M ..16-34
16.14.30 S E L IN I..16-34
16.14.31 S N R E F M .. 16-35
16.14.32 SOUFIL .. 16-35
16.14.33 U V G E T ..16-36
16.14.34 V I S C N T .. 16-39

vi

C D e ta ils o f A IP S files C —1
C .l Introduction ... C - l
C.2 AIPS System file s .. C - l

C.2.1 Accounting (AC) f i l e .. C - l
C.2.2 Batch text (BA) f i l e .. C -2
C.2.3 Batch queing (BQ) f i l e ...C-4
C.2.4 GRIPE (GR) files ..C -5
C.2.5 Help (HE) f ile ..C-6
C.2.6 Image catalog (IC) f i l e ...C-8
C.2.7 TV lock (ID) f i l e ...C-10
C.2.8 POPS memory (ME) f ile ... C - l l
C.2.9 Message (MS) file ..C - l l
C .2.10 Password (PW) f i le ... C-13
C.2.11 POPS Save-Get (SG) f i l e ..C-13
C.2.12 System param eter (SP) f i l e ...C-15
C.2.13 Task Show and Tell (TC) f i l e ... C-17
C .2.14 Task da ta (TD) f ile ... C-17
C.2.15 Tape lock (TP) f i l e ... C-20
C.2.16 Task Adverb Save (TS) f i l e ...C-20

C.3 User data f ile s ...C-21
C.3.1 Catalog directory (CA) f i l e C-21
C.3.2 Catalog header (CB) f i le ... C-23
C.3.3 Gain (GA) f i l e .. C-26
C.3.4 History (HI) file ...C-27
C.3.5 Image (MA) file ...C-29
C.3.6 Plot (PL) f i l e ... C-29

C.3.7 Slice (SL) f i l e C-33
C.3.8 Uv data (UV) file ... C-35

C.4 Table details C-35
C.4.1 Antenna (AN) t a b l e .. C-35
C.4.2 Baseline dependent calibration (BL) t a b l e ..C-37
C.4.3 Bandpass calibration (BP) t a b l e ...C-38
C.4.4 Clean Components (CC) table ..C-39

C.4.5 Calibration (CL) t a b l e .. C-40
C.4.6 Frequency (CH) t a b l e ...C-42
C.4.7 Single dish calibration (CS) t a b le ...C-43
C.4.8 Flag (FG) ta b le .. C-44
C.4.9 Frequency (FQ) table ...C-45
C.4.10 Index (NX) table ... C-46
C.4.11 Solution (SN) table .. C-47
C.4.12 Source (SU) table ... C-49

C.5 Task Specific T a b l e s ..C-50
C.5.1 SPFLG baseline (BL) t a b l e ...C-50
C.5.2 SPFLG /TV FLG Temporary Flag (FC) t a b l e ... C-51
C.5.3 ANCAL System Temperature (TY) t a b l e ..C-51

vii

viii

Chapter 9
Devices

9.1 O verview
Programs in the AIPS system occasionally need to talk to peripheral devices. This chapter discusses such
devices, other than disk drives, terminals, TV displays, array processors, and plotters, which are covered
elsewhere. Many of these devices have their own I/O routines, but some may also use the same routines
as are used for disk I/O . In general, the latter have to branch to special code for each device and we are
gradually getting away from such usage. The details of the call sequence for the relevant routines discussed
in this chapter are given a t the end of the chapter.

9.2 Tape D rives
Tapes are used in AIPS primarily for long term storage of data, images or text files. The principal differences
in the AIPS system between use of tape and disk is tha t tapes, by their physical nature, are sequential access
devices and the physical block size of data depends on the program writing the tape. In addition, AIPS
batch jobs are forbidden to talk to tape drives.

The usual problems of Fortran I/O apply to tapes, i.e., it is not predictable from one machine and/or
operating system to another. For this reason, standard AIPS programs do not use Fortran I/O for tapes.
Also, some versions of Fortran cannot read or write some file structures, such as those containing variable
length, blocked, unspanned records. All direct operations to tape have their own AIPS Z routines: ZTAPE
to position tapes, ZTPOPN to open tape devices, ZTPCLS to close tape devices, ZTPMIO to read/w rite
on tapes, and ZTPWAT to wait for I /O completion and return the number of bytes read/w ritten. In most
of AIPS, a “byte” means one-half of a local integer. On some machines, this is 16 bits (e.g., VAX VMS),
but on others it can be 32 bits (e.g., Crays). However, with tapes, AIPS usually uses “byte” to mean 8 bits
since tapes are for talking to the “outside world.” In the tape area, all descriptions of call sequences must
specify this distinction clearly.

Since AIPS tasks work directly from I/O buffers, a program using tape must take account of the details
of the way data is written on tape. One exception to this is writing variable length, blocked, but unspanned
records; such records may be assembled and written using the AIPS utility routine VBOUT. All tape I/O
operations or tape-like I/O to the external world should now go through the routine TAPIO.

9.2.1 Opening Tape Files (TAPIO)
Opening of a tape file may be done implicitly by the initial read or write call to TAPIO (or VBOUT).
Frequently, however, it is necessary to position the tape after opening the file. In this case, TAPIO may be
called with opcode ’O PR D ’ (open for read) or ’O PW T ’ (open for write) before using ZTAPE to position the
tape. A more detailed description of TAPIO is given later and the call sequence is described at the end of
this chapter.

9-3

9-4 CHAPTER 9. DEVICES

9.2.2 Positioning Tapes
In AIPS, a tape must be mounted before it can be opened or any I/O performed to it. This operation (and
dismounts) are done with ZTAPE. However, by convention, mounting and dismounting are done only by the
AIPS program itself. Once the file has been opened, the tape may be positioned, or EOFs may be written
using ZTAPE. Details of the call sequence to are given at the end of this chapter. The following list gives
the opcodes recognized by ZTAPE.

1. ’ADVF’ = advance file marks
2. ’ADVR’ = advance records
3. ’BAKF’ = backspace file marks.
4. ’BAKR’ = backspace records.
5. ’DMNT’ = dismount tape.
6. ’MONT’ = mount tape.
7. ’REW I’ = rewind the tape on unit LUN
8. ’W EOF’ = write end of file on unit LUN: writes 4 EOFs, positions tape sifter first one
9. ’M EOF’ = write 4 EOF marks on tape, position tape before the first one

9.2.3 I/O to Tape Files (TAPIO)
All tape I/O goes through the routine TAPIO. If the tape file is not open on the first I/O call, then it will
be opened automatically. When writing, the buffer will be flushed when TAPIO is called with opcodes of
TLSH ’ or ’CLOS’. After tape I/O has begun, should be used for any ’BAKF’ (back to the beginning of the
current file) operation; all other tape positioning operations should be done by ZTAPE.

Much of the description of the tape file to be read or written is given in the array FDVEC passed to
TAPIO. Some bookkeeping information is kept in FDVEC, as well as in the FTAB, so it is im portant to
protect the integrity of this array while the tape file is open. Many parameters passed through this array can
be defaulted, so it is best to zero-fill the array before filling in the parameters which are not being defaulted.
The contents of the FDVEC are described in the following:

FDVEC(40) 1*2 File descriptor vector.

1 = LUN to use, set before first call.
31 to 30+NTAPED => tape, else disk.

2 = Logical record length in 8-bit bytes
3 = Buffer size in 8-bit bytes
5 = volume number (disk or tape)
6 = blocking factor (0=>1), value returned on read

7-18 = File name for disk files (48 char, hollerith)
19 = 0 if fixed length, 1 if variable length
20 = Max. number of logical records to process

0 => infinity
21-29 Reserved for future use

The following are used by TAPIO:
30 = FTAB pointer
31 = Humber of logical records left to process

(negative => ignore)
32 = Humber bytes read or written

9.2. TAPE DRIVES 9-5

VBOUT
The utility routine VBOUT will collect variable length records and block them, unspanned, into IBM format
physical blocks up to 4008 (8-bit) bytes long. The tape may be opened explicitly with TAPIO (OP =
’O PW T ’) or implicitly with the first call to VBOUT. In either case, the array FDVEC must be properly
prepared before opening the tape. The principal use of this routine is to write VLA “EXPORT” format
tapes. Details of the call sequence, as well as other im portant usage notes, are found at the end of this
chapter.

Sequential External Files
The AIPS tape reading and writing tasks can read or write FITS format files from or to disk files. These
disk files are considered to be byte streams. All I/O to these files is through the routine TAPIO.

9.2.4 Tape Data Structure
In order to make efficient use of tape storage, a number of logical records may be grouped into a single
physical record. In general, these logical records may be fixed or variable length and may or may not span
physical blocks. In addition, logical records may be form atted (text, usually ASCII) or binary. Such details
need to be determined before attem pting to read or write such files. Fixed length logical records are packed
into physical records as defined by the record size and block length. Since the order and size of these records
is well defined there is no need for additional control information. On write, TAPIO must be told the blocking
factor (FDVEC(6)) and, on read, TAPIO automatically determines the actual blocking factor. For variable
length logical records, control bytes are added to the record to determine the boundaries of logical records.
Unfortunately, the details of the of variable length record structure vary from computer to computer and
from operating system to operating system. If you wish to read or write one of these tapes, you have to find
the details of the formats for the machines in question. The form at used by AIPS for Export-form at tapes
is tha t defined by IBM. In this form at, four bytes are added to the start of each tape record to define the
length of the record in bytes (first 16 bits, the other 16 are zero). In addition, four more bytes are added
to the start of each logical record to define the length of th a t record including the control information in
bytes (first 16 bits, the other 16 are zero). VBOUT handles these control bytes for the program and TAPIO
depends on the first 2 bytes to control the length of the I /O operation.

9.2.5 Tape Data Formats
In AIPS, it is the convention to write all tape data in FITS standard form. This means all characters are
unsigned ASCII. All integers are twos-complement in 16 bits or 32 bits with the sign and high order byte first.
Unsigned 8-bit integers are also allowed. All floating point binary numbers follow the IEEE conventions.

As a result of this convention, tape reading/writing is somewhat complicated in AIPS. However, there
are Z routines to help:

1. ZC8CL converts ASCII characters to local character form.
2. ZI8IL converts 8-bit unsigned integers to local AIPS bytes (half integers).
3. ZI16IL converts 16-bit standard integers to local integers.
4. ZI32IL converts 32-bit standard integers to local long integers.
5. ZR32RL converts 32-bit IEEE to local floating point format.
6. ZR64RL converts 64-bit IEEE to local double precision floating point.
7. ZCLC8 converts local characters to standard ASCII.
8. ZILI16 converts local integers to standard 16-bit integers.
9. ZILI32 converts local long integers to standard 32-bit integers.

9-6 CHAPTER 9. DEVICES

10. ZRLR32 converts local floating point to 32-bit IEEE floating.
11. ZRLR64 converts local double precision floating point to 64-bit IEEE floating format.

All of these routines can convert any number of values in one buffer to the output form in another buffer, which
can be at the same address. Before FITS tapes were blocked, it was common practice to do the conversion in
place even though the lengths of the input array and output array are different (on some machines anyway).
However, this practice is now too dangerous to be done inside buffers used for potentially blocked tapes.
VBOUT calls ZILI16 for the programmer, which helps as long as everything is in integers. If some datum
is not, it must be translated to standard and then back as if it were local integers (see VBOUT precursor
remarks below).

9.3 Graphics D isplays
The graphics devices currently supported in AIPS fall into three categories: TV display devices, such as the
IIS, hardcopy devices, such as the Versatec printer/plotter and QMS Lasergraphix printer, and interactive
graphics terminals, such as the Tektronix 4012. This section deals with the Tektronix type graphics terminals.
The other devices are discussed in the chapter on plotting. A graphics terminal can be used in two m ajor
modes: as a temporary display device, or as an interactive graphics device. When used as a temporary display
device, a task will read graphics commands from a plot file, convert these device-independent commands to
the form needed by the device, and finally write to the device. The AIPS task that does this is TKPL. A
programmer, wishing to write a task to interpret a plot file for another type of graphics terminal, would start
with TKPL and convert the routines TKDVEC, TKCHAR, and TKCLR to send the proper commands to
the device.

When using a graphics term inal in the interactive mode, the programmer probably will go straight from
the data file to the graphics term inal without going through a plot file. In general, an interactive task or verb
will open the display device, display the data, activate the cursor, read the cursor position in the absolute
device coordinates, convert these coordinates into more useful units, and then perform some useful function
with the converted units, such as display them. Current AIPS use of graphics is quite primitive. In the
future, we will probably convert to use of the X-windows graphics system, which may invalidate most of the
following discussion.

9.3.1 Opening the Graphics Terminal
The graphics terminal is opened as a non-map file using ZTKOPN. AIPS logical unit 7 is reserved for this
device type, and should be used in the call to ZTKOPN. On a VAX, each AIPS is assigned a graphics terminal
on start up according to a set of logical names. Similar strategies are played in other implementations. Thus,
ZTKOPN just opens the user’s assigned device to the local program.

9.3.2 Writing to the Graphics Terminal
The include file INCS:DTVC.INC initialized by ZDCHIN contains two useful parameters for graphics. These
are MAXXTK(2), which contains the maximum X and Y values in device units (for the Tektronix 4012,
these values range from 1 to 1024 for X and 1 to 780 for Y) and CSIZTK(2) , which contains the X,Y
character sizes in plot units (14,22 for Tektronics 4012). In include INCS:DTKS.INC, the graphics buffer
size, TKSIZE, should be set to 20. The current position in use in the buffer, TKPOS, should be set to
zero. Scale factors SC ALEX and SCALEY and offsets RX0 and RY0 must be calculated and assigned. If a
subroutine is told to scale a value, then the X value in absolute device units will be equal to
SCALEX * value_input_ior_X + RXO.

Usually the first thing a programmer will want to do when writing to the terminal is to clear the screen.
This can be done with subroutine TKCLR.

Setting the beginning of the line (sometimes called drawing a dark vector) and drawing lines from the
current position to a new position (a bright vector) are done with routine TEKVEC. TEKVEC is given an

9.3. GRAPHICS DISPLAYS 9-7

X and Y position and a control code which tells it if it should draw a dark vector or a bright vector, and if
it should consider X and Y to be in absolute device units or if the values should be scaled. TEKVEC will
automatically interpolate vectors th a t run off the plot and write the buffer when it fills up.

Characters can be written to a Tektronix terminal by calling routine TKCHAR. TKCHAR allows the
programmer to write characters either horizontally or vertically. TKCHAR uses the hardware character
generator in the Tektronix, so the characters only come in one size. Choosing the starting position of the
characters involves a combination of TEKVEC and TKCHAR. First, a vector position on the plot is chosen
by calling TEKVEC with the “dark vector” option. Then an offset from the vector position in character
sizes is chosen by use of the DCX and DCY parameters in TKCHAR. Programmers who need a character
generator that can be adapted to a graphics terminal can find one in task PRTPL.

Before closing the graphics term inal, the programmer should write any remaining buffers to the graphics
device by calling TEKFLS.

9.3.3 Activating and Reading the Cursor
Subroutine TKCURS will activate the cursor on the Tektronix 4012 and wait for a response from the 4012
keyboard. After the user positions the cursor and presses any key, the cursor will disappear and TKCURS
will return the last coordinate position in absolute Tektronix units. The programmer will probably have to
convert this position into plot coordinates by using information in the image catalog.

9.3.4 Updating the Image Catalog
The image catalog should be updated when an image is written to the graphics terminal. This is essential
when one task (or verb) writes an image to the device, and another task (or verb) needs information about
the plot on the screen. For example, task TKPL can be used to display a contour m ap on the terminal,
and verb TKPOS can be used to print map coordinate values a t selected positions on the plot. TKPOS
uses information in the image header to convert an absolute Tektronix cursor position into the m ap axis
units such as RA and DEC. The routine TKCATL can be used to set up the image catalog for the graphics
terminal. See the chapter on catalogs for a detailed description of the image catalog and the example below
for making a minimum image catalog entry.

9.3.5 An Example
This example code shows how to open the graphics terminal, clear the screen, draw a box, and write some
text in the center of the box. Opening the map, getting parameters from AIPS, etc., are not shown. In a
non-trivial example, calculating the scaling parameters and updating the image catalog would be much more
involved.

IHTEGER ITKLUN, ITKIHD, IERR, TKSIZE, TKPOS, IPOS,
* IDRAW, NCHAR, IHORZ, IPLAHE, BUFFER(256), VOL, CHO,
* IX, IY
CHARACTER LIHE*80
REAL BLCX, BLCY, TRCX, TRCY, CEHTER, DCX, DCY

IHCLUDE *IHCS:DHDR.IHC*
IHCLUDE ’IHCS:DDCH.IRC*
IHCLUDE *IHCS:DTKS.IHC*
IHCLUDE 'IHCSrDCAT.IHC'

Open the Tektronix device.
ITKLUH = 7
CALL ZTKOPH (ITKLUN, ITKIHD, IERR)

9-8 CHAPTER 9. DEVICES

IF (IERR.IE.0) GO TO 900

TKSIZE = 20
TKPOS = 0

Set variables in common.

Make screen be 100 by 100
units.

Clear screen.

Set corners

SCALEX = MAXXTK(1) / 100.0
SCALEY = MAXXTK(2) / 100.0
RXO = 0.0
RYO = 0.0

CALL TKCLR (ITKIND, IERR)
IF (IERR.HE.O) GO TO 900

BLCX =25.0
BLCY =25.0
TRCX =75.0
TRCY =75.0

1 is the code lor scale X
and Y and position vector.

IPOS = 1
2 is the code lor scale X
and Y and draw vector.

IDRAW = 2
Draw a box.

CALL TEKVEC (BLCX, BLCY, IPOS, ITKIID, IERR)
CALL TEKVEC (BLCX, TRCY, IDRAW, ITKIID, IERR)
CALL TEKVEC (TRCX, TRCY, IDRAW, ITKIID, IERR)
CALL TEKVEC (TRCX, BLCY, IDRAV, ITKIID, IERR)
CALL TEKVEC (BLCX, BLCY, IDRAW, ITKIID, IERR)
IF (IERR.IE.0) GO TO 900

Write some characters in
the center ol the box.

ICHAR = 14
LIIE = ’This is a test’

Position at center.
CENTER =50.0
CALL TEKVEC (CENTER, CENTER, IPOS, ITKIND, IERR)
IF (IERR.NE.O) GO TO 900

Compute ollset to start
vriting characters.

DCX = - ICHAR / 2.0
DCY = - 0.5
IHORZ = 0

Write message
CALL TKCHAR (ICHAR, IHORZ, DCX, DCY, LIIE, ITKIID, IERR)
IF (IERR.IE.0) GO TO 900

Write any remaining buffer to
screen.

CALL TEKFLS (ITKIHD, IERR)
Update image catalog although
lor this example plot has no
relation to map.
CATBLK, VOL and CIO were

9.4. INCLUDES 9-9

C found when map was opened.
CATBLK(IIVOL) = VOL
CATBLK(IICNO) = CHO

C Set plot type to MISC
CATBLK(IIPLT) = 1
CALL TKCATL ('WRIT', IX, IY, CATBLK, I ERR)

C Close graphics terminal.
CALL ZTKCLS (ITKLUH, ITKIID, IERR)

9.4 INCLUDES
9.4.1 DTKS.INC
C Include DTKS.

REAL TKBUFF(20) , SC ALEX, SCALEY, RXO, RYO, RXL, RYL
INTEGER TKPOS, TKSIZE
COMMON /TKSPCL/ TKBUFF, SCALEX, SCALEY, RXO, RYO, RXL, RYL,

* TKPOS, TKSIZE
C End DTKS.

9.4.2 DDCH.INC
IMC /DDCH.INC

9.5 R outines
9.5.1 TAPIO
TAPIO is primarily for reading and writing tapes but will also work for disks for FITS files etc. Disk files will
be created and expanded as necessary. When a disk file is being written it is compressed to its actual size
when it is closed. NOTE: TAPIO WORKS IN REAL (8-BIT) BYTES, NOT THE AIPS HALF-INTEGER
” BYTES” . Usage notes:

1. Zero fill FDVEC before filling in relevant values.
2. Opening the file. If TAPIO determines th a t the file is not open it will do so. For disk files being opened

for write the file will be created. Once the file is open the file descriptor vector FDVEC must be used
in each call.

3. Initialization. TAPIO initializes the I /O using the values in FDVEC when it opens the file. If
O P = ’OPxx’ the file is created/opened but I/O is not initialized; this allows positioning tapes be
fore the actual I/O starts. ’O PR D ’ means open for read, ’O PW T ’ means open for write; ’O PW T ’ will
cause the output file to be created if the output is to disk.

4. Re-initialization. If O P = ’BAKF’ the file is repositioned at the beginning of the current file, I/O will
be reinitialized at the next read call. This operation is only relevant to reading files.

5. Closing the file. The file may be closed with a call with opcode ’CLOS’.

9-10 CHAPTER 9. DEVICES

6. Writing variable length records. If variable length records are to be read or written FDVEC(19) should
be set to 1. On W RITE, the actual record size is assumed to be given by the first I word of the record.
TAPIO will not handle blocked, variable length records.

7. Limited number of logical records. If only a fixed number of logical records are to be processed before
reinitialization put the number of such records in FDVEC(20). After this number of transfers the I/O
will be left in an uninitialized state said on the next call will be reinitialized (e.g. can change logical
record length). DO NOT USE THIS WITH BLOCKING HOWEVER, the last block will not be the
correct length.

Tapes: 31 < LUN < 30 + NTAPED
Disks: any other LUN

for FITS format only (no blocking).
TAPIO requires tha t FDVEC(2) = 2880, FDVEC(31) = 0 on input.
TAPIO sets FDVEC(6) = 1.
The desired file name must be in FDVEC(7-30) as a HOLLERITH string.

TAPIO (OP, FDVEC, BUFF, IBIHD, IERR)
Inputs:

OP 0 4 Operation code: * READ *, * WRIT *, * CLOS ’, * BAKF *,
’OPRD*,’OPWT' open for rd.wrt
'FLSH* flush write buffer, Weof

Input/Output:
FDVEC 1(50) File descriptor vector.

1 = LUH to use, set before first call.
31 to 30+HTAPED => tape, else disk.

2 = Logical record length in bytes (8-bit)
3 = Buffer size in 8-bit bytes
5 = volumn number (disk or tape)
6 = blocking factor (0=>1). Value returned on read

7-30 = File name for disk files (48 HOLLERITH char)
31 = 0 if fixed length, 1 if variable length
32 = Max. number of logical records to process

0 => infinity
33-39 Reserved for future use

The following are used by TAPIO:
40 = FTAB pointer
41 = Humber of logical records left to process

(negative => ignore)
42 = LBYTES - number of bytes read or written.

43-50 = reserved for future use
BUFF R(*) Buffer for I/O must be large enough for the largest

transfer rounded up to the next larger number of
disk blocks.

Outputs:
IBIHD I The location in BUFF of the start of the next

record. Before the first write call this should
be set to 1 to determine where to start filling
BUFF. Hote: IBIHD points to the address in the
I array irregardless of the actual data type.

9.5. ROUTINES 9-11

IERR I Error return: 0 => ok
1 => error creating file
2 => input error
3 => i/o error on initialize
4 => end of file
5 => beginning of medium
6 => end of medium
7 => Buffer too small
8 => error opening file.
9 => error expanding

Usage notes: The first 16 words in each FTAB entry
contain a user table to handle double buffer i/o, the rest
contain system-dependent I/O tables.
FTAB user table entries, with offsets from the FIND pointer are:

FTAB + 0 => LUN using this entry
1 => Number of blocks to extend the file when full
2 => Number of 8-bit bytes in a logical record
3 => Number of disk logical records in each transfer (1)
4 => Which buffer half currently doing i/o; -1 =>

single buffer, the other buffer half is available.
5-6 => Block offset on disk file for next operation I
7-8 =>

9 => I/O opcode 0=read, l=write
10 => 1 => tape, 2 => disk
11 => Number of logical records per physical
12 => Number of logical records done for this physical.
13 => 1 -> I/O active, else inactive (not initialized).
14 => number bytes last read/write to buffer 1
15 => number bytes last read/write to buffer 2

9.5.2 TEKFLS
Will write the output buffer TKBUFF to the TEKTRONIX 4012.

TEKFLS (FIND, IERR)
Input:

FIND I FTAB position assigned to TEK 4012.
Output:

IERR I error flag. 0=ok, .GT. l=write error from ZFIO

9.5.3 TEKVEC
This routine will put control characters, and X and Y coordinates into the TEKTRONIX output buffer.

TEKVEC (XX, YY, IN, FIND, IERR)
Inputs:

XX I X coordinate value.
YY I Y coordinate value.
IN I control value:

1 = Scale XX and YY and preceed coordinates
by 'write dark vector’ control character

2 = Scale XX and YY, put in buffer.
3 = XX and YY axe not scaled, 'write dark vector'

control character is put into the buffer.

9-12 CHAPTER 9. DEVICES

4 = no scale, write vector
FIND I FTAB position of TEKTRONIX device.

Output:
IERR I error code, 0=ok, l=write error.

Common:
DTKS.IHC in/out TKBUFF, TKPOS, RXL, RYL

9.5.4 TKCATL
Read, write, init the Graphics image catalog

TKCATL (OPER, IX, IY, CATBLK, IERR)
Inputs:

OPER

IX
IY

In/out:
CATBLK

Output:
IERR

C*4 ’INIT' - zero catalog block ior current TEK #
'READ' - read catalog block lor current TEK #
’WRIT* - write catalog block lor current TEK i
X pixel position (check vs CATBLK on READ)
Y pixel position (check vs CATBLK on READ)

1(256) Image header converted lor image catalog use

I Error return: 0 => o.k.
10 => access not allowed lor this POPS #
11 => IX, IY not in image
> 0 => error return Irom ZOPEN, ZFIO

9.5.5 TKCHAR
Will write characters to a TEKTRONIX 4012.

TKCHAR (INCHAR, IANGL, DCX, DCY, TEXT, ITFIHD, IERR)
Inputs:

INCHAR
IANGL
DCX
DCY
TEXT
ITFIHD

Outputs:
IERR

I number ol characters.
I O=horizontal, other = vertical.
R X distance in characters Irom current position.
R Y distance in characters Irom current position.
C*(*) packed characters.
R FTAB index ol open TEK.

I error indicator. 0 = ok.

9.5.6 TKCLR
Will clear the screen for a Tektronix 40In.

TKCLR (DEVFND, IERR)
Inputs:

DEVFND I FTAB index ol an open device.
Output:

IERR I Error code Irom the last I/O routine. 0=ok.

9.5. ROUTINES 9-13

9.5.7 TKCURS
Will activate the cursor on the TEKTRONIX 4012 and wait for a response from the 4012 keyboard. After
the response the cursor will disappear and TEKCUR will return the coordinate positions.

TKCURS (IFIHD, IOBLK, IX, IY, IERR)
Inputs:

IFIHD
IOBLK

Outputs:
IX
IY
IERR

I index into FTAB lor open TEKTRONIX device
1(256) I/O block lor TEKTROHIX device.

I x cursor position.
I y cursor position.
I 0=ok, 1=TEK write error. 2=TEK read error.

WARHIHG: This routine assumes a normal interlace to a TEK 40In.
Thus it may not work on all CPUs.

9.5.8 TKDVEC
Converts TEK4012 vectors to actual commands to the TK buffer Positions are assumed to be in bounds.

TKDVEC (IH, X, Y, FIHD, IERR)
Inputs:

IH I 1 - > dark vector, 2 => bright vector
X I X coordinate value.
Y I Y coordinate value.
FIHD I FTAB position ol TEKTROHIX device.

Output:
IERR I error code, 0=ok, l=write error.

Common:
DTKS. IHC in/out TKBUFF, TKP0S

9.5.9 VBOUT
Writes variable blocked records of data to tape. Maximum block size on the tape is 4008 bytes. Tape may
be opened by TAPIO (O P = ’O PW T ’) before first call. For overlaid programs COMMON /V B C O M / should
be kept in a segment which is core-resident from the first to the last call to VBOUT. A call with N = 0 will
cause all data remaining in the buffer to be written. Character data must be in ASCII as integers: i.e. call
ZCLC8 followed by ZI16IL on such data before calling VBOUT.

VBOUT (H, IDATA, FDVEC, HUM, IERR)
Inputs:

H

IDATA
FDVEC
HUM

Output:
IERR

I Humber ol words in array IDATA.
II H = 0 the buller is Hushed.

I Array containing data to be written.
1(50) Field descriptor vector lor TAPIO
I The record number to be written, must be 1 on

the lirst and only the lirst record in a file.

I Return error code 0 => OK, else TAPIO error.

9.5.10 ZC8CL
Convert 8-bit ASCII standard characters in a buffer to local character form

9-14 CHAPTER 9. DEVICES

ZC8CL (HCHAR, HP, IHBUF, OUTBUF)
Inputs:

HCHAR
HP

IHBUF
Output:

I
I

R(*)

Humber of characters to convert
Starting position in input buffer in units of
8-bit characters (1-relative)
Input buffer containing 8-bit ASCII characters

OUTBUF C*(*) Output buffer containing characters in local
form beginning in position 1

9.5.11 ZCLC8
Convert local characters in a buffer to standard 8-bit ASCII character form

ZCLC8 (HCHAR, IHBUF, HP, OUTBUF)
Inputs:

HCHAR I
IHBUF C*(*)
HP I

Humber of characters to convert
Characters in local form
Starting position in output buffer in units of
8-bit characters (1-relative)

Output:
OUTBUF R(*) Buffer containing characters in 8-bit ASCII form

9.5.12 ZI8IL
Convert 8-bit unsigned binary numbers to local integers. This must work even when the input and output
buffers are the same.

ZI8IL (HVAL, HP, IHB, OUTB)
Inputs:

HVAL I
HP I

IHB
Output:

OUTB

K*)

I(HVAL)

Humber of 8-bit values to convert
Starting position in the input buffer counting
from 1 in units of 8-bit values
Input buffer

Output buffer

9.5.13 ZI16IL
Extract 16-bit, 2’s complement integers from an input buffer and put them into an output buffer in local
integer form. This must work even when the address of the input and output buffers is the same.

ZI16IL (HVAL, HP, IHB, OUTB)
Inputs:

HVAL I
HP I

IHB
Output:

OUTB

I * 2 (*)
I(HVAL)

Humber of 16-bit integers to extract
Starting position in the input buffer counting
from 1 in units of 16-bit integers
Input buffer

Output buffer

9.5. ROUTINES 9-15

9.5.14 ZILI16
Convert a buffer of local integers to a buffer of standard 16-bit, 2’s complement integers.

ZILI16 (HIT, IHB, HP, OUTB)
Inputs:

HIHT I Number of integers to convert
IHB K*) Input buffer (start at index 1)
HP I Starting index in the output buffer (1-relative)

in units of 16-bit integers
Output:

OUTB I(*) Output buffer

9.5.15 ZI32IL
Extract 32-bit, 2’s complement integers from an input buffer and put them into an output buffer in local
integer form. This must work even when the address of the input and output buffers is the same. The IBM
order applies to the input (i.e., the m ost significant part of the 32-bit integer is in the lower index of the
input buffer and the least significant part is in the higher index.

ZI32IL (HVAL, HP, IHB, OUTB)
Inputs:

HVAL I # values to extract
HP I Starting position in the input buffer (1-relative)

in units of 32-bit integers
IHB I(*) Input buffer

Output:
OUTB K*) Output buffer

9.5.16 ZILI32
Convert a buffer of local integers to a buffer of standard 32-bit, 2’s complement integers. This must work
even when the address of the input and output buffers is the same. The IBM order applies to the output
(i.e., the most significant part of the 32-bit integer is in the lower index of the output buffer and the least
significant part is in the higher index).

ZILI32 (HVAL, IHB, HP, OUTB)
Inputs:

HVAL I # integers to convert
IHB K*) Input buffer (start at index 1)
HP I Starting position in the output buffer

(1-relative) in units of 32-bit integers
Output:

OUTB I(HVAL) Output buffer

9.5.17 ZR32RL
Converts from 32 bit IEEE floating form at to local single precision.

The IEEE form at is:

9-16 CHAPTER 9. DEVICES

1 2 3
01234567890123456789012345678901
seeeeeee 6iDininniiiniiinininmniininininininnunmnnniD

where sign = -1 ** s, exponent = eee..., mantissa = l.m m m m m ..
The value is given by:
value = sign * 2 **(exp-127) * mantissa
Note: these values have a "hidden” bit and must always be normalized The IEEE nan (not a number)

values are used to indicate an invalid number; a value with all bits set is recognized as a ” nan” .
The AIPS internal format for an invalid number is the value which has the same bit pattern as ’INDE’.
The IEEE special values (-0., + / - Infty) are not recognized.
A multiplication by a factor of 4.0 converts between VAX F and IEEE 32 bit formats.

ZR32RL (IVAL, HP, IHB, OUTB)
Inputs:

HVAL I Humber of values to convert
HP I First value in IHB to convert
IHB R(*) 32-bit IEEE format values

Output:
OUTB R(*) Local format values ("nan" values are replaced

with AIPS’ indefinite value = ’IHDE’)

9.5.18 ZRLR32
Converts from local single precision to 32 bit IEEE floating format.
The AIPS internal format for an invalid number is the value which has the same bit pattern as ’INDE’.
A multiplication by a factor of 4.0 converts between VAX F and IEEE 32 bit formats.

ZRLR32 (HVAL, HP, IHB, OUTB)
Input8:

HVAL I Humber of values to convert
HP I First value in OUTB for result
IHB R(«0 Local format values

Output:
OUTB R(*) 32-bit IEEE FORMAT values (’IHDE * values are

replaced with "nan")

9.5.19 ZR64RL
Converts from 64 bit IEEE floating format data to local double precision (or corresponding 64 bit precision).

The IEEE form at is:

1 2 3 4 5 6
0123456789012345678901234567890123456789012345678901234567890123
g o o a w o K A a a a wmm mmmminramfflmiimmmmiiiininniiiifnmiiinnniwmwiwimminmminintnniTnminmTnTnirimmminmffl

9.5. ROUTINES 9-17

where sign = -1 ** s, exponent = eee..., mantissa = l.m m m m m .-

The value is given by:
value = sign * 2 **(exp-1023) * m antissa
Note: these values have a ” hidden” bit and must always be normalized The IEEE nan (not a number)

values are used to indicate an invalid number; a value with all bits set is recognized as a ”nan” .
The AIPS internal format for an invalid number is the value which has the same bit pattern as ’INDE
The IEEE special values (-0., + / - Infty) are not recognized.
A multiplication by a factor of 4.0 converts between VAX G and IEEE 64 bit formats.

ZR64RL (IVAL, HP, IIB, OUTB)
Inputs:

HVAL I Humber ol values to convert
HP I First value in IHB to convert
IHB D(*) 64-bit IEEE lormat values

Output:
OUTB D(*) Local lormat values ("nan" values axe

with AIPS* D.P. blank = *IHDE »-)
Generic version - does IEEE and VAX G formats lor 32-bit machines,
is stubbed with STOP lor all others.

9.5.20 ZRLR64
Converts from local double precision (or corresponding 64 bit precision) to 64 bit IEEE floating format.
The AIPS internal form at for an invalid number is the value which has the same bit pattern as ’INDE ’.
A multiplication by a factor of 4.0 converts between VAX G and IEEE 64 bit formats.

ZRLR64 (HVAL, HP , IHB, OUTB)
Inputs:

HVAL I Humber ol values to convert
HP I First location in OUTB lor results
IHB D(*) Local lormat values

Output:
OUTB D(*) 64-bit IEEE lormat values ('IHDE ' values are

replaced with "nan")

9.5.21 ZTAPE
Performs standard tape m anipulating functions.

ZTAPE (OP, LUN, FIHD, COUHT, IERR)
Inputs:

OP C*4 Operation to be perlormed. 4 chairacters ASCII.
ADVF = advance lile marks
’ADVR’ = advance records
'BAKF* = backspace lile marks.
’BAKR’ = backspace records.
’DMHT' = dismount tape.
’MOHT' = mount tape.
’REWI’ = rewind the tape on unit LUN

9-18 CHAPTER 9. DEVICES

LUN I
FIND I
COUNT I

Outputs:
IERR I

’WEOF’ = write end ol lile on unit LUN: writes 4
EOFs, positions tape alter lirst one

’MEOF’ = write 4 EOF marks on tape, position tape
belore the lirst one

logical unit number
FTAB pointer. Drive number lor MOUNT/DISMOUNT.
Number ol records or lile marks to skip. On MOUNT
this value is the density.

Error return: 0 => ok
1 - File not open
2 - Input specilication error.
3 = I/O error.
4 = End 01 File
5 - Beginning 01 Medium
6 = End 01 Medium

9.5.22 ZTKCLS
Close a Tektronix device

ZTKCLS (LUN, FIND, IERR)
Inputs:

LUN I Logical unit number
FIND I Index in FTAB to lile control block lor LUN

Output:
IERR I Error return code: 0 => no error

1 => Non-zero ZTKCL2 error
2 => Non-zero LSERCH error
3 => both 1 and 2
4 => invalid LUN

9.5.23 ZTKOPN
Open a Tektronix device (cadis ZTKOP2 to perform the actual open).

ZTKOPN (LUN, FIND, IERR)
Inputs:

LUN I Logical unit number
Output:

FIND I Index in FTAB to lile control block lor LUN
IERR I Error return code: 0 => no error

1 => LUN already in use
2 => no such logical device
3 => device not lound
4 => exclusive use denied
5 => no room l o r LUH in FTAB
6 => other open errors

9.5. ROUTINES 9-19

9.5.24 ZTPCLS
Close the tape drive associated with LUN as well as its disk control file removing any exclusive use state
and clear the corresponding FTAB entries. ZTPCL2 actually closes the tape drive and ZDACLS is called to
close the disk control file. Also closes sequential type disk files via ZTPCLD.

ZTPCLS (LUH, FIHD, IERR)
Inputs:

LUH
FIHD

Output:
IERR

I Logical unit number
I Index in FTAB to file control block for LUH

I Error return code: 0 => no error
1 => close error
2 => non-zero LSERCH error
3 => both 1 and 2
4 => invalid LUH

9.5.25 ZTPMIO
Low level sequential access, laxge record, double buffered tape device I/O .

ZTPMIO COPER, LUH, FIHD, HBYTES, BUFF, IBUFF, IERR)
Inputs:

OPER C*4 Operation code ’READ' or ’WRIT'
LUH I Logical unit number
FIHD I Index in FTAB to file control block for LUH
HBYTES I Humber of 8-bit bytes to transfer
BUFF K*) I/O buffer
IBUFF I Buffer number to use (1 or 2)

Output:
IERR I Error return code: 0 => no error

1 -> file not open
2 => input error
3 => I/O error
4 => end of file Cno messages)

9.5.26 ZTPOPN
Open a tape drive (as well as its corresponding disk control file) for sequential, “m ap” (double buffered,
asynchronous) I/O or open a pseudo-tape sequential disk file. Exclusive use and wait to open are assumed.
Uses a ’T P ’ disk “lock” file for real tapes.

ZTPOPH (LUH, FIHD, IVOL, PHAME, OPER, IERR)
Inputs:

LUH I Logical unit number (30 < LUH <= 30 + HTAPED
=> tape, else disk)

IVOL I Tape drive or disk volume containing file
PHAME C*48 tape disk physical file name
OPER C*4 'READ* => read only or ’WRIT* => read/write

Output:
FIHD I Index in FTAB to file control block for LUH
IERR I Error return code: 0 -> no error

1 => LUH already in use

9-20 CHAPTER 9. DEVICES

2 => file not found
3 => volume not found
4 => exclusive use denied
5 => no room for LUI in FTAB
6 => other open errors

9.5.27 ZTPWAT
Wait until an asynchronous tape or sequential pseudo-tape disk file I/O operation completes.

ZTPWAT (LOT, FIHD, IBUFF, LBYTES, IERR)
Inputs:

LOT
FIID
IBUFF

Output:
LBYTES

IERR

I Logical unit number
I Index in FTAB to file control block for LOT
I Buffer # to wait for (1 or 2)

I Humber 8-bit bytes read/written (+1 if tape tape
record longer than requested)

I Error return code: 0 => no error
1 => LOT not open in FTAB
3 => I/O error
4 => end of file
7 => wait service error

Chapter 10
Using the T V Display

10.1 O verview
The most useful implementations of the AIPS system include one or more computer peripheral devices
capable of displaying images with multiple levels of grey and/or color. We refer to such devices as TV
displays since most are implemented via large binary memories and standard television monitors. The main
program AIPS and some tasks (e.g., TVFLG) use the TV display as an interactive input, as well as display,
device. Other tasks (e.g., UVMAP, MX, APCLN) use the TV display simply to show the stages of the data
processing. All use of the TV is optional and the AIPS system will run without such a device. The number
of TV displays in the local system is parameterized (under control of the stand alone program SETPAR)
and all programs are told which TV display (if any) is assigned to the current user.

10.1.1 Why Use (or not use) the TV Display
There are numerous reasons to use the TV display in writing AIPS routines. Grey scale images provide a
realistic view of image da ta allowing the eye to integrate over noisy regions and to separate closely spaced
features. Contour images require much more elaborate software to generate and they make unreasonably
definitive assertions about the intensity levels. The TV may be used to display intermediate results which
are never stored on disk. And the TV may be used to interact with the user in a very wide variety of
ways. Current interactive usages include modification of the black and white transfer function, modification
of pseudo coloring, selection of features of interest, selection of subimage corners, dynamic, multi-image
displays, and communication to the task of simple information. The last is used primarily to tell iterative
tasks that they may stop at the current iteration.

Despite these desirable features, an AIPS programmer should not put the TV in a task unless it is truly
useful. A TV option requires some, potentially considerable extra coding effort and, during execution, some
significant extra real and CPU time. Many TV devices also require a high rate of I/O in order to load an
image and, especially, to interact with the user. If an algorithm is based on the TV display, then it will
not be available at those AIPS sites which do not have one. Although TV displays can function as graphics
devices, many of them are very slow in that mode. Finally, tasks which use the TV will interfere with the
interactive AIPS user’s other uses of the display by replacing current images in the TV memory or modifying
the zoom, scroll, transfer functions, et al.

10.1.2 The AIPS Model of a TV Display Device
As AIPS was being designed, it was realized th a t there was already a wide variety of TV display devices
on the market and tha t the market would not hold still. The NRAO initially purchased two International
Imaging Systems (IIS) Model 70/E displays. However, th a t company changed rapidly to Model 70/F and now
no longer sells the Model 70. Instead, it now markets, among other things, a Model 75 and a less expensive
IVAS model. The NRAO acquired an IVAS in 1986. Support for work stations with imaging capability was
added early in 1988 after SUN loaned a SUN 3/110 to the NRAO. Our initial choices undoubtedly color our

10-1

10-2 CHAPTER 10. USING THE T V DISPLAY

image of what a TV display device does and how it does it. Nonetheless, we have attem pted to design the
code to be very general and to account for the range of options available on individual models of display and
for the range of different manufacturers.

We regard the TV display as being a computer peripheral device which accepts the basic I/O operations
of open, close, initialize, read, and write. Special Z routines are provided in AIPS since we do not assume
that these I/O operations are identical, for all TVs and host operating systems, to those for disks, tapes,
or Fortran devices. We assume th a t the TV display may be subdivided logically into a variety of sub-units
which control the various functions of the display. Special libraries of subroutines, subdivided by model of
TV display, are provided for communicating to these sub-units. These subroutines are called “Y routines”
because all of them have names beginning with the letter Y. The NRAO has, a t this time, developed the Y
routines for IIS Models 70/E , 70/F, and IVAS and for SUN workstations using the SUNView software system.
In addition, we store, distribute, and attem pt to maintain sets of Y routines developed by other institutions
for other models of displays. At the moment, we have Y routines for DeAnza, developed by Walter Jaffe at
the STScI, for IIS Model 75, developed by IIS, and for Comtal Vision 1/20, developed by Andy Lubenow
at the University of Illinois. We expect (hope) to receive more sets of Y routines for distribution in the
near future. We have developed and support a set of Y routines and the other software needed to operate
a TV device “remotely” . These so-called “virtual-television” routines connect the computer to the remote
TV device operating on some cooperating AIPS computer, presumably located near the user.

AIPS also uses, a t both the Y and non-Y programming levels, a TV device param eter common. This
common is initialized by a Y routine (YTVCIN) and is maintained via a disk file and a stand alone program
(SETTVP). The common contains both fundamental parameters (i.e., number of memories, display size,
maximum intensity, maximum zoom, etc.) and parameters describing the current state of the TV (i.e.,
which planes are on, current zoom and scroll, etc.).

In order to provide the full functionality of the basic AIPS verbs and tasks, a TV display device needs
to contain the following sub-units. Note, these subunits are logical devices. They may be implemented as
control registers in the device or in numerous other fashions. It is only necessary that the Y routines impose
on the device a control th a t forces it to this general structure.

1. IMAGE MEMORIES: These are one or more memories each n bits deep which hold the grey-scale
images to be displayed. All n bits of the image contribute to the display. The memory is assumed to
have a fixed number of pixels on each axis and to be addressable at the individual pixel level. The
addresses are assumed to be one-relative and to begin a t the lower left of the display. The number of
bits, the dimensions of each axis, and the number of memories are parameters inside AIPS. It is also
assumed that each memory may be turned on and off in each of the three colors individually, although
the capability is used solely to display images having separate R, G, and B planes. Beginning with
the 15APR90 release, we assume that the image memory is actually viewed through a rectangular
“window” whose size and coordinates with respect to the image meory may change with time.

2. GRAPHICS MEMORIES: These are one or more memories each 1 bit deep used to display graphical
information, such as axis labels or line drawings on top of the grey-scale images. It is assumed that
the overlay planes have the same number of pixels on each axis as the image memories and th a t each
overlay plane may be enabled or disabled individually. It is nice to be able to assign unique colors to
each of the overlay planes. AIPS will want to use four overlay planes, but all standard programs will
work more or less normally with only one. The number of graphics memories is a parameter.

3. CURSOR AND BUTTONS: The cursor is some form of marker which may be enabled or disabled
and which is under the positional control of some mechanical device (e.g., trackball, joy stick, thumb
wheels, mouse). The position of the cursor on the TV screen may be read at any tim e it is enabled. The
“buttons” are some device to signal conditions to the programs, such as “this is the desired position”
or “time to quit” . AIPS assumes tha t there are four such buttons returning to the program a value
between 0 and 15. Simultaneity of more than one button is never used, however.

4. LOOK UP TABLES: These are tables of numbers which convert the stored n-bit image intensities
to the desired display intensities. AIPS assumes tha t there is one n-bit in, m-bit out look up table
(“LUT”) for each color of each image memory. AIPS also assumes th a t there is a second set of three
look-up tables, called the output function memory (“OFM”), which converts the sums of all enabled

10.2. FUNDAMENTALS OF THE CODING 10-3

memories to the final displayed intensities. In practise, AIPS uses the individual channel LUTs for
black and white enhancement (most of the time) and the OFM for pseudo-color enhancement. There
are algorithms, such as TVHUEINT, which utilize the full capability of the two sets of look-up tables.
Most other routines work well with a single LUT per image memory. Arrays inside AIPS are likely to
be dimensioned for 11-bit image planes and a 10-bit OFM. (These assumptions will be increased as
the need arises.)

5. SCROLL: It is assumed th a t each image memory may be displayed on the TV screen shifted along both
axes by varying amounts. AIPS assumes tha t each memory may be scrolled independently and tha t
the graphics memories may be scrolled together independent of the image memories. The minimum
increments of scroll along each axis are parameters. Note th a t AIPS does not make heavy use of scroll
except for the TVROAM display and, of course, TVSCROLL. TVROAM does not require the image
memories to scroll independently.

6. SPLIT SCREEN: It is assumed th a t the screen may be divided into quadrants and different image
channels enabled in each quadrant. There is a control param eter specifying the degree to which the
local TV display has this capability. AIPS currently uses split screen primarily in the TVROAM
display, but also uses it during image enhancement in the channel blink routines.

7. ZOOM: AIPS assumes that the display of an image may be blown up about any pixel by autom atic
pixel replication by simple integer factors (or by integer powers of two) without affect on the images
stored in the image memories. The highest factor (or power of two) available is a param eter. Zoom is
im portant to the TVMOVIE algorithm and is used in many of the image enhancement routines.

The most im portant TV operations of AIPS could be implemented on a TV device having one image
memory, one LUT with three OFMs (or three LUTs), and a cursor with buttons. Additional image memories,
graphics memories, an OFM, scroll, split screen, and zoom are needed primarily for less im portant aspects
of the basic operations and for some interesting, but esoteric operations.

There are several other sub-units in the IIS Model 70 which are supported by the Y routines in that
sub-library. They include an input function memory (translates input to the TV from the host and from the
ALU), a histogram generator, a feedback arithm etic logic unit, shift and m in /m ax registers, and the like.
Although there are no standard routines in AIPS which use these units, there are two nonstandard tasks for
histogram equalization which make some use of them. The special Y routines used by these two tasks will
be described below, but they should not (yet) be required for other kinds of TV devices — if they are even
possible on them. All functions which Me not possible on the current TV device should be represented by
“stubbed” versions of the appropriate Y routines and these stubs should return an error condition.

10.2 Fundam entals o f the Coding
10.2.1 The Parameter Commons and their Maintenance
All application routines must open the TV device via a call to TVOPEN and close it via a call to TVCLOS.
TVOPEN opens a disk file called IDlOOOOn with exclusive use requested, where n is the number of the
assigned TV device. From the first record of this file, it reads a 256-word record containing parameters
which describe the structure and current status of the assigned TV device. The param eters are stored in a
common called /T V C H A R / which is obtained by including DTVC.INC. TVCLOS puts back to the disk the
time variable portions of this common and then closes the file. In this way, several users/program s may share
the TV in sequence and all will know the current status information. The disk file may be initialized and
the individual parameters set by using the stand-alone program SETTVP. TVOPEN automatically reads
the current window coordinates from the device after it is opened and puts them in this common. The
parameters are im portant to the correct functioning of the local TV device and must be set and maintained
carefully.

The fixed portion of /T V C H A R /, namely th a t portion not written by TVCLOS, includes the parameters:
NGRAY The number of n-bit image memories.
HGRAPH The number of 1-bit graphics overlay memories.

10-4 CHAPTER 10. USING THE T V DISPLAY

HIMAGE The number of images which may be stored
simultaneously in a grey-scale image plane (affects
the image catalog mostly).

MAXXTV(2) The number of pixels in the X and Y directions.
MAXIKT The highest grey-scale intensity = 2 ** n - 1.
LUTOUT Peak intensity out of LUTs.
OFMIIP Peak intensity into OFMs.
OFMOUT Peak intensity out of OFMs.
SCXIVC The minimum increment in scroll in the X direction.
SCYIHC The minimum increment in scroll in the Y direction.
MXZOOM If > 0, the highest power of two for zooming.

If < 0, highest linear zoom factor = 1 - MXZOOM
in simple integer steps.

CSIZTV(2) The size of characters in pixels in the X, Y
directions.

TYPSPL Type of split screen: 0 none, 1 vertical division
only, 2 horizontal division only, 3 either, 4 both.

TVALUS Humber of TV arithmetic logic units.
TVXMOD Mode for loading TV in X direction: 0 none, 1 ok in

AIPS order (to right), 2 ok in reverse direction.
TVYMOD Mode for loading TV in Y direction: 0 none, 1 ok in

AIPS order (to top), 2 ok in reverse direction.
ISUHUM Humber of image storage units.
TVDUMS(IO) Spare room

The time variable portion of the /TVCHAR/ common is:
TVZ00M(3) Current zoom: power of two, X, Y zoom center
TVSCRX(16) Current X scroll for 15 image planes and graphics.
TVSCRY(16) Current Y scroll for 15 image planes and graphics.
TVLIMG(4) Bit pattern for which images are on by quadrant:

quadrants are numbered CCV from top right and the
lsb is for grey plane one and HGRAY+HGRAPH bits sure
used.

TVSPLT(2) Current split screen position in X, Y.
TVSPLM 10 * (number planes in X) + (number planes in Y) in

Roam mode.
TVSPLC Roam mode: digits imply which channels in which

order.
TYPM0V(16) Movie loop code: 4 * (magnification factor - 1) +

64 * (number frames remaining). Add 2 if this is the
first plane of the movie. Add 1 if the frames are
in "display" rather than movie order.

WIHDTV(4) BLC x,y, TRC x,y of the current window visible from
the TV memory. (Hot affected by zoom, scroll!)

TVDUM2(4) Spare room
YBUFF(160) Machine-dependent parameters.

There is a second TV include which controls I/O , but is little used elsewhere. It is obtained by including
and contains:

TVLUH LUH of open TV device.
TVIHD Position of TV device in FTAB for I/O.
TVLUH2 LUH of open TV parameter disk.
TVIHD2 Position of parameter disk in FTAB.
TVBFHO Hot used (map style I/O no longer supported).

10.2. FUNDAMENTALS OF THE CODING 10-5

TVMAP Not used.

10.2.2 The I/O Routines
Four basic I/O operations for TV devices are supported: open, close, I/O reset (“m aster clear”), and data
transfer (read/write). The actual Z subroutines which perform these operations are both TV device and host
operating system specific. The subroutines are stored in the subdirectory appropriate for the host operating
system with names reflecting the TV device type. To insure that the correct Z routines are link edited, a
layer of Y routines is interposed between these Z routines and all other non-Y AIPS routines. No non-Y
subroutine or program should call these Z routines. These Z subroutines have names of the form ZMMMOO,
where MMM is the TV model (i.e., M70 for IIS Models 70 and 75, DEA for DeAnza) and 0 0 is the type of
operation (OP for open, CL for close, MC for I /O reset, and XF for data transfer).

Note that the four Z routines may have TV-device specific cadi sequences and th a t not all devices require
four Z routines. The current implementations are

OP :
ZARGOP (LUH, IHD, IERR) ZARG02 (FCB, PHAME, IERR)
ZDEAOP (LUH, IHD, IERR) ZDEA02 (FCB, PHAME, IERR)
ZIVSOP (LUH, IHD, IERR)
ZM700P (LUH, IHD, IERR) ZM7002 (FCB, PHAME, IERR)
ZSSSOP (LUH, IHD, IERR) ZSSS02 (FCB, PHAME, IERR)
ZV200P (LUH, IHD, IERR) ZV2002 (FCB, PHAME, IERR)
ZVTV0P (LUH, IHD, IERR) ZVTV02 (FCB, PHAME, IERR)
ZVTVR0 (LUH, IHD, IERR) ZVTV03 (FCB, PHAME, IERR)

Performs the needed channel assignment and opens a non-map entry in the FTAB. The DeAnza version
also calls ZDEAXF (’DAT ’,.••) to initialize the I/O . The Z...OP routines axe generic routines which do
machine-dependent things by calls to other Z routines including the Z ...02 versions listed. ZSSSOP exists
only in APLSUN:.

CL :
ZARGCL (LUH, IHD, IERR) ZARGC2 (FCB, IERR)
ZDEACL (LUH, IHD, IERR) ZDEAC2 (FCB, IERR)
ZM70CL (LUH, IHD, IERR) ZM70C2 (FCB, IERR)
ZSSSCL (LUH, IHD, IERR) ZSSSC2 (FCB, IERR)
ZV20CL (LUH, IHD, IERR) ZV20C2 (FCB, IERR)
ZVTVCL (LUH, IHD, IERR) ZVTVC2 (FCB, IERR)
ZVTVRL (LUH, IHD, IERR) ZVTVC3 (FCB, IERR)

Performs a close (deassign) and clears the FTAB entry. The DeAnza version calls ZDEAXF (’DET ’,...) to
perform a deallocation before closing. The M70 version flushes the 10 buffer before the close.

Z...MC :
ZM70MC (FCB) ZM70M2 (FCB, IERR)

Performs a "rewind" QI0 operation causing the IIS to
reset its 1/0 status.

ZARGMC (FCB)
Invokes ZARGS

ZDEANC
ZSSSNC
ZV20MC

Hull subroutines.

Z ...XF :
ZARGXF (OP, HBYTES, HEADER, BUFFER, IERR)

translates IIS Model 70 like commands for ARGS and then

10-6 CHAPTER 10. USING THE T V DISPLAY

calls a selected portion of ZARGS
ZDEAXF (OPER, BUFFER, MBYTE, PA, PB, WAIT, IERR)
ZDEAX2 (FCB, IOP, OPER, BUFFER, KBYTE, PA, PB, WAIT, IERR)

"Calls to ZDEAXF nap one to one to calls to IP8 routines
in the DeAnza IP8500 level 0 software package." Does
requested I/O operation using opcode definitions
contained in IP8I0F.MAR (supplied by DeAnza, not NRAO).

ZM70XF (OPER, HBYTES, HEADER, BUFFER, IERR)
ZM70X2 (OPER, FCB, BUFF, MBYTES, IERR)

writes an eight-word command HEADER to the IIS after
preparing the checksum word of the header. Then reads
from or writes to the IIS MBYTES of BUFFER. Actual
writing to the IIS is deferred until a large buffer is
filled or a read or close occurs. Issues a master
clear on error.

ZSSSXF (OP, DAT, MWORDS, BUFFER, MSWORD, IERR)
ZSSSX2 (FCB, OP, DAT, MWORDS, BUFFER, MSWORD, ISTAT)

reads/writes from the stand-alone SSS program which
creates and operates the workstation ''TV” device.

ZV20XF (OPER, MBYTES, COKST, COKDB, BUFFER, IERR)
ZV20X2 (OPER, FCB, MBYTES, COMST, COMDB, BUFFER, IERR)

performs the actual QIOW operation to transmit data
to/from the Vision 1/20. See ZB.DOC provided with the
Comtal device driver ZBDRIVER.

ZVTVXF (BUFSW, BUFSR, HBUF, IERR)
ZVTVX2 (FCB, BUFSW, BUFSR, BUFFER, IERR)

reads/writes from/to server (real TV computer) from the
client (virtual TV). Thus, is used by AIPS et al.

ZVTVRX (FIMD, BUFSW, HBUF, IERR)
ZVTVX3 (FCB, BUFSW, HBUF, IERR)

reads/writes from/to client (i.e., the virtual TV) from the
server (actual TV). Thus, is used by program TVMON.

10.2.3 The Y Routines

The directory structure of AIPS was designed with the need to support multiple TV devices in mind. See
the Appendix to Volume I of Going AIPS for details. The highest level of the Y-routine device-dependent
directory tree, called Y /D EV with logical name YGEN, contains a “generic” version of the Y subroutine
library. In some cases, there really can be a generic version of a routine, i.e., vectors can be drawn on the
TV screen by a sequence of calls to the image writing routine. In many cases, however, the Y routines in
YGEN are “stubs” which issue an error message and return error code 2. Below this is a set of directories
for the various supported devices. The diagram below summarizes the full Y directory tree:

10.2. FUNDAMENTALS OF THE CODING 10-7

Y Directories
The STUB area is used to hold stubbed versions of those Y routines which have device-independent

implementations. On those systems with no TV display, link edits of AIPS and other “TV” programs will
use this area. Each of the end nodes of this tree has a corresponding link library. If a routine is present in
the end node, then the compiled version of th a t routine will be in the corresponding library. If the routine is
not present, then the compiled version of the routine from the next higher node having th a t routine will be
placed in the library. Thus, one needs to write for the IVAS, for example, only those Y routines for which
the DEV version will not do. In particular, since the IVAS does not have a feed back arithm etic logic unit
(for example), we can use the generic (stubbed) version of YALUCT and have no version of YALUCT in the
IVAS directory.

In the chart below, the names of all routines in the Y directories are given along with indications of which
directories have versions of them. The codes are “G” for generic, “S” for stubbed, “D” for device dependent,
and “O” for operating system dependent. The routines are broken into four “levels” depending on how they
may be used. Levels 0 and 1 may be called from non-Y routines and level 3 may not. Level 2 was originally
designed to be called from non-Y code, but experience has shown that the device capabilities are available
only on IIS Models 70 and 75. and, hence, they are not recommended.
Level 0: required, but a generic is available

Routine DEV IIS M70 M7S IVAS DEA V20 STUB VTV

YCHRW G D S D
YCIIIT G D
YCHECT G D S D
YCOVER G D
YCREAD G D
YCUCOR G D S D
YCURSE G D S D
YCWRIT G D
YFILL G D D
YFIHD G D
YLOCAT G D
YLOWOI G
YSLECT G S D
YTCOMP G
YTVCLS G D

10-8 CHAPTER 10. USING THE T V DISPLAY

YTVOPH G S D
YVINDO G D

Level 1: required, device-dependent is needed

Routine DEV IIS M70 M75 IVAS DEA V20 STUB VTV

YCRCTL S D D D D D D
YGRAPH S D D D D D D
YIMGIO S D D D D D
YIHIT s D D D D D D
YLUT s D D D D D
YOFM s D D D D D D
YSCROL s D D D D D D
YSPLIT s D D D D D
YTVCIH s D D D D D
YTVCL2 s D D D D D
YTVMC s D D D D D
YTV0P2 s D D D D D
YZERO s D D D D D
YZOOMC s D D D D D D

Level 2: IIS dependent routines ■- not available to other TVs

Routine DEV IIS M70 M75 IVAS DEA V20 STUB VTV

YALUCT S D D D
YCOHST S D D D
YFDBCK S D D D
YIFM S D D D
YMHMAX S D D D
YRHIST S D D D
YSHIFT S D D D

Level 3: routines only called by Y routines - not available to r

Routine DEV IIS M70 M75 IVAS DEA V20 STUB VTV
_____ __ __ __ __ __ __ __ ___

SSS

SSS

BYTE2I 0
I2BYTE 0
YBUTOH D
YCHACT D
YCMHD D
YCMSET D
YDOERR D
YGGRAH S D D D
YGRAFE S D D
YGYHDR S D D
YISDRM S D
YISDSC s D
YISJMP s D
YISLOD G
YISMPM S D
YLINTV D

10.2. FUNDAMENTALS OF THE CODING 10-9

YMAGIC S D
YMKCUR S D
YMKHDR S D D
YSTCUR S D D D
YVRTR D

The following sections provide a brief overview of the current Y routines. The precursor comments of most
of the Y routines are reproduced near the end of this chapter.

Level 0
1. YCHRW writes characters into an image or graphics plane. The DEV version is TV independent and

uses a 7 x 9 pixel area per character. The background intensity is set to 1 for m ulti-bit channels and
0 for graphics. Uses YIMGIO.

2. YCINIT initializes the TV image catalog. It is a Y routine to allow for remote TV devices.
3. YCNECT writes a line segment in an image or graphics plane at a specified intensity. It is a Y routine

to allow for TV devices with hardware vector generators. Uses YIMGIO.
4. YCOVER checks the TV image catalog to see if there are overlapping images visible. It is a Y routine

to allow for remote TV devices.
5. YCREAD uses the TV image catalog to determine which image is associated with a particular pixel.

It is a Y routine to allow for remote TV devices.
6. YCUCOR converts cursor positions and obtains the corresponding image header. It is a specialized

version of YCURSE to avoid any TV I/O and to do the image catalog work.
7. YCURSE enables/disables cursor and cursor blink and reads cursor position and buttons value. The

main complications come from corrections for zoom and scroll. The generic version uses YCRCTL and
assumes that zoom/scroll is done by specifying the pixel to be visible in the upper left corner.

8. YCW RIT updates the TV image catalog to add an image to the display list. It is a Y routine to allow
for remote TV devices.

9. YFILL fills a rectangular region of the display with an image of constant intensity. Uses YIMGIO and
is a Y routine to allow for devices with hardware polygon fill.

10. YFIND uses the TV image catalog to determine if only one image is visible and, if so, to return the
image header. It is a Y routine to allow for remote TV devices.

11. YLOCAT uses the TV image catalog to convert a list of image pixel positions to a list of TV positions.
It is a Y routine to allow for remote TV devices.

12. YLOWON selects the lowest numbered channel from a bit mask. It is a Y routine for no good reason.
13. YSLECT enables/disables grey and graphics channels setting the proper values into TVLIMG. Uses

YSPLIT for image planes and YGRAPH for graphics planes.
14. YTCOMP performs logical tests on param eter values to see if they have changed. It is a Y routine

only because it is now used only to minimize I/O to the DeAnza control registers.
15. YTVCLS updates and closes the TV param eter disk file and closes the TV device via YTVCL2.
16. YTVOPN opens and reads the TV param eter disk file and opens the TV device via YTVOP2.
17. YWINDO reads current viewing rectangle on the image memory, can force it on workstations.

10-10 CHAPTER 10. USING THE TV DISPLAY

Level 1
1. YCRCTL reads/writes the cursor/trackball control register including position, enable/disable on each

axis, blink control.
2. YGRAPH enables/disables graphics overlay planes by altering the graphics color look up tables. A

non-essential nicety is the use of complimentary colors when two or more graphics planes are enabled
a t the same pixel.

3. YIMGIO reads/writes a line of image data from /to a grey-scale or graphics plane. It will perform buffer
swaps if needed to get the desired angle and bit-level corrections when graphics planes are read. This
is the most heavily used Y routine, in part because of the generic versions of YCHRW and YCNECT.

4. YINIT initializes all subunits of the TV, clears the TV memories, resets the image catalog, and resets
status parameters in common.

5. YLUT reads/writes the full channel-level lookup table for one or more image channels and colors.
6. YOFM reads/writes the full OFM lookup table for one or more colors.
7. YSCROL writes the scroll control registers for one or more channels.
8. YSPLIT reads/writes the split screen control registers. This is the actual control of the split screen

center and of which channel(s) are enabled/disabled in each quadrant.
9. YTVCIN provides initial values for the TV characteristics commons.

10. YTVCL2 closes the TV device. Actually it is usually just an interface to the appropriate Z...CL
subroutine.

11. YTVMC resets the TV I/O status. Actually it is usually just an interface to the appropriate Z...MC
subroutine.

12. YTVOP2 opens the TV device. Actually it is usually just an interface to the appropriate Z...OP
subroutine.

13. YZERO clears a full grey or graphics memory by the fastest possible method.
14. YZOOMC writes the zoom control registers giving magnification and zoom center.

Level 2
1. YALUCT reads/writes the IIS arithmetic logic unit control registers. No actual function is performed

until a feedback operation is done via YFDBCK. This routine is very IIS specific and we doubt that
its functions can be implemented on other TVs.

2. YCONST reads/writes the constant “biases” which are added to the sums of the individual enabled
channels before the signals are sent to the OFM.

3. YFDBCK causes a feedback operation to occur. The ALU does its thing with one or more channels
and returns an 8 or 16 bit result to one or two channels. A magic bit causes the function to be a simple
zeroing of a channel.

4. YIFM reads/writes a portion of the input function memory. This lookup table can be used in writing
data to the TV memory and in the feedback operation. AIPS does not do the former and only one
non-standard task does the latter.

5. YMNMAX reads the min and m ax output from the sum of all enabled grey-scale planes for each color.
6. YRHIST reads a portion of the histogram of the output of the OFM for a selected color. The IIS can

do this on the fly if properly equipped.
7. YSHIFT reads/writes the shift registers which shift the 13-bit output of the sum of all enabled channels

before the data get to the OFM.

10.3. CURRENT APPLICATIONS 10-11

Level 3
1. BYTE2I converts VMS BYTE data to integer forcing the BYTE variable to be in the range 0-255.
2. I2BYTE converts integer data in range 0-255 to VMS BYTE data.
3. YBUTON reads the state of the button buffer of the TV. IVAS uses this for converting two different

buttons into “button D” .
4. YCHACT activates a specified Comtal channel.
5. YCMND sends a command string to the Comtal via ZV20XF.
6. YCMSET sets up the Comtal driver for I/O .
7. YDEA.INC Include file giving param eter definitions to specify positions in YBUFF which correspond

to the various registers in a DeAnza TV device.
8. YDOERR handles error conditions, reporting, and resetting for the IVAS.
9. YGGRAM reads/writes the lookup table used for graphics planes.

10. YGRAFE reads/writes the graphics control register which assigns a graphics plane as the “blotch”
plane and another as the “status” plane. No use is made of this.

11. YGYHDR prepares a basic I/O control header for writing/reading image data to/from the IIS.
12. YISDRM reads/writes data memory of the NRAO Image Storage Unit.
13. YISDSC reads/writes micro-processor memory of the NRAO Image Storage Unit from /to the ISU

disks.
14. YISJMP causes the micro-processor of the NRAO Image Storage Unit to jum p to a specified address.
15. YISLOD reads/writes program memory of the NRAO Image Storage Unit from /to disk. Uses YISMPM.
16. YISMPM reads/writes micro-processor memory of the NRAO Image Storage Unit.
17. YLINTV sends a line to /from Comtal image or graphics planes.
18. YMAGIC (Model 75 only) initializes graphics, zoom, and scroll subunits (called by YINIT only).
19. YMKCUR creates and loads the cursor pattern memory with a specified shape. Only the AIPS plus

sign is implemented.
20. YMKHDR prepares a basic I /O control header for the IIS.
21. YSTCUR reads/writes the IIS cursor array. This 64 x 64 bit array provides a wide choice of patterns

for the display “cursor” . AIPS uses only a simple plus sign with a blank pixel at the center.
22. YVRTR checks and switches as needed the transfer restrictions on the IVAS.

10.3 Current A pplications
This section is devoted to a generally brief overview of the current application code. Primarily it will be
used simply to point out which routines do what, with some comment on the methods. This should suffice
as an introductory guide to the code for applications programmers wishing to include the TV display in
their programs. In a couple of cases, some of the actual code will be reproduced in order to clarify the use
of the various service routines. The precursor remarks for some of the most commonly used, non-Y service
routines are reproduced at the end of this chapter.

10-12 CHAPTER 10. USING THE T V DISPLAY

10.3.1 Status Setting
By “status setting” , we mean initializing the TV device, clearing memory channels, enabling and disabling
portions of the display, and the like. Many of the applications which involve loading images to the TV
display will zero the relevant memories (via YZERO) and clear the corresponding portions of the image
catalog (via YCINIT) before carrying out their primary functions. However, the simplest examples of status
setting are those performed by various AIPS verbs. The subroutine AU5 performs the verbs TVINIT (via
YINIT), TVCLEAR (as follows), GRCLEAR (like TVCLEAR without the MOVIST call), TVON, TVOFF,
GRON, GROFF (via calls to YSLECT), TV3COLOR (use YSLECT to turn off all channels, then YSLECT
to turn on channels 1 through 3 in red, green, blue, respectively), and CURBLINK (via YCURSE). Other
verbs in AU5 are described later.

The verb TVCLEAR is coded as follows. The channel number is picked up as an integer, the decimal
code is converted to a bit pattern (via DECBIT), the movie status parameters are reset (via MOVIST),
and then a loop over all selected grey planes is done to zero the memory (via YZERO) and clear the image
catalog (via YCINIT).

CALL TVOPEI (CATBLK, JERR)
IF (JERR.IE.0) THEN

POTERR = 101
GO TO 980
EID IF

Open TV device

200 ICHAI = ABS (TVCHAI) + EPS
C convert to channel bit mask

CALL DECBIT (HGRAY, ICHAI, ICHAI, ITEMP)
C clear movie parameters

CALL MOVIST (»0FFF\ ICHAI, 0, 0, 0, IERR)
DO 210 IP = l.IGRAY

C is plane requested
ITEMP = 2 ** (IP-1)
IF (IAID (ICHAI,ITEMP).IE.0) THEI

210

CALL YCIIIT (IP, IIBUF)

CALL YZERO (IP, JERR)
IF (JERR.IE.0) GO TO 975
TDEL = TDEL +1.0
EID IF

C0HTIIUE
GO TO 900

clear image catalog

clear TV memory

900 CALL TVCLOS (CATBLK, JERR)
IF (TDEL.GT.0.0) THEI

TDEL = TDEL +1.0
CALL ZDELAY (TDEL, IERR)
EID IF

GO TO 999

normal TV close

10.3. CURRENT APPLICATIONS 10-13

10.3.2 Load Images, Label
Images are loaded to the TV by a wide variety of tasks (e.g., APCLN, TVPL, BLANK) and by several verbs
(TVLOD, TVROAM, TVMOVIE). TVLOD will be illustrated in this subsection and the others mentioned
in later subsections.

The full code from subroutine AU5A for TVLOD, except declarations, formats, error branches, and the
like, is reproduced below. It begins by opening the TV control file and device (via TVOPEN). It moves the
user adverbs to local variables to avoid changing their (global) values and opens the map file (via MAPOPN).
It converts the user’s PIXRANGE adverb using standard defaults (via RNGSET) and fills in some of the
image catalog parameters in the header. It sets the window parameters (via TVW IND), selects a single grey
scale memory plane (via DECBIT), and clears the movie parameters (via MOVIST). Finally, it finishes up
the image catalog parameters, puts the header in the image catalog, and reads, scales, and loads the image
to the TV memory (all via TVLOAD). Afterwards, it closes the map file (via MAPCLS) and the TV device
and disk file (via TVCLOS).

IHCLUDE 'IHCS:DHDR.IHC'
C

CALL TVOPEH (IHBUF, IERR)
IF (IERR.HE.O) 60 TO 980
IBSIZ = 2 * 4096

C
IF (BRAHCH.LE.2) THEH

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

ICHAH = IR0UHD (TVCHAH)
IV0L = IHDSK + EPS
USID = ABS(USERID) + EPS
SEQH0 = IHSEQ + EPS
IF (USID.EQ.0) USID = HLUSER
IF (USID.EQ.MAGIC) USID = 0
CALL H2CHR (12, 1, IIIAM, HAME)
CALL H2CHR (6, 1, IHCLS, CLASS)
IHC(l) = IR0UHD (TVXIHC)
IHC(2) = IR0UHD (TVYIHC)
PTYPE = 'MA’

open map file
CALL MAP0PH (* READ’, IV0L, HAME, CLASS, SEQH0, PTYPE, USID,

DLUH, DIHD, CH0, CATBLK, IHBUF, IERR)
P0TERR - 33
IF (IERR.GT.1) GO TO 975
CALL RC0PY (7, TVBLC0, LBLC)
CALL RC0PY (7, TVTRC0, LTRC)

open TV

Map open junk: TVLOD, TVROAM

adverbs -> local variables
Adverbs used:
TVCHAH = tv channel
IHHAM = File name
IHCLS = File class
IHSEQ = File sequence number
IHDSK = Disk number
USERID - User ID number
TVBLC0 = TV bottom left comer
TVTRC0 = TV top right corner
TVXIHC = TV x pixel increment
TVYIHX = TV y pixel increment
PXRAHG = Range of pixel values
TVC0RH = BLC on TV screen for

image

10-14 CHAPTER 10. USING THE T V DISPLAY

C Image cat fill in some
CALL RIGSET (PXRAIG, CATR(KRDMX), CATR(KRDMH), CATR(IRRAH))
CATBLK(IIVOL) = IVOL
CATBLK(IICIO) = CIO
CATH(IITRA) = FUHTYP
ITVC(l) = TVCORI(l) + EPS
ITVC(2) = TVC0RI(2) + EPS
POTERR = 49
EID IF

C TVLOD
C load one image plane
C set windows
100 TYPE = -1

CALL DECBIT (IGRAY, ICHAI, ICHAH, I)
CALL TVWIID (TYPE, IIC, LBLC, LTRC, I, ITVC, IWIH, IERR)
IF (IERR.IE.0) GO TO 970

C convert channel number
ICHAI = I
CALL DECBIT (IGRAY, ICHAI, ICHAI, I)

C clear movie parameters
C load it

CALL MOVIST (*OFFF*, ICHAI, 0, 0, 0, IERR)
C do the TV load
C image catalog

CALL TVLOAD (DLUI, DIID, I, IIC, ITVC, IWII, IBSIZ, RIIBUF, IERR)
IF (IERR.EQ.O) POTERR = 0
GO TO 970

C Close down ops
970 CALL MAPCLS ('READ', IVOL, CIO, DLUI, DIID, CATBLK, F, IIBUF,

* IERR)
C
975 CALL TVCLOS (IIBUF, IERR)

The verbs TVW EDGE, IMWEDGE, IMERASE, and WEDERASE load step wedge or pure zero images
to the TV. They occur in subroutine AU5C. This routine calls TVFIND and possibly TVW HER to determine
which image is desired. It then computes a buffer of appropriate values calling ISCALE (as TVLOAD does).
AU5C then does a lot to set an appropriate image catalog header and writes th a t to the catalog via YCW RIT.
Finally it loads the TV rows via calls to YIMGIO.

The image labeling verbs TVLABEL and TVWLABEL are implemented from subroutine AU5B. This
routine calls TVFIND to determine which image is to be labeled and IAXIS1 to do the labeling. Subroutines
I AXIS 1 and ITICS are very similar to the standard axis labeling routines used to make plot files and to write
directly to the TEK graphics device. Characters are written to a graphics memory with a black background
by calls to IMANOT and lines are written to the graphics memory by calls to IMVECT. (See the precursor
comments of these routines at the end of this chapter.) The verb TVANOT, which adds a user-provided
string to the display, is also implemented in AU5B and uses TVW HER, IMANOT, and IMCHAR.

10.3.3 UVMAP
UVMAP uses the TV display for a fairly simple purpose — to show the pattern of sampled uv cells (after
convolution of the data to the grid). In principle, the algorithm is simple: associate uv cells with TV pixels
and display 0 on the TV when the uv cell is unsampled (0.00) and display MAXINT on the TV when the cell
is sampled (not 0.0). Unfortunately, the uv grid may be larger than the TV display and the disk file contains
the grid in transposed, quadrant-swapped order. The first problem is solved by decimation (examine only
every n ’th cell in X and m ’th cell in Y). The quadrant swapping is solved by addressing the TV beginning

10.3. CURRENT APPLICATIONS 10-15

in the middle and by starting in the middle of the buffer which is written to the TV. The transposition is
solved by writing the rows of the file as columns on the TV. The subroutine in UVMAP which does this
(UVDISP) uses the image writing mode param eters (TVYMOD and TVXMOD) to handle this correctly
when possible, and to leave the display in transposed order when not (i.e., TVYMOD = 0).

10.3.4 APCLN, VTESS, MX, et al.
Iterative map analysis programs can make good use of the TV display. The user may, for example, request
tha t APCLN display the residual m ap after each major cycle. APCLN does this, then turns on the cursor
and waits up to 15 seconds for the user to push Button D to signify th a t sufficient iterations have been
performed. Several tasks (currently MX, APGS, SDCLN, VTESS, UTESS, APVC) use code similar to that
in APCLN for loading the image to the TV and requesting the user input. Given below is the TV subroutine
from APCLN. Note that it uses the array processor to scale the data for YIMGIO. This is reasonable, but
only for tasks which are already using the array processor for more im portant computations. The costs of
opening and closing the AP device and performing the I/O to it make any improvement in computational
speed marginal for computations such as these. Note also the scaling param eters used here. The lowest
displayed intensity gets TV value 1.01 and the highest gets MAXINT+0.99 (after the 0.5 for rounding is
added and before the integers are truncated by routine QVVFIX). This scaling is assumed (primarily by
CURVALUE) for all linear transfer functions. TV value zero is reserved for “blanked” (indefinite) pixels and
should always be given zero intensity on the display (by the LUTs and OFMs).

SUBROUTINE DISPTV (TVPASS)
C—
c DISPTV displays the current residual map on the TV, shoving inner
c portion only if that's all that vill lit.
c Inputs:
c TVPASS I code: 0,1 => clear screen, else don't
c 0,3 => don't question the user about
c quitting
c Output:
c TVPASS I code: 32700 => user wants to quit cleaning

IITEGER TVPASS

CHARACTER PREFIX*5
IITEGER JROV(l), WII(4) , MY, FIID, BIID, IERR, ICH, CATII(256),

* IQ, IB, I, MX2, MX, IVII(4), IY
REAL XI(4), XBUFF(l) , TD, RP0S(2), XFLUX, TVLMAX, TVLMII,

* ARG, CATIR(256)
LOGICAL MAP, EXCL, WAIT , LERR, F
IICLUDE ’APCLI.IIC’
IICLUDE * lies:DFIL.lie*
IICLUDE ’IICS:DTVC.IIC'
IICLUDE 'IICS:DMSG.IIC'
IICLUDE 'IICS:DHDR.IIC'
IICLUDE 'IICS:DTVD.IIC'
IICLUDE *IICS:DCAT.IIC'
EQUIVALEICE (JROW, BUFF2) (BUFFI, XBUFF)
EQUIVALENCE (CATII, CATIR , BUFF1(513))
DATA MAP , EXCL, WAIT, F / 3*.TRUE., .FALSE./

ICH = 1
CALL TVOPEI (BUFFI, IERR)
IF (IERR.IE.0) THEI

10-16 CHAPTER 10. USING THE T V DISPLAY

WRITE (MSGTXT,1000) IERR
CALL MSGWRT (6)
GO TO 999
EXD IF

IF (TVPASS.LE.1) THEN
CALL YZERO (ICH, IERR)
IF (IERR.HE.0) THEH

WRITE (MSGTXT,1010) IERR
CALL MSGWRT (6)
GO TO 998
EHD IF

CALL YCIHIT (ICH, XBUFF)
EHD IF

C Set uax/min lor display
IF (TVFMAX.LE.TVFMIN)

TVFMAX = TVREMX
TVFMIH = TVREMH
EHD IF

IF (TVREMX.GT.TVFMAX) TVFMAX = TVREMX
IF (TVREMH.LT.TVFMIH) TVFMIH = TVREMH
TVLMAX = TVFMAX - TVFMIH
IF (0.1*TVLMAX.GT.TVREMX-TVREMH) THEH

ARG = 0.1 * TVFMIH
TVFMIH = MIH (ARG, TVREMH)
ARG = TVFMIH + 0.1 * TVLMAX
TVFMAX = MAX (ARG, TVREMX)
TVLMAX = TVFMAX - TVFMIH
EHD IF

XH(1) = TVFMIH
XH(2) = TVFMAX
XH(3) = (MAXIHT - 0.02) / TVLMAX
XH(4) = 0.51 - TVFMIH * XH(3)
CALL QPUT (XH, 0, 4, 2)

C Write scaling factor
XFLUX = TVLMAX
CALL METSCA (XFLUX, PREFIX, LERR)
TVLMIH = TVFMIN * XFLUX / TVLMAX
TVLMAX = TVFMAX * XFLUX / TVLMAX
WRITE (MSGTXT,1020) TVLMIH, TVLMAX, PREFIX
CALL MSGWRT (1)

C Set window to display
WIH(l) = (WIHM(3,1) + WIHM(1,D) / 2 - MAXXTV(l) / 2 + 1
WIH(l) = MAX (1, WIN(l))
WIH(2) = (WINM(4,1) + WIHM(2,1)) / 2 - MAXXTV(2) / 2 + 1
WIN(2) = MAX (1, WIH(2))
WIH(3) = (WIHM(3,1) + WIHM(l,l)) / 2 + MAXXTV(l) / 2
WIH(3) = MIH (HX, WIH(3))
WIN(4) = (WIHM(3,1) + WIHM(1,1)) / 2 + MAXXTV(2) / 2
WIN(4) = MIH (NY, WIN(4))
DO 70 I = 1,2

IWIN(I) = (MAXXTV(I) - WIKI+2) + WIH(I) + l)/2
IF (IWIH(I).GE.l) GO TO 50

ItflN(I) = 1
WIN(I) = (WIN(I+2) + WIN(I) - MAXXTV(I) + l)/2

10.3. CURRENT APPLICATIONS 10-17

GO TO 60
50 IWIK(I+2) = IWIH(I) + WIHCI+2) - WIH(I)

IF (IWIH(I+2).LE.MAXXTV(I)) GO TO 70
60 IWIH(I+2) = MAXXTV(I)

WIH(I+2) = VIH(I) + IWIH(I+2) - IWIH(I)
70 COHTIHUE
C Prepare to read map.

CALL ZOPEH (LUNRES, FIHD, RESVOL, RESFIL, MAP, EXCL, WAIT, IERR)
CALL MIHIT ('READ', LUHRES, FIHD, HX, HY, WIH, XBUFF, BUFSZ1,

* BORES, IERR)
IF (IERR.HE.O) GO TO 110
MX = WIH(3) - WIH(l) + 1
MY = WIH(4) - WIH(2)+ 1

C loop, passing map to TV.
DO 100 I = 1,MY

IY = I + IWIH(2) - 1
CALL MDISK (* READ *, LUHRES, FIHD, XBUFF, BIHD, IERR)
IF (IERR.HE.O) GO TO 110

c clip, sacle, and fix in Q routines
CALL QPUT (XBUFF(BIHD), 4, MX, 2)
CALL qWD
CALL QVCLIP (4, 1,0, 1,4, 1, MX)
CALL qVSMSA (4, 1, 2, 3, 4, 1, MX)
CALL QVFIX (4, 1, 4, 1, MX)
CALL QWR
CALL QGET (JROW, 4, MX, 1)
CALL QWD

C Send row to TV.
MX2 = MX
CALL YIMGIO ('WRIT', ICH, IWIH, IY, 0, MX2, JROW, IERR)
IF (IERR.HE.O) GO TO 110

100 COHTIHUE
110 CALL ZCLOSE (LUHRES, FIHD, IERR)

C Release the AP
CALL QRLSE

C Update image catalog
CALL COPY (256, CATBLK, CATII)
CATII(IIVOL) = 0
CATII(IICHO) = 0
CALL FILL (5, 1, CATII(IIDEP))
CALL COPY (4, IWIH, CATII(IICOR))
CALL COPY (4, WIH, CATII(IIWIH))
CALL CHR2H (2, ' 1, CATII(IITRA))
CATIR(IRRAH) = TVFMIH
CATIR(IRRAH+1) = TVFMAX
CATIR(KRDMH) = TVREMH
CATIR(KRDMX) = TVREMX
CALL YCWRIT (ICH, IWIH, CATII, XBUFF, IERR)
IF (IERR.EQ.O) GO TO 120

WRITE (MSGTXT,1110)
CALL MSGWRT (6)

C Ask user to quit?
120 IF ((TVPASS.HE.1) .AHD. (TVPASS.HE.2)) GO TO 998

WRITE (MSGTXT,1120)

10-18 CHAPTER 10. USING THE T V DISPLAY

CALL MSGVRT (1)
WRITE (MSGTXT,1121)
CALL MSGWRT (1)
RPOS(l) = (WI¥DTV(1) + WIIDTV(3)) / 2.0
RP0S(2) = (WIHDTV(2) + WIIDTV(4)) / 2.0
TD = 0.2
CALL YCURSE ('OHHH', F, F, RPOS, IQ, IB, IERR)
IF (IERR.HE.0) GO TO 998
DO 130 I = 1,75

CALL ZDELAY (TD, IERR)
CALL YCURSE (*READ *, F, F, RPOS, IQ, IB, IERR)
IF (IB.GT.7) GO TO 140
IF (IB.GT.O) GO TO 135
IF (IERR.IE.0) GO TO 135

130 COHTIIUE
135 WRITE (MSGTXT,1135)

CALL MSGWRT (1)
GO TO 150

C Wants to quit
140 TVPASS = 32700

WRITE (MSGTXT,1140)
CALL MSGWRT (3)

C Oil cursor
150 CALL YCURSE ('OFFF', F, F, RPOS, IQ, IB, IERR)
998 CALL TVCLOS (BUFFI, IERR)

C
999 RETURN
C---
1000 FORMAT (’CAN’ 'T OPEH TV IER=\I6)
1010 FORMAT (’ IMCLEAR ERROR =',I6)
1020 FORMAT ('TVDISP: Display range = '.2F8.3,1X,A5,'Jy»)
1110 FORMAT ('CAH ' 'T UPDATE IMAGE CATALOG IER=',16)
1120 FORMAT ('Hit button D within 15 seconds to stop cleaning now')
1121 FORMAT ('Hit buttons A, B, or C to continue sooner')
1135 FORMAT ('Continuing')
1140 FORMAT ('TV Button D hit: have done enough I guess')

EHD

10.3.5 Plot Files (TVPL)
Plots in AIPS are usually produced as device-independent plot files (see the chapter on plotting). The task
which interprets such files and writes on the TV display is called TVPL. It will scale line drawings to fill the
TV screen or, a t the user’s option, plot them at the original pixel scaling (converted to TV pixels). Grey-scale
plot files are always done at pixel scaling. The character and vector portions of the plot are written to one
of the graphics planes (chosen by the user) via subroutines IMVECT and IMCHAR. Grey-scale records, if
any, are written via YIMGIO to the user-specified grey-scale memory. TVPL also updates the image catalog
as needed.

10.3.6 Transfer Function Modification, Zooming
Subroutine AU6A carries out the verbs OFFTRAN, TVTRANSF, TVLUT, and TVMLUT which perform
modifications on the black and white (or single color) LUTs of the specified grey-scale memories. OFFTRAN
simply writes a linear, 0 through MAXINT array to the LUTs via YLUT. TVTRAN is implemented by the
subroutine IENHNS which is also used by other verbs and tasks (e.g., TVFIDDLE, BLANK, TVMOVIE,

10.3. CURRENT APPLICATIONS 10-19

TVBLINK). IENHNS allows a linear LUT with the cursor position controlling the slope and intercept and
buttons allowing a switch in the sign of the slope and a continually updated plot of the LUT. TVLUT and
TVMLUT allow the user to plot his own LUT function on a graphics plane with the cursor and the buttons.
They both use the subroutine GRLUTS.

Subroutine AU6 implements the verbs OFFPSEUD, OFFZOOM, and OFFSCROL to clear the OFM,
the zoom setting, and the scroll(s). It also implements interactive setting of the zoom factor and center
(verb TVZOOM), of individual channel scrolls (TVSCROL), and of the pseudo-color OFM (TVPSEUDO).
OFFPSEUD simply sends a linear OFM to all colors via YOFM; OFFZOOM sends a 0 zoom factor via
YZOOMC; and OFFSCROL sends a 0 scroll via YSCROL. TVZOOM makes considerable use of YCURSE
and YZOOMC, while TVPSEUDO uses YCURSE and alternately IMLCLR (RGB color triangle), IMPCLR
(circle in hue), and IMCCLR (color contours). AU6 also implements a much more complicated enhancement
algorithm in which one grey-scale channel is used to set the intensity and another to set the hue. This
algorithm requires the TV to have an LUT for each color and channel and an OFM for the sum of the
enabled channels for each color. A log function is put in the LUTs and an exponential in the OFM to carry
out the required multiplication of the two signals. Subroutines HIENH and HILUT actually do most of the
algorithm including interactive enhancements (via an algorithm similar to IENHNS) and switching of the
roles of the two channels.

One of the most commonly used image enhancement routines is TVFIDL. It is called by the verb TV-
FIDDLE via subroutine AU6C and several tasks including BLANK and TVFLG. It is a deliberately limited
interactive routine designed to provide easy-to-use enhancement in black and white (via IENHNS) or pseudo
color (via IMCCLR with a single type of color contour). A simple zoom procedure is also provided. During
image enhancement, the cursor position controls slope and intercept and, during zoom, the cursor position
controls zoom center. Button A (value 1) alternately selects color and black and white enhancement, button
B /C increments/decrements the zoom and selects zoom mode. As in all interactive algorithms, button D
(values > 8) term inates the function.

The algorithm for TVSCROL is a good example to present in detail since the action required when the
cursor moves is quite simple. The most im portant thing to notice below is the routine DLINTR. This routine
tests the output of YCURSE to see if anything has changed. If not, it delays the program by some period
of time which increases slowly as the tim e since the last change increases. W ithout this algorithm, the tight
loop on reading the TV cursor is capable of jam m ing the CPU and I/O channels, especially when the user
does not move the cursor. DLINTR also keeps the cursor from moving off the screen (wrapping around to
the other side).

C
QUAD = -1
RP0S(1) =0.0
RP0S(2) = 0.0

C
CALL TV0PEH (BUFFER, IERR)

C
CALL ZTIME (ITW)
IF (IERR.HE.0) THEN

POTERR =101
GO TO 980
EHD IF

C
C
500 WRITE (MSGTXT,1500)

CALL MSGWRT (1)
WRITE (MSGTXT,1505)
CALL MSGWRT (1)

C
C

TVSCROL
user instructions

find channel(s) to scroll
scroll graphics too ?

general parameters

open TV device

get start time

10-20 CHAPTER 10. USING THE T V DISPLAY

IC = ABS(TVCHAH) + EPS
CALL DECBIT (HGRAY, IC, IC, J)
ITEMP = 2 ** HGRAY
IF (ABS(GRCHAH).GT.EPS) IC = IOR (IC, ITEMP)
IF (IC.EQ.O) THEH

IC = MOD (TVLIMG(l), ITEMP)
IF (IC.HE.TVLIMG(l)) IC = IOR (IC, ITEMP)
EHD IF

IX = 0
IY = 0
RPOS(l) “ (WIHDTV(l) + WIHDTV(3)) / 2
RP0S(2) = (WIHDTV(2) + VIHDTV(4)) / 2

C turn on cursor
CALL YCURSE (*OHHH’, F, F, RPOS, QUAD, IBUT, IERR)
IF (IERR.HE.O) GO TO 900

C force scroll
510 CALL YSCROL (IC, IX, IY, T, IERR)

IF (IERR.HE.O) GO TO 900
PP0S(1) = RPOS(l)
PP0S(2) = RPOS(2)

C read until cursor moves
520 CALL YCURSE (* READ *, F, F, RPOS, QUAD, IBUT, IERR)

IF (IERR.HE.O) GO TO 900
C test lor change

CALL DLIHTR (RPOS, IBUT, F, QUAD, PPOS, ITW, DOIT)
IF (.HOT.DOIT) GO TO 520

C cursor moved, change scroll
IX = RP0S(1) - (WIHDTV(l) + WIHDTV(3)) / 2
IY = RPOS(2) - (WIHDTV(2) + WIHDTV(4)) / 2

C any button => done
IF (IBUT.EQ.O) GO TO 510

POTERR = 0
GO TO 900

C close dovn
C cursor oil, TV closed
900 IF (BRAHCH.GE.4) CALL YCURSE (*OFFF’, F, F, RPOS, QUAD, IBUT,

* JERR)
910 CALL TVCLOS (BUFFER, JERR)

10.3.7 Object location, window setting
Subroutine AU5 performs the verbs TVPOS, IMXY, IMPOS (see below), and TVNAME (via TVFIND) as
well as a variety of status setting verbs. IMPOS is implemented as follows. It calls TVW HER to find the
cursor position indicated by the user. Then it checks all enabled memories via YCREAD to see if there is
an image displayed at th a t pixel position. Finally, it calls MP2SKY to set up the coordinate commons and
get the primary positions and goes through some other messy stuff to display the results to the user.

CALL TVOPEH (CATBLK, JERR)
IF (JERR.HE.0) THEN

POTERR =101
GO TO 980
END IF

10.3. CURRENT APPLICATIONS 10-21

C
C
600

c

c
625

C

C

C

C

630
C

C
650

C
660

C

C
C

665

IMPOS
read cursor to get position

CALL TVWHER (IPL, RPOS, IBUT, JERR)
IF (JERR.ME.0) GO TO 975

Set output adverb = button #
TVBUTT = IBUT

image piz -> map pixel pos
IX = RPOS(1) + EPS
IY = RPOS(2) + EPS

Find lowest plane with x,y
IN2 = NGRAY + HGRAPH
DO 630 IP = 1,IN2

skip oil channels
ITEMP = 2 ** (IP-1)
IF (IAND (TVLIMG(IQUAD), ITEMP).EQ.0) GO TO 630

get image cat block
CALL YCREAD (IP, IX, IY, CATBLK, IERR)

loop il x,y not in image
IF (IERR.EQ.l) GO TO 630
IF (IERR.EQ.O) GO TO 650
GO TO 975
CONTINUE

x,y not in on image
WRITE (MSGTXT,1630) IX, IY
CALL MSGWRT (6)
GO TO 900

image -> map positions
CALL IMA2MP (RPOS, RPOS)
WRITE (MSGTXT,1650) RPOS
CALL MSGWRT (5)

map -> sky positions
CONTINUE

CALL MP2SKY (RPOS, SKYPOS, IERR)
IF (IERR.NE.0) THEN

WRITE (MSGTXT,1660) IERR
CALL MSGWRT (6)
GO TO 900
END IF

3rd axis pairs w 1st or 2nd
IF ((AXTYP.EQ.2) .OR. (AXTYP.EQ.3)) CALL AXSTRN (CTYP(3),

SKYPOS(3), KLOCA, NCHLAB(l), SAXLAB(l))
Primary axes
Tell user results via MSGWRT.

WRITE (MSGTXT,1661)
ICH = 8
DO 665 I = 1,2

ITEMP1 =1-1
CALL AXSTRN (CTYP(1,I), SKYPOS(I), ITEMP1, ILEN, RSTR)
MSGTXT(ICH:ICH+ILEN-1) = RSTR(1:ILEN)
ICH = ICH + ILEN + 2
CONTINUE

CALL MSGWRT (5)

10-22 CHAPTER 10. USING THE T V DISPLAY

C Secondary axes values
IF ((HCHLAB(l).LE.O) .AND. (NCHLAB(2).LE.O)) GO TO 900

ICH = 8
MSGTXT(ICH:) = ' *
DO 670 I * 1,2

IF (NCHLAB(I).LE.O) GO TO 670
MSGTXT(ICH:ICH+NCHLAB(I)-1) = SAXLAB(I)(1:NCHLAB(I))
ICH = ICH + ICHLAB(I) + 2

670 CONTINUE
CALL MSGWRT (5)
GO TO 900

C normal TV close
900 CALL TVCLOS (CATBLK, JERR)

The interactive window setting verbs TVWIN, TVBOX, TVSLICE, and REBOX are initiated from
subroutine AU5C and performed primarily by subroutine GRBOXS. This routine is another instance of
interactivity via YCURSE and line drawing via IMVECT. It uses YCUCOR at the end to obtain the image
catalog header and thence, to correct the cursor positions to map pixel locations. CURVALUE is an
interactive verb which displays on a TV graphics channel the position and image value of the pixel currently
under the TV cursor. It is implemented by subroutine AU6B. The image values are read from the original
map files on disk, if possible, using MAPOPN, MINIT, and MDISK. However, the intensities of step wedges
and temporary images (i.e., interm ediate residual maps displayed by APCLN) are read from the TV memory
via YIMGIO. The routine makes extensive use of IMCHAR and, although too long to reproduce here, is an
interesting example of AIPS image plus TV coding.

10.3.8 Blotch Setting, Use
A “blotch” is a region within an image over which some action is to be performed. Pixels outside the blotch
are ignored or have some alternative action performed on them. At present, AIPS has three functions which
generate and use blotches: the verb TVSTAT which returns image statistics within the blotch area, the task
BLANK which blanks out all pixels outside the blotch, and the task BLSUM which sums an image and every
plane of a second image over the blotch areas. In all three, the user uses the TV cursor to set the vertices of
one or more polygonal areas and the routines draw lines on a graphics plane between the vertices. When the
user is done, the routines fill in the blotch areas on the TV graphics and then read and act on the map file.
Subroutine AU6D implements TVSTAT for whatever image is visible on the TV, obtaining the polygons
through subroutine GRPOLY. AU6D itself does the data reading, determination of whether a pixel is inside
or outside the blotch, and the computation and display of the image statistics. Task BLANK uses internal
subroutines BLNKTV and BLKTVF to display the image (via TVLOAD), allow transfer modification (via
TVFIDL), to obtain the polygons (BLKTVF), and to use them to blank the output image (BLNKTV).
BLSUM is similar to BLANK in the creation and handling of the blotch regions. The subroutine BLTFIL
does the filling of the polygons on the TV graphics screen for TVSTAT, BLANK and BLSUM.

10.3.9 Roam
Roam is a mode of display which requires multiple grey-scale memories and the capability to do split screen
and scroll. Adjacent portions of the image are loaded into separate image memories. Then the screen is
split horizontally and/or vertically and the appropriate, memories are enabled in each quadrant, each with
the same scroll. This allows the user to view a screen-size portion of a rather larger image. By shifting the
scroll and split point interactively, the user may select which portion is viewed. Roam is implemented in
AIPS from the subroutine AU5A. This routine loads the image to the TV memories in a manner similar to
TVLOD (above). However, it uses TVWIND to determine a much more complicated window and must itself
play with windows further before calling TVLOAD. The interactive portion of the Roam is carried out by
AU5A calling subroutine TVROAM. T hat routine can handle images of up to 1 x 4, 4 x 1, or 2 x 2 planes

10.3. CURRENT APPLICATIONS 10-23

and uses YCURSE for interactive input, YSCROL to set the scroll (identical for all planes), and YSPLIT to
set the split point and enable the appropriate channels. A zoom option is also available.

10.3.10 Movie, Blink
The verbs TVMOVIE and TVCUBE use a very interesting algorithm implemented via subroutines AU5D
and TVMOVI. A movie is a method of displaying a 3-dimensional image as a tim e sequence of 2-dimensional
planes. Each grey-scale TV memory is subdivided into an n x n m atrix of images of consecutive planes of
the cube (where the allowed n are the available zoom factors). During the display phase, the zoom factor is
set to n, so that only one plane is visible a t a time. The zoom center is moved from frame to frame at a user
controlled rate to simulate a movie. Subroutine AU5D determines which zoom factor and windows to use,
zeros the grey-scale memories, loads the planes to the TV (via TVLOAD), transfers the LUT of the first
TV memory to the other TV memories, draws border lines around each plane (via IMVECT), annotates
each plane with the 3rd coordinate axis value, and puts a small pointer in the image as well. TVMOVI
executes an interactive algorithm in which the cursor controls the frame rate and the buttons allow a single
frame a t a time mode and interactive enhancement of the LUTs (via IENHNS) or the OFM (via IMCCLR).
The verb REMOVIE is also done by AU5D and TVMOVI using the stored param eters which describe how
the movie was loaded to the TV memories (parameter TYPMOV in the /D T V C .IN C / common). TVCUBE
and TVMOVIE differ in the placement of the sub-images on the TV screen. The former orders the images
from left to right, top to bottom , an order which is good for viewing all together, w ithout zoom. The latter
adopts a funny order designed to minimize changes between frames in movie mode, making a smoother
switch between frames.

The subroutines AU6A and TVBLNK implement the verbs TVBLINK and TVMBLINK. Blinking is
simply enabling one grey-scale memory for a while, then disabling it and enabling another for a second
period of time, then disabling the second channel and re-enabling the first, and so on. These two verbs
allow manual as well as tim ed switching between the two planes and transfer function modification via the
subroutine IENHNS (see above). Image comparison may also be done by comparing images from different
image memories in halves or quarters of the screen. The verb TVSPLIT implements an interactive algorithm
in subroutine AU6A.

10.3.11 Tasks
There are three tasks which use a wide range of television functions in order to edit visibility data under
interactive control of the user. All of these implement a menu written to a TV graphics screen to allow the
user to select among many separate functions. All of the standard TVFIDLLE and TVTRANS enhancements
are present. For window setting, an especially friendly version of GRBOXS is coded into the tasks. These
tasks are:

1. TVFLG grids the da ta in baseline-time order displaying the visibility am plitude, phase, or am plitude
rms as grey levels, with baseline on the horizontal axis and tim e in a semi-regular grid on the vertical
axis. The user may select which IF, Stokes, or channel to display. The cursor is used to select the data
to be flagged, as well as to make selections of functions to perform and enhancements.

2. SPFLG is similar to TVFLG, but grids the data with spectral channel on the X axis instead of baseline
number. The user may select which baseline is displayed.

3. IBLED is also an interactive editor for baseline-oriented data. It uses the TV mostly as a graphics
device to plot the d a ta from a user-selected baseline. Time is on the horizontal axis, and amplitude
is on the vertical axis. The cursor is used to select the data to be flagged and to do the selection of
operations.

10.3.12 Non-Standard Tasks
There are a number of tasks in AIPS which are seriously non-standard in their coding and in their use
of various devices. Among these are several which use the TV display. We will list them here briefly.

10-24 CHAPTER 10. USING THE T V DISPLAY

Programmers should not use these tasks as models of how to code in AIPS and should not assume that they
can even be made to run on non-VMS, non-IIS systems.

1. IMLHS uses up to 3 maps to create a false color image on the TV. It uses the first map to modulate the
brightness of the image, the 2nd to modulate the hue and the 3rd to modulate the saturation. If any
of the images are om itted the corresponding parameter is set to a constant. (Note: verb TVHUEINT
is standard and does a similar function with two images.)

2. TVHLD loads up to 13-bit image to two TV memories and performs an interactive histogram equaliza
tion of the display. Can feed the result back to a 3rd TV memory. This task uses YRHIST, YALUCT,
YFDBCK, YIFM, and the dual-channel mode of the IIS and will be hard to implement on TV display
devices other than the IIS.

3. TVHXF does an interactive histogram equalization of the image which is currently displayed. This
task uses YRHIST which is currently IIS specific. However, a TV-independent (but SLOW) YRHIST
can be coded if someone wishes to do the work.

10.4 Includes
10.4.1 DTVC.INC
C Include DTVC.

IITEGER IGRAY, IGRAPH, IIMAGE, MAXXTV(2), MAXIIT, LUTOUT,
OFMIIP, 0FM0UT, SCXIIC, SCYIIC, MXZ00M, CSIZTV(2), TYPSPL,
TVALUS, TVXMOD, TVYMOD, ISUIUM,
TVDUMS(IO),
TVZ00M(3), TVSCRXC16), TVSCRY(16), TVLIMG(4), TVSPLT(2),
TVSPLM, TVSPLC, TYPM0V(16), WIIDTV(4), TVDUM2(4), YBUFF(160)

C0MM0I /TVCHAR/ IGRAY, IGRAPH, IIMAGE, MAXXTV, MAXIIT, LUTOUT,
OFMIIP, 0FM0UT, SCXIIC, SCYIIC, MXZ00M, CSIZTV, TYPSPL,
TVALUS, TVXMOD, TVYMOD, ISUIUM, TVDUMS,
TVZ00M, TVSCRX, TVSCRY, TVLIMG, TVSPLT, TVSPLM, TVSPLC,
TYPMOV, WIIDTV, TVDUM2, YBUFF

C End DTVC.

10.4.2 DTVD.INC
C Include DTVD.

IITEGER TVLUI, TVIID, TVLUI2, TVIID2, TVBFI0
LOGICAL TVMAP
C0MM0I /TVDEV/ TVMAP, TVLUI, TVIID, TVLUI2, TVIID2, TVBFI0

C End DTVD.

10.4.3 YDEA.INC
C Begin YTPARM.IIC
C Parameter definitions specifying positions
C in YBUFF (c.f. DTVC.IIC) which correspond
C to various registers in a DeAnza TV device.

INTEGER INTREG, IRBYTE, MEMREG, MRBYTE, V0CREG, VCBYTE,
* FCR, FCBYTE, CURREG, CRBYTE, CHAI0W, CHBYTE
PARAMETER (IITREG = 1, IRBYTE = 48,
* MEMREG = IITREG+24, MRBYTE = 8,
* V0CREG = MEMREG+64 , VCBYTE = 8,
* FCR = VOCREG+4 , FCBYTE =16,

10.5. Y-ROUTINE PRECURSOR REMARKS 10-25

* CURREG = FCR +8 , CRBYTE = 14,
* CHANOW = CURREG+7 , CHBYTE = 24)

C Positions in INTERFACE REGISTERS
C Relative to CONTROL REGIST (#10)

INTEGER CONTRL, RES, FG, BG, XR, XT, XMIN, XMAX,
* XAMIN, XAMAX, DX, XTEHP, YR, YT, YMIN,
* YMAX, YAMIN, YAMAX, DY, YTEMP, CMRO, CMROA
PARAMETER (CONTRL=INTREG, RES=INTREG+1, FG=INTREG+2,

* BG=INTREG+3 , XR= INTREG+6, XT=INTREG+7,
* XMIN=INTREG+8, XMAX=INTREG+9, XAMIN=INTREG+10,
* XAMAX=INTREG+11, DX=INTREG+12, XTEMP-INTREG+13,
* YR=INTREG+14, YT=INTREG+1S, YMIN=INTREG+16,
* YMAX=INTREG+17, YAMIN=INTREG+18, YAMAX=INTREG+19,
* DY=INTREG+20, YTEMP=INTREG+21, CMR0=INTREG+22,
* CMR0A=INTREG+23)

C Positions in MEMORY REGISTERS
INTEGER XSCZ, YSCZ, BITPL, MEMLUT
PARAMETER (XSCZ=MEMREG, YSCZ = MEMREG+1,

* BITPL=MEMREG+2, MEMLUT=MEMREG+3)
C Positions in VOC REGISTERS

INTEGER XVSP, YVSP, VOCCON, VOCLUT
PARAMETER (XVSP=VOCREG, YVSP=VOCREG+l,

* V0CC0N=V0CREG+2, V0CLUT=V0CREG+3)
C Positions in Cursor registers

INTEGER CURX1, CURY1, CURX2, CURY2, CURCON, CURLUT, CURBLI
PARAMETER (CURX1=CURREG, CURY1=CURREG+1, CURX2=CURREG+2,
* CURY2=CURREG+3, CURC0N=CURREG+4, CURLUT=CURREG+5,
* CURBLI=CURREG+6)

10.5 Y -R outine Precursor Remarks
10.5.1 Level 0
YCHRW
writes characters into image planes of the TV. The format is 5 x 7 or a multiple thereof with one or more
blanks all around. The net is set to match CSIZTV if possible. We recommend CSIZTV = 7, 9 for TVs of
size around 512 square and CSIZTV = 14, 22 or so for TVs of size around 1024 square. This version will
work on all TVs which allow horizontal writing to the right. It is a Y routine to allow for hardware character
generators on the TV.

YCHRV (CHAN,
Inputs:

CHAN
X
Y
STRING

Output:
SCRTCH
IERR

X, Y, STRING, SCRTCH, IERR)

I channel select (1 to NGRAY + NGRAPH)
I X position lover left corner first char.
I Y position lover left comer first char.
C*(*) character string - length passed from Fortran

I(>) scratch buffer (dim = 14*count+8 < MAXXTV(i))
I error code of Z ...XF:0 - ok

2 - input error

YCINIT
Initialize image catalog for plane IPLANE - TK now done with TKCATL

10-26 CHAPTER 10. USING THE T V DISPLAY

YCIHIT (IPLAHE, BUFF)
Input:

IPLAHE I Image plane to initialize
Output:

BUFF 1(256) Working buffer

YCNECT
Writes a line segment on the TV. This version will work on all TVs. It is called a Y routine to allow the use
of hardware vector generators on those TVs equiped with them.

YCIECT (XI, Yl, 1 2 , Y2, IC, BUFFER, IERR)
Inputs:

XI I start X position
Yl I start Y position
X2 I end X position
Y2 I end Y position
IC I Channel (1 to HGRAY+HGRAPH)
BUFFER !(*) Buffer contains desired intensity (size > max

horizontal or vertical line, e.g., 1280)
Output:

IERR I error code : 0 => ok

YCOVER
Checks to see if there are partially replaced images in any of the TV planes currently visible by quadrant

YCOVER (OVER, BUF, IERR)
Outputs:

OVER L(4) T => there are in quadr. I
BUF 1(512) scratch
IERR I Error code: 0 => ok, other catlg 10 error

YCREAD
Read image catalog block into CATBLK - TV only (TK in TKCATL)

YCREAD (IPLAHE, IX, IY, CATBLK ,IERR)
Inputs:

IPLAHE
IX
IY

Outputs:
CATBLK
IERR

I
I
I

1(256)
I

plane containing image whose block is wanted
X pixel coordinate of a point within image
Y pixel coordinate of point within image

Image catalog block
error codes: 0 => ok

1 => IX, IY lies outside
2 => Catalog i/o errors
3 => refers to TK device

image

10.5. Y-ROUTINE PRECURSOR REMARKS 10-27

YCUCOR
Takes a cursor position (corrected for zoom, but not scroll) corrects it for scroll, determines the quadrant of
the TV, and gets the corresponding image header in common /M A PH D R / and returns the image coordinates.
NOTE WELL: RPOS ON INPUT MUST BE CORRECTED FOR ZOOM AND NOT SCROLL. To get this
from a raw TV position call YCURSE with OPCODE ’FX IT’ (or, of course, ’READ’) and quadrant set to *************

YCUCOR (RPOS, QUAD, CORN, IERR)
Inputs:

RPOS
Output:

QUAD

CORN
IERR

R(2) X,Y screen pos before zoom k scroll

I TV quadrant to use for scrolls
Out: if in=-l, no scroll, else find quadrant

(needs real TV pos)
R(7) Image coordinates (pixels)
I error code of Z ...XF : 0 - ok

2 - input error

YCURSE
Reads cursor positions and controls the blink and visibility of the TV cursor.

OP C*4

YCURSE (OP, WAIT, CORR, RPOS, QUAD, BUTTON, IERR)
Inputs:

’READ
’ONNN
»0FFF
*BLNK
'FXIT

WAIT

CORR
In/Out:

RPOS
QUAD

Output:
BUTTON

IERR

read cursor position
place cursor at RPOS k leave on
turn cursor off
reverse sense of cursor blink
fix RPOS for zoom scroll, no 10

wait for event; then return RPOS k BUTTON
(done on all OPs)
T => correct RPOS for zoom k scroll

R(2) X,Y screen pos before zoom k scroll
I TV quadrant to use for scrolls

In: if <1 >4, no scroll
Out: if in=-l, no scroll, else find

quadrant (needs real TV pos)

I event # (0 none, 1-7 low buttons,
8-15 the "quit” button)

I error code of Z ...XF : 0 - ok
2 - input error

YCWRIT
Write image catalog block in CATBLK into image catalog

YCWRIT (IPLANE, IMAWIN, CATBLK, BUFF, IERR)
Inputs:

IPLANE I image plane involved
IMAWIN 1(4) Corners of image on screen

10-28 CHAPTER 10. USING THE T V DISPLAY

CATBLK
Outputs:

BUFF
IERR

I(2S6) Image catalog block

1(256) working buffer
I error code: 0 => ok

1 => no room in catalog
2 => 10 problems

YFILL
Will write a constant in a given rectangle in a given graphics or image plane. I t will use fast methods if full
screen requested with IVAL 0.

YFILL (CHAH, 1X0, IYO, IXT, IYT, IVAL, IBLK, IERR)
Inputs:

CHAI
1X0
IYO
IXT
IYT
IVAL

In/out:
IBLK

Output:
IERR

I Channel (1 to IGRAY+VGRAPH)
I lower left X pixel (1 relative) of rectangle
I lower left Y pixel of rectangle.
I top right X pixel of rectangle.
I top right Y pixel of rectangle.
I desired value: for graphics = 0 or 1

for grey scale = 0 - MAXINT

KIXT-IX0+1) work buffer.

I error code of Z ...XF: 0 ok, 2 input error

YFIND
Determines which of the visible TV images the user wishes to select. The TV must already be open.

YFIID (MAXPL, TYPE, IPL, UIIQUE, CATBLK, SCRTCH, IERR)
Inputs:

MAXPL I Highest plane number allowed (i.e. do graphics
count?)

C*2 2-char image type to restrict searchTYPE
Output:

IPL
UIIQUE

CATBLK 1(256)
SCRTCH 1(256)
IERR I

Plane number found
T => only one image visible now

(all types except zeroed ones (’ZZ’))
Image catalog block found
Scratch buffer
Error code: 0 => ok

1 => no image
2 => 10 error in image catalog
3 => TV error
10 => > 1 image of requested type

YLOCAT
Locates a set of image pixel positions on the TV for a specified image using only those grey planes that are
turned on.

10.5. Y-ROUTINE PRECURSOR REMARKS 10-29

YLOCAT (HP, XP, YP, HAME, CLASS, SEQ, DISK, PTYP, IX,
* IY, IQ, SCRTCH, IERR)

Inputs:
IP I Number of pixel positions
XP R(NP) X image pixel positions
YP R(NP) Y image pixel positions
NAME C*12 image name (name) * * => any
CLASS C*6 image name (class) ' ’ => any
SEQ I Image name (sequence #) 0 => any
DISK I Image file disk 0 => any
PTYP C*2 Image type * * => any
tput:
IX I(NP) TV x positions
IY I (HP) TV y positions
IQ I (HP) TV channels 0 => none this position
IERR I Error code: 0 -> ok

2 -> input error
3 -> 10 error
11 -> some positions bad
12 -> no positions found

Uses common /MAPHDR/ results unpredictable except on IERR = 0
then = image catlg header of last position found.

YLOWON
Returns a zero-relative least bit on number up to NGRAY. If MASK=0, it returns 0. If MASK > 2 *
(N G RAY — 1) it returns NGRAY. Since some TVs can’t have more than one channel on at a tim e in each
color, determine the lowest channel th a t is flagged ON in MASK, and return it (zero relative) in ICHAN. If
MASK is clear, set ICHAN to be a 0.

YLOWON (MASK, ICHAV)
Inputs:

MASK I IIS type channel mask
Output:

ICHAN I # of lowest bit set in MASK

YSLECT
Enables and disables gray and graphics planes

YSLECT (OP, CHAN, COLOR, BUFFER, IERR)
Inputs:

OP C*4 *ONNN* or 'OFFF'
CHAN I channel number (1 to NGRAY+NGRAPH)
COLOR I 0 - all, 1,2,3 = R,G,B, resp.

Output:
BUFFER 1(256) scratch buffer (for graphics only)
IERR I error code of Z...XF: 0 - ok, 2 - input

YSLECT sets TVLIMG in the TV device parms common /TVDEV/

10-30 CHAPTER 10. USING THE T V DISPLAY

YTCOMP
Check whether a value in a soft register has to be changed. If so, change it and set a flag indicating tha t the
hard register must be updated too.

YTCOMP (OLD, HEW, UPDATE)
Inputs:

I Current value in soft register
I Hew value

OLD
HEW

Output:
OLD
UPDATE

I Put new value here too if necessary
L Set true if update is needed, else leave alone

YTVCLS
Closes the TV device and the TV status disk file, updating the information on the disk. Actual device call
done by YTVCL2.

YTVCLS (BUF, IERR)
Outputs:

BUF 1(256) Scratch buffer
IERR I Error code : 0 => ok

else as returned by ZFIO
11 => close disk error
12 => close device error

YWINDO
Reads the current viewport into the TV memory. It is hoped that someday we will also offer writing to force
the size.

YWIHDO (OPER, WIHD, IERR)
Inputs:

C*4OPER
In/out:

WIHD

Output:
IERR

’READ’, ’WRIT*

1(4) BLC x,y, TRC x,y of window in TV pixels
In: desired window ('WRIT’ only)
Out: actual window given

I error code of Z ...XF: 0 -> ok, 2 -> input error
-1 => on WRIT, device not windowing type

Generic version - returns full memory size always and IERR = -1
on WRIT.

YTVOPN
Opens the TV including TV lock/param eter file and reads the parameters, placing them in commons.

YTVOPH (BUF, IERR)
Outputs:

BUF 1(256) Scratch buffer
IERR I Error return from YTV0P2

= 10 TV unavailable to this version

10.5. Y-ROUTINE PRECURSOR REMARKS 10-31

10.5.2 Level 1
YCRCTL
Reads/writes the cursor/trackball control register of TV

YCRCTL (OP, OH, X, Y, LIIKX, LIHKY, RBLIHK, BUTTOH,
* VRTRTC, IERR)

Inputs:
OP C*4 ’READ’ from TV or 'WRIT' to TV
VRTRTC L T => do on vertical retrace only

In/out:
OH L T => cursor visible, F => off
X I X position cursor center (1-512, 1 => LHS)
Y I Y position cursor center (1-512, 1 => bot)
LIIKX L T => trackball moves cursor in X
LIHKY L T => trackball moves cursor in Y
RBLIHK I rate of cursor blink: 0-3 no-fast blink

Output:
BUTTOH I button value (0 - 15)
IERR I error code of Z...XF : 0 => ok

2 => input error

YGRAPH
Is used to turn graphics overlay planes on and off by altering the graphics color look up table. The color
pattern is:

CHAH = 1 insert yellow drawing plots
2 insert green+.05 red axis labels
3 insert blue + 0.6 green blotch

+ red
4 insert black label backgrounds
5-7 add nothing null channels
8 insert purple cursor

YGRAPH (OP, CHAH, SCRTCH, IERR)
Inputs:

OP C*4 *0HHH’ or »0FFF»
CHAH I channel number (1 - 8)

Output:
SCRTCH 1(256) scratch buffer
IERR I error code of Z....XF: 0

2
=> ok
=> input error

YIMGIO
Reads/writes a line of image data to the TV screen. For graphics overlay planes, the data are solely 0’s and
l ’s in the least significant bit of IMAGE after a READ. For ’W RIT’, all bits of each word should be equal
(i.e. all l ’s or all 0’s for graphics). NOTE***** on ’W R IT’, the buffer may be altered by this routine for
some IANGLs.

YIMGIO (OP, CHAH, X, Y, IAHGL, HPIX, IMAGE, IERR)
Inputs:

10-32 CHAPTER 10. USING THE T V DISPLAY

OP
CHAH
X
Y
IAHGL

IPIX
In/Out:

IMAGE
Output:

IERR

C*4 ’READ' Irom TV or *WRIT * to TV
I channel number (1 to HGRAY+HGRAPH)
I start pixel position
I end pixel position
I s o => horizontal (to right)

= 1 => vertical (up the screen)
= 2 => horizontal (to left)
= 3 => vertical (down the screen)

I number of pixels

I(HPIX) data (only no header)

I error code ol Z ...XF - 0 => ok
2 => input err

YINIT
Initializes the TV subunits: doing everything

YIIIT (SCRTCH, IERR)
Output:

SCRTCH 1(1024) scratch buffer
IERR I error code of Z ...XF - 0 => ok

2 => input error

YLUT
Reads/writes full channel look up tables to TV.

YLUT (OP, CHAHHL, COLOR, VRTRTC, LUT, IERR)
Inputs:

OP C*4 ’READ’ from TV, ’WRIT’ to TV
CHAHHL I channel select bit mask
COLOR I color select bit mask (RGB <-> 421)
VRTRTC L T ~> do it only during vertical retrace

In/Out:
LUT K*) look up table (dimension s MAXIHT+1, values

LUTOUT are used)
Out:

IERR I error code of Z ...XF : 0 => ok, 2 => input

YOFM
Reads/writes full OFM look up tables to TV.

YOFM (OP, COLOR, VRTRTC, OFM, IERR)
Inputs:

OP C*4 'READ' from TV, ’WRIT' to TV
COLOR I color select bit mask (RGB <-> 421)
VRTRTC L T => do it only during vertical retrace

In/Out:

10.5. Y-ROUTINE PRECURSOR REMARKS 10-33

OFM I(*) look up table (dimension = OFMINP+1, values to
OFMOUT used)

Output:
IERR I error code ol Z...XF : 0 => ok, 2 => input error

YSCROL
Writes the scroll registers on the TV.

YSCROL (CHAVNL, SCROLX, SCROLY, VRTRTC, IERR)
Inputs:

CHAIIL I bit map channel select: bits 1-HGRAY gray channels,
bit IGRAY+1 => all graphics

VRTRTC L T => do it on vertical retrace only
In/Out:

SCROLX I amount ol X scroll (>0 to right)
SCROLY I amount ol Y scroll (>0 upwards)

Output:
IERR I error Irom Z ...XF : 0 => ok, 2 => input error

YSCROL updates the scroll variables in /TVDEV/ common

YSPLIT
Reads/writes the look up tab le / split screen control registers of the TV - turns channels on/off by quadrant

YSPLIT (OP, XSPLT , YSPLT , RCHAHS, GCHAIS, BCHAIS,
* VRTRTC, IERR)

Inputs:
OP C*4 ’READ* Irom TV, ’WRIT* to TV
VRTRTC L T => do on vertical retrace only

In/Out:
XSPLT I X position ol split (1-512, 1 => LHS)
YSPLT I Y position ol split (1-512, 1 => bot)
RCHAVS 1(4) chan select bit mask 4 quadrants : red
GCHAHS 1(4) chan select bit mask 4 quadrants : green
BCHAHS 1(4) chan select bit mask 4 quadrants : blue

Output:
IERR I error code ol Z ...XF: 0 => ok, 2 => input

Quadrants are numbered CCV from top right!!!!
error

YTVCIN
Initializes the common which describes the characteristics of the interactive display devices and the common
which has the current status param eters of the TV.
NOTE: These are default values only. They are reset to the current true values by a call to TVOPEN.
NOTE: YTVCIN resets the common values of TVZOOM and TVscroll, but does not call the TV routines
to force these to be true. A separate call to YINIT or YZOOMC and YSCROL is needed.

YTVCIH
(no arguments)

10-34 CHAPTER 10. USING THE T V DISPLAY

YTVCL2
Closes TV DEVICE associated with LUN removing any EXCLusive use state and clears up the FTAB.

YTVCL2 (LUH, IHD, IERR)
Input8:

LUH I logical unit number
IHD I pointer into FTAB

Output:
IERR I error code: 0 -> no error

1 -> Deaccess or Deassign error
2 -> lile already closed in FTAB
3 -> both errors
4 -> erroneous LUH

YTVMC
Issues a “master clear” to the TV. This resets the TV I/O system (if necessary) to expect a command record
next. YTVMC gets all needed param eters from the TV device common. The TV must already be open.

YTVMC
(no arguments)

YTVOP2
Performs a system ”OPEN” on the TV device. It is a Y routine in order to call the appropriate Z routine
only.

YTV0P2 (LUH, IHD, IERR)
Inputs:

LUH I Logical unit number to use
Output:

IHD I Pointer to FTAB entry lor open device
IERR I Error code: 0 => ok

1 = LUH already in use
2 = lile not lound
3 - volume not lound
4 = excl requested but not available
5 = no room lor lun
6 = other open errors

YZERO
Fills an TV TV memory plane with zeros the fast way.

YZERO (CHAH, IERR)
Inputs:

CHAH I channel # (1 - HGRAY+HGRAPH), 0 => all
Outputs:

IERR I error code ol Z .•.XF: 0 - ok, 2 - input error

10.5. Y-ROUTINE PRECURSOR REMARKS 10-

YZOOMC
Writes (ONLY!!!!) the zoom control registers of the TV

YZOOMC (MAG, XZOOM, YZOOM, VRTRTC, IERR)
Inputs:

MAG
XZOOM
YZOOM
VRTRTC

Output:
IERR

YZOOMC updates the /TVDEV/ common TVZOOM parameter

I 0-3 for magnification 1,2,4,8 times, resp.
I X center of expansion (1-512, 1 => LHS)
I Y center of expansion (1-512, 1 => bot)
L Do on vertical retrace only?

I error code of Z...XF: 0 -> ok, 2 -> input error

10.5.3 Level 2 (Used as level 1 in non-standard tasks)
YALUCT
Reads / writes the TV arithm etic logic unit control registers. The actual feedback-ALU computation
performed only upon a call to YFDBCK.

YALUCT (OP, ARMODE, BFUHC, IFUHC, COHSTS, OUTSEL,
* EXTOFM, ESHIFT, SHIFT, CARYIH, CARRY, EQUAL,

Inputs:
* READ * from TV or 'WRIT* to TV

IERR)

OP
In/ Out:

ARMODE
BFUIC
VFUVC
COVSTS
OUTSEL

C*4

L
I
I
1 (8)
1(8)

EXTOFM
ESHIFT
SHIFT
CARYIH

Output:
CARRY
EQUAL
IERR

T => arithmetic mode F => logic mode
function number (1-16) in blotch
function number (1-16) outside blotch
constant array (may select as ALU output)
lookup table selects output based on carry
(lsb), equal, ROI (msb) input, values -
0 - 7 : constants 1 - 8
8 : accumulator channel pair
9 : selected OFM
10 : ALU
11 : external
T => extend sign of OFM on input to ALU
T => extend sign of ALU output if SHIFT
T »> right shift ALU output
T => add one to arithmetic results

=> carry condition occurred in frame
=> equal condition occurred in frame

T
T
error code of Z...XF 0 - ok

2 - input error

YCONST
Reads/writes the constants which are added to the 3 sum channels on the TV.

YCOHST (OP, RCOHST, GCOHST, BCOHST, VRTRTC, IERR)
Inputs:

OP C*4 'READ' from TV, *WRIT * to TV

10-36 CHAPTER 10. USING THE T V DISPLAY

In/out:
RCOHST
GCOHST
BCOHST
VRTRTC

Output:
IERR

I constant lor red channel
I constant lor green channel
I constant lor blue channel
L Vertical retrace - do only on ?

I error code ol Z ...XF : 0 => ok

YFDBCK
Sends a feedback command to the TV

YFDBCK (COLOR, CHAHHL, BITPL, PIXOFF, BYPIFK, EXTERH,
* ZERO, ACCUM, ADDWRT, IERR)

Inputs:
COLOR I bit nap ol color to be ledback (RGB = 4,2,1)
CHAIHL I bit map ol channels to receive leedback
BITPL I bit map ol bit planes to receive leedback
PIXOFF I offset ledback image to lelt by 0 - 1 pixels
BYPIFM L F => image goes thru IFM lookup belore store
EXTERH L T => image Irom external input (iedigitizer)
ZERO L T => leed back all zeros
ACCUM L T => use 16-bit accumulator mode then CHAHHL must

give even-odd pair lsbyte goes to even (lover)
channel

T => additive write F => replace old dataADDWRT
Outputs:

IERR error code ol Z ...XF: 0 ->
2 ->

ok
input error

YIFM
Reads/writes a section of TV input function memory. This look up table takes 13 bits in and gives 8 bits
out.

YIFM (OP, START, COUHT, PACK, VRTRTC, IFM, IERR)
Inputs:

OP C*4 ’READ' Irom TV or ’WRIT* to TV
START I start address ol IFM (1 - 8192)
COUHT I # elements ol IFM to transler (1-8192)
PACK L T => 2 values/word, F => 1 value/word
VRTRTC L T => do it only on vertical retrace

In/Out:
IFM K*) lunction values (0-255)

Output:
IERR I error code ol Z...XF: 0 - ok

2 - input error

YMNMAX
Reads the min and max values put out by the 3 summers (before application of constants, shifts and OFM)
from the TV

10.5. Y-ROUTINE PRECURSOR REMARKS 10-37

YMHMAX (RMIH, RMAX, GMIH, GMAX, BMIH, BMAX, VRTRTC,
* IERR)

Inputs:
VRTRTC L do it on vertical retrace only

Output:
RMIH I red minimum
RMAX I red maximum
GMIH I green minimum
GMAX I green maximum
BMIH I blue minimum
BMAX I blue maximum
IERR I error code ol Z .. XF : 0 => ok, 2 => input error

YRHIST
Reads the histogram of the output of a selected OFM of the TV. Intensity values 0 through OFMOUT may
be read.

YRHIST (MODE, COLOR, IHITI, MINT, HISTOG, IERR)
Inputs:

MODE

COLOR
IIITI
H I T

Output:
HISTOG
IERR

YSHIFT
Reads/writes the TV shift registers - which shift the 13-bit output of the adders before entry into the 10-bit
OFM

YSHIFT (OP, SHIFTR, SHIFTG, SHIFTB, VRTRTC, IERR)
Inputs:

OP C*4 'READ' Irom TV or * WRIT * to TV
VRTRTC L T => do on vertical retrace only

In/Out:
SHIFTR I # bits to shilt (right) red channel
SHIFTG I # bits to shilt green channel
SHIFTB I # bits to shilt blue chaxmel

Output:
IERR I error code ol Z...XF : 0 - ok, 2 - input

10.5.4 Level 3 (selected ones of some general interest)
Y B U T O N
Reads the state of the Button Buffer of the TV display.

I selects area to histogram: 0 blotch,
1 not blotch, 2 all, 3 external blotch

I bit map ol single color (RGB - 4,2,1)
I lirst intensity to histo (1 - 1024)
I # values to get

I(HIHT) histogram
I error code ol Z ...XF : 0 => ok, 2 => input err

10-38 CHAPTER 10. USING THE T V DISPLAY

YBUTOH (LBUT, BUTTON, IERR)
Input:

LBUT I Button value returned from an initial status read
(Send -1 if none done).

Output:
BUTTOH
IERR

Button value: 0, 1, 2, 4, or 8
Error: 0 ok, 1, bad 10

Y G G R A M
Reads/writes the TV graphics color assignment RAM. The data are packed in this look up table for colors
as:

bit 15 (msb)
bits 10-14

1 - graphics replace 0 - add to image
red value lor this graphics value

bits 5- 9 : green
bits 0- 4 blue

YGGRAM (OP , VRTRTC, RGBBUF, IERR)
Inputs:

OP C*4 ’READ’ Irom TV or ’WRIT’ to TV
VRTRTC L T => do it only on vertical retrace

In/Out:
RGBBUF 1(256) data array

Out:
IERR I error code ol Z ...XF : 0 => ok

Y G R A F E
Reads/writes the TV graphics control register. This version does not support all the TV options: it forces
the black and white status monitor on and refuses to allow the disable video, graphics, and cursor options.

YGRAFE (OP, BLOTCH, STATUS, VRTRTC, IERR)

’READ' Irom TV or ’ WRIT’ to TV
T => do it only during vertical retrace

graphics plane used as blotch (1 - 7)
graphics plane used as status (1 - 7)

Inputs:
OP C*4
VRTRTC L

In/Out:
BLOTCH I
STATUS I

Output:
IERR I error code ol Z ...XF 0 => ok

2 => input error

Y S T C U R
Reads/writes the TV cursor array which has the pattern exhibited when the cursor is visible. NOTE: if
more than one row is read/w ritten at a time, then the Y value decreases!!!

YSTCUR (OP, X, Y, HPOIHT, PACK, VRTRTC, BUFFER, IERR)
Inputs:

OP C*4 'READ' Irom TV or ’WRIT’ to TV

10.6. SELECTED APPLICATIONS SUBROUTINES 10-39

X I initial X position (1-64, 1 => LHS)
Y I initial Y position (1-64, 1 => bot)
NPOINT I # pixel values in BUFFER
PACK L T => 2 values/word, F => 1 value/word
VRTRTC L T => do it on vertical retrace only

In/Out:
BUFFER I(*) data array (lsb’s used only)

Output:
IERR I error code ol Z ...XF : 0 => ok, 2 => input

10.6 Selected A pplications Subroutines
10.6.1 Basic TV I/O Operations
DLINTR
Is called by interactive routines to delay the task when nothing is happening (i.e. the user is thinking or out
to lunch.) It also prevents cursor wrap around.

DLINTR (RP, IEV, D0C0R, QUAD, PP, IT, DOIT)
Inputs:

IEV I not = 0 => event has occurred
D0C0R L Scroll correction parameter lor YCURSE
QUAD I quadrant parameter lor YCURSE

In/out:
RP R(2) cursor position read (lixed on wraps)
PP R(2) previous cursor position
IT 1(3) time ol last action

Output:
DOIT L T => something has happened.

IMANOT
Is used to annotate an image by writing the string into the lettering plane (usually graphics plane 2) and, if
possible writing a block of ones NEDGE pixels wider than the string into graphics plane 4 to force a black
background: N ED G E = 2 * M A X X T V f 512

IMANOT (OP, X, Y, IANGL, CENTER, STRING, SCRTCH, IERR)
Inputs:

OP C*4 *0NNN* enables the 2 graphics planes
’OFFF’ disables the 2 planes
'INIT' zeros and enables the 2 planes
'WRIT' writes strings to the planes
X position ol string
Y position ol string

X
Y
IANGL
CENTER

0 - horizontal, 3 - vertical (DOVN)
0 - XY are lower lelt lirst character
1 - XY sire center ol string
2 - XY are top right ol last character

STRING
Output:

SCRTCH
IERR

C*(*) character string: length Irom LEN (STRING)

I(*) scratch buller (> 1280)
I error code ol ZM70XF : 0 - ok

2 - input error

10-40 CHAPTER 10. USING THE T V DISPLAY

IMVECT
Writes a connected sequence of line segments on a TV channel calling YCNECT

IMVECT (OP, CHAH, COUHT, XDATA, YDATA, SCRTCH, IERR)
Inputs:

OP C*4 'OHHH* line of ones (max intensity)
’OFFF* line of zeros (min intensity)

CHAH I channel nnmber (1 to HGRAY+HGRAPH)
COUHT I number of X,Y pairs (> 1)
XDATA I(COUHT) X coordinates XI,X2,...
YDATA I(COUHT) Y coordinates Y1,Y2,...

Output:
SCRTCH I(*) scratch buffer (size MAXXTV)
IERR I error code of ZM70XF - 0 => ok; 2 => input error

TVCLOS
Closes the TV device and the TV status disk file, updating the information on the disk. Does this all by
call to YTVCLS.

TVCLOS (BUF, IERR)
Outputs:

BUF 1(256) Scratch buffer
IERR I Error code : 0 s> ok, 2 => not open in parms,

else as returned by YTVCLS

TVFIND
Determines which of the visible TV images the user wishes to select. If there is more than one visible image,
it requires the user to point a t it with the cursor. The TV must already be open. This routine is available
only from program AIPS.

TVFIHD (MAXPL, TYPE, IPL, UHIQUE, CATBLK, SCRTCH,
* IERR)

Inputs:
MAXPL I

TYPE
Output:

IPL
UHIQUE

CATBLK
SCRTCH
IERR

C*2

I
L

1(256)
1(256)
I

Highest plane number allowed (i.e. do graphics
planes count?)
2-char image type to restrict search

Plane number found
T => only one image visible now
(all types except zeroed ones (}ZZ’))
Image catalog block found
Scratch buffer
Error code: 0 => ok

1 => no image
2 => 10 error in image catalog
3 => TV error

TVOPEN
Open the TV, passing pointers through common/DTVC.INC/. Almost all except error checking done by
YTVOPN these days.

10.6. SELECTED APPLICATIONS SUBROUTINES 10-41

TVOPEH (BUF, IERR)
Outputs:

BUF 1(256) Scratch buffer
IERR I Error return from YTVOPI

= 10 TV unavailable to this version

TVWHER
Is the routine to use if you want the user to point a t something on the TV screen. It turns on the cursor,
waits for a button push, determines which quadrant the event occurred in, and returns the quadrant number
and the TV coordinates of the event corrected for the scroll of the lowest numbered plane which is “on” in
tha t quadrant and for zoom.

TWHER (QUAD, RPOS, IBUT, IERR)
Outputs:

QUAD I Quadrant number
RPOS R(2) TV position corrected for scroll (ft zoom)
IBUT I Value of button(s) pushed
IERR I Error code of ZM70XF

10.6.2 TV I/O Utilities
BLTFIL
Fills in a series of closed polygons on a TV ” blotch” plane

BLTFIL (IP, IV, XV, YV, GRCHAH, BUF, IERR)
Inputs:

IP I # of polygons
IV I(IP) # of vertices in each polygon
XV ICO vertex X-positions list
YV I(*) vertex Y-positions list
GRCHAI I graphics channel number

Output:
BUF K*) scratch buffer (> 1280)
IERR I ZN70XF error code: 0 ok

GRPOLY
Uses a graphics plane to let the user develop a set of closed polygons as a ’’blotch” region. This routine is
available only from program AIPS.

GRPOLY (IG, NPY, HV, XV, YV, SCRTCH, IERR)
Inputs:

IG I graphics plane to use
Output:

IPY I lumber of polygons set
IV 1(50) lumber of vertices in each polygon
XV 1(500) X-position of vertices in image
YV 1(500) Y-position of vertices in image
SCRTCH I(«0 Scratch buffer: > 1 line length (>
IERR I Error code

Common:
/MAPHDR/ CATBLK image catalog block of blotched image

(actually used at lover level in YCUCOR)

10-42 CHAPTER 10. USING THE T V DISPLAY

IENHNS
Performs an interactive linear enhancement of TV LUTs. X cursor = > intercept, Y cursor = > slope, high
button = > quit

IEHHHS (ICHAH, ICOLOR, ITYPE, RPOS, BUFFER, IERR)
Inputs:

I channel select bit mask
I color select bit mask

ICHAH
ICOLOR

In/Out:
ITYPE

RPOS
Output:

BUFFER
IERR

R(2)

I(>3072)
I

on in: 1 => do plot, A, B switch plot
C switch sign of slope

2 => no plot, A, B return
C switch sign of slope

3 => no plot, return any button
on out - button value
Cursor position: initial -> final

Scratch buffer
Error code of ZM70XF: 0 => ok

ILNCLR
Computes a piecewise linear OFM and writes it to the TV. If NEND(NPOINT) is < = OFM INP/2 or /3 or
/4 , the table is repeated an approprite number of times.

ILHCLR (COLOR, HPOIHT, HEHD, SLOPE, OFFSET, GAMMA,
* BUFFER, IERR)

Inputs:
COLOR I
HPOIHT I
HEHD I
SLOPE R(HPOIHT)
OFFSET R(HPOIHT)
GAMMA R

Output:
BUFFER 1(1024)
IERR I

Form is C * (i-l)*SL0PE
Used to be called YLHCLR.

color bit mask: RGB =421
of segments
end points of segments
slopes of segments
offsets of segments
power applied to colors (1 /gamma)

scratch buffer
error code of ZM70XF : 0 - ok
+ OFFSET with 0 <= C <= 1.0.

IMCCLR
Writes a color contour OFM using a standard table and sequence of colors.

IMCCLR (ITYPE, HLEVS, HSTART, ICOHT, GAMMA, BUFFER,
* IERR)

Inputs:
ITYPE I

HLEVS I
HSTART I
HCOHT I
GAMMA R

Output:

Vhich table: 2 Dutch 10c, 1 Dutch 9c,
3 IMPS 8c, 4 IMPS 64c
number of levels (256 or 1024 usually)
intensity level of first contour
intensity range to contour
gamma power for color correction

10.6. SELECTED APPLICATIONS SUBROUTINES 10-43

BUFFER 1(1024)
IERR I

scratch buffer
error code of ZM70XF: 0 => ok

IMCHAR
Causes characters to appear on the TV by calling YCHRW.

IMCHAR (CHAN, X,
* IERR)

Inputs:
CHAN I
X I
Y I
IANGL I

CENTER I

STRING
Output:

SCRTCH
IERR

C*(*)

I (*)
I

Y, IANGL, CENTER, STRING, SCRTCH,

channel number (1 - HGRAY+HGRAPH)
X position of string
Y position of string
0 - horizontal (to right), 3 - vertical (dovn)
OHLY ones supported.
0 - XY are lover left of first character
1 - XY are center of string
2 - XY are upper right of last character
character string to go to TV - length from LEH

scratch buffer (TV size > 1280)
error code of ZM70XF: 0 - ok; 2 - input error

IMLCLR
Creates a continuous coloring from blue thru green to red.

IMLCLR (HLEVS, ICOLR, HBRK, GAMMA, BUFFER, IERR)
Inputs:

I # of intensities (usually 256 or 1024)
I initial color R,G,B = 1,2,3
I break point betveen blue ft red
R gamma correction pover

HLEVS
ICOLR
HBRK
GAMMA

Output:
BUFFER
IERR

I(*) scratch buffer
I error code of ZM70XF: 0 - ok

IMPCLR
Uses an STC algorithm to produce color contouring along a helix in the lightness-hue-saturation space.

IMPCLR (HLEVS, STEPS,
* BUFFER, IERR)

Inputs:
HLEVS I
STEPS I
LOOPS I
LITE R(2)
SATUR R(2)
HUE R
GAMMA R

Output:
BUFFER 1(1024)
IERR I

LOOPS, LITE, SATUR, HUE, GAMMA,

number of intensities (256 or 1024)
number of output colors (1 - 1024)
number of loops of helix
min,max lightness (0.-100.)
min,max saturation (0.-100.)
start hue in degrees (0-360.)
gamma correction pover (2.7 or 1.8 ok?)

scratch buffer
error code of ZM70XF

10-44 CHAPTER 10. USING THE T V DISPLAY

TVFIDL
Does an interactive run with button A selecting alternately TVTRANSF and TVPSEUDO (color contour
type 2 only), button B incrementing the zoom and C decrementing the zoom.

TVFIDL (LCHAH, HLEVS, IIBUF, IERR)
Inputs:

LCHAH
HLEVS

Output:
IIBUF
IERR

I Selected grayscale channels: bit mask
I Humber ol gray levels (usually LUTOUT+1)

I Scratch buller >3072
I Error code: 0 -> ok; else set by ZM70XF

TVLOAD
Subroutine to load a m ap from an already opened map file to one TV memory plane. TVLOAD puts TV
and map windows in the image header and writes it in the image catalog. It assumes th a t the other parts
of the image header are already filled in (and uses them) and tha t the windows are all computed.

TVLOAD (LUH, IHD, IPL, PXIHC, IMAVIH, VIH, BUFSZ, BUFF, IERR)
Inputs:

LUH I Logical unit # ol map lile
IHD I FTAB pointer lor map lile
IPL I Channel to load
PXIHC 1(2) Increment in x,y between included pixels
IMAWIH 1(4) TV corners: BLC x,y TRC x,y
WIH 1(4) Map window: ""
BUFSZ I Buller size in bytes

Outputs
BUFF R(*) Buller
IERR I Error code: 0 => ok

1 => input errors
2 => MIHIT errors
3 => MDISK errors

Commons: /DCAT.IHC/ CATBLK image header

10.6.3 Non-I/O Utilities
DECBIT
translates a decimal based channel number into a binary channel number, e.g., 1453 = > 2° + 23 + 24 -I- 2°.
A maximum of nine channels are addressable (6 a t a time).

DECBIT (HMAX, ICHAH, IPL, LOW)
Inputs:

HMAX
ICHAH

Outputs:
IPL
LOW

I Maximum allowed channel number
I Input channel decimal number

I Binary channel # pattern
I Lowest ol specilied channels

ISCALE
Rescale a line of map data in preparation for output device

10.6. SELECTED APPLICATIONS SUBROUTINES 10-45

ISCALE (TYP, OMAX, RANGE, NPIX, NINC, RBUF, OUTBUF)
Inputs:

TYP C*2
ONAX I
RANGE R(2)

NPIX
NINC
RBUF

Outputs:

I
I
R(*)

Type of scaling function 1 ’ = linear
Maximum v a lu e accepted by output device
Map range to transfer; RANGE(l) and (2)
should be transfered to output 0 and OMAX
RANGE(l) < RANGE(2) forced inside routine.
Pixels/line
Increment between included pixels
Input buffer

OUTBUF I(*) output buffer with scaled data

MOVIST
Sets and resets the movie status param eters in the TV common.

MOVIST (OP, ICHAN, NFR, NFRPCH, MAG, IERR)
Inputs:

OP C*4 'ONNN’ when turning on a movie
’OFFF’ when clearing channel(s)

ICHAN I Bit pattern of channels involved (OFFF)
Actual first channel number (1-NGRAY, ONNN)

NFR I Number of frames in movie total (ONNN)
NFRPCH I Number of frames per TV channel (ONNN)

< 0 => in display rather than movie order
MAG I Magnification number (0 - 3 , ONNN)

Output:
IERR I Error = 2 => bad input, else ok

The code: bit 1 (lsb) 1 (on) - display order, 0 => movie order
2 1 => frame starts movie
3-6 magnification step
7-15 # frames

RNGSET
Calculates range param eters for displaying a map using the IRANGE adverb supplied by POPS plus scaling
information derived from the map header.

RNGSET (IR, MMAX, MMIN, RANG)
Inputs:

IR R(2) Range values specified by user
MMAX R Map maximum value from header
MMIN R Map minimum value from header

Outputs:
RANG R(2) Output range values calculated

TVWIND
Sets windows for normal and split screen TV loads.

TVWIND (TYPE, PXINC, BLC, TRC, ICHAN, ITVC, IWIN,
* IERR)

In/out:

10-46 CHAPTER 10. USING THE T V DISPLAY

TYPE

PXIHC
BLC
TRC
I CHAH
ITVC

Output:
IWIH
IERR

Common:
/DCAT.

I In: <0 -> 1 plane, other -> split method
Out: 0 -> 1 plane, other = 10 * (tplanes in X) +

(# planes in Y)
1(2) X, Y increments
R(7) User requested bot left corner
R(7) User requested top right corner
I User requested TV chan (decimal form)
1(4) IH: lirst 2 user req. TVCORH

Out: lull "pseudo-TV" corners

1(4) Window into map
I error code: 0 -> ok, else fatal

IHC/ CATBLK image header used extensively, the depth array is
set here

Chapter 11
Plotting

11.1 O verview
Plotting in AIPS is usually a two-step process. First a task or a verb creates sin AIPS “plot file” , which
consists of plot-device independent “commands” tha t tell a device how to draw the plot. This file is always
an extension file associated with a cataloged file. The second step in obtaining a plot is to run a task to read
the plot file and write it to a specific device, such as a TV, or a hardcopy plotter. This two-step method
greatly reduces the number of plot programs th a t must be written and maintained. For instance, if a new
graphics device is added to the system, then only one new program, th a t reads the plot file and writes to
the new device, is needed. All the other plotting programs work with no modification. Another advantage
is tha t a plot file may exist for an extended period of time, thus allowing plots to be written to different
devices, and copies to be generated a t later times, without duplicating the calculations needed in making
the plot.

There are exceptions to the two-step process. For example, slices of map files can be plotted directly
on the Tektronix 4012. This is done to simplify m atters in interactive situations such as gaussian fitting of
slices.

AIPS contains some very powerful routines for plotting in a variety of coordinate systems in use in
astronomy. The complexity of these routines is commensurate to their power. Fortunately, a set of plot
program templates exist to provide a starting point. These routines are described in a later section in this
chapter.

11.2 PLOT FILES
11.2.1 General Comments
Plot files are a generalized representation of a graphics display. They contain scaling information and
commands for drawing lines, pixels, and characters, and a command for putting miscellaneous information
in the image catalog. The image catalog is used by programs th a t must know details about an image currently
displayed on the graphics device in order to allow user interaction with the device. For example, a program
may want to read a cursor position and translate it to the coordinate system of the image displayed on the
graphics device.

The records in plot files do not include a record length value. This means that it is inconvenient to
invent new types of records (i.e., new opcodes) or to add new values on to the end of records of existing
types because all of the programs must be changed. On the other hand, the rigid form at definitions aided
in debugging the code several years ago and continue to assure the integrity of I/O systems (AIPS device
plotting programs refuse to proceed if they encounter an unknown opcode). So far, the increased flexibility
supplied by length values seems not to have been absolutely required in AIPS.

The character drawing record includes neither a size value nor an angle value. This is because character
plotting capabilities are device dependent. Orientations are either vertical or horizontal (and not backwards)
and the position offsets for plotting character strings are specified in units of the device character size,

11-1

11-2 CHAPTER 11. PLOTTING

perm itting the device plotting program to position strings nicely no m atter what size it chooses to use.
It also follows that most plots produced by AIPS have only one size of character. One AIPS application
program (PROFL) draws its own characters by using the line drawing commands in order to plot characters
with arbitrary size, orientation, and even perspective.

11.2.2 Structure o f a Plot File
The first physical record (256 words) in the plot file contains information about the task which created the
file. It is not logically part of the “plot file” , but is there to provide documentation of the file’s origins. This
record is ignored by the programs th a t actually do the plotting. The primary use of this information is by
the the verb EXTLIST th a t lists all the plot files associated with a cataloged file. When new types of plots
are added to AIPS, an experienced programmer should update the verb EXTLIST (found in subroutine
AU8A) to list useful things about the plot. Otherwise the verb will print a line telling the user th a t he has
a plot file of type UNKNOWN. A novice AIPS programmer should leave this code alone.

The contents of the first physical record are task-dependent and have the form:
FIELD TYPE

1. H(3)
2. 1(6)
3. I
4. R(*)

DESCRIPTIOH
Task name (6 character hollerith string)
Date/time of file creation YYYY,HM,DD,HH,MM,SS
Humber of (integer) words of task parameter data
Task parameter block as transmitted from AIPS
(preferably with defaults replaced by the values
used).

The rest of the plot file contains a generalized representation of a graphics display. This representation is in
the form of scaling information and commands for drawing lines, pixels, and characters and a command for
putting miscellaneous information in the image catalog.

The lowest level plot file I /O routines read and write 256-word blocks. The applications programmer will
be concerned with routines th a t read and write logical records. The logical records are of 6 types and vary
in length. W ith the exception of the “draw pixels” record, logical records do not cross the block boundaries.
Unused space at the end of a block consists of integer zeros. All values in the plot file are I variables or
Hollerith characters. This adds in exporting plot files to other computers via tape. Unfortunately, this also
limits the values tha t can be stored in the plot file, thus forcing us to use a scaling factor and offset for some
plots to prevent integer overflow. The scaling factor and offset are not in the plot file. If we are not careful,
this can cause some problems for interactive tasks that read positions from a graphics device and then try
to convert them to the original coordinates. These interactive tasks must make do with information from
the map header and data from the “miscellaneous information” record.

Plot files have names of the format PLdsssvv, where d is the format revision letter, sss is the catalog
slot number of the associated map, and vv is the version number. Hexadecimal code is used for sss and vv,
limiting the number of versions to 255.

11.2.3 Types of Plot File Logical Records
Initialize plot record
The first logical record in a plot file must be of this type. It is written by the basic subroutine GINIT; see
the end of this chapter for the details of the calling sequence.
FIELD TYPE DESCRIPTIOH

1. I Opcode (equal to 1 for this record type).
2. I User number.
3. 1(3) Date: yyyy, mm, dd
4. I ITYPE: type code 1 => misc., 2 => CHTR,

4 => PROFL, 5 => SL2PL, 6 => PCHTR, 7 => IMEAN,

11.2. PLOT FILES 11-3

8 => UVPLT, 9 => GNPLT, 10 => VBPLT, 11 => PFPLn,
12 => GAPLT, 13 => PLCUB, 14 => IMVIM, 15 => TAPLT,
16 => P0SSM, 17 => SNPLT, 18 => KNTR, 19 => UVHGM,
20 => ISPEC

Initialize for line drawing record
This record provides scaling information needed for a plot. The plot consists of a “plot window” in which
all lines are drawn and a border (defined in terms of character size) in which labeling may be written. The
second record in a plot file must be of this type. This record is written by the subroutine GINITL.

FIELD TYPE DESCRIPTION
1. I Opcode (equal to 2 lor this record type).
2. I X Y ratio * 100. The Ratio between units on the X

axis and units on the Y axis (X / Y). For example
il the decrement between pixels in the X direction
on a map is twice the decrement in the Y direction
the X Y ratio can be set to 2 to provide proper
scaling. Some programs may ignore this lield. For
example TVPL when writing grey scale plots to the TV.

3. I Scale factor (currently 16383 in most applications).
This number is used in scaling graph positions belore
they are written to disk. BLC values in lield 4 are
represented on disk by zero and TRC values are
represented by integers equal to the scale lactor).

4. 1(4) The bottom lelt hand corner X and Y values and the top
right hand X and Y values respectively in the plot
window (in pixels).

5. 1(4) 1000 * the Iractional part ol a pixel allowed to occur
outside the (integer) range ol BLC and TRC (lield 4
above) in line drawing commands

6. 1(4) 10 * the number ol character positions outside the
plot window on the lelt, bottom, right, and top
respectively

7. 1(5) Location ol the X Y plane on axes 3,4,5,6,7. This
lield is valid only lor plots associated with a map.

Initialize for grey scale record
This record, if needed, must follow the “init for line drawing” record. This record allows proper interpretation
of pixels for raster type display devices. Programs that write to line drawing type devices (e.g., the Tektronix
4012) ignore this record. Subroutine GINITG is used to write this record into the plot file.

FIELD TYPE DESCRIPTION
1. I Opcode (equals 3 lor this record type).
2. I Lowest allowed pixel intensity.
3. I Highest allowed pixel intensity.
4. I Humber of pixels on the X axis.
5. I Number ol pixels on the Y axis.

11-4 CHAPTER 11. PLOTTING

Position record
T his record, written by subroutine GPOS, tells a device where to start drawing a line, row/column of pixels,
or character string.
FIELD TYPE DESCRIPTIOI

1. I Opcode (equals 4 lor this record type).
2. I scaled x position, i.e., a value ol 0 represents the

BLC values delined in the "init lor line drawing"
record, and a value equal to the scale lactor
represents the TRC value.

3. I Scaled Y position.

Draw vector record
if

Subroutine GVEC writes this record to tell a device to draw a line from the current position to the final
position specified by this record.
FIELD TYPE DESCRIPTIOI

1. I Opcode (equals 5 lor this record type).
2. I Scaled linal X position.
3. I Scaled linal Y position.

Write character string record
This record tells a device to write a character string starting at the current position. Subroutine GCHAR
writes this logical record.
FIELD TYPE

1. I
2. I
3. I

4. I
5. I

6. I(n)

DESCRIPTIOI
Opcode (equals 6 lor this record type).
lumber ol characters.
Angle code: 0 = write characters horizontally.

1 = write characters vertically.
X ollset Irom current position in characters * 100
Y ollset Irom current position in characters * 100
(net position relers to lower lelt corner ol 1st char)
Hollerith characters (n = IIT((lield2 +3) / 4))

Write pixels record
This record tells a raster type device to write an n-tuple of pixel values starting at the current position.
Programs tha t write to line drawing type devices ignore records of this type. This type of record may span
disk-record boundaries and is written by subroutine GRAYPX.
FIELD TYPE DESCRIPTIOI

1. I Opcode (equals 7 lor this record type).
2. I lumber ol pixel values.
3. I Angle code: 0 = write pixels horizontally.

1 = write pixels vertically (up).
4. I X ollset in characters * 100.
5. I Y ollset in characters * 100.
6. I(n) n (equal to lield 2) pixel values.

11.2. PLOT FILES 11-5

Write misc. info to image catalog record
This record tells the programs th a t write to interactive devices (TKPL, TVPL) to put up to 20 words of
miscellaneous information in the image catalog starting at word IITRA 4- 2. This information is interpreted
by routines such as AU9A (TKPOS, TKVAL, etc.) and is used, a t the moment, only for slices by task
SL2PL. Routines th a t write to non-interactive graphics devices (PRTPL) ignore this record. Subroutine
GMCAT handles this record.
FIELD TYPE DESCRIPTIOH

1. I Opcode (equals 8 lor this record type).
2. I Humber ol vords ol inlormation.
3. I(n) Miscellaneous inlo (n=value ol lield 2).

End of plot record
This record marks the end of a plot file and is written by subroutine GFINIS.
FIELD TYPE DESCRIPTIOH

1. I Opcode (equals 32767 lor this record type).

11.2.4 Other Plotting Customs
Over the years, certain plotting options have come to be expected by AIPS users. Among these are (1)
recording the plot in the m ain file’s history extension file, (2) offering to plot “star” positions on appropriate
plots (i.e., those with the im age’s X-Y coordinates for axes), (3) offering to draw tick marks all the way across
the plot, and (4) offering a variety of axis labeling options. The subroutines mentioned in the discussion
below are shown with their precursor remarks at the end of this chapter.

1. HIPLOT adds a line to the m ain file’s history extension file giving the time, date, task name, and plot
file version number.

2. STARPL plots “star” positions on plots normally, but not necessarily, with axes which are a celestial-
coordinate pair. The positions are entered as an extension file by the user with task STARS. The user
then specifies which star extension file with INVERS and whether the positions are plotted and, if so,
how large to plot them with adverb STFACTOR.

3. LABINI is an initialize routine which sets up the basic position common and initializes a variety of
other standard plotting param eters. Calls CHNTIC. The user specifies the axis labeling type with
adverb LTYPE (see the precursor remarks for supported values). See the chapter on Catalogs for
details of the position common.

4. COMLAB is a plot labeling routine designed for contour maps. It is a good example of the standard
conventions for labeling.

5. CLAB1 labels the X and Y axes and calls CTICS.
6. CLAB2 labels the X and Y axes and calls CTICS. It allows the plotting of the X axis a t a specified Y

value and vice versa.
7. CTICS draws tick m arks on the plot, either as short ticks or as tracks following the coordinate across

the full plot area. The user specifies this option with the AIPS adverb DOCIRCLE.
8. CHNTIC counts characters used for labeling Y-axis tick marks. This number is needed for the call to

GINITL.
9. CONDRW draws a contour display of an image.

11-6 CHAPTER 11. PLOTTING

11.3 P lot Paraform Tasks
11.3.1 Introduction
Three paraform tasks (PFPL1, PFPL2 and PFPL3 - sometimes called PFPLn below) are available in AIPS
for developing plot tasks th a t read a m ap and create a plot file to be associated with the map. These tasks
use the standard AIPS defaults for adverb values such as INNAME, BLC, TRC, XYRATIO, PIXRANGE,
etc. The programs are heavily commented and modular.

The three tasks correspond to the three types of plots that can be found in AIPS. The first type is a plot
of an X Y plane of the map or a subimage of the map. In this case, the X and Y axes of the plot are the
same as the X and Y axes of the map. Examples of this type are produced by tasks CNTR and GREYS. A
second type of plot is when the X axis of the plot is a slice of the X and Y axes of the map and the Y axis
of the plot is some other value such as intensity. Task SL2PL will create a plot of this type from a slice of a
map. The third type of plot is when the axes of the plot have no real relation to the map axes. An example
of this type of plot is the histogram produced by task IMEAN.

The structures of all three paraform tasks are very similar. The major differences are in subroutine
PLINIn (the subroutine th a t initializes the commons used in labeling the plot), PLABLn (this routine does
the actual labeling), and in the example plots in subroutine PLTORn. The adverbs received from AIPS also
differ slightly. The tasks will be discussed individually in a following section, but first we will describe the
general structure of all three programs. The tasks perform the following steps:

1. Open an image file corresponding to the users inputs from AIPS.
2. Create an extension file of type PL (plot) to be associated with the image file. The header of the image

file will be updated to include this new extension file.
3. Write the plot file records to draw the borders and labels of the plot. The programmer can customize

this section of the program by changing data statements and assignment statements in the main
program.

4. Write the rest of the plot file records to the plot file. This is done by subroutine PLTORn. The
programmer will have to modify the code in PLTORn for his needs.

5. Do the necessary clean up functions, write end of plot records, close all files, etc.

11.3.2 Getting Started
The first step is choosing a new name and making copies, using the new name, of the source code file and
the help file. One should copy files APGNOT:PFPLn.FOR, and HLPFIL:PFPLn.HLP (“n” stands for 1, 2
or 3) to a user directory and work with the program there.

When a task is renamed, some source code must be changed. The first line of the program after the
LOCAL INCLUDE

PROGRAM PFPLn
and the data statement

DATA PRGHAM /'PFPLn '/
should be changed to use the new name. The name in the HELP file should also be changed. See Appendix
A in volume 1 for details of compiling, linking and debugging the task.

11.3.3 Labeling the Plot
The labeling of the plot takes place in two subroutines called by subroutine PLTORn. PLINIn will set a
number of variables in common th a t give the labeling routines and the plot drawing routines information
about the corners of the plot, the types of the axes, the type of labeling, the size of the plot borders in
characters, and other details.

11.3. PLOT PARAFORM TASKS 11-7

Subroutine PLABLn uses the information provided by PLINIn to actually write the commands in the
plot file to draw the labels, borders, and tic marks.

The programmer can customize the labeling somewhat without changing either PLINIn or PLABLn by
setting values in an array PCODE, and changing data statements in the main program.

Optional text can be printed a t the bottom of a plot by setting values INTEXT (number of lines of text),
and ATEXT (an array containing the actual text lines). These values are currently set in DATA statem ents
in the main program. The programmer can choose to set INTEXT to zero to suppress all of the lines. If
the programmer wishes to use more than two lines, then the second dimension of arrays TEX T and ATEXT
must be changed in all the routines in which they are declared.

See the section on the individual programs for details on setting PCODES.

11.3.4 Plotting
Plotting consists of reading the m ap, collecting the data, and then drawing lines or writing grey scale pixels.
All of these steps are usually done in subroutine PLTORn. Reading a map is usually done with routine
GETROW (see below). Setting a starting point of a line is usually done with routine PLPOS. Setting the
end point of a line is done with PLVEC. Grey scale pixels are written with subroutine PLGRY.

11.3.5 Map I/O
This program uses the standard AIPS I/O package grouped into a few subroutines. This approach attem pts
to make life a little easier by hiding a few of the messy details, but not to eliminate the flexibility of the I/O
by hiding it under a complex system. These routines use the “copy mode” approach to I/O in th a t da ta is
read into a large buffer and then copied from the large I/O buffer to a smaller buffer when a row is needed.
This is less efficient than using the bare AIPS I/O routines, but frees the programmer from having to deal
with indexes into the large array.

There are four I/O routines in this program, MAKNAM (fills in an array with all the data items th a t go
into specifying a m ap), INTMIO (initializes the I/O routines to read or write a cataloged m ap), REIMIO
(initializes counters for reading a different subimage or making another pass through a m ap opened by
INTMIO) and GETROW (reads a row of a m ap). MAKNAM and INTMIO are used in straight forward
ways to open the map. The programmer can usually ignore these two routines unless a second m ap must
be opened. If the program m ust make more than one pass through the data, REIMIO can be used to reset
all of the counters. REIMIO assumes that the map is already opened in INTMIO and th a t a second pass
is being made through the data. This routine can NOT be used to read different subimages from the same
map at the same time. GETROW must be used (usually in subroutine PLTORn) to read data from the
map, one row at a time.

The I/O routines in this program use a common named MAPHDR (include DCAT.INC). This common
was chosen to interface with several of the plotting routines which expect this common to contain the map
header. Besides the map header, this common contains an array, IMSTUF, which has several data items of
interest. IMSTUF(9) is of particular interest since it contains the number of data values (pixels) in each row
of the map. This number is usually the upper limit of a loop which operates on each element in the map
row. A description of all the elements of IMSTUF are listed in the following table:

1. AIPS I/O Logical unit number
2. FTAB index
3. unused
4. unused
5. Catalog slot ol image.
6. Size of I/O buller in bytes.
7. Disk volume number ol image.
8. lumber ol dimensions in image.
9. Humber ol values read per row ol image.
10-16. Humber ol values along all 7 axes
17-30. Window in BLC TRC pairs along all 7 axes.
31-36. Current position on last six axes.

11-8 CHAPTER 11. PLOTTING

37 1 if read forward -1 if backward read on 2nd axis.

Minor modifications in the I/O routines could be made to produce routines for reading UV data, but
this has not yet been done.

11.3.6 Cleaning Up
Some of the adverbs passed from AIPS may not be used for some types of plots. The programmer can make
things easier for the AIPS user by removing them from the help file. The programmer must then remove
them from the local include which can be found at the beginning of the file. The variable NPARMS is
initialized in an assignment statem ent in the main program. This must be changed to correspond to the new
number of words received from AIPS.

11.3.7 The Three Paraform Plot Tasks
PFPLl
This task should be used when developing a plotting task in which the X and Y axes of the plot are the
same as the X and Y axes of the map.

Much of the labeling is controlled by values of array PCODE. The values for the elements of PCODE
are summarized in the following table and are set in the main program between the calls to PFnINI and
PLTORn.
If PCODES(1) equals

1 then the plot axes consist of an unlabeled
rectangular border.

2 then draw a rectangular border plus
the title and text at the bottom.

3 then draw a rectangular border, labels,
and border tick marks
indicating absolute coordinates (r.a., decl., etc.).

4 then draw a rectangular border, labels, and border tick marks
indicating coordinates relative to the coordinates
of the image reference pixel (units usually in
arc seconds).

5 draw border, labels, and border tick marks
indicating coordinates relative to the center of
the subimage plotted (units usually in arc seconds).

6 draw border, labels, said border tick marks
indicating image pixel numbers.

If PCODES(2) equals

0 then label the X axis with the X axis value found in the
map header.

other then label the X axis using variable AXUIIT which is set in
a DATA statement in the main program.

11.3. PLOT PARAFORM TASKS 11-9

If PC0DES(3) equals

0 then label the Y axis with the Y axis value found in the
map header.

other then label the Y axis using variable AYUIIT which is set in
a DATA statement in the main program.

If PC0DES(4) equals

0 then use the "standard" title consisting of map name,
source name, and frequency.

other then use the title given in DATA statement for
variable ATITLE in the main program.

If PC0DES(5) equals

0 then no grey scale pixels are to be written for the
plot.

other then grey scale pixels with a range given by PIXRNG
(these values are usually passed from AIPS in adverb
PIXRAIGE) can be written to the plot. This code value
causes an "init for grey scale" record to be written
to the plot file.

Usually a task will let the AIPS user choose the value of PCODES(l) by setting adverb LTYPE, e.g.,
PCODES(l) is set to LTYPE after the task gets this adverb value from AIPS.

When using PLPOS and PLVEC, the positions for this type of plot are given in pixels.
The unmodified version of PFPL1 contains code in PLT0R1 to read the map, and draw a grey scale

plot. The user should remove this example found between comment lines “** Plot specific code” and “**
End plot specific code” and insert the code for his own application.

PFPL2
This task should be used when developing a plotting task in which the X axis of the plot is a slice of some
plane of the map, and the Y axis is some other value such as intensity. The PCODE usage is described
below.
PCODES(l) equals

The label type of the X axis. The codes are the same
as for PFPL1.

If PC0DES(2) equals

0 then label the X axis with the units determined by the
"standard" slice labeling algorithm.

other then label the X axis using variable AXUIIT which is set in
a DATA statement in the main program.

11-10 CHAPTER 11. PLOTTING

If PC0DES(3) equals

0 then label the Y axis with the units found in the
nap header for the nap intensity.

other then label the Y axis using variable AYUVIT which is set in
a DATA statement in the nain program.

If PC0DESC4) equals

0 then use the "standard" title consisting of map name,
source name, and frequency.

other then use the title given in DATA statement for
variable ATITLE in the main program.

If PC0DES(5) equals

0 then use the "standard" slice message at the bottom of
the plot. This message will give the center of the slice.
This message occurs above the message found in TEXT
as described above.

other then do not print the "standard slice message"

The example program in PFPL2 will plot a slice of the X Y plane. The user should remove the example
found between comment lines “** Plot specific code” and “** End plot specific code” and insert the code for
his own application. This example uses no interpolation (it uses the value of the nearest pixel) and is NOT
adequate for a production program. See the code in task SLICE for a good set of interpolation routines and
a “rolling buffer” scheme.

PFPL3
This task should be used when developing a plotting task in which the X and Y axes have no relation to the
map X and Y axes. The plot could be of a function, a histogram of some values, or a table.

The only PCODES values used are PCODES(4) and PCODES(5). If PCODES(4) is 0, then the program
plots the “standard” title line. Otherwise, it uses whatever string is in variable ATITLE. If PCODES(5)
is not zero, then this signals the existence of grey scale pixels. The program automatically uses whatever
strings are in variables AXUNIT and AYUNIT to label the units for X and Y. Thus, the programmer will
have to edit the DATA statem ents for these variables in the main program, or fill them in by some other
means.

The example program in the unmodified version of PFPL3 will plot a simple histogram of map intensities.
The subroutine PLTOR3 reads the map to determine the histogram values and the range of the Y axis
(number of pixels). Then the standard initializing routine (PLINIn) and labeling routine (PLABLn) are
called. Finally the histogram is plotted. The programmer must remove the two sections of example code
found between two sets of comment lines “** Plot specific code” and “** End plot specific code” and insert
the code for his own application.

11.4 P lottin g to D evices
There are a wide variety of devices which may be used as plotters by AIPS code. The plot files may be
interpreted to each of these devices by a device-dependent task. Currently, AIPS supports TV devices with

11.4. PLOTTING TO DEVICES 11-11

TVPL (IIS models 70, 75 and IVAS, DeAnza, Comtal Vision 1/20), Tektronix 4010 and 4012 and emulator
devices with TKPL, Versatec and similar electrostatic printer/plotters with PRTPL, and QMS Lasergraphix
printers with QMSPL. Many other devices could, in principle, be supported, but it is hard for the AIPS group
at the NRAO in Charlottesville to create tasks, and to provide reliable support, for devices not physically
present at the NRAO in Charlottesville. For this, we depend primarily on our user community. We will be
glad to receive any plotter tasks which you may wish to subm it and will do what we can to provide support.
We are, of course, quite adept a t shipping code to the world-wide AIPS user community.

11.4.1 Versatec
The Versatec is an electrostatic p rinter/p lo tter with 200 dots to the linear inch. It works by drawing a row
of dots, advancing a 200th of an inch, and drawing the next row of dots. In other words, it is not a randomly
addressable device like a TV or the QMS. Therefore, PRTPL must prepare a file containing the entire bit
m atrix to be plotted. Then the subroutine ZDOPRT reads the file a row at a time, prepends special device
plot codes, and sends them to the device (or the device spooler). Unfortunately, these special codes are
specific to the Versatec device driver in use and hence are different for other devices (e.g., Printronix) and
can even be different for the same device with a different driver. The standard version of ZDOPRT provided
with VMS AIPS is intended to work for spooled Versatecs under VMS with drivers of revision C or greater.
The precursor comments for this routine are reproduced at the end of this chapter.

To adapt PRTPL to other, similar devices, you will need to do at least two things. The simpler is to
correct the setting of YPRDMM at the beginning of subroutine PRTDRW. This sets the number of dots per
millimeter in the Y direction and is, in general, not the same as the X dots per millimeter (as is assumed
by PRTPL). You should also set the plotter size and X dots per millimeter using the stand-alone program
SETPAR, since these are “global” AIPS param eters carried in the device characteristics common (include
DDCH.INC. Second, you must produce a version of ZDOPRT suitable to your device. To assist in this,
we provide, in the directory APLVMS:, four other versions of ZDOPRT, called ZDOPRn, which may be of
assistance.

11.4.2 QMS Laser Printer
The QMS Lasergraphix is a prin ter/p lo tter based on a laser print device manufactured by Canon. (Numerous
other OEMs are also selling devices based on this engine.) The resolution is 300 dots to the linear inch and
there is a full-page, randomly addressable memory. The device is capable of accepting downloaded “fonts” ,
vector commands, and other useful plot commands. AIPS task QMSPL translates AIPS plot files into ASCII
print files containing the commands to the QMS. The Z routine ZQMSIO performs the necessary open, write,
and close operations. It opens the file in a way which will cause it to be deleted if the program aborts. This
is to prevent partial files from clogging the disk and/or being printed and leaving the QMS in a strange
state. The close operation redirects the file to “print/delete” , or, a t the user’s request, to “print/keep” in a
file named by the user. The precursor comments for ZQMSIO are given at the end of this chapter.

To convert ZQMSIO for use on some other comparable device, two m ajor operations must be performed.
First, a ZxxxIO must be written to perform the operations of ZQMSIO. They are likely to be very similar.
Second, the command gram m ar and text of the QMS must be translated to the new device in the QMSPL
task (under a new xxxPL name, of course). Where possible, we recommend doing this second operation,
rather than creating a wholly new xxxPL. QMSPL contains an excellent algorithm, based on one used by
Starlink in Great Britain, for displaying grey scale pixels on dot m atrix devices. There are also a number of
other scaling algorithms for grey scale pixels in QMSPL, which have proven useful. It would be best to avoid
reinventing these wheels. QMSPL represents grey scale pixels in two modes, quick and slow. If there is a
significant number of dots per image pixel, then QMSPL can use the quick mode of precomputing a “font”
for each of some number of grey levels and then translate the pixels into letters to be printed. A better, but
much more expensive, display is produced by computing the dot pattern for each image pixel based on its
exact value and an exact implementation of the Starlink algorithm.

In order to understand QMSPL in order to do the translation, it is necessary to have some feel for the
QUIC language of QMS. The commands used by QMSPL are summarized below:
PY~- Go into QUIC command mode

11-12 CHAPTER 11. PLOTTING

“DCnnnn
“ISYHTAXOOO10

“ISTFXO

“ITnnnn
“IJmmn
“SM00204

“SM09001

“IOP Use portrait mode
“IOL Use landscape mode
*F“- Use free format (ignore system-provided

carriage returns, line feeds, etc.
Make nnnn copies of current page
Change measurements to dots, other options
remain at defaults
Text processing: enable automatic font
baselining, don't change auto-justify
Set x origin (left page margin) to nnnn dots
Set y origin (top page margin) to nnnn dots
Select font 204 in standard vertical,
used for labeling
Select "font" 9001, used for grey scales

~DF09001L0AIPSnnn Define "font" 9001 in landscape (P for
portrait) called AIPS version 0 with nnn
dots in Y per character

,aannn“Myyyxxx000000 Define character aa (in hex), width m m
dots, using bit map of actual size xxx
by yyy dots, with no border dots --
followed by the definition given in 4-bit
hex characters padded to integer words
on each row.
Set character line spacing to nn.nn characters
per inch; nnnn = 0 => 6 lines per inch
Set character horizontal spacing to nn.nn
characters per inch; nnnn = 0 means use
proportional, not fixed spacing
Turn on vector graphics mode
Turn off vector graphics mode
Set pen width to nn dots (nn odd, <= 31)
Move position to xxxx, yyyy in dots; yyyy is
measured down the page
Draw vector to xxxx, yyyy in dots
Start binary transmission, nnnn dots per row;
followed by data given in 4-bit hex characters
padded to integer multiple of 4 characters
Terminate current command, i.e., stop font
definition, binary transmission, etc.
Delete "font" 9001 in landscape mode
Delete "font" 9001 in portrait mode
Restore default syntax, measurements in inches

“, Print this page
“0 Off free format
~PN“- Exit QUIC mode

~ TT.nnnn

‘ICnnnn

“IGV
“IGE
“PWnn
“Uxxxx:yyyy

‘Dxxxx:yyyy
‘Pnnnn

“G

“DF09001L“G
“DF09001P“G
“ISYHTAX00000

11.5 Includes
11.5.1 DLOC.INC
used by all position routines; set by SETLOC.
C Include DL0C.

11.5. INCLUDES 11-13

Position labeling common
DOUBLE PRECISION RPVAL(4), C0ND2R, AXDENU, GE0MD1, GE0ND2, GE0MD3,
* GE0MD4
CHARACTER CTYP(4)*20, CPREF(2)*5, SAXLAB(2)*20
REAL RPL0C(4), AXIHC(4), ROT
INTEGER ZDEPTH(S), ZAXIS, AXTYP, CORTYP, LABTYP, SGNROT,

* AXFUNC(7), KLOCL, KLOCM, KLOCF, KLOCS, KLOCA, KLOCB,
* NCHLABC2)
COMMON /LOCATC/ CTYP, CPREF, SAXLAB
COMMON /LOCATI/ RPVAL, C0ND2R, AXDENU, GEOMD1, GE0MD2, GE0MD3,
* GE0MD4, RPLOC, AXINC, ROT, ZDEPTH,
* ZAXIS, AXTYP, CORTYP, LABTYP, SGNROT, AXFUNC, KLOCL, KLOCM,
* KLOCF, KLOCS, KLOCA, KLOCB, NCHLAB

End DLOC.

11.5.2 DGPH.INC
used by the basic plot subroutines GINIT, GINITL, GPOS, etc.

C Include DGPH.
C Plotting common

INTEGER GPHSIZ, GPHLUN, GPHIND, GPHPOS, GPHRRN, GPHVOL,
* GPHTLO, GPHTHI
REAL GPHX1, GPHX2, GPHY1, GPHY2, SCALEF
CHARACTER GPHNAM*48
COMMON /GPHCOM/ GPHSIZ, GPHLUN, GPHIND, GPHPOS, GPHRRN, GPHVOL,

* GPHX1, GPHX2, GPHY1, GPHY2, SCALEF, GPHTLO, GPHTHI
COMMON /GPHCHR/ GPHNAM

C End DGPH.

11.5.3 DPLT.INC
used by PFPL1, PFPL2, PFPL3.

C Include DPLT.
C Include lor plotting

DOUBLE PRECISION CATD(128)
REAL PBLCC2), PTRC(2), XY, XSCAL, XOFF, YSCAL, YOFF, GFAC,
* GOFF, RANGE(2), XLAST, YLAST, CATR(256)
INTEGER PLTBLKC256), IOFFPL, IVER, IBLKSZ, IMSTUF(37),

* I0BLK(8192), CATBLK(256)
HOLLERITH CATH(256)
COMMON /PLTCOM/ IOBLK, PBLC, PTRC, XY, XSCAL, XOFF, YSCAL,

* YOFF, GOFF, GFAC, RANGE, XLAST, YLAST, PLTBLK, IOFFPL, IVER,
* IBLKSZ, IMSTUF
COMMON /MAPHDR/ CATBLK
EQUIVALENCE (CATBLK, CATH, CATR, CATD)

C End DPLT.

11-14 CHAPTER 11. PLOTTING

11.6 R outines
11.6.1 CHNTIC
Counts the number of characters to the left of a plot used for labeling the vertical axis.

CHHTIC (BLC, TRC, CHMAX)
Inputs:

BLC R(2) X AND Y pixels to lorm bottom lelt hand
corner ol the graph.

TRC R(2) X and Y pixels to lorm the top right hand
comer ol the graph.

Output:
CHMAX I Max number ol characters.

11.6.2 CLAB1
Controls some axis drawing and labeling functions: labels each axis with RA/DEC or the type, call CTICS
to draw tics and tick labels

CLAB1 (BLC, TRC, CH, ILTYPE, XYR, DOGRID, IBUFF, IERR)
Inputs:

BLC R(2) X, Y pixels to lorm bottom lelt hand corner
TRC R(2) X, Y pixels to lorm the top right hand corner
CH R(4) lelt, bot, right, top : total character ollsets
ILTYPE I label type: 1 none, 2 no ticks, 3 RA/DEC

4 center relative
XYR R The ratio ol the distance between X axis pixels

and the distance between Y axis pixels on plot
DOGRID L T => lull coord grid, else ticks

In/out:
IBUFF 1(256) the updated graphics output buller.
IERR I error indicator: 0 = Mo error.

11.6.3 CLAB2
Controls some axis drawing and labeling functions: labels each axis with RA/DEC or the type. Call CTICS
to draw tics and tick labels. Differs from CLAB1 in that the axes are drawn as subplots (fewer ticks and
only one axis line in each direction, arguments AYV and AXV are used).

CLAB2 (BLC, TRC, CH, ILTYPE, XYR, AYV, AXV, IBUF, IERR)
Inputs:

BLC R(2) X, Y pixels to lorm bottom lelt hand corner
TRC R(2) X, Y pixels to lorm the top right hand corner
CH R(4) lelt, bot, right, top : toted character ollset
ILTYPE I label type: 1 none, 2 no ticks, 3 RA/DEC

4 center relative
XYR R Ratio ol the distance between X axis pixels and

the distance between Y axis pixels on the plot
AYV D Draw the x axis at this Y value
AXV D Draw the y axis at this x value

In/out:
IBUF 1(256) the updated graphics output buller.
IERR I error indicator: 0 = lo error.

11.6. ROUTINES 11-15

11.6.4 COMLAB
Is an axis drawing and labelling routine for use with the common labeling for contour plots and pol vector
plots. It calls GINITL and puts subsidiary labels (source, frequency, Stokes, image name), (peak flux),
(contour levels) in file.

COMLAB (BLC, TRC, LTYPE, IVER, YGAP, CH, XMULT, XLEVS, XYR, IBUFF,
* IERR)

Inputs:
BLC R(7) bottom lelt hand corner ol the map.
TRC R(7) top right hand corner ol the map.
LTYPE I label type: 1 none, 2 no ticks, 3 Ra/dec

4 center relative, 5 subimg center-rel,
6 pixels, 7 as 3 no top labels
< 0 => no date/time, else as positive

I plot lile version number
R the multiplier lor the LEVS to lind the

actual contour levels.
R(30) the contour levels (when used with XMULT)

IVER
XMULT

XLEVS
In/out:

IBUFF
YGAP

Output:
IERR

1(256) the updated graphics output buller.
R On input: # lines at bottom to skip belore

peak llux line in addition to standard
On output: includes standard

I error indicator: 0 = Ho error.

11.6.5 CONDRW
Will write commands to a plot file for the execution of a contour plot.

COHDRV (IMLUH, IMFIHD, IGLUS, IGFIHD, XMULT, BLC, TRC, LEVS, IGBLK,
* IERR)

Inputs:
IMLUH
IMFIHD
IGLUH
IGFIHD
IGBLK
XMULT
BLC
TRC
LEVS

Common:
CATBLK
CHTRBU

Output:
IERR

I logical unit number lor the map lile.
I FTAB index lor open map lile.
I logiceil unit number ol the graph lile.
I FTAB index lor initialized graph lile.
1(256) I/O block lor graph lile.
R Contour interval (image units)
R(7) Bottom lelt corner
R(7) Top right corner
R(30) Selected contour intervals in increasing order

(any decrease terminates the list)

1(256) map header.
R(8192) bullers

I error code. 0 = ok.
9 => QUIT op received Irom TELL
10 => ABOR op received Irom TELL

11-16 CHAPTER 11. PLOTTING

11.6.6 CTICS
Writes tick marks and tick labels to a plot file. If CPREF(IAX) and CTYP(IAX) are all blank, no tick
labels are done.

CTICS (LAXIS, BLC, TRC, XYRATO, YX, DOACRS, IBUFF, IERR)
Inputs:

LAXIS I 1 => horizontal, 2 => vertical full plots
3 => horiz subplot 4 => vertical subplot

BLC R(2) X and Y pixels to form bottom left hand
comer of the graph.

TRC R(2) X and Y pixels to form the top right hand
comer of the graph.

XYRATO R X to Y scaling factor
YX D LAXIS-3: plot x axis at y = YX; 4: plot y axis

at x s YX - out range => BLC(1,2) value
DOACRS L Do coordinate grid (T) or just ticks (F)

In/out:
IBUFF 1(256) buffer being used for output to

the graphics file.
Outputs:

IERR I error code: 0 -> ok
1 => bad IAXIS
2 => graph drawing error
3 => tic algorithm fails

11.6.7 GCHAR
Will write a ’draw string’ command record to a graph file. The output record description is:

I opcode, 6 in this program.
I number of characters (ICHAR).
I angle (IAHGL).
I X offset in characters * 100 (DX * 100).
I Y offset in characters * 100 (DY * 100).
I(*) chair act ers (STR) .

GCHAR (HCHAR, IAHGL, DX, DY, STR, BUFF, IERR)
Inputs:

HCHAR I number of characters in STR
IAHGL I angle to print STR. 0=horizontal, 1=vertical.
DX R x offset in characters from current position for

the bottom left comer of first character printed
DY R y offset in characters from current position for

the bottom left comer of first character printed
STR C*(*) string to be printed.
BUFF 1(256) buffer to use for 1/0.

Output:
IERR I error code: 0 => ok

1 => disk problems
2 => string too big

Common:
GPHP0S
GPHRRH

incremented by 5
incremented by 1

+ (HCHAR+3)/4.
if a write to disk is needed.

11.6. ROUTINES 11-17

11.6.8 GETROW
This routine will read a row of an image file th a t has been opened with and initialized with INTMIO. The
routine will copy the row from the I /O buffer to the user buffer.

GETROV (IMSTUF, IOBLK, ROW, EOF, IERR)
Inputs:

IMSTUF 1(37) 10 pointers, LUIs, counters and such. They are
set in INTMIO.

In/out:
IOBLK R(*) 10 buller.

Outputs:
ROW R(*) Output row ol image.
EOF L TRUE means last row specilied in INTMIO by the

BLC, TRC arguments has been read.
IERR I Error code, 0=ok, others Irom MDISK.

11.6.9 GFINIS
Places an "end of plot” command in the buffer, writes the last buffer to disk, compresses the plot file if
needed, and closes the plot file.
***** NOTE: any catalog operations for the plot file must be performed by the calling program. *******
The plot common is reinitialized in part. The command record has the form:

I opcode (32767)

GFIIIS (BUFF, IERR)
In/out:

BUFF 1(256) plot lile work buller
Output:

IERR I error code: 0 => ok
1 => disk error
2 => data error
3 => compress error
4 => close error

11.6.10 GINIT
Initializes the graphics common, creates and opens the graphics file, and places the ”initialize plot” command
in the file.
******* NOTE: cataloging of the graphics file must be handled by the calling program. *********
WARNING: Get PNAME right! If the create fails because the file already exists, GINIT will destroy
PNAME and create the desired plot file. GINIT writes 1 or more records to disk containing the task name
and parameters. It starts on the next physical record with a command record of the form:

I opcode (1)
I user number
1(3) date: 19yy, mm, dd
I ITYPE: type code 1 => misc., 2 => CNTR, 3 => GREYS,

4 => PROFL, 5 => SL2PL, 6 => PCHTR, 7 => IMEAN,
8 => UVPLT, 9 => GNPLT, 10 => VBPLT, 11 => PFPLn,
12 => GAPLT, 13 => PLCUB, 14 => IMVIM, 15 => TAPLT,

11-18 CHAPTER 11. PLOTTING

16 => POSSM, 17 => SHPLT, 18 => KHTR,
20 => ISPEC

19 => UVHGM,

GIHIT (IVOL, PHAME,
Input8:

IVOL I
PHAME C*48
IGSIZE I
ITYPE I

IPARM I
PARMS R(HPARM)

In/out:
BUFF

Outputs:
LUS
FIID
IERR

1(256)

IGSIZE, ITYPE, HPARM, PARMS, BUFF, LUH, FIHD, IERR)

disk volume lor lile creation
physical lile name lor created lile
0 => small 1 => medium 2 => large lile
plot type code (il < 0, then ITYPE is taken to
be #rows (# cols il writing vertically) and is
used to adjust SCALEF to integer*abs(itype)
The output ITYPE is set to 1.
values in input parameter list,
task input parameter list (with defaults
lilled in)

plot commands are placed in this buller and
written to disk as needed. The calling program
must not alter this area between calls to GIHIT
and GFIHIS

logical unit number ol plot lile
location in FTAB lor lile
error code: 0 => ok

1 => another plot lile open
2 => input data error
3 => create error (no lile)
4 => open error (lile gone)

11.6.11 GINITG
Will write an ”init for gray-scale” command record to the graphics file. The output record has the form:

opcode (3)
lowest pixel value
highest pixel value
number ol pixels on x axis
number ol pixels on y axis

GIHITG (IGLO, IGHI, BUFF, IERR)
Inputs:

IGLO I
IGHI I

In/Out:
BUFF 1(256)

Output:
IERR I

lowest allowed pixel value
highest allowed pixel value

graphics buller

error code: 0 => ok
1 => disk error
2 => input error

11.6. ROUTINES 11-19

11.6.12 GINITL
Will write an ’init for line drawing’ command record to a graph file, common variables will also be initialized.
The output record description is:

I opcode, 2 in this program.
I XYRATO * 100
I scale factor used in calculating I X and Y in

GPOS and GVEC. Equal to SCALEF.
1(4) BLC,TRC integer part (BLC rounded up, TRC down)
1(4) floating remainder * 1000 from BLC, TRC
1(4) 10 * (CH0UT) number of characters

outside piz area on left, bot, right, top, resp.
1(5) array location on axes 3,4,5,6,7

GIIITL (BLC, TRC, XYRATO, CH0UT, DEPTH, BUFF, IERR)
Inputs:

number of first pixel in row k col
last pixel pos in row/col (usually 1 more
them the number of pixels)
ratio between x and y axis plotting
number of characters outside pix on left,
bottom, right, top, resp.
array location on axes 3 thru 7

buffer to use for 1/0.

BLC R(2)
TRC R(2)

XYRATO R
CH0UT R(4)

DEPTH 1(5)
In/Out:

BUFF 1(256)
Output:

IERR I

Common:
GPHP0S
GPHRRH
GPHX1
GPHX2
GPHY1
GPHY2

error code. 0 - ok.
1 => disk problems

incremented by 20.
incremented by 1 if a write to disk is needed,
set to XI = BLC(l) (rounded up to integer)
set to X2 = TRC(l) (rounded down to integer)
set to Yl = BLC(2) (rounded up to integer)
set to Y2 = TRC(2) (rounded down to integer)

11.6.13 GMCAT
This routine will write a ’copy misc info into the image catalog’ command record to a graph file. The output
record description is:

I opcode, 8 for this record type.
I number of words.
I(IH0) miscellaneous information.

GMCAT (IH0, IBLK, IPBLK, IERR)
Inputs:

IH0 I number of words of misc info.
IBLK I(IH0) array containing misc info.
IPBLK I plot file 1/0 block.

Output:
IERR I error code 0=ok, l=no. of words over 20

Common:
GPHP0S I incremented by 2 + IH0.

11-20 CHAPTER 11. PLOTTING

GPHRRN I incremented by 1 if write to disk necessary.

11.6.14 GPOS
Will write a ’position vector’ command record to a graph file. The output record description is:

I opcode, 4 in this program.
I scaled X position.
I scaled Y position.

GPOS (X, Y, BUFF, IERR)
Inputs:

R x position
R y position.

X
Y
BUFF

Output:
IERR

1(256) buffer to use for I/O.

I error code. 0 = ok.
1 = disk problems.

Common:
GPHPOS incremented by 3.
GPHRRV incremented by 1 if a write to disk is needed.

11.6.15 GRAYPX
Places a ” write string of gray values” command in the graphics file. The gray values are clipped using range
given in the call to GINITG and placed in graphics file.
NOTE: this command may extend over more than 1 physical record in the file! The command form is:

I
I
I
I(HPIX)

opcode (7)
HPIX: number of values
IAIGL; 0 horizontal, 1 vertical
clipped gray values

GRAYPX (HPIX, IAHGL, IVALS, BUFF, IERR)
Inputs:

HPIX I
IAHGL I
IVALS I(HPIX)

In/out:
BUFF 1(256)

Output:
IERR I error code:

number of pixel values
direction code: 0 horizontal, 1 vertical
pixel values

graphics working buffer

0 => ok
1 => disk error
2 => input data error

11.6.16 GVEC
Will write a ’write vector’ command record to a graph file. The output record description is:

I opcode, 5 in this program.
I scaled X position.
I scaled Y position.

11.6. ROUTINES 11-21

GVEC (X,
Inputs:

X
Y
BUFF

Output:
IERR

Common:
GPHPOS
GPHRRN

Y, BUFF, IERR)

R
R
1(256)

x position
y position,
buffer to nse for I/O.

error code. 0 = ok.
1 = disk problems.

a write to disk is needed.
incremented by 3.
incremented by 1 if

11.6.17 HIPLOT
Places one record in a file’s HI extension file reporting th a t a plot extension was created by the present
program.

HIPLOT (IVOL, ICNO, IVER, IBUF, IERR)
Inputs:

IVOL I Disk volume
ICNO I Catalog number
IVER I Plot file version number created

Output:
IBUF 1(256) Scratch
IERR I Error code: 0 => ok - don't quit

1 => no HI file
2,3,4 => open, add, close error

Uses LUN-29 and inits the HI common

11.6.18 INTMIO
This routine will open a map file, set values in common for use with close down routine DIE and set up two
arrays containing all the values and counters needed by reading and writing routines compatible with this
one.

INTMIO (ILUN, ACCESS, NAME, BLC, TRC, IBSIZE, CATBLK, IMSTUF, IERR)
Inputs:

ILUN I Logical unit number to nse for the map file.
ACCESS C*4 'READ' or 'WRITE' status to mark catalog.

also 'HDWR' - mark write, open non-exclusive
IBSIZE I Size of 10 buffer in INTEGER values.

In/Out: (defaults filled in)
NAME C*36 "Name string" in the tradition of WaWa 10.
BLC R(7) Bottom left corner of map.
TRC R(7) Top right corner of map

Outputs:
COMMON /CFILES/ Values updated so that subroutine DIE will

close this file.
CATBLK 1(256) Map header.
IMSTUF 1(37) 10 pointers and stuff that are needed by other

10 routines compatible with this one. They axe:
1. LUN

11-22 CHAPTER 11. PLOTTING

2. FTAB index
3.
4.
5. Catalog slot ol image.
6. Size ol 10 buller in bytes ol all things.
7. Volume number ol image.
8. Humber ol dimensions in image.
9. Humber ol values read per row ol image.
10-16. Humber ol values along all 7 axis
17-30. Window in BLC TEC pairs along all 7 axis.
31-36. Current position on last six axis.
37 1 il read Iwd -1 is bckwrd read on 2nd axis.

IERR I Error code. 0=ok.

11.6.19 LABINI
Performs initializations for labeling: calls SETLOC, converts units (w METSCA) to get reasonable scaling,
and, for LTYPEC = 4 (center-relative labeling), converts units ("lies”) and prepares text giving true center
position.

LABIHI (BLC, TRC,
Inputs:

BLC R(2)
TRC R(2)
IDEP 1(5)
ILTYPE I

SLICE L

In/out:
CE R(4)

Output:
YGAP R
TEXT C(2)*80
HTEXT I

11.6.20 P L E N D

Do some plotting cleanup functions. Write “end of plot” record, close plot file, check for vectors th a t were
off the plot. Then terminates the task with a call to DIE.

PLEHD (ISTAT, IDEBUG)
Inputs:

ISTAT I 0=successful completion, other=dies unnaturally.

IDEP, CH, ILTYPE, SLICE, YGAP, TEXT, HTEXT)

Bottom lelt corner
Top right corner
Depth on axes 3 - 7
Labeling type: 1 none, 2 no ticks, 3 RA/dec,
4 center-relative, 5 subim center-rel, 6 pixels,
7 like 3, but no top line
T => lor slice display: rotation will be the
slice PA - any map rotation; F => lor maps: the
rotation is any map rot.

chars outside plot to lelt, bot, right, top:
on in # extra lor plot, on out totals
These must have input, reasonable values, LABIHI
just adds a 0.5 border and room lor the labeling.
IF CH(1) < -10., do not count axis label
characters with CHHTIC and CH(1) has little
meaning on output.

Char row position lor 1st line ol text at bottom
Text to put at YGAP, used only il LTYPE-4
Humber ol lines used in TEXT: 0, 1,2

11.6. ROUTINES 11-23

IDEBUG I > 0 => don't delete PL lile despite errors

11.6.21 PLGRY
This routine will put draw grey scale commands in the plot file.

PLGRY (IAHGLE, HVAL, VALUES, IERR)
Inputs:

IAHGLE I Angle code. 0 = horizontal, 1 = vertical.
HVAL I The number ol grey scale pixel values.
VALUES R(*) Grey scale values.

Output:
IERR I Error code. 0=ok.

11.6.22 P L M A K E

This routine will create and open a plot file, put it in the map header and write the first record into the
plot file. PLMAKE assumes th a t the m ap/uv file has been marked write and will change it to a read flag.
It would be nice if the defaults had been filled into RPARM before this routine is called.

PLMAKE (HP, RPARM, IGTYPE, IERR)
Inputs:

HP I
RPARM R(HP)
IGTYPE I

Output:
IERR

Humber ol words in parameter list
AIPS parameters
Plot lile type: 1 misc., 2 CHTR, 3 GREYS, 4 PROFL,
5 SL2PL, 6 PCHTR, 7 IMEAH (hist), 8 UVPLT,
9 GHPLT, 10 VBPLT, 11 PFPL1, PFPL2, PFPL3.
Use 1 unless your inputs match those ol these
tasks - or take a new number, but
AIPSUB:AU8A will need to know about it too.

Error code, two digit, lirst digit indicates
subroutine: 1: MAPOPH, 2: MADDEX, 3: ZPHFIL,
4: GIHIT, second digit indicates error code ol
that subroutine.

11.6.23 PLPOS
This routine will put a ’position vector’ command in a plot file.

PLPOS (X, Y, IERR)
Inputs:

X R X value.
Y R Y value.
C0MM0H /PLTCOM/ (DPLT.IHC)

Output:
IERR I Error code. 0 means OK.

11-24 CHAPTER 11. PLOTTING

11.6.24 PLVEC
This routine will put a ’draw vector’ command in a plot file. Vectors tha t are too big are interpolated.

PLVEC (X, Y, IERR)
Input8:

X R X value.
Y R Y value.

Common:
/PLTCOM/ (DPLT.INC)

Output:
IERR I Error code. 0 means OK.

11.6.25 REIMIO
This routine will reinitialize the counters in IMSTUF for reading another subimage of a map opened and
set up with INTMIO. All IMSTUF values th a t can be found in the header are re-initialized even if they are
not changed by the standard routines.

REIMIO (BLC, TRC, IBSIZE, CATBLK, IMSTUF, IERR)
Inputs:

BLC R(7) Bottom lelt corner ol map.
TRC R(7) Top right corner ol map
IBSIZE I Size ol 10 buller in words
CATBLK 1(256) Map header.
IMSTUF I(*) (1) LOT

(2) FTAB index
(5) Catalog slot of image.
(6) Size ol 10 buller in bytes ol all things.
(7) Volume number ol image.

Outputs:
IMSTUF I(*) (8) lumber ol dimensions in image.

(9) lumber ol values read per row ol image.
(10-16) lumber ol values along all 7 sixes
(17-30) Vindow in BLC TRC pairs along all 7

axes.
(31-36) Current position on last six axis.
(37) 1 il read lorward, -1 il backward read on

2nd axis.
IERR I Error code. 0=ok.

11.6.26 STARPL
Plots star positions in a plot file as given by an ST extension file of version VERS. The ST file contains the
center position (RA-DEC, GLON-GLAT, ELON-ELAT) of each star and the “uncertainties” in those star
positions. The plotted plus signs are scaled by these uncertainties and then further scaled by multiplying by
FACTOR.

STARPL (FACTOR, IVOL, CHO, VERS, BLC, TRC, PLBUF, IERR)
Inputs:

FACTOR R Star scaling factor: <= 0 => no plot.
VERS I Desired ST lile version number: 0 => high
IVOL I File disk number

11.6. ROUTINES 11-25

CIO I File catalog number
BLC R(2) Plot lower lelt corner (pixels)
TRC R(2) Plot upper right corner (pixels)

In/Out:
PLBUF 1(256) Plot 10 buller

Output:
IERR I Error code: 0 => okay

-1 => there was no ST lile
+1 => logical error in ST lile
+2 => 10 error in ST lile
+3 => 10 error in plotting

Common:
/MAPHDR/ CATBLK input Image header having the ST lile

n _26 CHAPTER 11. PLOTTING

Chapter 12
Using the Array Processors

12.1 Overview
Many of the more im portant of the AIPS tasks do a great dead of computation. The traditional approach
to increasing the performance of a cpu is by means of hardware arithm etic units called Array Processors.
These array processors (or APs) have their own memory and high speed, pipelined arithm etic hardware
enabling them to run much faster than the host for certain specialized operations. Since not all computers
running AIPS will have, or need, array processors attached, there is a library of Fortran routines which
emulate the functions of the array processor; these routines, and a common in the host memory, constitute
the “pseudo-array processor” . Since the details of the implementation of these routines will depend on the
hardware on which the software is run, these routines are explicitly machine dependent and have names
beginning with the letter “Q” ; thus the “Q-routines” . This chapter will describe the use AIPS makes of
array processors and explain how to use APs. At the end of this chapter is a list of the m ajor Q routines
with detailed comments on the call sequences.

Modern scientific computers are increasingly including vector hardware as an integral part of the CPU,
eliminating the need for array processors. The compiler on vector computers knows about the vector capa
bilities, which greatly simplifies using the vector hardware. The “Q-routines” developed for array processors
— or, more properly, the pseudo AP routines — have been successfully adapted to vector computers. Con
siderations for vectorization are discussed in a later section.

12.1.1 Why use the Array Processor?
The principal reason for using an array processor is speed. The design of most array processors optimizes
its performance for repetitive arithm etic operations, making it much faster a t vector arithm etic than the
host CPU. Since most APs operate asynchronously from the host CPU, they constitute a co-processor which
increases the capacity of the system.

A second advantage of using an array processor is th a t it contains its own local memory. On systems
with limited physical memory, or address space, this can be an im portant consideration. It will be possible
in the near future to get array processors, or fast CPUs, with many megawords of local memory. Such large
memories will allow the use of more efficient methods of processing data.

12.1.2 When to Use, and Not to Use, the AP
The array processor is most efficient at very repetitive operations such as doing FFTs and multiplying
large vectors. Its efficiency is greatly degraded for non-repetitive operations, or operations requiring a great
number of decisions based on the results of computations. In fact, most array processors have very limited
capability to make decisions based on the results of computations. Since the APs have their own program
and data memory, the AP instructions and the data must be transferred to, and the results transferred from,
the AP. These I/O operations may cost more cpu time than the amount saved by using the array processor.
As a general rule, use of the AP is more efficient than the CPU when multiple or complex (such as FFT)

12-1

12-2 CHAPTER 12. USING THE A R R A Y PROCESSORS

operations, which are highly repetitious, are going to be done on relatively large amounts of data (thousands
of words or more). In other cases, using the AP will probably not help much and will keep other processes
from using this valuable resource.

12.2 The A IPS M odel of an Array Processor
The model of an array processor used is colored strongly by our early use of Floating Point Systems FPS
AP-120B array processors. However, expressed in general terms, this model can be emulated on other real or
virtual (pseudo) array processors. It should be noted that use of the APs requires vectorized programming;
hence, implementation on super computers or other vector machines should be relatively efficient. The
following describes the fundamental features of the AIPS model of array processors.

1. AIPS uses APs as detached vector arithm etic units. T hat is, data is sent into the AP, some (usually
vector) operation is done, and the results are returned to the host CPU. The principal difficulty in the
implementation of AIPS on other array or vector processors is tha t our concept of a vector operation is
rather more general than that of most computing hardware manufacturers. Many of the more complex
of the AIPS operations Me better described as pipelined scalar operations. In the AIPS usage, high
level control and use of disk storage is done in the host CPU and only arithm etic operations are done
in the AP.

2. AIPS considers the AP to be a device which can be assigned via QINIT and deassigned via QRLSE.
Basically, this means tha t da ta will not disappear from the task’s assigned AP data memory between
these calls. This concept has little meaning for virtual APs, except th a t the data memory is cleared
after a QINIT call.

3. An AP should have a relatively large local data memory. The size of the AP data memory is obtained
from a common set by ZDCHIN, which reads it from a disk file. The value in this disk file can be
modified by the AIPS utility program SETPAR. In the case of pseudo (virtuad) A P ’s, this memory
is physically in the host CPU. A similar implementation could be done for am AP with significantly
less capacity than an FPS AP-120B. In some vector implementations of the Pseudo AP the size of the
memory given in the DDCH.INC include common is reset in QINIT.

4. In addition to data memory, the AP is assumed to have an array of 16 integer registers (SPAD) which
can be read from the host CPU. These are used to communicate the addresses of maxima, m in im a.,
etc. This capability is not extensively used.

5. AIPS assumes that the array processor is programmable in tha t functions are used which are not now,
or likely ever to be, in a standard library. If the AP is not programmable or is otherwise incapable
of emulating one of the AIPS functions, then these functions must be performed in the host CPU
and hidden from the AIPS routines. Alternately, these functions may be reformulated in terms of the
functions available; this will be necessary for efficient implementation of long-vector super computers.

6. Communication with the AP by AIPS is via Fortran call statements which specify the data in the AP
memory and other control information, transfer data between the AP and host CPU, or synchronize
the operation of the AP and host CPU.

7. D ata in the AP memory is specified by a base address and an increment. In current implementations
these addresses are absolute, but this is not assumed. The calling process is assumed to have absolute
control over an address space beginning at address 0 and extending to the address indicated in the
device characteristic common (include DDCH.INC) as (1024+KAPWRD-l). Word addressing only is
used. In pseudo AP implementations, further memory may be available; this additional memory is
indicated by KAP2WD.

8. Many of the most crucial functions used by AIPS routines depend on data-dependent address generation
and logic flow. As mentioned above, implementation of AIPS on an array processor without this
capability will require reformulation of several of the algorithms (especially gridding and the in-core

12.3. BOW TO USE THE A R R A Y PROCESSOR 12-3

CLEAN) in term s of vector operations. This reformulation will likely require vector logical operations,
i.e., gather, scatter, merge, and compress operations.

9. AIPS assumes th a t the AP can handle either integer or real data values (with the same word size).
Complex values consist of a pair of real values in adjacent locations, the first being the real part and
the second being the imaginary part.

12.3 How to U se the Array Processor
Since the array processors used by AIPS have their own program and data memories, the instructions must
be loaded in to the AP and data sent to, and results returned from, the AP. Since the AP runs asynchronously
from the host cpu there must also be ways to synchronize the operations. The general operations are given
in the following list, with the name of the subroutine AIPS uses for the given operation:

1. Assign / Initialize the AP. (QINIT)
2. Transfer data to the AP. (QPUT)
3. W ait for transfer to complete. (QWD, QWAIT)
4. Load and execute the AP program, (many)
5. W ait for computations to finish. (QW R, QWAIT)
6. Transfer data back to host cpu. (QGET)
7. W ait for transfer to complete. (QWD, QWAIT)
8. Release AP. (QRLSE)

12.3.1 AP Data Addresses
The AIPS convention for specifying data in the AP memory, which follows the Floating Point Systems
(FPS) conventions, is to specify data by the zero-relative memory address of the first element in an array,
the memory address increment between the elements of an array, and the number of elements in the array.
On FPS APs, the memory address is an absolute address, but in implementations on other APs, the address
may be a relative address, but this should be hidden from the programmer.

Q Routine Arguments
The call arguments to the Q routines (AP-routines) are integers. The exceptions to this are the host array
names passed in QPUT and QGET. The FPS Q routines convert these to 16 bit unsigned integers.

Array Processor Memory Size
Since different array processors will have different memory sizes, the memory size of the AP is carried in
the Device Characteristics Common which is obtained by the include DDCH.INC. The size of the AP is in
the integer value KAPW RD as the multiple of 1024 words of AP data memory. Any operation with the AP
should check that enough data memory is available and, if possible, scale the operation to make full use of
the available memory.

Several Pseudo AP implementations have more memory available for certain operations. The amount of
this secondary memory is given by KAP2WD. This memory is used as work space by some routines, but is
generally available when these routines are not in use.

12-4 CHAPTER 12. USING THE A R R A Y PROCESSORS

12.3.2 Assigning the AP
The array processor is assigned to the calling task using the AIPS routine QINIT. QINIT incorporates the
AIPS priority system and provides for smooth use of the AP for batch tasks. The AIPS AP priority scheme
is to give tasks with lower POPS numbers (the number at the end of the task name when it is running)
higher priority. This is done by keeping a list of AP tasks in QINIT. When a task asks for an AP, QINIT
then checks to see if any AP tasks with a lower POPS number are running; if so, QINIT suspends the task
for a short period and then checks again. The number of times a task goes through the check/suspend loop
before asking for the AP at the next opportunity is proportional to its POPS number. QINIT also sets
values in common /B PR O L C / (include DBPR.INC which control the AP roller subroutine QROLL. The
text of this include is shown at the end of this chapter and the use of the values is described in the detailed
description of QROLL given at the end of this chapter. In some vector implementations of the Pseudo-AP
QINIT also sets the size of the AP memory (KAPWRD, KAP2WD) in the DDCH.INC included common.

On some systems, batch AIPS tasks present more of a problem. AIPS batch tasks are usually run at
lower priority than interactive tasks, so they may grab the AP and then not get enough cpu cycles to finish
that AP operation for a very long time. To avoid this problem, QINIT increases the priority of the batch
task to that of an interactive task while it has the AP.

QRLSE is used to deassign the AP. QRLSE also lowers the priority of batch tasks after the AP is released.
In the interest of a smooth and friendly system for users, it is im portant not to hog the AP for long

periods of time. The priority system should then work to give lower POPS numbered AIPS users a larger
fraction of the time, if they need the AP. A task should in general not keep the AP tied up for more than 5
to 10 minutes a t a time, less if th a t is practical. For tasks which may need to keep the same data in the AP
for long periods of time, such as tasks which compute models based on CLEAN components, there is an AP
roller subroutine QROLL.

QROLL determines if it is time to roll out the AP based on values set by QINIT, and, if so, will create
a scratch file (using the DFIL.INC system), copy the specified contents of the AP memory to a scratch
file, release the AP, wait a short period of time, re-assign the AP, and load the previous contents back
into the AP memory. Details of the call sequence to QROLL axe found a t the end of this chapter.
IMPORTANT NOTE: QROLL (and APROLL) work properly only for floating point data. Integer values
rolled will not be restored correctly.

12.3.3 Data Transfers To and From the AP
The fundamental routines for getting data to and from the Array Processor memory are QPUT and QGET;
details of the call sequences can be found at the end of this chapter. In addition, for image-like data, there
is the routine APIO.

APIO transfers image-like data between disk files and the array processor. The file open and close and
initialization logic are all contained in this routine. Information about the file and the the desired properties
of the I/O are passed to APIO in the array FLIST. APIO can access either cataloged ’MA’ type files or
scratch files using the DFIL.INC common system. APIO can handle arbitrary row lengths. This is done by
breaking up the logical records if they are larger than the buffer size. It is IM P O R T A N T to always use
the same size buffer when accessing a given file. Usage notes for APIO:

1. Opening the file.
If APIO determines th a t the file is not open, it will open it. The file can be either a cataloged file or
a scratch file using the DFIL.INC common system. If the catalog slot number given in FLIST is 0 or
less, the file is assumed to be a scratch file. File open assumes th a t the file type is ’MA’ (if cataloged);
the file is opened patiently without exclusive use.

2. Initialization.
APIO initializes the I/O using the values in FLIST when it opens the file. It may be initialized again
at any time using OPCODE ’IN IT’. Also, switching between ’READ’ and ’W RIT’ will force a flushing
of the buffer (’W R IT’) and initialization. Any initialization when the current operation is ’W R IT ’ will
cause the buffer to be flushed.

12.3. HOW TO USE THE A R R A Y PROCESSOR 12-5

3. Closing the file.
The file may be closed with a call with opcode ’CLOS’. If the file is being written and a ’CLOS’ call
is issued, APIO will flush the buffer. This means that, if APIO is being used to write to a disk, it
MUST be called with O PC O D E=’CLOS’, ’READ’, or ’IN IT’ to flush the buffer. NOTE: all pending
AP operations MUST be complete before calling APIO with opcode ’CLOS’.

4. AP timing calls.
APIO calls QWD before getting data from, or sending data to, the AP, but does not call QWR. The
calling routine should call QW R as appropriate.

More details about the call arguments are found at the end of this chapter, and an example of the use of
APIO is given in a later section.

12.3.4 Loading and Executing AP Programs
Loading and executing AP programs is done in a single call to the relevant routine. The call argument also
includes the specification of the data, location of the output array, and any processing flags. A list of the
AP routines currently supported in AIPS is found at the end of this chapter. If the function desired is not
available, then it is possible to write it for the AP.

12.3.5 Timing Calls
Since array processors normally run asynchronously from the host, CPU timing calls are necessary. The
subroutine calls basically suspend the operation of the calling program until the specified AP operation is
completed. FPS claims th a t data transfers and computations (not involving the same AP memory) may be
overlapped; however, the results of doing this are erratic and this practice should be avoided. On occasion,
there appear to be timing problems whose symptoms are erratic and which produce very wrong results,
which go away when apparently unnecessary timing calls are added, e.g., calls to QW R between calls to
computation routines. We use three timing calls:

1. QWD suspends the calling program until data transfers to or from the AP are complete.
2. QW R suspends the calling program until the AP completes all computations.
3. QWAIT suspends the calling program until all data transfers and computations are complete.

12.3.6 Writing AP Routines
If the current library of AP routines does not contain the desired function, there are two possibilities for
coding the function: (1) microcoding the routine or (2) using the Vector Functor Chainer (or equivalent on
non-FPS APs) to combine existing functions to create the desired function. If either of these is chosen, the
programmer should also write the corresponding pseudo-AP routines, if the task is likely to have general
use. The name of the routine should start with the letter Q and be placed in the appropriate libraries.

For routines to be run on real array processors, there should be an intermediate routine that converts
the integer addresses etc. to unsigned 2 byte integers. This routine should then call the actual AP routine.

In order to use microcode or Vector Function Chainer (VFC) routines, the following steps must be
performed:

1. Compile VFC (or other high level language routines) to assembly (microcode) language. For FPS code,
this is done by the FPS routine VFC.

2. Assemble microcode into machine code. For FPS code, this is done using APAL.
3. Link edit microcode routines together to make an executable module. For FPS code, this is done using

APLINK, which creates a Fortran or host assembly language routine with the executable module in a
data statement. Make sure the integer type declarations are correct. All integers to be passed to FPS
handlers should be explicitly declared INTEGER+2.

12-6 CHAPTER 12. USING THE A R R A Y PROCESSORS

4. Compile/assemble the Fortran/assembly language module and put in the appropriate subroutine link
edit library.

It is beyond the scope of this manual to describe the use of the FPS or other AP software; the reader is
referred to the appropriate manual provided by the AP vendor.

Microcoding Routines
It is beyond the scope of this manual to give details about microcoding for array processors; see the AP
manuals for these details. The general principles of efficient microcoding are that several of the hardware
units - address computation, floating add, floating multiply, and memory access - may be given instructions
in a given cycle. In addition, the floating point hardware is pipelined. T hat is, even though it takes several
cycles for an operation, it is broken up into several, single cycle steps and a new operation can be initiated
each cycle.

This architecture allows for very efficient loops. The loop may be broken into several sections and one
section from each of several passes through the loop may be processed in parallel. Efficient coding of loops
may become very complicated, but careful coding may speed up the process by a factor of several to many.
The source code for NRAO written microcode is kept in the file FPSSUB:NRAO.AP.

Vector Function Chainer
The principal purpose of the Vector Function Chainer is to combine a number of microcoded routines into a
single AP call. This can greatly reduce the overhead of the host cpu talking to the AP; and, if the individual
AP operations are relatively numerous and short, chaining routines can make a dram atic improvement in
the speed of the overall process.

The Vector Function Chainer uses source code th a t looks vaguely like Fortran, but has very limited
capabilities and essentially no access to the data memory. Hopefully, in the future, there will be efficient
Fortran compilers for APs. (FPS has such a compiler for the 120B, but NRAO doesn’t have a copy).

12.3.7 FFTs
One of the more common operations using the array processor is the Fast Fourier Transform (FFT). We have
adopted the FPS convention for real-to-complex FFTs in packing the real part of the last complex value into
the imaginary part of the first value in the array. This is allowed because the imaginary part of the first and
last values are always zero. This convention allows the use of the same AP memory space for the input and
output arrays from a real-to-complex FFT. For 2-D FFTs this convention is not followed and the Complex
FFT of a Real NxM image is (M x2) x (N /2+1) in size.

We also adopt the convention for FFTs tha t the second half of a one dimensional array comes first, and
that the center is N /2+1, where N is the number of elements in the array (always a power of two). In two
dimensions, this means basically th a t the center of the array is at the corners with the first element of an NX
x NY array being (NX/2+1, NY /2+1). An exception to this is th a t the AIPS two-dimensional FF T routine
DSKFFT expects the normal order when transforming from the sky plane to the aperture plane (reverse
transform).

The AIPS utility routine DSKFFT will FFT a two-dimensional array kept in a DFIL.INC system scratch
file. Real-to-complex, complex-to-real, or full complex transforms can be done in either direction. Real-to-
complex and complex-to-real transforms return the maximum and minimum values in the output array and
real-to-complex transforms can return either the amplitude, real part, or full complex version of the result.
Details of the call sequence for DSKFFT Me given at the end of this chapter.

The FFT routines require data without blanking, in an array which is a power of two on a side. In
addition, the center of an image in a cataloged file may not be in the required (NX/2+1, N Y /2+1) position
which will produce a phase ram p in the transformed array. Two AIPS utility routines are useful in this case
(1) PEAKFN which finds the location of the peak of an image near the center (say of a dirty beam) and
(2) PLNGET which will subimage a cataloged file, zero fill the excess, and rotate the center of the image.
Detailed descriptions of these routines are given at the end of this chapter.

12.4. PSEUDO-ARRAY PROCESSOR AND VECTOR COMPUTERS 12-7

12.4 Pseudo-A rray Processor and Vector C om puters
Many modern scientific computing systems are becoming available which have integrated vector hardware
and vectorizing compilers; there is little need for array processors on these machines. In addition, many
older, scalar systems running AIPS have no array processor either. For these reasons, it is necessary to have
software emulations of the functions of the array processor; this emulation of an array processor is called the
Pseudo array processor (or Pseudo AP).

The pseudo AP consists of a Fortran common containing memory, which is used as the AP memory, and
a set of routines, which perform the same operations on the contents of the “AP memory” as are done by
the corresponding true AP routines. Because of the layering into the “Q-routines” , the higher level routines
need not know if they are using a true or pseudo AP.

There are a number of differences in programming an array processor and writing the same software in
Fortran, especially using vectorizing compilers. Microcoding an AP is more flexible than using a vectorizing
compiler, but is very much more difficult. On the other hand, memory is very limited on APs, but is more
available to the CPU. The following sections will discuss some of the aspects of Q-routines on a vector
computer; particular attention will be paid to issues relating to the performance of software.

12.4.1 Vectorization
What is Vectorization?
A vector operation is an operation on a one-dimensional array of values as a whole rather than as individual
elements. In practice, the operations are done sequentially using pipelined hardware, but it is useful to think
of the operations as being simultaneous. Vectorization is an operation performed by a compiler which takes
code describing scalar operations and compiles instructions to do the same operation in vector hardware. In
general, compilers will only vectorize explicit loops, so software to be vectorized needs to be cast into a form
that the compiler will recognize.

Vector Hardware
The actual hardware used for vector operations differs greatly from one vendor to another, but the backbone
of any vector unit is a pipelined arithm etic unit. The operations in this unit are divided into discrete
stages (typically around 5) and, in each machine cycle, another operation is begun. Thus, once “the pipe
gets rolling” , a result comes out each cycle. In addition, different pipelines may run in parallel, either
independently or with the output of one going into the other, a process called chaining (or a linked triad on
CDC machines). The combination of these various forms of parallelism may result in a speedup of typically
10 to 20 over scalar operations (on IBM vector units this factor is about 4).

Another common, but not universal, feature of vector machines is the vector register (CDC machines
don’t have vector registers). A vector register is an array of high speed memory elements residing in the
CPU, which are the source or destination of vector operations. Vector registers may be either fixed length
(32 - 128 elements) or variable, with the number of vector registers being traded off against the length of
each.

Vector Operations
There is no unique and universal set of vector operators, but there are a number which are sufficiently
common and useful to warrant discussion. Vector operations can be classified into a number of categories:
editing functions, arithm etic/logical functions, and reduction functions.

For this discussion, editing functions will include the operations of loading from, or storing data to,
memory or of m anipulating the elements of a vector. Operations in this class are summarized in the following:

1. LOAD: Load an array of values from memory into a vector register. There may be a constant stride
or increment between elements in memory.

2. STORE: Store the contents of a vector register into memory. There may be a constant stride allowed.

12-8 CHAPTER 12. USING THE A R R A Y PROCESSORS

3. GATHER: Load an array of values from memory whose addresses are specified into a register; the
addresses are contained in another register.

4. SCATTER: Store the contents of a vector register in memory in a specified list of addresses.
5. COMPRESS: Remove elements from a vector based on an array of flags called the vector mask.
6. MERGE: Form a vector from two input vectors based on a vector mask.

Arithmetic/logical vector functions are arithm etic or logical operations on the elements of a vector for unary
operations and between the corresponding elements for binary operations. Common operations in this class
are given in the following:

1. + : Add the elements of two vectors.
2. — : Subtract the elements of two vectors.
3. * : Multiply the elements of two vectors.
4. AND : Logical AND the elements of two vectors.
5. OR : Logical OR the elements of two vectors.

Reduction operations are those which produce a scalar from a vector. The common reduction operations
include the following:

1. SUM : Sum the elements of a vector
2. PROD : Multiply the elements of a vector
3. MIN : Find the minimum value in an vector
4. MAX : Find the maximum value in an vector

None of these operations are explicitly specified in Fortran (maybe in Fortran-8x), but must be recognized
by the compiler. This requires both sm art compilers and programmers who write in a style recognizable
to the compiler. Fortunately, most vector compilers give reasonably understandable diagnostics when they
don’t vectorize a loop.

Difficulties with Vectorizatioii
There are a number of typical barriers to efficient vectorization of which the programmer should be aware.
Brief descriptions of some of these follow.

D ep en d en c ie s A very common and serious problem in vectorization is the presence of dependencies.
There is an implicit assumption in the function of vector hardware th a t each elemental operation in a vector
operation is independent of all the others. An example where this is not true is the following:

DO 10 LOOP = 2,LIMIT
A(I) = A(I-l) + B(I)

10 COVTIVUE
In this example, each input value of A is the result of the previous operation. This loop cannot vectorize as
written.

A problem in vectorizing the AIPS Q routines is tha t all “AP memory” values are in the same array with
pointers and increments being passed to each routine. Most compilers, when faced with this, will declare
tha t an apparent dependency exists; there could, in fact, be dependencies if incorrect values of the pointers
were passed. This problem is solved by including the ZVND.INC include before each loop not containing
a real dependency. The contents of this include declares to the compiler th a t no dependency exists. All
vectorizing compilers have such directives and several examples are given later in this chapter. It is very
im portant not to declare th a t no dependency exists when one does; if you do, the compiler will believe you
and you’ll get what you’ve got coming. Another include, ZVD.INC may be used to inhibit vectorization if
necessary.

12.4. PSEUDO-ARRAY PROCESSOR AND VECTOR COMPUTERS 12-9

S h o rt L oops The efficiency of vectorization depends on the length of the vectors being operated on.
There is a fixed time cost for starting an operation before the first result is available. For very long loops
this cost is mostly hidden, for short loops this cost can dominate. The length of a vector which results in an
effective speed per element of half of the maximum is referred to as the vector half length of the machine.
This value varies from about 7 (Cray XMP) to 100 or more (some configurations of CDC Cyber). This
parameter of the system is generalized to the description of short vector (Cray XMP, Convex C l) and long
vector (CDC Cyber, Cray 2) machines.

For reasons given above, it is desirable to have loop lengths as long as possible. For nested loops, it is
frequently possible to move the longest loop to the innermost loop, although sm art compilers, such as the
Convex compiler, will a ttem pt to vectorize nested loops. The gather and scatter operations can frequently
be used to make loops longer. Gather or scatter operations can usually be triggered using a Fortran array
containing the indices in an array. A value named NSHORT in the DDCH.INC included common gives the
shortest vector length th a t should be vectorized on the current hardware.

B ran ch es in L oops Logic complications, such as branches inside of loops, may cause difficulties to
compilers. Some older compilers refused to vectorize a loop which contained any IF statements; more recent
compilers can vectorize statem ents of the form:

IF (A(I).GT.O.O) B(I) = A(I)
IF statements which may cause a branch are likely to inhibit vectorization. Whenever possible, such com
plications should be moved out of loops or replaced with G ather/Scatter and Compress operations.

T u n in g
Most systems running on vector computers contain performance analysis tools (PROFILE on Convex,
FLOWTRACE on Cray) which allow the programmer to determine how the CPU tim e in a program is
being spent. Only routines which take a significant fraction of the total program execution time need to
have much effort expended on them . A performance analyzer is an extremely useful tool for making a pro
gram run faster, although some care needs to be taken in interpreting the output of the performance analysis
tools. The analysis process itself may distort the results; very short routines which are called very many
times may appear to use significantly more tim e than is actually the case.

12.4.2 Memory Use
The following sections discuss the efficient use of memory both in general terms and in the AIPS pseudo-AP
in particular.

M em o ry H e ira rc h y
All computer systems contain several types of da ta storage elements with different access times. The amount
of storage in each category increases as the access time increases. The efficiency of a program will be seriously
affected by the efficiency of use of these storage elements; the more often the desired da ta is in one of the
shorter access time memory elements, the faster the program will run. After vectorization, efficient use of
memory is the most im portant factor in determining the speed of the CPU for a given program. This issue is
complicated by the fact th a t the distinction between different speed memories will be hidden by the compiler
and operating system.

Not all systems have all types of memory described below, but all have some hierarchal structure. The
various types of memory will be discussed in order of decreasing speed.

1. Registers
The registers in the CPU are the highest speed memory in any system; usage of the registers is
controlled by the compiler or by hand coding a routine in assembly language. Careful coding of loops
can result in much of the work being done using data already in the registers, rather than all operations
needing to access slower speed memory.

12-10 CHAPTER 12. USING THE A R R A Y PROCESSORS

Many vector compilers use a “strip mining” technique in which a pass is made through entire loop,
processing a number of elements equal to the vector register length each pass. This increases the
amount of chaining possible and reduces the time spent waiting for data from slower access memory.
The programmer can assist this by putting all related work not requiring logic flow control in one loop
rather than several.

2. Cache memory
Some computers have a limited amount of high speed memory called cache memory. When the cpu
requests a value from memory, a block of data (typically 8 words) containing th a t value is read from
the main memory into cache memory and then the referenced value is passed to the cpu. If the value
referenced is already in cache memory, it is simply sent to the CPU. The computer system will assure
that the contents of main memory track those in cache.
A parameter used to describe the efficiency of the use of cache is the “cache hit rate” , which is the
percentage of the tim e the datum desired resided in the cache. The cache hit rate can be increased
by noting tha t an entire block of memory was copied to cache; thus, sequential access of memory
will increase the cache hit rate. In Fortran arrays, the first axis varies the most rapidly in memory;
therefore, inner loops over the first axis are the most efficient.

3. Memory
All systems contain relatively large amounts of storage elements called, simply, the memory. These are
mostly semiconductor devices, although older systems used magnetic doughnuts called cores; memory
is sometimes referred to as “core memory” . This type of storage element will be referred to as physical
memory in the following.

4. Virtual Memory
A number of systems increase the apparent size of a program ’s memory by means of virtual memory.
Virtual memory consists of data storage elements which reside outside of the physical address space of
the program. Such storage is referenced in units of pages (typically 512 to 4096 bytes) and is transferred
into the programs addressable physical memory when first referenced (called a “page fault”). When
the maximum allowable amount of physical memory is reached by a program, the page of memory least
recently accessed is removed from physical to virtual memory.
The physical storage of data in virtual memory may be one or more of several forms. If the requested
page has been used before and still exists in the systems semiconductor memory, th a t page will be
restored to the program ’s physical memory. Some systems (IBM vector machines) may contain a
large amount of semiconductor memory exclusively for this use. Virtual memory pages not kept in
semiconductor memory will be stored on a mass storage device such as a magnetic disk.
Virtual memory is best used in the way overlaying is used on machines without virtual memory; once
a page is read in, it is used many times and is only removed from physical memory after its use has
(at least temporarily) ended. Badly coded routines may page fault on every line of code; this is likely
to occur in multi-dimensional arrays larger than will fit in the program ’s physical memory and the
inner loop is over the last axis. Programs with a very high page fault rate will run very slowly and may
destroy the response of the system for all users. Virtual memory abuse is one of the most serious and
antisocial crimes a programmer can commit.

Work Vectors
In synthesis data processing, there are a number of operations which do not vectorize in the forms they
are originally specified. A prime example of this is the gridding of uv data, which is discussed in detail in
AIPS Memo No. 33. For these difficult cases, it is frequently possible to reformulate the algorithm into
a vectorizable form using temporary arrays, such as addresses for gather/scatter operations. These arrays
are referred to as work vectors in the following. This technique has been heavily used in the specialized Q
routines for various machines. There are several WKVECn work vectors located in the common containing
the “AP memory” (DAPC.INC. In all vector machine pseudo APs, the memory in these work arrays greatly
exceeds the memory in the primary “AP memory” .

12.5. EXAMPLE OF THE USE OF THE AP 12-11

Extension of AP Memory
Since there is considerable memory allocated to the work vectors, which are used only for specialized routines,
it is desirable to use this memory for other purposes. To this end, the work arrays are placed in the same
common after the maun “AP memory” in the DAPC.INC include. The amount of this memory (referred to
as secondary AP memory) is given in the DDCH.INC include common as KAP2WD in units of 1024 real
words. Before using this secondary AP memory, the programmer should be sure th a t it is not also being used
as work vectors; none of the routines described in this chapter use work vectors overlapping the secondary
AP memory.

Memory allocation
On computers without virtuad memory, all of a program must fit in physical memory; on some of these, Crays
in particular, memory is an expensive resource. In addition, programs requiring large amounts of memory
will spend most of the tim e rolled out, if the machine is busy (which Crays usually axe). For these reasons,
it is desirable to be able to reduce or expand the amount of memory used for the AP on Cray XMPs. This
is done using blank common, which Cray will allow to be dynamically allocated, for the “AP” memory. The
routine QMEMSZ is then used to allocate or deallocate memory. Since this common will be loaded in its
fully expanded form, it is a good idea to call QRLSE as the first executable statem ent in tasks using the AP
to release the AP memory.

12.5 Exam ple o f the U se o f the A P
In the following example of the use of the atrray processor, the elements of two scratch files containing arrays
N x M using the DFIL.INC system (numbers ISCRA auid ISCRB) are added and returned to the file ISCRC.
This makes very inefficient use of the AP, but illustrates the basic features. This example also illustrates use
of APIO.

SUBROUTINE FILADD (ISCRA, ISCRB, ISCRC, I, M, IRET)
c ~
c FILADD adds two I x M arrays in the DFIL.IIC scratch liles
c ISCRA and ISCRB and writes the result in scratch lile ISCRC.
c Inputs:
c ISCRA I DFIL.IIC scratch lile number ol lirst input lile.
c ISCRB I DFIL.IIC scratch lile number ol second input lile.
c ISCRC I DFIL.IIC scratch lile number ol output lile.
c I I Length ol a row in the array
c N I lumber ol rows in the a r r a y .
c Output:
c IRET I Return error code 0=>0K, otherwise APIO error code.

c
IITEGER ISCRA , ISCRB, ISCRC, I, M, IRET

IITEGER IICR, FLIST(22,3), LOOP, APLOCA, APLOCB, APLOCC, LEN,
REAL BUFFI(4096), BUFF2(4096), BUFF3(4096)

C--
C Setup lor APIO

CALL FILL (22, 0, FLIST)
C Size ol array

FLIST(5,1) = I
FLIST(6,1) = M

C Buller size (4096 words)
FLIST(13,1) = 4096 * 2

C Copy for other files

12-12 CHAPTER 12. USING THE A R R A Y PROCESSORS

CALL COPY (22, FLIST(l.l), FLIST(1,2))
CALL COPY (22, FLIST(l.l), FLIST(1,3))

Set LUIs
FLIST(l.l) = 16
FLIST(1,2) = 17
FLIST(1,3) = 18

FLIST(2,1) = ISCRA
FLIST(2,2) = ISCRB
FLIST(2,3) = ISCRC

Set DFIL.IIC file numbers

Set AP pointers,
APLOCA = 0
LEI = V

C Address for B file
APLOCB = APLOCA + LEI

C Address for C file
APLOCC = APLOCB + LEI

C Grab AP
CALL QUIT (0, 0, KAP)

C Start loop.
DO 100 LOOP = l.M

C File A to AP
CALL APIO (’READ’, FLIST(1,1), APLOCA, BUFFI, IRET)

C Check for error
IF (IRET.IE.0) GO TO 999

C File B to AP
CALL APIO (’READ’, FLIST(1,2), APLOCB, BUFF2, IRET)

C Check for error
IF (IRET.IE.0) GO TO 999

C Wait for data transfer
CALL QWD

C Add
CALL QVADD (APLOCA, 1, APLOCB, 1, APLOCC, 1, LEI)

C Wait for operation to finish
CALL QVR

C Write result to disk.
CALL APIO (’WRIT’, FLIST(1,3), APLOCC, BUFF3, IRET)

C Check for error
IF (IRET.IE.0) GO TO 999

100 COITIIUE
C Release the AP

CALL QRLSE
C Close files.

CALL APIO (’CLOS’, FLIST(1,1), APLOCA, BUFFI, IRET)
C Check for error

IF (IRET.IE.0) GO TO 999
CALL APIO (’CLOS’, FLIST(1,2), APLOCB, BUFF2, IRET)

C Check for error
IF (IRET.IE.0) GO TO 999
CALL APIO (’CLOS’, FLIST(1,3), APLOCC, BUFF3, IRET)

C
999 RETURI

EID

12.6. INCLUDES 12-13

12.6 INCLUDES
12.6.1 DAPC.INC
Several versions of this include exist for the pseudo AP implementations on different systems. This INCLUDE
defines the pseudo AP memory.
C Include DAPC
C 'Vanilla' Pseudo AP version.

REAL APCORE(65536), RV0RK(4096)
IVTEGER APCORI(l), IV0RK(4096), SPAD(16)
COMPLEX CV0RK(2048)
COMMOV /APFAKE/RWORK, APCORE
COMMON /SPF/ SPAD
EQUIVALENCE (APCORE, APCORI), (RVORK, IWORK, CVORK)

C Convex Cl Version
INTEGER APSIZE, PKPVRD, PKPWD2

C "1 MVord" size
PARAMETER (APSIZE=262144)

C "256 KVord size"
C PARAMETER (APSIZE=65536)
C PKPWRD="primary" AP size

PARAMETER (PKPVRD=64)
C PKPWD2="secondary" memory

PARAMETER (PKPtfD2=((APSIZE*5)-PKPWRD*1024)/1024)
REAL APC0RE(APSIZE+1), VKVEC1(APSIZE/2+1), WKVEC2(APSIZE/2+l),

* WKVEC3(APSIZE/2+l), WKVEC4(APSIZE/2+l), WKVEC5(APSIZE/2+l),
* WKVEC6(APSIZE/2+1), VKVEC7(APSIZE/2+1) , WKVEC8(APSIZE/2+1),
* VKVEC9(APSIZE/2+1)
INTEGER APCORI(1), SPAD(16),

* IWVEC1 (APSIZE/2+1), IWEC2(APSIZE/2+1), IWVEC3 (APSIZE/2+1) ,
* IWVEC4(APSIZE/2+1), IKVEC5(APSIZE/2+1), IWVEC6(APSIZE/2+1),
* IWVEC7(APSIZE/2+1), IWVEC8(APSIZE/2+1), IWVEC9(APSIZE/2+1)
COMMON /APFAKE/ APCORE, WKVEC1, WKVEC2, VKVEC3, WKVEC4, WKVEC5,

* VKVEC6, WKVEC7, VKVEC8, VKVEC9
COMMON /SPF/ SPAD
EQUIVALENCE (APCORE, APCORI),
* (VKVEC1, IWVEC1), (WKVEC2, IWVEC2), (WKVEC3, IWVEC3),
* (WKVEC4, IWVEC4), (WKVEC5, IWVEC5), (VKVEC6, IWVEC6),
* (WKVEC7, IWVEC7), (WKVEC8, IWVEC8), (WKVEC9, IWVEC9)

C Alliant FX Version
INTEGER APSIZE, FFTSZE
PARAMETER (APSIZE=65536)
REAL APCORE(APSIZE+1), WKVEC1(APSIZE/2+1), WKVEC2(APSIZE/2+1),

* WKVEC3(APSIZE/2+1), WKVEC4(APSIZE/2+1), WKVEC5(APSIZE/2+l),

12-14 CHAPTER 12. USING THE A R R A Y PROCESSORS

* VKVEC6(APSIZE/2+1), VKVEC7(APSIZE/2+1), VKVEC8(APSIZE/2+l) ,
* WKVEC9(APSIZE/2+1)
IITEGER APCORI(l), SPAD(16),

* IWVEC1(APSIZE/2+1), IWVEC2(APSIZE/2+l), IWEC3 (APSIZE/2+1) ,
* IWVEC4(APSIZE/2+1), IWEC5 (APSIZE/2+1) , IWEC6(APSIZE/2+l) ,
* IWVEC7(APSIZE/2+1), IWEC8(APSIZE/2+l) , IWVEC9(APSIZE/2+1)
COMPLEX
* CHVECKAPSIZE/4+1), CWVEC2(APSIZE/4+l), CWVEC3(APSIZE/4+l) ,
* CWEC4(APSIZE/4+l), CWVEC5(APSIZE/4+l) , CWVEC6(APSIZE/4+l) ,
* C¥VEC7(APSIZE/4+l), CWVEC8(APSIZE/4+l), CWVEC9(APSIZE/4+l)
COMMOI /APFAKE/ APCORE, WKVEC1, WKVEC2, WKVEC3, WKVEC4, WKVEC5,

* VKVEC6, WKVEC7, WKVEC8, VKVEC9
COMMOI /SPF/ SPAD, FFTSZE
EQUIVALEICE (APCORE, APCORI),

* (VKVEC1, IWEC1, CWVEC1) , (WKVEC2, IWVEC2, CWVEC2) ,
* (VKVEC3, IWVEC3, CWEC3) , (WKVEC4, IWVEC4, CWVEC4) ,
* (WKVEC5, IWVEC5, CWVEC5), (WKVEC6, IWVEC6, CWVEC6),
* (WKVEC7, IWVEC7, CWVEC7), (WKVEC8, IWVEC8, CWVEC8),
* (WKVEC9, IWVEC9, CWVEC9)

C End DAPC

12.6.2 DBPR.INC
C Include DBPR
C AP roller common

REAL DELAY
DOUBLE PRECISIOI XTLAST, DELTIM
LOGICAL TRUEAP
COMMOI /BPROLC/ XTLAST, DELTIM, DELAY, TRUEAP

C End DBPR.

12.6.3 DDCH.INC
C Include DDCH.
C AIPS system parameters

CHARACTER SYSIAM*20, VERIAM*4, RLSIAM*8, DEVIAM(10)*48,
* I0IIAM(8)*48, MAPIAM(12)*48, SYSTYP*4, SYSVER*8
HOLLERITH HBLAIK
DOUBLE PRECISIOI DBLAIK
REAL XPRDMM, XTKDMM, TIMEDA(IS), TIMESG, TIMEMS, TIMESC, TIMECA,

* TIMEBA(4), TIMEAP(3), FBLAIK, RFILIT(14)
IITEGER IVOL, IBPS, 1SPG, IBTB1, ITAB1, IBTB2, ITAB2, IBTB3,

* ITAB3, ITAPED, CRTMAX, PRTMAX, IBATQS, MAXXPR(2), CSIZPR(2),
* IIITRI, KAPWRD, IVDPDP, IBITWD, ICHLII, ITVDEV, ITKDEV, BLAIKV,
* ITVACC, ITKACC, UCTSIZ, BYTFLP, USELIM, IBITCH, ICHPRT,
* KAP2WD, MAXXTK(2), CSIZTK(2), DASSGI(8,16), SPFRMT, DPFRMT,
* ISHORT, TTYCAR, DEVTAB(SO), FTAB(1024)
COMMOI /DCHCHM/ SYSIAM, VERIAM, SYSTYP, SYSVER, RLSIAM,
* DEVIAM, IOIIAM, MAPIAM
COMMOH /DCHCOM/ DBLAHK, XPRDMM, XTKDMM, TIMEDA, TIMESG, TIMEMS,
* TIMESC, TIMECA, TIMEBA, TIMEAP, FBLAIK, RFILIT, HBLAHK,
* IVOL, NBPS, ISPG, HBTB1, ITAB1, IBTB2, ITAB2, NBTB3, HTAB3,

12.7. ROUTINES 12-15

* ITAPED, CRTMAX, PRTMAX, IBATQS, MAXXPR, CSIZPR, HIHTRH,
* KAPVRD, HWDPDP, IBITVD, ICHLIH, ITVDEV, HTKDEV, BLANKV,
* ITVACC, HTKACC, UCTSIZ, BYTFLP, USELIM, HBITCH, HCHPRT,
* KAP2VD, MAXXTK, CSIZTK, DASSGV, DEVTAB, SPFRMT, DPFRMT,
* HSHORT, TTYCAR
COMMON /FTABCM/ FTAB

c End DDCH.

12.6.4 ZVND.INC
This include is a vectorizing compiler directive to ignore the apparent dependency in the following loop;
several versions are given:
C Include lor compiler directive
C to ignore apparent dependency.
C Dummy version (nonvectorizing)

C Convex version
C$DIR IO.RECURREICE

C COS version
CDIR$ IVDEP

C Alliant version
CVD$L IODEPCHK
CVD$L MOSYIC

12.6.5 ZVND.INC
This include is a vectorizing compiler directive to assert th a t there is a dependency in the following loop;
several versions are given:
C Force scalar compilation
C compiler directive
C Dummy version (nonvectorizing)

C Convex version
C$DIR SCALAR

C COS version
CDIR$ HEXTSCALAR

C Alliant version
CVD$L 10VECTOR

12.7 R outines
12.7.1 Utility Routines
APCONV
Is a disk based, two dimensional convolution routine. The image to be convolved and the FFT of the
convolving function are passed to APCONV along with two scratch files. NOTE: Uses AIPS LUNs 18, 23,
24, 25.

12-16 CHAPTER 12. USING THE A R R A Y PROCESSORS

APCOIV (IX, NY, LI, LW1, LV2, LO, LC, FACTOR, JBUFSZ, BUFFI, BUFF2,
* BUFF3, SMAX, SMII, IERR)

Inputs:
IX I The number of columns in the input image (must be

a power of 2).
IY I The number of rows in the input image.
LI I File number in /CFILES/ of input.
LV1 I File number in /CFILES/ of work file no. 1

size = (4*IX x IY+2).
LV2 I File number in /CFILES/ of work file no. 1

size = (4*IX x IY+2).
LO I File number in /CFILES/ of output.
LC I File number in /CFILES/ of FFT of convolving fn.

size = (4*IX x IY+2).
FACTOR R lormalization factor for convolving function; i.e

is multiplied by the transform of the convolving
function

JBUFSZ I Size of BUFFI,2,3 in AIPS bytes. Should be
large, at least 8192 words.

Output:
BUFFI R(*) Working buffer
BUFF2 R(*) Working buffer
BUFF3 R(*) Working buffer
SMAX R Maximum value in the output file.
SMIV R Minimum value in the output file.
IERR I Return error code, 0 => OK, otherwise error.

APIO
Transfers image-like data between disk files and the array processor. The file open and close and initialization
logic are all contained in this routine. Information about the file and the the desired properties of the I/O
are contained in the array FLIST. APIO can access either cataloged ’MA’ type files or scratch files using the
/C FIL E S/ common (DFIL.INC) system.

APIO can handle arbitrary row lengths with any size buffer larger than one disk block. This is done by
breaking up the logical records. NOTE: it is im portant tha t data read with APIO have been written by
APIO using the same buffer if the buffer is shorter than the row size. The problem is th a t APIO will break
up logical records if they are longer than the buffer size and MDISK may leave blank space on the disk if
the shorter logical record does not fill a disk sector.

Useage notes:
1. Opening the file. If APIO determines that the file is not open it will do so. The file can be either a

cataloged file or a scratch file using the /C FIL E S/ common system. If the catalog slot number given
in FLIST is 0 or less the file is assumed to be a scratch file. File open assumes that the file type is
’MA’ (if cataloged), file is opened patiently without exclusive use.

2. Initialization. APIO initializes the I/O using the values in FLIST when it opens the file. It may be
initialized again at any time using OPCODE ’INIT’. Also switching between ’READ’ and ’W R IT ’ will
force flushing the buffer (’W R IT ’) and initialization. Any initialization when the current operation is
’W RIT’ will cause the buffer to be flushed.

3. Closing the file. The file may be closed with a call with opcode ’CLOS’. If the file is being written and
a ’CLOS’ call is issued, APIO will flush the buffer. This means tha t if APIO is being used to write to
a disk it MUST be called with O PC O D E=’CLOS’,’R EA D \ or ’INIT’ to flush the buffer. NOTE: All
pending AP operations MUST be complete before calling APIO with opcode ’CLOS’.

12.7. ROUTINES 12-17

4. AP timing calls. APIO calls APW D before getting data from or sending data to the AP but does not
call APW R. The calling routine should call APW R as appropriate.

2 =
3 =

APIO (OPCODE, FLIST, APLOC, BUFFER, IRET)
Inputs:

OPCODE C*4 Code lor the desired operation.
’INIT’ forces the initialization of the I/O.
’READ' reads a logical record from the disk and

sends it to the specified AP location.
'WRIT' Gets data from the AP and writes it to

disk.
'CLOS' Closes the file and flushes the buffer if

necessary.
FLIST(22) I An array containing information about the file

and the I/O. Parts are to be filled in by the
calling routine and are for use by APIO.

1 - LUH, must be filled in,
disk number for catalogs files or
/CFILES/ number for scratch files,
catalog slot number for cataloged files,
.LE. 0 indicates that the file is a scratch
file.
Unused
Length of a logical record (row) in pixels,
lumber of rows in a plane.
▼alue to be added to 1 for the block offset.

9-12 = the window desired in the image, 0 ’s=>
all of image. The logical records must fit
in the buffer said be smaller than BUFSZ
bytes to subimage rows.

13 = Buffer size din bytes.
Used by APIO:

14 = FTAB pointer
15 = lumber of MDISK calls per logical record.
16 = Current OPCODE,

0 = none, H I T on next call
1 = READ
2 = WRITE

17 = actual length of logical row.
18-22 = Spare.

I Base address in AP for data.
R Working buffer.

I Return code, 0 => OK or
1 = Bad OPCODE,
2 = Attempt to window too large

a file.
3 = Buffer too small (<VBPS bytes)
MDISK error codes + 10, or
MIII3 error codes + 20, or
ZOPEI error codes + 30.

APLOC
BUFFER(*)

Output:
IRET

12-18 CHAPTER 12. USING THE A R R A Y PROCESSORS

DSKFFT
Is a disk based, two dimensional FFT. If the FFT all fits in AP memory then the intermediate result is not
written to disk. Input or output images in the sky plane are in the usual form (i.e. center at the center, X
the first axis). Input or output images in the uv plane are transposed (v the first axis) and the center-at-
the-edges convention with the first element of the array the center pixel. NOTE: Uses AIPS LUNs 23, 24,
25.

DSKFFT (IR
* SMAX

Inputs:
HR

HC

IDIR

HERM

LI
LV
LO
JBUFSZ

Output:
BUFFI
BUFF2
SMAX
SMIH
IERR

, HC, IDIR, HERM, LI, LV, LO, JBUFSZ, BUFFI, BUFF2,
, SMIN, IERR)

The number of rows in input array (# columns in
output). Vhen HERM is TRUE and IDIR=-1, NR is
twice the number of complex rows in the input file
The number of columns in input array (# rows in
output).
1 for forward (+i) transform, -1 for inverse (-i)
transform.
If HERM = .TRUE, the follwing are recognized:

IDIR=1 keep real part only.
IDIR-2 keep amplitudes only.
IDIR-3 keep full complex (half plane)

Vhen HERM s .FALSE., this routine does a complex to
complex transform.
Vhen HERM = .TRUE, and IDIR = -1, it does a
complex to real transform. Vhen HERM = .TRUE, and
IDIR = 1, it does real to complex.
File number in /CFILES/ of input.
File number in /CFILES/ of work file (may equal LI)
File number in /CFILES/ of output.
Size of BUFFI, BUFF2 in bytes. Should be large
at least 4096 words.

R(*)
R(*)

Working buffer
Vorking buffer
For HERM=.TRUE. the maximum value in output file
For HERM-.TRUE, the minimum value in output file
Return error code, 0 => okay, otherwise error.

PEAKFN
Searches a region around the center of an image to locate the pixel location of the maximum. Will handle
data cubes.

PEAKFH (LUH, VOL, CHO, IDEPTH, CATBLK, BUFFER, JBUFSZ, PEAKX, PEAKY,
♦ IRET)

Inputs:
LUH I Logical unit number to use.
VOL I Disk on which image resides.
CHO I Catalog slot number of image.
IDEPTH 1(5) Depth in image of desired plane
CATBLK 1(256) Catalog header block for image.
JBUFSZ I Size of the BUFFER in bytes

Output:
BUFFER R(*) Real work buffer

12.7. ROUTINES 12-19

PEAKX R X coordinate ol peak pixel location.
PEAKY R Y coordinate ol peak pixel location.
IRET I Return code, 0=> OK, otherwise error

P L N G E T
Reads a selected portion of a selected plane parallel to the front and writes it into a specified scratch file. The
output file will be zero padded and a shift of the center may be specified. If the input window is unspecified
(0’s) and the output file is smaller than the input file, the NX x NY region about position (M X/2+1-OFFX,
M Y/2-f 1-OFFY) in the input map will be used where MX,MY is the size of the input map. NOTE: If both
XOFF and/or YOFF and a window (JW IN) which does not contain the whole map, XOFF and YOFF will
still be used to end-around rotate the region inside the window. The image header is taken from the disk
catalog AND explicitly will not handle blanked images.

PLNGET (IDISK, ICNO, CORK, JVIH, XOFF, YOFF, HOSCR, NX, NY,
* BUFFI, BUFF2, BUFSZ1, BUFSZ2, LUN1, LUN2, IRET)

Inputs:
IDISK I Input image disk number.
ICNO I Input image catalog slot number.
CORN 1(7) BLC in input image (1 ft 2 ignored)
JVIN 1(4) Window in plane.
XOFF I ollset in cells in lirst dimension ol the center

YOFF I
Irom MX/2+1 (MX 1st dim. ol input win.)
ollset in cells in second dimension ol the center

I0SCR I
Irom MY/2+1 (MY 2nd dim. ol input win.)
Scratch lile number in common /CFILES/ lor outpu.

NX I Dimension ol output lile in X
NY I Dimension ol output lile in Y
BUFFI R(*) Work buller
BUFF2 R(*) Work buller.
BUFSZ1 I Size in AIPS bytes ol BUFFI
BUFSZ2 I Size in AIPS bytes ol BUFF2
LUN1 I Logical unit number lor input lile
LUN2 I Logical unit number to use lor output

Output:
IRET I Return error code, 0 => OK,

1 = couldn’t copy input CATBLK
4 = couldn’t open output nap lile.
5 = couldn’t init input map.
6 = couldn’t init output map.
7 = read error input map.
8 = write error output map.
9 = error computing block oilset
10 = output lile too small.

Common: (DCAT.INC)
/MAPHDR/ CATBLK is set to the input lile CATBLK.

Q R O L L
If it is time for the current task to roll out of the AP then QROLL copies the first NWORDs of AP MD
memory to a scratch file, gives up the AP, does a task delay for DELAY, grabs an AP and loads the scratch
file back into the AP. If NWORD > 0, then the AP is not rolled and the AP is given up and then reassigned.

12-20 CHAPTER 12. USING THE A R R A Y PROCESSORS

NOTE: APROLL is called by QROLL and uses commom /C FIL E S/ for the scratch file. NOTE: LUN 8 is
used for I/O and a AIPS ’’m ap” I/O slot is opened if the AP memory is actually rolled.

No action is taken if the task is using a “pseudo” AP.
IM P O R T A N T N O T E : QROLL (and APROLL) work properly only for floating point data. Integer

values rolled will not be restored correctly.
QROLL (WORD, BUFFER, BUFSZ, IRET)
Inputs:

HVORD I Number ol words ol AP memory to save.
11 <= 0 the contents ol the AP memory are
not saved.

BUFFER R(*) Work buller.
BUFSZ I Size ol BUFFER m bytes.

Inputs Irom COMMON /BPROLC/ (DBPR.INC) (set by QINIT)
TRUEAP L True il a real AP (to be rolled)
XTLAST D Real time AP assigned (min).
DELTIM D Time interval between rolls (min).
DELAY R Time to delay task (seconds).

Output:
IRET I Return error code, 0 => OK

2 => couldn't reload AP.

12.7.2 Array Processor Routines
The names and functions of the general purpose AP routines are given in the following brief list. A number
of specialized routines for CLEANing, gridding uv data and model computations have been om itted.

1. QGET (HOST, AP, N, TYPE) Transfers data from AP to host.
2. QGSP (I, NREG) Reads the value of an SPAD register (FPS and pseudo).
3. QPUT (HOST, AP, N, TYPE) Transfers data from host to AP.
4. QRFT (UDATA, UFT, UPHO, NFT, NDATA) Computes real, inverse Fourier transform from arbi

trarily spaced data.
5. QWAIT (no arguments) Suspends host until all transfers and computations are complete.
6. QWD (no arguments) Suspends host until all transfers of data are complete.
7. QW R (no arguments) Suspends host until all computations are complete.
8. QBOXSU (A, I, NB, C, J, N) Does a boxcar sum on a vector.
9. QINIT (II, 12,13) Assigns and initializes AP.

10. QRLSE (no arguments) Releases the AP.
11. Q CFFT (C, N, F) Complex FFT.
12. QCRVMU (A, I, B, J , C, K, N) Complex - real vector multiply.
13. QCSQTR (CORNER, SIZE, ROW) In-place transpose of square complex matrix.
14. QCVCMU (A, I, B, C, J , N) Multiplies a complex scalar times the complex conjugate of a complex

vector producing a real vector.
15. QCVCON (A, I, C, K, N) Takes complex conjugate of complex vector.

12.7. ROUTINES 12-21

16. QCVEXP (A, I, C, K, N) Takes complex exponential of real vector.
17. QCVJAD (A, I, B, J , C, K, N) Adds a complex vector to the complex conjugate of another complex

vector.
18. QCVMAG (A, I, C, K, N) Complex vector m agnitude squared.
19. QCVMMA (A, I, C, N) Finds the maximum square modulus of a complex vector.
20. QCVMOV (A, I, C, K, N) Copies one complex vector to another.
21. QCVMUL (A, I, B, J, C, K, N, F) Multiplies two complex vectors.
22. QCVSDI (A, I, B, C, J, N) Divides a weighted complex vector by a complex scalar, weight is multiplied

by the amplitude of the scalar.
23. QCVSMS (A, I, B, C, J, D, K, N, FLAG) Subtracts a real vector times a complex scalar from a complex

vector.
24. QDIRAD (A, IA, B, N) Complex directed add.
25. QHIST (A, I, C, N, NB, AMAX, AMIN) Computes histogram of a vector.
26. QLVGT (A, I, B, J , C, K, N) Logical vector greater than.
27. QMAXMI (A, I, MAX, MIN, N) Finds maximum and minimum values in a vector.
28. QMAXV (A, I, C, N) Finds maximum in an array.
29. QMEMSZ (NWORDS) Expands or contracts the size of the Pseudo AP memory.
30. QMINV (A, I, C, N) Finds minimum in an array.
31. QMTRAN (A, I, C, K, MC, NC) M atrix transpose.
32. QPHSRO (A, I, B, J , PHASO, DELPHS, N) Imposes a phase gradient on a complex vector.
33. QPOLAR (A, I, C, K, N) Rectangular to polar conversion.
34. QRECT (A, I, C, K, N) Polar to rectangular conversion.
35. Q R FFT (C, N, F) Real to complex, or vice versa, Fast Fourier Transform.
36. QSVE (A, I, C, N) Sum of vector elements.
37. QSVESQ (A, I, C, N) Sum of the square of the elements of a vector.
38. QVABS (A, I, C, K, N) Vector absolute value.
39. QVADD (A, I, B, J, C, K, N) Vector add.
40. QVCLIP (A, I, B, C, D, L, N) Vector clip.
41. QVCLR (C, K, N) Vector clear.
42. QVCOS (A, I, C, K, N) Vector cosine.
43. QVDIV (A, I, B, J, C, K, N) Vector division.
44. QVEXP (A, I, C, K, N) Vector exponentiation.
45. QVFILL (A, C, K, N) Vector fill.
46. QVFIX (A, I, C, K, N) Vector real to integer.

12-22 CHAPTER 12. USING THE A R R A Y PROCESSORS

47. QVFLT (A, I, C, K, N) Vector integer to real.
48. QVIDIV (A, I, D l, D2, B, J, N) Divides a vector by the product of two scalar integers.
49. QVLN (A, I, C, K, N) Vector natural logarithm.
50. QVMA (A, I, B, J , C, K, D, L, N) Vector multiply and add.
51. QVMOV (A, I, C, K, N) Copies one vector to another.
52. QVMUL (A, I, B, J, C, K, N) Vector multiply.
53. QVNEG (A, I, C, K, N) Takes negative of a vector.
54. QVRVRS (C, K, N) Reverses a vector.
55. QVSADD (A, I, B, C, K, N) Vector scalar add.
56. QVSIN (A, I, C, K, N) Vector sine.
57. QVSMA (A, I, B, C, K, D, L, N) Vector scalar multiply and add.
58. QVSMAFX (A, I, B, C, D, L, N) Vector scalar multiply, add and fix.
59. QVSMSA (A, I, B, C, D, L, N) Vector scalar multiply, scalar add.
60. QVSMUL (A, I, B, C, K, N) Vector scalar multiply.
61. QVSQ (A, I, C, K, N) Vector square.
62. QVSQRT (A, I, C, K, N) Vector square root.
63. QVSUB (A, I, B, J , C, K, N) Subtracts two vectors.
64. QVSWAP (A, I, C, K, N) Swaps two vectors.
65. QVTRAN (M, N, IAD, LV) Transposes a row-stored, M x N array of row vectors of length LV.

12.7.3 AP Routine Call Sequences
A note should be made about the conventions used in the description of the routines. D ata addresses are
normally denoted by A, B, C, or D and their increments (stride) by I, J, K, L and an element count by N.
In the descriptions of the routines, many of the values in AP memory are referred to by the name given to
the variable giving the address, e.g., A(m l) is used to denote the value in memory location A -f m*I. All
input variables are integer unless otherwise marked.

QGET
Transfer data from AP memory to host core.

QGET (HOST, AP, I, TYPE)

Inputs:
AP I Target area in AP; O-relative, incremental
V I lumber of elements
TYPE I Data type:

0 data is I in host
2 data is R in host

Output:
H0ST(*) R/I Data array in "hostM

12.7. ROUTINES 12-23

Q G S P
Read contents of SPAD register: FPS and Pseudo AP only.

QGSP (I, NREG)

Inputs:
IREG I SPAD register number desired

Outputs:
I I Contents ol the SPAD register.

Q P U T
Transfer data from host memory to AP memory.

QPUT (HOST, AP, N, TYPE)

Inputs:
AP
I
TYPE

HOST(*)

Q W A IT
Suspend host task until all AP I/O and computations are complete.

QVAIT

Q W D
Suspend host task until all AP I/O is complete.

QVD

Q W R
Suspend host task until all AP computations are complete.

QVR

Q IN IT
Implements AIPS AP priority for true AP, increases the task priority for AIPS batch tasks using a true AP,
and assigns an AP.

Q UIT (II, 12, 13)

Inputs:
II I Dummy

I Target area in AP; O-relative, incremental.
I lumber ol elements
I Data type:

0 data is I in host
2 data is R in host

R/I Data array in "host"

12-24 CHAPTER 12. USING THE A R R A Y PROCESSORS

12 I Dummy
Outputs:

13 I AP number (Meg. to indicate virtual AP, i.e.,
not to be rolled.

Q R L S E
Releases the AP and lowers task priority for AIPS batch tasks using a true AP.

QRLSE

Q B O X S U
Do a boxcar sum on a vector; values a t the ends of the vector are the sum of the values within one boxcar
length of the ends.

QBOXSU (A, I, HB, C, J, I)

Inputs:
A input vector base address
I input vector increment
IB boxcar width
C output vector base address; output vector

should not overlap input
J output increment
I number of elements

Q C F F T
Do an in-place complex fast Fourier transform.

QCFFT (C, I, F)

Input8:
C Base address (O-rel) ol complex array to transform
I lumber of points in array (must be pover of two.)
F Transform direction; 1 -> Forward

-1 -> Backward

Q C R V M U
Multiply the elements of a complex vector by the elements of a real vector.

C(mK) = A(ml) * B(mJ) m * 0 to H-l
C(mK+l) = A(ml+1) * B(mJ)

QCRVMU (A, I, B, J, C, K, I)

Input8:
A Source complex vector base address.
I Increment of A (normally 2 * integer)
B Source real vector base address

12.7. ROUTINES 12-25

J Increment ol B
C Destination vector base address
K Increment ol C (normally 2 * integer)
I Element count

Q C S Q T R
Do an in-place transpose of square matrices of complex values.

QCSQTR (CORNER, SIZE, ROW)

Inputs:
CORNER AP location ol lirst corner ol matrix encountered.
SIZE Size (number ol reals) ol a row or column.
ROW Number ol locations in AP between beginnings

ol the rows.

Q C V C M U
Multiply a scalar complex value tim es the complex conjugate of a vector, producing a real vector.

C(mJ) = B(0) * A(ml) + B(0+1) * A(ml+1) for m = 0 to N-l

QCVCMU (A, I, B, C, J, I)

Inputs:
A Source complex vector base address.
I Increment ol A (normally 2 * integer)
B Address ol scalar (real part)
C Destination real vector base address.
J Increment ol C
V Element count (reals)

Q C V C O N
Take complex conjugate of a vector.

C(mK) = A(ml) lor m = 0 to N-l
C(mK+l) = -A(ml+1)

QCVCON (A, I, C, K, N)

Inputs:
A Source vector base address.
I Increment ol A (normally 2 * integer)
C Destination vector base address
K Increment of C (normally 2 * integer)
N Element count

12-26 CHAPTER 12. USING THE A R R A Y PROCESSORS

Q C V E X P
Complex exponential of a vector.

C(mK) = COS (A(ml)) lor m = 0 to H-l
C(mK+l) = SIH (A(ml))

QCVEXP (A, I, C, K, I)

Inputs:
A
I
C
K
N

Q C V JA D
Add the elements of one complex vector to the complex conjugate of the elements of another complex vector.

C(mK) = A(ml) + B(mJ) lor m = 0 to H-l
C(mK+l) = A(ml+1) - B(mJ+l)

QCVJAD (A, I, B, J. C, K, I)

Inputs:
A
I
B
J
C
K
H

Q C V M A G
Square the magnitude of the elements of a complex vector.

C(mK) = A(ml)**2 + A(ml+1)**2 lor u = 0 to H-l

QCVMAG (A, I, C, K, H)

Inputs:
A Source vector base address
I A address increment (normally 2 * integer)
C Destination vector base address
K C address increment
H Element count

Q C V M M A
Find the maximum of the square modulus of a complex vector.

Source vector base address.
Increment ol A (normally 2 * integer)
Source vector base address (conjugate)
Increment ol B (normally 2 * integer)
Destination vector base address
Increment ol C (normally 2 * integer)
Element count

Source vector base address.
Increment ol A
Destination vector base address
Increment ol C (normally 2 * integer)
Element count

12.7. ROUTINES 12-27

max (A(ml)**2 + A(ml+1)**2) over m = 0 to H-l

QCVMMA (A, I, C, N)

Inputs:
A Source vector base address
I Increment of A (normally 2 * integer)
C Destination vector.

0 = MAX(A ** 2) (real)
1 = location of max (integer)

N Element count
Also:

SPAD(15) = index of max.

Q C V M O V
Copy one complex vector to smother.

C(mK) - A(ml) for m = 0 to 1-1
C(mK+l) = A(ml+1)

QCVMOV (A, I, C, K, I)

Inputs:
A Source vector base address
I A address increment (normally 2 * integer, >= 2)
C Destination vector base address
K C address increment (normally 2 * integer)
V Element count

Q C V M U L
Multiply the elements of two complex vectors.

C(mK) = A(ml) * B(mJ) - F * A(ml+1) * B(mJ+l)
C(mK+l)) = A(ml) * B(mj+1) + F * A(ml+1) * B(mJ)

for m = 0 to H-l

QCVMUL (A, I, B, J, C, K, H, F)

Inputs:
A Source vector base address
I A address increment (normally 2 * integer)
B Source vector base address
J B address increment (normally 2 * integer)
C Destination vector base address
K C address increment (normally 2 * integer)
I Element count
F Conjugate flag, 1 => normal complex multiply

-1 => multiply with conjugate of A

12-28 CHAPTER 12. USING THE A R R A Y PROCESSORS

Q C V S D I
Divide the elements of a complex vector with weights by a complex scalar. The complex vector is expected
to have data in the order real, imaginary, weight. The weight is multiplied by the amplitude of the complex
scalar. This is used for AIPS uv data.

C(mJ) = (l./(B(l)**2+B(2)**2)) * (A(ml) *B(1) + A(mI+l)*B(2))
C(mJ+l) = (l./(B(l)**2+B(2)**2)) * (A(mI+l)*B(l) - A(ml) *B(2))
C(mJ+2) = A(mI+2) * SQRT(B(1)**2+B(2)**2) lor n = 0 to H-l

QCVSDI (A, I, B, C, J, V)

Inputs:
A
I
B
C
J
H

Q C V S M S
Subtract the elements of a real vector times the elements of a complex scalar from a complex vector, alter
nately i (SQRT(-l)) times the real vector times the complex scalar is subtracted from the complex vector.
Since the element count is expected to be small, the looping is not very efficient.

II FLAG > 0
D(mK) = A(inl) - B(l) * C(mJ)
D(mK+l) = A(ml+1) - B(2) * C(mJ) lor i = 0 to N-l

II FLAG < 0
D(mK) = A(ml) + B(2) * C(aJ)
D(mK+l) = A(ml+1) - B(l) * C(mJ) lor m = 0 to H-l

QCVSMS (A, I, B, C, J, D, K, H, FLAG)

Inputs:
A
I
B
C
J
D
K
I
FLAG

Q D IR A D
Do a complex directed add: adds a complex vector to a complex vector whose addresses are given in the
first vector.

B(A(mIA)) = B(A(mIA)) + A(mIA+l) lor m = 0 to H-l
B(A(mIA)+l) = B(A(mIA)+l) + A(*IA+2)

Source complex vector base address.
Increment ol A (normally 2 * integer)
Source complex scalar address.
Source real vector base address
Increment ol C
Destination complex vector base address
Increment ol D (normally 2 * integer)
Element count
Flag, il < 0 multiply complex scalar by i

Source vector base address.
Increment ol A (normally 3)
Source sealax address.
Destination vector base address
Increment ol C (normally 3)
Element count

12.7. ROUTINES 12-29

QDIRAD (A, IA, B, N)

Inputs:
A Source vector base address

0 => address (integer) to be added to
(address is zero relative)

1,2 => complex value (reals)
IA Increment for A (normally 3)
B Destination vector base address
I Element count

Q H IS T
Compute the histogram of a vector: histogram element (NB-1)*(DATA-MIN)/(MAX-MIN), where DATA is
the data value, is incremented.

QHIST (A, I, C, I, IB, AMAX, AMIN)

Inputs:
A
I
C

Source vector -base address.
A address increment.
Histogram base address

I
IB
AMAX
AMII

Histogram must be cleared before first call.
Element count for A
lumber of bins in histogram
Address of histogram maximum.
Address of histogram minimum.

Q L V G T
Logical vector greater than.

C(mK) - 1.0 if A(ml) > B(mJ)
C(mK) *0.0 if A(ml) =< B(mJ) for m - 0 to 1-1

QLVGT (A, I, B, J, C, K, I)

Inputs:
A Source vector base address
I A address increment
B Source vector base address
J B address increment
C Destination vector base address
K C address increment
I Element count

Q M A X M I
Search the given vector for maximum and minimum values.

QMAXMI (A, I, MAX, Mil, I)

12-30 CHAPTER 12. USING THE A R R A Y PROCESSORS

Inputs:
A Source vector base address
I Increment ol A
MAI Location lor maximum.
MIN Location lor minimum.
I Element count.

Q M A X V
Find maximum value of a vector and address of the maximum.

QMAXV (A, I, C, N)

Inputs:
A Source vector base address
I A address increment
C Destination base address

C(0) = Max (A(ml)) m = 0 to N-l
C(l) = address, also in SPAD 15.

I Element count

Q M E M S Z
manipulates the size of the blank common used for the “AP” memory and vector work space. The size of
the blank common is expanded to NWORDS, if tha t is larger than the current size, or is reduced to zero, if
NWORDS is zero.
Note: this routine should be called only from Q routines. At present, it is only available for Cray XMPs
under COS.

QMEMSZ (NWORDS)

Inputs:
NWORDS I The number ol vords desired in the blank common

Input Irom common /SPF/ (include D/CAPC.INC)
MEMSIZ I The current size ol the blank common.

-1 => minimum size.
Output to common /SPF/

MEMSIZ I The current size ol the blank common.
-1 => minimum size.

Q M IN V
Find minimum value of a vector and address of the minimum.

QMINV (A, I, C, N)

Inputs:
A Source vector base address
I A address increment
C Destination base address

C(0) = Max (A(ml)) m = 0 to N-l
C(l) = address, also in SPAD 15

12.7. ROUTINES 12-31

N Element count

Q M T R A N
Transpose a m atrix.

C((p+qMC)K) = A((q+pHC)I)
for p = 0 to MC-1
and q = 0 to HC-1

QMTRAN (A, I, C, K, MC, HC)

Inputs:
A Source matrix base address
I A address increment
C Destination matrix base address
K C address increment
MC lumber of columns of A
HC lumbers of rows of A

Q P H S R O
Add a phase gradient to a complex array.

B(j) = A(j)*EXP(-i*(PHASO+j*DELPHS)) for j = 0 to H-l

or

B(mJ) = A(ml) * cos(PO+mDP) - A(ml+1) * sin(P0+mDP)
B(mJ+l) - A (ml) * sin(PO+mDP) + A(ml+1) * cos(PO+mDP)

for m = 0 to H-l
where cos(PO) = PHASO(O), sin(PO) = PHAS0(0+1)

cos(DP) = DELPHS(O), sin(DP) = DELPHS(0+1)

QPHSRO (A, I, B, J, PHASO, DELPHS, H)

Inputs:
A
I
B
J
PHASO

DELPHS

H

Q P O L A R
Rectangular to polar conversion.

Source vector base address.
Increment of A (normally 2 * integer)
Destination base address.
Increment of B (normally 2 * integer)
Address of complex unit vector with

phase PHASO
Address of complex unit vector with

phase DELPHS
Element count

12-32 CHAPTER 12. USING THE A R R A Y PROCESSORS

C(mK) = SQRT (A(ml)**2 + A(ml+1)**2)
C(mK+l) = ARCTAN (A(ml+1) / A(ml)) for m = 0 to N-l

QPOLAR (A, I, C, K, N)

Inputs:
A Source vector base address
I A address increment (normally 2 * integer)
C Destination vector base address
K C address increment (normally 2 * integer)
H Element count

Q R E C T
Polar to rectangular vector conversion:

COS (tab+fract) = COS(tab)*COS(fract) - SIH(tab)*SIH(fract)
SIM (tab+fract) = SIH(tab)*COS(fract) + COS(tab)*SIH(fract)

C(mK) = A(ml) * COS (A(*I+1))
C(mK+l) = A(ml) * SIH (A(*I+1)) for ■ = 0 to H-l

QRECT (A, I, C, K, H)

Inputs:
A Source vector base address
I A address increment (normally 2 * integer)
C Destination vector base address
K C address increment (normally 2 * integer)
H Element count

Q R F F T
Does an in-place real-to-complex forward or complex-to-real inverse FFT.

QRFFT (C, H, F)

Inputs:
C Base address of source and destination vector
H Read, element count (power of 2)
F flag, l=>forwaLrd FFT, -1=> reverse FFT.

Q R F T
Compute a real, inverse fourier transform from arbitrarily, but uniformly, spaced data.

QRFT (UDATA, UFT, UPHO, MFT, HDATA)

Inputs:
UDATA AP base address of input data.
UFT AP base address of output F. T.
UPHO AP base address of phase information for F. T.

0 = COS((TWOPI/(HG*HFT))*(1-ICEHT)(1-BIAS))

12.7. ROUTINES 12-33

1 = SIN((TW0PI/(NG*NFT))*(1-ICENT)(1-BIAS))
2 = COS((TVOPI/(NG*NFT))*(1-ICENT))
3 = SIN((TWOPI/(NG*NFT))*(l-ICENT))
4 = COS((TWOPI/(NG*NFT))*(1-BIAS))
5 = SIN((TWOPI/(NG*NFT))*(l-BIAS))
6 = COS((TWOPI/(NG*NFT)))
7 = SIN((TWOPI/(NG*NFT)))
ICENT = center pixel ol grid
BIAS = center ol data axray (1 rel)
NG = No. tabulated points per cell.

NFT Number ol FT points
NDATA Number ol data points.

Q S V E
Sum the elements of a vector

C = SUM (A(ml)) m = 0 to N-l

QSVE (A, I, C, N)

Inputs:
A
I
C
N

Q S V E S Q
Sum the squares of the elements of a vector

C = SUM (A(ml) * A(ml)) lor m = 0 to N-l

QSVESQ (A, I, C ,1)

Inputs:
A
I
C
N

Q V A B S
Take the absolute value of the elements of a vector.

C(mK) = ABS (A(ml)) lor m = 0 to N-l

QVABS (A, I, C, K, V)

Inputs:
A Source vector base address
I A address increment

Source vector base address.
Increment ol A
Destination scalar address
Element count

Source vector base address.
Increment ol A
Destination scalar address
Element count

12-34 CHAPTER 12. USING THE A R R A Y PROCESSORS

C Destination vector base address
K C address increment
H Element count

Q V A D D
Add the elements of two vectors.

C(mK) = A(ml) + B(mJ) for m = 0 to N-l

QVADD (A, I, B, J, C, K, H)

Inputs:
A First source vector base address
I A address increment
B Second source vector base address
J B address increment
C Destination vector base address
K C address increment
V Element count

Q V C L IP
Limits the values in a vector to a specified range.

D(mL) = B if A(ml) < B
= A(ml) if B <= A(ml) < C
= C if C <= A(ml) for m

QVCLIP (A, I, B, C, D, L, I)

Inputs:
A Source vector base address
I A address increment
B Address of lover limit
C Address of upper limit
D Destination vector base address
L D address increment
H Element count

Q V C L R
Fill a vector with zeroes.

C(mK) = 0 for m = 0 to 1-1

QVCLR (C, K, I)

Inputs:
C D e s t in a t io n v e c to r b a se a d d re s s
K C address increment
I Element count

0 to H-l

12.7. ROUTINES 12-35

Q V C O S
Take the cosine of elements in a vector.

C(mK) = COS (A(ml)) lor m = 0 to H-l

QVCOS (A, I, C, K, H)

Inputs:
A Source vector base address
I A address increment
C Destination vector base address
K C address increment
H Element count

Q V D IV
Divide the elements of two vectors

C(mK) = B(mJ) / A(mJ) lor m = 0 to H-l

QVDIV (A, I, B, J, C. K, H)

Inputs:
A First source vector base address
I A address increment
B Second source vector base address
J B address increment
C Destination vector base address
K C address increment
H Element count

Q V E X P
Exponentiate the elements of a vector.

C(mK) = EXP (A(ml)) lor m = 0 to H-l

QVEXP (A, I, C, K, H)

Inputs:
A Source vector base address
I A address increment
C Destination vector base address
K C address increment
H Element count

Q V F IL L
Fill a vector with a constant.

C(mK) = A lor m = 0 to H-l

12-36 CHAPTER 12. USING THE A R R A Y PROCESSORS

QVFILL (A, C, K, H)

Inputs:
A Source seal ax base address
C Destination vector base address
K C address increment
I Element count

Q V F IX
Convert the elements of a vector from real to integer.

C(mK) = FIX (A(ml)) lor m = 0 to H-l

QVFIX (A, I, C, K, H)

Inputs:
A Source vector base address
I A address increment
C Destination vector base address
K C address increment
V Element count

QVFLT
Convert the elements of a vector from integer to real.

C(mK) = FLOAT (A(ml)) lor n * 0 to 1-1

QVFLT (A, I, C, K, I)

Inputs:
A Source vector base address
I A address increment
C Destination vector base address
K C address increment
V Element count

QVIDIV
Divide the given vector by the product of two integers.

B(mJ) = A(ml) / (Dl * D2) lor m = 0,1-1

QVIDIV (A, I, Dl, D2, B, J, I)

Inputs:
A Source vector base address.
I Increment lor A
Dl First dividend. Actual value, not an address.
D2 Second dividend. Actual value, not an address
B Destination vector base address.
J Increment lor B

12.7. ROUTINES 12-37

H Element count.

QVLN
Take the natural logarithm of the elements of a vector.

C(mK) = LOGe (A(ml)) lor m = 0 to N-l

QVLH (A, I, C, K, H)

Inputs:
A
I
C
K
I

QVMA
Multiply two vectors and add a third.

D(mL) = (A(ml) * B(mJ)) + C(mK) lor m = 0 to H-l

QVMA (A, I, B, J, C, K, D. L, H)

Inputs:
A First source vector base address
I A address increment
B Second source vector base address
J B address increment
C Third source vector base address
K C address increment
D Destination vector base address
L D address increment
H Element count

QVMOV
Copy the elements of one vector to another.

C(mK) = A(ml) lor m = 0 to H-l

QVMOV (A, I, C, K, H)

Inputs:
A Source vector base address.
I Increment ol A
C Destination vector base address
K Increment ol C
H Element count

Source vector base address.
Increment ol A
Destination vector base address
Increment ol C
Element count

12-38 CHAPTER 12. USING THE A R R A Y PROCESSORS

QVMUL
Multiply the elements of two vectors.

C(mK) = A(mJ) * B(mJ) lor m = 0 to H-l

QVMUL (A, I, B, J, C, K, H)

Inputs:
A First source vector base address
I A address increment
B Second source vector base address
J B address increment
C Destination vector base address
K C address increment
H Element count

QVNEG
Take the negative of the elements of a vector.

C(mK) = - A(ml) lor m = 0 to H-l

QVHEG (A, I, C, K, H)

Input8:
A Source vector base address
I A address increment
C Destination vector base address
K C address increment
H Element count

QVRVRS
Reverse the elements in a vector.

C(mK) = C((H-m)K) lor » = 0 to H-l

QVRVRS (C, K, H)

Inputs:
C Source and destination vector base address
K C address increment
H Element count

QVSADD
Add a scalar to the elements of a vector

C(mK) = B + A(ml) lor a = 0 to H-l

QVSADD (A, I, B, C, K, H)

12.7. ROUTINES 12-39

Inputs:
A Source vector base address
I A address increment
B Adding scalar address
C Destination vector base address
K C address increment
V Element count

Q V S IN
Take the sine of the elements of a vector.

C(mK) = SIN (A(ml)) lor m = 0 to N-l (A in radians)

QVSIN (A, I, C, K, N)

Inputs:
A Source vector base address
I A address increment
C Destination vector base address
K C address increment
N Element count

QVSMA
Multiply the elements of a vector by a scalar and add to the elements of another vector.

D(mL) = (A(ml) * B) + C(mK) lor m = 0 to N-l

QVSMA (A, I, B, C, K, D, L, N)

Inputs:
A First source vector base address
I A address increment
B Source scalar base address
C Second source vector base address
K C address increment
D Destination vector base address
L D address increment
N Element count

QVSMAFX
Multiply the elements of a vector by a scalar, add a scalar and round to an integer.

D(mL) = FIX (ROUND((A(mI)*B)+C)) lor m = 0 to N-l

QVSMAFX (A, I, B, C, D, L, N)

Inputs:
A Source vector base address
I A address increment
B Multiplying scalar address

12-40 CHAPTER 12. USING THE A R R A Y PROCESSORS

C Adding scalar address
D Destination vector base address
L D address increment
N Element count

QVSMSA
Multiply the elements of a vector by a scalar and add a second scalar.

D(mL) = (A(mI)*B)+C lor m = 0 to N-l

QVSMSA (A, I, B, C, D, L, N)

Inputs:
A Source vector base address
I A address increment
B Multiplying scalar address
C Adding scalar address
D Destination vector base address
L D address increment
I Element count

QVSMUL
Multiply the elements of a vector by a scalar.

C(mK) = A(ml) * B lor m = 0 to M-l

QVSMUL (A, I, B, C, K, I)

Inputs:
A Source vector base address
I A address increment
B Multiplying scalar address
C Destination vector base address
K C address increment
V Element count

QVSQ
Square the elements of a vector

C(mK) = A(ml)**2 lor m = 0 to B-l

QVSQ (A, I, C, K, H)

Inputs:
A Source vector base address
I A address increment
C Destination vector base address
K C address increment
V Element count

12.7. ROUTINES 12-41

QVSQRT
Take the square root of the elements of a vector.

C(mK) = SQRT (A(ml)) lor in = 0 to H-l

QVSQRT (A, I, C, K, H)

Inputs:
A Source vector base address
I A address increment
C Destination vector base address
K C address increment
H Element count

QVSUB
Subtract the elements of two vectors.

C(mK) = B(mJ) - A(ml) lor m = 0 to H-l

QVSUB (A, I, B, J, C, K, H)

Inputs:
A First source vector base address
I A address increment
B Second source vector base address
J B address increment
C Destination vector base address
K C address increment
H Element count

QVSWAP
Swap the elements of a vector.

A(ml) = C(mK) and C(mK) = A(ml) lor m = 0 to H-l

QVSWAP (A, I, C, K, H)

Inputs:
A First source/destination vector base address
I A address increment
C Second source/destination vector base address
K C address increment
H Element count

QVTRAN
Transpose a (row-stored) M X N array of row vectors of length LV. The starting address is given by IAD.
The algorithm works in place. It is adapted from Boothroyd’s CACM ALG.#302. Other, probably better,
algorithms, are CACM # ’S 380 and 467, but they’re not as simple to program.

12-42 CHAPTER 12. USING THE A R R A Y PROCESSORS

QVTRAH (M, N, IAD, LV)

Inputs:
M First dimension ol the vector array
I Second dimension ol the vector array
IAD Base address ol the array
LV Length ol the vectors.

Chapter 13
Tables in AIPS

13.1 Overview
This chapter is an attem pt to describe the use of AIPS tables extension files and to describe the structure
of these files. The next section describes general tables utility routines followed by routines which simplify
the access to specific types of AIPS tables. The final section describes the structure of the tables files and
the fundamental routines to access AIPS tables.

Table files consist of an extensive and rather flexible header and a table organized as rows and columns.
An entry in a column may be either a single value or an array of values with the same data type. Each
column has a specified form at and is stored in the appropriate binary form for the local computer. The
columns are ordered on disk in an order appropriate to computer addressing, but are accessed in any desired
logical column order via a lookup list.

The extension file contains not only the rows and columns, but also a variety of other information. Each
column has an associated 24-character column “title” and an 8-character “units” field. Each row has a
“selection” flag which allows the user to access temporarily a subset of his table. The strings used to specify
the current selection Me stored in the file for display. The file may also contain general information applying
to the full table in the form of keyword/value pairs. This information will be called the table “header” data.

13.2 General Tables R outines
There are a number of utility routines which perform operations on AIPS tables. Hopefully there will be
many more of these as the use of tables in AIPS increases. The following list gives a short description of
these routines; details of the cadi sequences are given at the end of this chapter. Also of interest to the
programmer is the AIPS task PRTAB for printing the contents of a table file.

1. ALLTAB copies all tables, allows a list of exclusions.
2. ISTAB determines if an extension file type exists and if it is a table.
3. TABCOP copies the entire contents of one or more tables of a given type.
4. TABKEY reads or writes keyword/value pairs to a table header.
5. TABMRG merges or adds adjacent, like rows in a table.
6. TABSRT sorts the rows in a table file using up to 4 keys.

13.3 Specific Tables R outines
Because of the generality of the tables routines, the low-level use of tables is rather cumbersome. For this
reason, there are a number of specialized routines which simplify the access to a given type of table. In

13-1

13-2 CHAPTER 13. TABLES IN AIPS

general, these routines come in pairs - one to create/initialize the I/O and the other to read or write to
the file. If there are keyword/value pairs associated with a given table type, they are processed by the
initialization routine. These specialized routines usually return the contents of a row into properly named
variables, which avoids the use of equivalencing in the calling routine.

Since many of the tables in AIPS are subject to modification, especially those associated with the cali
bration package; the number of columns in each table is likely to change. For this reason it is strongly rec
ommended th a t the number of columns in these tables be taken from the PARAMETER include PUVD.INC
especially to be used for declaring array sizes. Comments in the text of this include file, which is shown at
the end of this chapter, tell which PARAMETER belongs to which table type.

The specific tables routines are briefly described in the following list; details of the call sequences are
given at the end of this chapter.

1. ANTINI and TAB AN access AN (Antenna) tables.
2. BLINI and TABBL access BL (baseline dependent calibration) tables.
3. BPINI and TABBP access BP (bandpass) tables.
4. CALINI and TABCAL access calibration (CL) tables.
5. CCINI creates/initializes CC (CLEAN component or gaussian model files).
6. CCMERG sums CC components at the same position including the two needed sorts.
7. CHNCOP copies selected portions of a Frequency (FQ) table.
8. CHNDAT reads/writes/creates the contents of FQ (Frequency descriptor) tables.
9. FLGINI and TABFLG access FG (Flag) tables.

10. FQINI and TABFQ access FQ (FreQuency) tables.
11. GETNAN determines the number of subarrays and the numbers of antennas in each from the AN

table(s).
12. NDXINI and TABNDX access NX (Index) tables.
13. SNINI and TABSN access solution (SN) tables.
14. SOUINI and TABSOU access SU (Source) tables.

13.4 The Format D etails
There are several distinct types of information kept in a table file. Most im portant is the data tabulated,
referred to as “row data” . Associated with each column is label information; this includes a label, units,
element count, and data type. There is also a provision for storing general information about the file in the
form of keyword/value pairs. A keyword/value pair consists of a string of characters (Keyword) which gives
a label to a value (Value) which may be any of a number of data types.

13.4.1 Row Data
The row data are stored as an integer number of rows per disk record (256 integers) or as an integer number
of disk records per row. The columns are given a physical order appropriate to addressing on all computers.
The logical order is carried in the file header record (physical record 1, see below) and in a set of array
indices for addressing by the programs. The type of data is specified by code numbers. These codes and the
physical ordering are as follows:

13.4. TEE FORMAT DETAILS 13-3

ORDER ARRAY BASIC CODE + LEHGTH
double-precision floating D 1 + 10 * LENGTH
single-precision floating R 2 + 10 * LENGTH
hollerith (4 char / word) H 3 + 10 * LENGTH
integer I 4 + 10 * LENGTH
logical L 5 + 10 * LEHGTH
bit (NBITVD / integer) I 7 + 10 * LEHGTH
select flag I 9 -

Declarations:
INTEGER I(«0
LOGICAL L(*)
HOLLERITH H(*)
REAL R(*)
DOUBLE PRECISION D(*)
EQUIVALENCE (I, L, H, R, D)

13.4.2 Physical File Format
The data, control, and header information are written in the Table file via ZFIO in 512-byte (256-integer)
blocks. The order on disk, by physical record number, is:
record 1 : Control information and lookup table (see later)

2 : DATPTR(128) subscript of the appropriate array for
logical column n

DATYPE(128) type code for logical column n
3 - 4 : Selection strings now in force
5 - m : Titles (24 HOLLERITH) in physical column order

m+1 - i : Units (8 HOLLERITH) in physical column order
i+1 - k : Table header (keyword/value pairs, see below)
k+1 - * : Row data in n rows/record or n records/row

where
m = 5 + (NCOL-1) / (256 / 6)
i = m + 1 + (HCOL-1) / (256 / 2)
k = i + 1 + (HXEY-1) / (256 / 5)
ICOL = number logical columns not including the select column
VKEY - maximum number of keyword/value pairs

13.4.3 Control Information
Physical record one contains file control data needed to do the I/O operations and m aintain the physical
file. It is prepared by subroutine TABINI and modified by TABIO. The latter subroutine returns the record
to disk on OPCODE = ’CLOS’. Its contents are:

1 Number 512-byte records now in file
2
3 Max number of rows allowed in current file
4
5 Humber of rows (logical records) now in file
6
7
8 # values/logical (# words/row incl. selection flag)
9 > 0 => number rows / physical record

13-4 CHAPTER 13. TABLES IN AIPS

< 0 => number physical records / row
10 Number logical columns/row (not including selection

column)
11 - 16 Creation date: ZDATE(ll), ZTIME(14)
1 7 - 2 8 H Physical lile name (set on each TABINI call)
2 9 - 3 0 H Creation task name
31
32 Disk number
33 - 38 Last write access date: ZDATE(33), ZTIME(36)
3 9 - 4 0 H Last write access task name
41
42 Number logical records to extend lile il needed
43 Sort order: logical column # ol primary sorting
44 Sort order: logical column # ol secondary sorting

0 => unknown, < 0 => descending order
45 Disk record number lor column data pointers (=2)
46 Disk record number lor row selection strings (=3)
47 Disk record number lor 1st record ol titles (=5)
48 Disk record number lor 1st record ol units
49 Disk record number lor 1st record ol keywords
50 Disk record number lor 1st record ol table data
51 DATPTR (row selection column)
52 Maximum number ol keyword/value pairs allowed
53 Current number ol keyword/value pairs in lile
5 4 - 5 6 H "*AIPS TABLE*" string to verily that this is a table
57 - 59
60 II 1 then the table CANNOT be written as FITS ASCII
61 Number ol selection strings now in lile
62 Next available address lor a selection string
63 First address ol selection string 1
64 First address ol selection string 2
65 First address ol selection string 3
66 First address ol selection string 4
67 First address ol selection string 5
68 First address ol selection string 6
69 First address ol selection string 7
70 First address ol selection string 8
********** f0T TABI0 / TABINI use only **********
71 I0P : 1 => read, 2 => write
72 Number words per logical record (incl. select)
73 Current table row physical record in BUFFER
74
75 Current table row logical record in BUFFER
76
77 Type ol current record in BUFFER (0 - 5)
78 Current control physical record number in BUFFER
79 Current control logical record number in BUFFER
80 Type ol current control record in BUFFER
81 File logical unit number (LUN)
82 FTAB pointer lor open lile (IND)

* * * * * * * * * * *

83 -100 Reserved ***********
101 -128 H Table title.

13.4. THE FORMAT DETAILS 13-5

129 -256 lookup table as COLPTR (logical column) = physical column

13.4.4 Key word/value records
The key word/value pairs are stored in 5 single-precision floating locations, 256 / 5 per physical record. The
keyword is an 8-character string stored as a HOLLERITH. It is left justified. The value is stored left justified
in the 3rd and 4th reals using as many words as needed (see table below). The keyword type is given in a
integer following the 4th word.

The keyword data type codes which specify the type of the binary value are:

1 double-precision floating point
2 single-precision floating point
3 8-character HOLLERITH string (4 chars / element)
4 integer
5 logical

In the call sequence to TABIO, the variable RECORD is an integer array used to convey the data to the
I/O operations. For keyword/value pairs, RECORD is divided as follows:

RECORD(l) 1st 4 chars of the keyvord
RECORD(2) 2nd 4 chars of keyvord
RECORD(3) value
RECORD(5) type code

vhere the value occupies the following number of integer vords:
type 1 IVDPDP

2 1
3 2
4 1
5 1

13.4.5 I/O buffers
The call to TABINI specifies two buffers, one for I/O scratch and control and the other for the da ta pointers
which will be used by the calling program to access the column data. The first, called BUFFER, is used as

BUFFER(1)-BUFFER(128) control pointers
BUFFER(129)-BUFFER(256) lookup table
BUFFER(257)-BUFFER(***) current physical record(s) of table data

vhere *** = 512 if there are >= 1 rovs/rec,
*** = (n+l)*256 if there are n recs/row.

The call sequence of TABINI has an argument, NBUF, which gives the length of BUFFER. This is used
solely to check th a t BUFFER is large enough to handle the present table file. BUFFER is also provided
by the programmer to TABIO, which will modify the control and data portions. The programmer should
not modify BUFFER between the call to TABINI and the call to TABIO with OPCODE ’C LO S\ except to
insert a title for the table in words 101 - 128, or to correct the sort order information.

The second buffer, called DATP, is used by the non-I/O portions of the table package. DATP(1,1)
- DATP(128,1) contains the subscript of the appropriate array for the logical columns. DATP(1,2) -
DATP(128,2) contains the da ta type / element count for each logical column. When TABINI is to create
the table extension file, the programm er must fill in DATP(1,2) - DATP(NCOL,2) before calling TABINI.
A complete set of DATP will be returned by TABINI under all circumstances.

13-6 CHAPTER 13. TABLES IN AIPS

13.4.6 Fundamental Table Access Subroutines
There is a set of basic table handling routines which apply to all tables files. The following list gives a short
description; the details of the call sequences and usage are found a t the end of this chapter.

1. TABINI creates/opens/catalogs an AIPS table.
2. TABIO does I/O to a tables file. Row data, keyword/value pairs and control information are passed

through this subroutine.
3. GETCOL returns the value and value type at a specified row and column from an open table.
4. FNDCOL locates the logical column number for a column with a specified label.
5. PUTCOL puts a specified the value into a specified row and column from an open table.

13.4.7 Table Reformating Subroutines
Several of the tables used with the calibration package are subject to change as new things are added. In
order to minimize the confusion there are a number of routines which check if the table uses the current
format and if not reformats the table adding any new columns. A short description of these routines is given
here and a more complete description is given a t the end of this chapter.

1. BLREFM reformats a BL (BaseLine dependent calibration) table.
2. BPREFM reformats a BP (BandPass calibration) table.
3. CLREFM reformats a CL (CaLibration) table.
4. SNREFM reformats a SN (calibration SolutioN) table.

13.5 Includes
13.5.1 PUVD.INC
A number of generally useful param eters including the number of columns in each of the calibration tables
is given in this include as PARAMETERS.
C Include PUVD
c Parameters lor uv data

IITEGER MAXAHT, MXBASE, MAXIF, MAXFLG, MAXFLD, MAXCHA
c

PARAMETER (MAXANT=45)
MAXAVT - Max. no. antennas.

c MXBASE = max. no. baselines
PARAMETER (MXBASE= ((MAXAIT*(MAXAIT+1))/2))

c
PARAMETER (MAXIF=15)

MAXIF=max. no. IFs.

c
PARAMETER (MAXFLG=1000)

MAXFLG = max. no. Hags active

c
PARAMETER (MAXFLD=16)

MAXFLD=max. no lields

c
PARAMETER (MAXCHA=512)

MAXCHA=nax. no. Ireq. channels.

c Parameters lor tables
IITEGER MAXCLC, MAXSMC, MAXAIC, MAXFGC, MAXIXC, KAXSUC,

* MAXBPC, NAXBLC, MAXFQC
C MAXCLC=max no. cols in CL table

PARAMETER (MAXCLC=41)

13.6. ROUTINES 13-7

C
PARAMETER (MAXSNC=20)

MAXSHC=max no. cols in SH table

c
PARAMETER (MAXANC=12)

MAXAHC=max no. cols in AN table

C
PARAMETER (MAXFGC=8)

MAXFGC=max no. cols in FG table

c
PARAMETER (MAXHXC=7)

MAXHXC=max no. cols in HX table

c
PARAMETER (MAXSUC=21)

MAXSUC=max no. cols in su table

c
PARAMETER (MAXBPC=14)

MAXBPC=max no. cols in BP table

c
PARAMETER (MAXBLC=14)

MAXBLC=max no. cols in BL table

c
PARAMETER (MAXFQC=5)

MAXFQC=max no. cols in FQ table

c End PUVD.

13.6 R outines
Following are the descriptions of the call sequences and usage notes for the routines discussed in this chapter.

13.6.1 Routines Applying to All Tables
ALLTAB
Copies all Table extension file(s). The output files must be new — old ones cannot be rewritten. The output
file must be opened W RIT in the catalog and will have its CATBLK updated on disk.

ALLTAB (HOHOT, HOTTYP, LUHOLD, LUHHEV, VOLOLD, VOLIEV, CHOOLD,
* CHOHEW, CATHEW, BUFFI, BUFF2, IRET)

Inputs:
IONOT I
HOTTYP(*) C*2

LUHOLD I
LUHHEW I
VOLOLD I
VOLHEW I
CHOOLD I
CHOHEW I

In/out:
CATHEW(256)I

Output:
BUFFI(1024) I
BUFF2(1024) I
IRET I

Humber of "Forbidden" types to copy.
Table types to ignore (2 char meaningful, blank
filled)
LUH for old file
LUH for nev file
Disk number for old file.
Disk number for nev file.
Catalog slot number for old file
Catalog slot number for nev file

Catalog header for nev file.

Work buffer
Vork buffer
Return error code 0 => ok, othervise TABCOP

or 10*CATI0 error.

FNDCOL
Is used with AIPS Table extension files. It locates the logical column number(s) which are titled with
specified strings.

13-8 CHAPTER 13. TABLES IN AIPS

FNDCOL (NKEY, KEYS, LKEY, LORDER, BUFFER, KOLS, IERR)
Inputs:

NKEY I Number columns to be found
KEYS C*24(HKEY) Column titles to locate
LKEY I Number characters to check in each of KEYS

(legal values 1 through 24)
LORDER L T => logical order desired, else phys.

In/out:
BUFFER I(>512) TABINI/TABIO buffer/ header/ work area

Output:
KOLS I(NKEY) Logical column numbers: 0 => none,

-1 => more than one (!)
IERR I Error code: 0 => ok, 1 - 1 0 from ZFIO

>10 = 10 + # of failed columns

G E T C O L
Returns the value and value type found in an open table file a t the specified logical column and row.

GETCOL (IRHO, ICOL,
Inputs:

I RIO I
ICOL I
DATP 1(256)

In/out:
BUFFER I(*)

Output:
RTYPE I

RESULT ?(*)

SCRTCH I(*)
IERR I

DATP, BUFFER, RTYPE, RESULT, -SCRTCH, IERR)

Table row number: n.b. I
Table column number
Pointer array returned by TABIVI

Control area set up by TABIVI, used in TABIO

10 * length + Type of column:
1 -> D, 2 -> R, 4 -> I, 5 -> L*?, 6 -> I.
Characters hollerith, bits packed.
Value of column: use D, R, H, I equivalenced
arrays, note: may be an array; if length = 0,
then no value and RESULT is unchanged.
Scratch large enough to hold a row
Error code: 0 => OK.

-1 => OK, but row is flagged
1 file not open, 2 input error
3 I/O error, 4 read past EOF
5 bad data type

IST A B
Given an extension type, volume, version, determine if the extension file exists, and if so, is it a standard
table.

ISTAB (ETYPE, IVOL, ISLOT, IVER, LUI, BUFFER, TABLE, EXIST, FITASC,
* IERR)

Inputs:
ETYPE C*2 Extension type like ’CC’.
IVOL I Disk Volume.
ISLOT I Map catalog slot number.
LUI I AIPS LUH to use for opening and reading a test block.

In/Out:
TABLE L True if this extension type is a table or this

13.6. ROUTINES 13-9

version does not exist.
EXIST L True if the extension file exists, else false.
FITASC L True if the file can be written as a FITS ASCII table.

Output:
IERR I Error code, 0->0K else failed

PUTCOL
Enters the value and value type into an open table file at the specified logical column and row.

PUTCOL (IRNO, ICOL, DATP, BUFFER, VALUE, SCRTCH, IERR)
Inputs:

IRIO I Table row number
ICOL I Table column number
DATP 1(256) Pointer array returned by TABINI
VALUE ?(*) Value of column: use D, R, H, I equivalenced

arrays, note: may be an array; if length = 0,
then no value and VALUE is unchanged.

In/out:
BUFFER

Output:
SCRTCH
IERR

I(*) Control area set up by TABINI, used in TABIO

I(*) Scratch large enough to hold a row
I Error code: 0 => OK.

-1 => OK, but row is flagged
1 file not open, 2 input error
3 I/O error, 4 read past EOF
5 bad data type

TABCOP
Copies Table extension file(s). The output file must be a new extension - old ones cannot be rewritten. The
output file must be opened W RIT in the catalog and will have its CATBLK updated on disk.

TABCOP (TYPE, INVER, OUTVER, LUNOLD, LUNNEW, V0L0LD, VOLNEW,
* CN00LD, CNONEW, CATNEW, BUFFI, BUFF2, IRET)

Input8:
TYPE C*2 Extension file type (e.g. ’CC'.’AN*)
INVER I Version number to copy, 0 => copy sill.
OUTVER I Version number on output file, if more than one

copied (INVER=0) this will be the number of the
first file. If OUTVER = 0, it will be taken as
1 higher than the previous highest version.

I LUN for old file
I LUN for new file
I Disk number for old file.
I Disk number for new file.
I Catalog slot number for old file
I Catalog slot number for new file

LUNOLD
LUNNEV
V0L0LD
VOLNEV
CN00LD
CNONEV

In/out:
CATNEW

Output:
BUFFI
BUFF2
IRET

1(256) Catalog header for new file.

1(256) Work buffer
1(256) Work buffer
I Return error code 0 => ok

13-10 CHAPTER 13. TABLES IN

1 => files the sane, no copy.
2 => no input files exist
3 => failed
4 => no output files created.
5 => failed to update CATVEV
6 => output file exists

TABINI
Creates/opens a table extension file. If a file is created, it is cataloged by a call to CATIO which saves
updated CATBLK.

TABIHI (OPCODE, PTYP, VOL, CHO, VER, CATBLK, LUH, HKEY,
♦ HREC, HCOL, DATP, HBUF, BUFFER, IERR)

Input:
OPCODE

PTYP
VOL
CHO
CATBLK
LUH
HREC
HBUF

In/out:
VER

HKEY

HCOL

DATP

Output:
IERR

C*4

I
I
I
1(256)
I
I
I

Operation code, => read only,
=> read/write

•CC')

’READ1
* WRIT1

Physical extension type (eg.
Disk volume number
Catalog slot number
Catalog block of cataloged file.
Logical unit number to use.
Humber of logical rec. for create/extend
Humber I words in BUFFER

Version number: (<= 0 => write a nev one,
read the latest one), returns one used.
Maximum number of keyvord/value pairs
input: used in create, checked on vrite old
(0 => any); output: actual
Humber of logical columns (does not include
selection column). Input: used in create,
checked on vrite old (0=>any); output: actual
DATP(*,1) address pointers (output only)
DATP(*,2) column data type codes. Input:
used in create only; output: actual.
Work buffer, at least 1024 bytes in size,
more if logical record longer them 512 bytes
Output: control info, lookup table, ...

Return error code. 0 => OK
-1 => OK, created nev file
1 => bad input.
2 => could not find or open
3 => I/O problem.
4 => create problem.
5 => not a table file

Usage notes:
For sequential access, TABIHI leaves pointers for TABIO such that,
if IRHO <= 0, reads will begin at the start of the file and vrites
vill begin after the last previous record. Cataloged file should
be marked ’WRIT' if the file is to be created.

1(128,2)

BUFFER I(*)

13.6. ROUTINES 13-11

TABIO
Does random access I/O to Tables extension files. Mixed reads and writes are allowed if TABINI was called
’W RIT’. Writes axe limited by the size of the structure (i.e. no. columns for units and titles) or to the
current maximum logical record plus one. Files opened for WRITe are updated and compressed on CLOS.

TABIO (OPCODE, IRCODE, IRIO, RECORD, BUFFER, IERR)
Inputs:

OPCODE C*4 Opcode *READ','CLOS *
'WRIT' : write data as selected
'FLAG' : write data as de-selected

Type of informationIRCODE

IRIO

RECORD
BUFFER

Output:
RECORD
BUFFER
IERR

I(«0
!(♦)

0 => Table row
1 => DATPTR/DATYPE record
2 => data selection string
3 => title
4 => units
5 => keyword/value pair

Logical record number. 0 => next (cam work
with row data and latest IRCODE > 0 only)

IRIO is row number (IRCODE = 0)
IRIO is ignored (IRCODE = 1)
IRIO is string number (IRCODE = 2)
IRIO is column number (IRCODE =3)
IRIO is column number (IRCODE = 4)
IRIO is keyword number (IRCODE = 5)

Array containing record to be written
Work buffer = 512 bytes + enough 512 byte
blocks for at least one full logical record.
Must be the same one given TABIII.

I(*) Array containing record read.
I(*) buffer.
I Return error code 0 => OK

-1 => on READ: row read is flagged
1 => file not open
2 => input error
3 => I/O error
4 => attempt to read past end of data

or write past end of data + 1
5 => error on expanding the file

IMPORTAIT IOTE: the contents of BUFFER should not be changed
except by TABIO between the time TABIII is called until the file
is closed.

TABKEY
Reads or writes KEYWORDS from or to an AIPS table file header. The order of the keywords is arbitrary.
Table file must have been previously opened with TABINI.

TABKEY (OPCODE, KEYWRD, IUMKEY, BUFFER, LOCS, VALUES, KEYTYP, IERR)
Inputs:

OPCODE C*4 Operation desired, 'READ', 'WRIT',
'ALL » => Read all.

KEYVRD C(*)*8 Keywords to read/write

13-12 CHAPTER 13. TABLES IN AIPS

BUFFER
In/out:

HUHKEY

I (*)

LOCS I(HUMKEY)

VALUES

KEYTYP I(HUMKEY)

Output:
IERR

Buller being use lor table I/O >= 512 words.

Humber ol keywords to read/write.
Input on 0PC0DE=’ALL’ = max. to read.
Output on OPCODE='ALL’ = no. read.

The word ollset ol lirst integer
word ol keyword value in array VALUES.
Output on READ, input on tfRIT.
On READ this value will be -1 for keywords
not lound.
The array of keyword values; due to word
alignment problems on some machines values
longer them a integer should be copied,
eg. il the 5th keyword (XXX) is a R:

IPOINT = L0CS(5)
CALL COPY (1, VALUES(IPOIHT), XXX)

Output on READ, input on WRIT
The type code ol the keywords:

1 = Double precision lloating
2 = Single precision lloating
3 - Character string (8 HOLLERITH chars)
4 = integer
5 = Logical

Return code, 0=>0K,
1-10 =>TABI0 error
19 -> unrecognized data type.
20 -> bad OPCODE
20+n -> n keywords not lound on READ.

T A B M R G
Merges an AIPS general table-form at file. It does not sort the file - so sorts must be done first if merging is
to make any sense. TABMRG compares row N with row N-f 1 and merges the two, summing columns SKOL
and using row N for the others, if each of columns EKOL are within TKOL of each other.

TABMRG (DISK, CHO,
* IHBUF, OTABL

Inputs:
DISK
CHO
TYPE
IHVER
EKOL

TKOL

IHBUF
OHBUF

In/out:

I
I
C*2
I
I (*)

SKOL I(*)

R(*)
I
I

TYPE, IHVER, OUTVER, EKOL, SKOL, TKOL, ITABL,
, OHBUF, CATBLK, OUTHUM, IERR)

Disk number to use
Primary lile catalog number
Extension lile type (e.g. CC)
Input extension lile number (0 -> high)
Columns which must be "equal" by logical
column number. A zero MUST terminate the
list unless it is 25 long. Must have >0.
Columns which will be summed on a merge by
column number. A zero MUST terminate the
list unless it is 25 long. May be 0.
Tolerance lor equality by logical column
number (parallel to EKOL list)
Humber I words in ITABL
Humber I words in OTABL

13.6. ROUTINES 13-13

OUTVER I Output extension lile number (0 -> high+1)
CATBLK

Output:
ITABL
OTABL
OUTHUM
IERR

1(256) Primary lile header

I(>512) Scratch lor input table 10
I(>512) Scratch lor output table 10
I Number rows in output lile.
I Error code: 0 -> ok

1 -> input lile open error
2 -> input parameter error
3 -> output lile create/open error
4 -> ZFI0 10 error
5 -> TABIO 10 error

T A B SR T
Subroutine to sort an AIPS table extension file. First key changes the most slowly. A linear combination of
two columns or a substring of a bit or character string may be used. The columns and factors are specified
in KEY and FKEY, the first (slower varying key) is:

KEY.VALUEl = C0L_VALUE(KEY(1,1)) * FKEY(1,1) +
C0L_VALUE(KEY(2,1)) * FKEY(2,1)

The faster changing key value is:
KEY.VALUE2 = C0L_VALUE(KEY(1,2)) * FKEY(1,2) +

C0L_VALUE(KEY(2,2)) * FKEY(2,2)
In the case of bit or character strings only one column is used to generate the key values.

A KEY(m.n) < 0 => use ABS (C0L_VALUE(-KEY(m,n))).

TABSRT (DISK, CN0,
* TABUFF, HBUF

Inputs:
DISK
CN0
TYPE
INVER
OUTVER
KEY(2,2)

FKEY(2,2) R
BUFSZ I
HBUF I
CATBLK(256) I

Output:
TABUFF(*) I
BUFFER(*) R
IERR I

TYPE, INVER, OUTVER, KEY, FKEY, BUFFER, BUFSZ,
, CATBLK, IERR)

Disk number ol the lile.
Catalog slot number.
Two character type code (e.g. ’CC’)
Input version number
Output version number
Sort keys: may be linear combination ol two
numeric value columns. KEY contains the column
numbers and FKEY contains the 1 actor s. II the
column is a string (bit or char.) then
FKEY(1,n)=lirst char/bit and FKEY(2,n)=number
ol char/bit and KEY(2,n) is ignored.
KEY(2,n)s0 => ignore, <0 => use abs. value.
Column no. is the logical number.
Key coellicients, 0=>1, see above.
Size ol BUFFER in bytes.
Size ol TABUFF in (I) words.
Catalog header record.

Buller large enough to handle 1/0 to table.
1/0 work buller
Error code, 0 => OK, else error.

13-14 CHAPTER 13. TABLES IN AIPS

10 => Couldn't find or open file.
Useage Votes:

normally the keys are sorted into ascending order, to sort into
descending order negate the values of FKEYn.

TWO standard scratch files vill be created and entered into the
/CFILES/ common. These scratch files vill be deleted on normal
termination. Include DFIL.IIC should be included in the main
routine and a call made to DIE rather than DIETSK should
be made at the end of the program execution. The values in BADD
(adverb BADDISK) in the /CFILES/ common should be initialized.

IF a disk based sort is required, then a 4-way merge sort will
be used.

Since keys are converted into floating point numbers some
accuracy may be lost sorting on character or bit strings.

For a 1 key sort use KEY2(1) = 0.
NB: This routine will modify the contents of common /MAPHDR/
(DCAT.IHC)

13.6.2 Routines Applying to Specific Tables
ANTINI
Creates and initializes antenna (AN) tables.

AHTIVI (OPCODE, BUFFER, DISK, CVO, VER, CATBLK, LUV,
* IAIRIO, AVKOLS, AVVUMV, ARRAYC, GSTIAO, DEGPDY, SAFREQ, RDATE,
* POLRXY, UT1UTC, IATUTC, AIAME, HUMORB, I0PCAL, IERR)

Inputs:
C*4 Operation code:

'WRIT* = create/init for write or read
'READ' = open for read only

I I/O buffer and related storage, also defines
file if open.
Disk to use.
Catalog slot number
GA file version
Catalog header block.
Logical unit number to use

OPCODE

BUFFER(512)

DISK
CHO
VER
CATBLK(256)
LUX

Input/output (file keywords):
ARRAYC(3) D
GSTIAO D
DEGPDY D
SAFREQ D
RDATE C*8
POLRXY(2) R
UT1UTC R
IATUTC R
AVANE C*8
IUMORB I
HOPCAL I
AVVUMV(MAXAIC) I

Output:
IAHRVO I

Array center X coord, (meters, earth center)
GST at IAT=0 (degrees) on ref. date
Earth rotation rate (deg/IAT day)
Obs. Reference Frequency for subarray(Hz)
Reference date as 'DD/MM/YY'
Polar position X,Y (meters) on ref. date
UT1-UTC (time sec.) "
IAT-UTC (time sec.) "
Array name
Vumber of orbital parameters
Humber ol polarization calibration constants,
Element count in each column. On input only
used if the file is created.

Hext scan number, start of the file if READ,
the last+1 if WRITE

13.6. ROUTINES 13-15

AHKOLS(MAXANC) I The column pointer array in order, ANNAME,
STABXYZ, ORBPARM, NOSTA, MNTSTA, STAXOF,
POLTYA, POLAA, POLCALA, POLTYB, POLAB, POLCALB

IERR I Return error code, 0=>0K, else TABINI or TABIO
error.

Useage VOTE: use the include 'DAHT.IHC* lor the declarations in
AHTIHI and TABAH.

B L IN I
Creates and initializes baseline correction (BL) extension tables.

BLIHI (OPCODE, BUFFER, DISK, CHO, VER, CATBLK, LUH,
* IBLRNO, BLKOLS, BLNUMV, HUMAHT, NUMPOL, NUMIF, IERR)

Inputs:
OPCODE C*4 Operation code:

’WRIT’ = create/init lor vrite or read
'READ* = open lor read only

BUFFER(1024) I I/O buller and related storage, also delines lile
il open.

DISK I Disk to use.
CHO I Catalog slot number
VER I BL lile version
CATBLK(256) I Catalog header block.
LUH I Logical unit number to use
Input/output
HUMAHT I Humber ol antennas
NUMPOL I Humber ol polarizations.
HUMIF I Humber ol IFs

Output:
IBLRNO I Hezt scan number, start ol the lile il ’READ’,

the last+1 il WRITE
BLKOLS(MAXBLC) I The column pointer array in order, TIME, SOURID,

SUBARRAY, AHTEIIA1, AVTEKKA2, FREQ. ID,
REALM1, IMAGM1, REALA1, IMAGA1,
Following used il 2 polarizations per IF
REALM2, IMAGM2, REALA2, IMAGA2.

BLNUMV(MAXBLC) I Element count in each column.
IERR I Return error code, 0=>0K, else TABIHI or TABIO

error.

B L R E F M
Routine to change the form at of the BL table from an old format to the current one if necessary.
NOTE: routine uses LUN 45 as a temporary logical unit number.

BLREFM (DISK, CHO, VER, CATBLK, LUH, IRET)
Inputs:

DISK I Volume number
CHO I Catalogue number
VER I Version to check/modily
CATBLK(266) I Catalogue header
LUH I LUH to use

Output:

13-16 CHAPTER 13. TABLES IN AIPS

IRET I Error, 0 => OK
Note, routine will leave no trace of its operation, i.e. BL table
will be closed on output and will have same number as one specified.
Difference will be only that number of columns has changed if that
is required.

B P IN I
Creates and initializes bandpass (BP) extension tables.

BPINI (OPCODE, BUFFER, DISK, CNO, VER, CATBLK, LUN,
* IBPRNO, BPKOLS, BPNUMV, NUMANT, NUHPOL, NUMIF, NUMFRQ,
* BCHAN, IERR)

Inputs:
OPCODE C*4 Operation code:

'WRIT* = create/init for write or read
'READ* = open for read only

BUFFER(4096) I I/O buffer and related storage, also defines file
if open.

DISK I Disk to use.
CNO I Catalog slot number
VER I BL file version
CATBLK(256) I Catalog header block.
LUN I Logical unit number to use
Input/output
NUMANT I Number of antennas
NUMPOL I Number of polarizations.
NUMIF I Humber of IFs
NUMFRQ I Humber of frequency channels
BCHAN I Start channel number

Dutput:
IBPRNO I Hext scam number, start of the file if ’READ’,

the last+1 if WRITE
BPKOLS(MAXBPC) I The column pointer array in order:

TIME, INTERVAL, SOURID,
SUBARRAY, ANTENNA,
BANDV (of individual channel), IFFREQ,
FREQ. ID,
REFANTI, REAL1, IMAGI,
Following used if 2 polarizations per IF
REFANT2, REAL2, IMAG2.

BPNUMV(MAXBPC) I Element count in each column.
IERR I Return error code, 0=>0K, else TABINI or TABIO

error.

B P R E F M
Routine to change the form at of the BP table from an old format to the new one if necessary.
NOTE: routine uses LUN 45 as a temporary logical unit number.

BPREFM (DISK, CNO, VER, CATBLK, LUN, IRET)
Inputs:

DISK I Volume number
CNO I Catalogue number

13.6. ROUTINES 13-17

VER I Version to check/modify
CATBLK(256) I Catalogue header
LUN I LUN to use

Output:
IRET I Error, 0 => OK

Note, routine vill leave no trace ol its operation, i.e. BP table
vill be closed on output and vill have same number as one specilied.
Dillerence will be only that number ol columns has changed il that
is required.

CALINI
Creates and initializes calibration (CL) extension tables.

CALIHI (OPCODE, BUFFER, DISK, CNO, VER, CATBLK, LUN,
* ICLRNO, CLKOLS, CLNUMV, NUMANT, NUMPOL, NUMIF, GMMOD, IERR)

Inputs:
OPCODE C*4 Operation code:

'WRIT* = create/init lor write or read
'READ* = open lor read only

BUFFER(512) I I/O buller and related storage, also delines lile
il open.

DISK I Disk to use.
CIO I Catalog slot number
VER I CL lile version
CATBLK(256) I Catalog header block.
LUN I Logical unit number to use
Input/output
NUMANT I Number ol antennas
NUMPOL I Number ol IFs per pair
NUMIF I Number ol IF pairs
GMMOD R Mean gain modulus

Output:
ICLRNO I Next scan number, start ol the lile il 'READ',

the last+l il WRITE
CLKOLS(MAXCLC) I The column pointer array in order, TIME,

TINE INT., SOURCE ID., ANTENNA NO., SUBARRAY,
FREQID, ROT.MEAS. GEODELAY, GEOPHASE, GEORATE,
DOPOFF, CLKGD 1, DCLKGD 1, CLKPD 1, DCLKPD 1,
ATMGD 1, DATNGD 1, ATMPD 1, DATPGD 1,
REAL1, IMAG1, RATE 1, DELAY 1, TSYS1, VEIGHT1,
REFANT 1
Folloving used il 2 polarizations per IF
CLKGD 2, DCLKGD 2, CLKPD 2, DCLKPD 2,
ATMGD 2, DATMGD 2, ATMPD 2, DATPGD 2,
REAL2, IMAG2, RATE 2, DELAY 2, TSYS2, WEIGHT2,
REFANT 1

CLNUMV (MAXCLC) I Element count in each column.
IERR I Return error code, 0=>0K, else TABINI or TABIO

error.

CCINI
Creates and/or opens for writing (and reading) a specified CC (components table) file.

13-18 CHAPTER 13. TABLES IN AIPS

CCIHI (LUN, NCOL, VOL, CNO, VER, CATBLK, BUF, IERR)
Inputs:

LUN
VOL
CNO

In/out:
NCOL
VER

CATBLK
Output:

BUF

IERR

(256)

(768)

Logical unit number to use
Disk number
Catalog number

Number ol columns: 3 or 7 are alloved.
Input: desired version number 0 -> nev
Output: that used
File catalog header block

First 512 words required lor later calls to
TABIO
Error codes Irom TABINI or TABIO

C C M E R G
Sorts AIPS CC tables to bring all components at the same cell together, then it sums them, and finally it
resorts the file into the original order (by flux of the new components).

CCMERG (DISK, CNO, INVER, OUTVER, INPCMP, OUTCMP,
* JBUFS, BUFFER, IRET)

Inputs:
DISK I File disk number
CHO I File catalog number
JBUFS I Humber R vords in BUFFER

In/out:
IHVER I Input CC version number: 0 => MAXVER
OUTVER I Output CC version number: 0 => MAXVER+1

Output:
IHPCMP I Humber components on input.
OUTCMP I Humber components on output.

Common: /MAPHDR/ CATBLK lor the allected image lile
The routine assumes that the CATBLK is in this common already and
that the lile has been opened in the catalog lor WRITE. (The image
lile itsell does not need to be open.) The routine assumes that
the DFIL.INC common is initialized especially IBAD (BADDISK).

CHNDAT
Routine to create/fill/read CH /FQ extension tables. We are phasing out CH tables, so this routine will read
them, but will only write FQ tables.

CHNDAT (OPCODE, BUFFER, DISK, CHO, VER, CATBLK, LUH,
* HIF, FOFF, ISBAHD, FREQID, IERR)

Inputs:
Operation code:
’WRIT’ = create/init lor vrite or read
'READ* - open lor read only
I/O buller and related storage, also delines
lile il open.
Disk to use.
Catalog slot number
Catalog header block.

OPCODE C*4

BUFFER 1(512)

DISK
CHO
CATBLK

I
I
1(256)

13.6. ROUTINES 13-19

LUI I Logical unit number to use
FREQID I Frequnecy ID #, il FQ tables exists

Input/Output:
VER I CH lile version
IIF I lumber ol IFs.
FOFF D(*) Frequency ollset in Hz Irom rel. Ireq

True = relerence + ollset.
ISBAID I(*) Sideband ol each IF.

-1 => 0 video Ireq. is high Ireq. end
1 => 0 video Ireq. is lov Ireq. end

Output:
IERR I Return error code, 0=>0K, else TABINI

error, -1 => tried to create/write an. FQ table

CHNCOP
Copies selected portions of a Frequency (FQ) table extension file.

CHICOP (IIVER, OUTVER, LUIOLD, LUIIEV, VOLOLD,
* VOLIEV, CIOOLD, CIOIEV, CATOLD, CATIEV, BIF, EIF, FREQID,
* BUFFI, V0RK1, W0RK2, IRET)

Inputs:
LUI lor old lile
LUI lor nev lile
Disk number lor old lile.
Disk number lor nev lile.
Catalog slot number lor old lile
Catalog slot number lor nev lile
First IF to copy to output.
Last IF to copy.
FREQ ID to copy.
Catalog header lor old lile.

LUIOLD
LUIIEV
VOLOLD
VOLIEV
CIOOLD
CIOIEV
BIF
EIF
FREQID
CATOLD(256)

In/out:
IIVER
OUTVER

CATIEV(256)I
Output:

BUFFI(256) I
V0RK1(512) D
V0RK2(512) I
IRET I

Version number to copy, 0 => copy all.
Version number on output lile, il more than one
copied (IIVER=0) this vill be the number ol the
lirst lile. II OUTVER - 0, it vill be taken as
1 higher than the previous highest version.
Catalog header lor nev lile.

Vork buller
Vork buller to hold Irequency table.
Vork buller to hold sideband table.
Return error code 0 => ok

6 => asked lor too many IFs.
other = CHIDAT error.

CLREFM
Routine to change the form at of the CL table from an old one to a new form at if necessary.
NOTE: routine uses LUN 45 as a temporary logical unit number.

CLREFM (DISK, CIO, VER, CATBLK, LUI, IRET)
Inputs:

13-20 CHAPTER 13. TABLES IN AIPS

DISK I Volume number
CNO I Catalogue number
VER I Version to check/modify
CATBLK(256) I Catalogue header
LUN I LUN to use

Output:
IRET I Error, 0 => OK

Note, routine will leave no trace of its operation, i.e. CL table
will be closed on output and will have same number as one specified.
Difference will be only that number of columns has changed if that
is required.

F L G IN I
Creates and initializes FLAG (FG) extension tables.

FLGINI (OPCODE, BUFFER, DISK, CNO, VER, CATBLK, LUN,
* IFGRNO, FGKOLS, FGNUMV, IERR)

Inputs:
OPCODE C*4 Operation code:

’WRIT* = create/init for write or read
'READ' = open for read only

BUFFER(512) I I/O buffer and related storage, also defines file
if open.

I Disk to use.
I Catalog 8lot number
I FG file version
I Catalog header block.
I Logical unit number to use

DISK
CNO
VER
CATBLK(256)
LUN
Output:
IFGRNO

FGKOLS(MAXFGC) I

FGNUMV(MAXFGC) I
IERR I

Next scan number, start of the file if 'READ',
the last+l if VRITE
The column pointer array in order, SOURCE,
SUBARRAY, ANTS, TIMERANG, IFS, CHANS, PFLAGS,
REASON
Element count in each column.
Return error code, 0=>0K, else TABINI or TABIO
error.

F Q IN I
Creates and initializes frequency (FQ) extension tables.

FQINI (OPCODE, BUFFER, DISK, CIO, VER, CATBLK, LUN,
* IFQRIO, FQKOLS, FQIUMV, IUMIF, IERR)

Input8:
OPCODE C*4 Operation code:

'WRIT* = create/init for write or read
’READ' = open for read only

BUFFER(4096) I I/O buffer and related storage, also defines file
if open.

DISK I Disk to use.
CIO I Catalog slot number

13.6. ROUTINES 13-21

VER I FQ file version
CATBLK(256) I Catalog header block.
LUN I LogiCctl unit number to use

Input/output
NUMIF I Number of IFs

Output:
IFQRIO I Next row number, start of the file if ’READ*,

the last+1 if VRITE
FQKOLS(MAXFQC) I The column pointer array in order:

FQID, IFFREQ, IFCHW, IFTBW, IFSIDE
FQNUMV(MAXFQC) I Element count in each column.
IERR I Return error code, 0=>0K, else TABINI or TABIO

error.

GETNAN
Determines the number of subarrays in a data set from the number of AN files and returns the highest
antennas number in each subarray If no antennas Me found, one subarray with 28 antennas assumed. If
an error occurs, information about subarrays from AN files found is returned; although an error code is
returned.

GETNAN (DISK, CHO, CATBLK, LU1, BUFFER, HUMAI, IRET)
Inputs:

DISK I Disk to use.
CIO I Catalog slot number
CATBLK 1(256) Catalog header block.
LUN I Logical unit number to use
BUFFER 1(512) I/O buffer and related storage.

Output:
NUMAN 1(51) 1st element = no. subarrays followed by

the highest antenna number in each subarray
IRET I Return error code, 0 => ok,

else TABIVI or TABIO error.
10 = no AN files.

NDXINI
Creates and initializes INDEX (NX) extention tables.

NDXIVI (OPCODE, BUFFER, DISK, CIO, VER, CATBLK, LUN,
* INXRNO, NXKOLS, NXNUMV, IERR)

Inputs:
OPCODE C*4 Operation code:

’WRIT’ = create/init for vrite or read
’READ’ = open for read only

BUFFER(512) I I/O buffer and related storage, also defines file
if open.

DISK I Disk to use.
CIO I Catalog 8lot number
VER I NX file version
CATBLK(256) I Catalog header block.
LUN I Logical unit number to use

Output:
INXRNO I Next scan number, start of the file if ’READ’,

13-22 CHAPTER 13. TABLES IN AIPS

HXKOLS(MAXNXC) I

HXHUMV(MAXHXC) I
IERR I

the last+1 il WRITE
The column pointer array in order, TIME,
TIME IITERVAL, SOURCE ID, SUBARRAY, START VIS,
EHD VIS, FREQID.
Element count in each column.
Return error code, 0>>0K, else TABIHI or TABIO
error.

S N IN I
Creates and initializes solution (SN) extension tables.

SNINI (OPCODE, BUFFER, DISK, CNO, VER, CATBLK, LUN,
* ISNRNO, SNKOLS, SNNUMV, HUMANT, HUMPOL, NUMIF, NUMNOD, GMMOD,
* RANOD, DECNOD, ISAPPL, SNTYPE, IERR)

Inputs:
C*4 Operation code:

'WRIT* = create/init lor write or read
'READ* * open lor read only
I/O buller and related storage, also delines lile
il open.
Disk to use.
Catalog slot number
SN lile version
Catalog header block.
Logical unit number to use

OPCODE

BUFFER(512) I

DISK
CIO
VER
CATBLK(256)
LUV

Input/output
NUMANT
HUMPOL
HUMIF
NUMNOD

GMMOD R
RANOD(*) R
DECNOD(*) R
ISAPPL L

SHTYPE I
Output:

ISHRHO I

SHKOLS(MAXSHC) I

SHHUMV(MAXSHC)
IERR I

Humber ol antennas
Humber ol IFs per group
Humber ol IF groups
Humber ol interpolation nodes. Vill handle
up to 25 interpolation nodes.
Mean gain modulus
RA ollset ol interpolation nodes (deg.)
Dec. ollset ol interpolation nodes (deg.)
True il this SH table has been applied to
the CL table.
"solution" type, l=>"Clock", 2=>"atmosphere"

Hext scan number, start ol the lile il ’READ’,
the last+l il VRITE

The column pointer array in order, TIME,
TIME IHT., SOURCE ID., AHTEHHA HO., SUBARRAY,
FREQ. ID., IFR, HODE HO.,
REAL1, IMAGI, DELAY1, RATE1, VEIGHT1, REFAHT 1,
Following used il 2 polarizations per IF
REAL2, IMAG2, DELAY2, RATE2, VEIGHT2, REFAHT 2
Element count in each column.

Return error code, 0=>0K, else TABIHI or TABIO
error.

S N R E F M
Routine to change the form at of the SN table from an old one to the new one if necessary.
NOTE: routine uses LUN 45 as a temporary logical unit number.

13.6. ROUTINES 13-23

SHREFM (DISK, CHO, VER, CATBLK, LUH, IRET)
Inputs:

DISK I
CHO I
VER I
CATBLK(256) I
LUH I

Output:
IRET I

Volume number
Catalogue number
Version to check/modify
Catalogue header
LUH to use

Error, 0 => OK

Note, routine vill leave no trace of its operation, i.e. SN table
vill be closed on output and vill have same number as one specified.
Difference vill be only that number of columns has changed if that
is required.

SOUINI
Creates and initializes SOURCE (SU) extension tables.

SOUIHI (OPCODE, BUFFER, DISK, CHO, VER, CATBLK, LUH,
* HUMIF, VELTYP, VELDEF, ISURHO, SUKOLS, SUHUMV, IERR)

Inputs:
OPCODE C*4 Operation code:

'WRIT’ = create/init for write or read
’READ’ = open for read only

BUFFER(512) I I/O buffer and related storage, also defines file
if open.

I Disk to use.
I Catalog slot number
I SU file version
I Catalog header block.
I Logical unit number to use

DISK
CHO
VER
CATBLK(256)
LUH

Input/Output:
HUMIF
VELTYP
VELDEF

Output:
ISURHO

I Table keyvord, gives the number of IFs
C*8 Velocity type,
C*8 Velocity defination ’RADIO*,’OPTICAL’,

SUKOLS(MAXSUC) I

SUHUMV(MAXSUC) I
IERR I

Hext scan number, start of the file if ’READ’,
the last+l if WRITE
The column pointer array in order, ID. HO.,
SOURCE, QUAL, CALCODE, IFLUX, QFLUX, UFLUX,
VFLUX, FREQO, BAHDWIDTH, RAEPO, DECEPO, EPOCH,
RAAPP, DECAPP, LSRVEL, LRESTF, PMRA, PMDEC
Element count in each column.
Return error code, 0=>0K, else TABIHI or TABIO
error.

TABAN
Does I/O to Antenna (AN) tables. Usually used after setup by ANTINI.

TABAH (OPCODE, BUFFER, IAHRHO, AHKOLS, AHHUMV, AHHAME,
* STAXYZ, ORBPRM, HOSTA, MITSTA, STAXOF, POLTYA, POLAA, POLCA,
* POLTYB, POLAB, POLCB, IERR)

13-24 CHAPTER 13. TABLES IN AIPS

Inputs:
OPCODE C*4 Operation code:

’READ’ = read entry Irom table.
’WRIT’ = vrite entry in table.
’CLOS’ = close lile, Hush on vrite

BUFFER 1(512) I/O buller and related storage, also delines
lile il open. Should have been returned by
ANTINI or TABINI.

IANRNO I Next scan number to read or write.
ANKOLS I(MAXANC) The column pointer array in order, ANNAME,

STABXYZ, ORBPARM, NOSTA, MNTSTA, STAXOF, POLTYA
POLAA, POLCALA, POLTYB, POLAB, POLCALB

ANNUMV I(MAXANC) Element count in each column.
Input/output: (vritten to or read Irom antenna lile)

ANNAME C*8 Station name
STAXYZ D(3) X,Y,Z ollset Irom array center
ORBPRM D(*) Orbital parameters.
NOSTA I Station number
MNTSTA I Mount type, 0=altaz, l=equatorial, 2=orbiting
STAXOF R Axis ollset
POLTYA C*2 Feed A leed poln. type ’R ’,’L ’,*X*,’Y ’
POLAA R Feed A leed position angle.
POLCA R(*) Feed A poln. cal parameter, (note 2)
POLTYB C*2 Feed B leed poln. type ’R ’,’L ’,*X’,*Y’
POLAB R Feed B leed position angle.
POLCB R(*) Feed B poln. cal parameters.

Output:
IANRNO I Next GAIN number.
IERR I Error code, 0->0K else TABIO error.

Note: -1=> read but record deselected.
Usage VOTE:: use the include ’DANT.INC’ lor the declarations in
ANTINI and TABAN.

TABBL
Does I/O to baseline (BL) extention tables. Usually used after setup by BLINI.

TABBL (OPCODE, BUFFER, IBLRVO, BLKOLS, BLIUMV,
* NUMPOL, TIME, SOURID, SUBA, ANTI, ANT2, FREQID,
* FACMUL, FACADD, IERR)

Inputs:
OPCODE C*4 Operation code:

’READ' = read entry Irom table.
’WRIT’ = vrite entry in table.
’CLOS’ - close lile, H ush on vrite

BUFFER(1024) I I/O buller and related storage, also delines lile
il open. Should have been returned by BLINI or
TABINI.

IBLRNO I Next entry number to read or vrite.
BLKOLS(MAXBLC) I The column pointer array in order, TIME,

SOURID, SUBARRAY, ANTENNA1, ANTENNA2, FREQID,
REALM1, IMAGM1, REALA1, IMAGA1,
Following used il 2 polarizations per IF
REALM2, IMAGM2, REALA2, IMAGA2.

13.6. ROUTINES 13-25

BLNUMV(MAXBLC)
NUMPOL

Input/output:
TIME
SOURID
SUBA
AIT1
AVT2
FREQID

I Element count in each column.
I Number of polarizations per IF.
(written to or read from baseline file)

FACMUL(2,2,m)R

FACADD(2,2,m)R
Output:

IBLRNO I
IERR I

Center time of record (Days)
Source ID number.
Subarray number.
First antenna number.
Second antenna number.
Freqid #
Multiplicative correction, m IFs
second dimension is polarization,
(1,*,*) = real, (2,*,*) = imag.
Additive correction, m IFs

Next solution number.
Error code, 0=>0K else TABIO error.
Note: -1=> read but record deselected.

TABBP
Does I/O to bandpass (BP) extention tables. Usually used after setup by BPINI.

TABBP (OPCODE, BUFFER, IBPRIO, BPKOLS, BPMUMV,
* IUMIF, NUMFRQ, NUMPOL, TIME, INTERV, SOURID, SUBA, ANT,
* BANDW, IFFREQ, FREQID, REFANT, REAL, IMAG, IERR)

Inputs:
OPCODE C*4 Operation code:

’READ* = read entry from table.
’WRIT' = write entry in table.
’CLOS' = close file, flush on write

BUFFER(4096) I I/O buffer and related storage, also defines file
if open. Should have been returned by BPINI or
TABINI.

IBPRNO I Next entry number to read or write.
BPKOLS(MAXBPC) I The column pointer array in order,

TIME, INTERVAL, SOURID,
SUBARRAY, ANTENNA,
BANDV (of individual channel), IFREQ, FREQID,
REFANT1, REAL1, IMAG1, .. etc for all channels
Following used if 2 polarizations per IF
REFANT2, REAL2, IMAG2.

BPNUMV(MAXBPC) I Element count in each column.
NUMIF I Number of IF’s
NUMFRQ I Number of chns
NUMPOL I Number of polarizations per IF.
iput/output: (written to or read from baseline file)
TIME D Center time of record (Days)
INTERV R Time interval of record (Days)
SOURID I Source ID number.
SUBA I Subarray number.
ANT I Antenna number.
BANDV R Bandwidth of an individual channel (Hz)
IFFREQ (m) D Reference frequency for each IF (Hz)
FREQID I Freq. id number

13-26 CHAPTER 13. TABLES IN AIPS

Reference Antenna; one for each poln
Real part of complex bandpass
m IFS; n channels; 2 polns
Imag part of complex bandpass
m IFS; n channels; 2 polns

Next solution number.
Error code, 0=>0K else TABIO error.
Note: -1=> read but polzn #1 flagged

-2=> read but polzn #2 flagged
-3=> both flagged

TABCAL
Does I/O to CALIBRATION (CL) extention tables. Usually used after setup by CALINI.

TABCAL (OPCODE, BUFFER, ICLRNO, CLKOLS, CLNUMV,
* NUMPOL, NUMIF, TIME, TIMEI, SOURID, ANTNO, SUBA, FREQID, IFR,
* GEODLY, GEOPHA, GEORAT, DOPOFF, CLKGD, DCLKGD, CLKPD, DCLKPD,
* ATMGD, DATMGD, ATMPD, DATMPD, CREAL, CIMAG, DELAY, RATE, TSYS,
* WEIGHT, REFA, IERR)

Inputs:
OPCODE C*4 Operation code:

’READ' = read entry from table.
'WRIT' = write entry in table.
'CLOS' = close file, flush on write

BUFFER(512) I I/O buffer and related storage, also defines file
if open. Should have been returned by TABINI or
TABINI.

ICLRNO I Next scan number to read or write.
CLKOLS(MAXCLC) I The column pointer array in order, TIME,

TIME INT., SOURCE ID., ANTENNA NO., SUBARRAY,
FREQID, IFR (Ionesph. Faraday Rot.),
GEODELAY, GEOPHASE, GEORATE, DOPPOFF,
CLKGD 1, DCLKGD 1, CLKPD 1, DCLKPD 1,
ATMGD 1, DATMGD 1, ATMPD 1, DATPGD 1,
REAL1, IMAG1, RATE 1, DELAY 1, TSYS1, WEIGHT1,
REFANT 1
Following used if 2 polarizations per IF
CLKGD 2, DCLKGD 2, CLKPD 2, DCLKPD 2,
ATMGD 2, DATMGD 2, ATMPD 2, DATPGD 2,
REAL2, IMAG2, RATE 2, DELAY 2, TSYS2, WEIGHT2,
REFANT 2

CLNUMV(MAXCLC) I Element count in each column.
NUMPOL I Number of polarizations per IF.
NUMIF I Number of IFs.
lput/output: (written to or read from CAL file)
TIME D Center time of CAL record (Days)
TIMEI R Time interval covered by record (days)
SOURID I Source ID as defined in the SOURCE table
ANTNO I Antenna number.
SUBA I Subarray number.
FREQID I Freqid #
IFR R Ionospheric Faraday Rotation (rad/m**2)

REFANT(2) I
REAL(2,n,m) R

IMAG(2,n,m) R

Output:
IBPRNO I
IERR I

13.6. ROUTINES 13-27

GEODLY
GEOPHA
GEORAT
DOPOFF(*)
CLKGD(2,*)
DCLKGD(2,*)
CLKPD(2,*)
DCLKPD(2, *)
ATMGD(2,*)
DATMGDC2,*)
ATMPD(2,*)
DATMPDC2,*)
CREAL(2,*)
CIMAG(2,*)
DELAY(2,*)
RATE(2,*)
TSYS(2,*)
WEIGHT(2,*)
REFA(2,*)

Output:
ICLR10
IERR

D Geometric delay at TIME (sec)
D Phase of sinusoid (turns)
D Time rate of change of GEOPHA (Hz)
R Doppler offset for each IF (Hz)
R "Clock" Group delay (sec) 1/poln/IF
R Time derivative of "Clock" Group delay (sec/sec)
R "Clock" Phase delay (sec) 1/poln/IF
R Time derivative of "Clock" Phase delay (sec/sec)
R "Atmos" Group delay (sec) 1/poln/IF
R Time derivative of "Atmos" Group delay (sec/sec)
R "Atmos" Phase delay (sec) 1/poln/IF
R Time derivative of "Atmos" Phase delay (sec/sec)
R Real part of the complex gain, 1/poln/IF
R Imag part of the complex gain, 1/poln/IF
R Residual group delay (sec), 1/poln/IF
R Residual fringe rate (Hz), 1/poln/IF
R System temperature (K), 1/poln/IF
R Weight of solution, 1/poln/IF
I Reference antenna use for cal. solution.

I Iext CAL number.
I Error code, 0=>0K else TABIO error.

Note: -1=> read but record deselected.

TABFLG
Does I/O to FLAG (FG) extention tables. Usually used after setup by FLGINI.

TABFLG (OPCODE, BUFFER, IFGRHO, FGKOLS, FGNUMV,
* SOURID, SUBA, ANTS, TIMER, IFS, CHANS, PFLAGS, REASON, IERR)

Inputs:
OPCODE C*4 Operation code:

'READ' = read entry from table.
'WRIT* = vrite entry in table (must have been
opened vith 'WRIT'.
'FLAG' = like 'WRIT' but entry deselected.
'CLOS' = close file, flush on vrite

I I/O buffer and related storage, also defines file
if open. Should have been returned by FLGINI or
TABINI.

I Next FLAG entry number to read or vrite.
I The column pointer array in order, SOURCE,

SUBARRAY, ANTS, TIMERAIG, IFS, CHANS, PFLAGS,
REASON

I Element count in each column.

BUFFER(512)

IFGRNO
FGKOLS(MAXFGC)

FGNUMV(MAXFGC)
Input/output: (vritten to or read from FLAG file)

SOURID I Source ID as defined in the SOURCE table.
SUBA I Subarray number.
AVTS(2) I Antenna numbers, 0=>all
TIMER(2) R Start and end time of data to be flagged (Days)
IFS(2) I First and last IF numbers to flag. 0=>all
CHANS(2) I First and last channel numbers to flag. 0=>all
PFLAGS(4) L Polarization flags, sane order as in data.

.TRUE. => polarization flagged.

13-28 CHAPTER 13. TABLES IN AIPS

REASON 0 2 4 Reason lor llagging
Output:

IFGRNO I Next scan number.
IERR I Error code, 0=>0K else TABIO error.

Note: -1=> read but record deselected.

TABFQ
Does I/O to frequency (FQ) extension tables. Usually used after setup by FQINI.

TABFQ (OPCODE, BUFFER, IFQRNO, FQKOLS, FQNUMV,
* NUMIF, FQID, IFFREQ, IFCHW, IFTBW, IFSIDE, IERR)

Inputs:
C*4 Operation code:

'READ' = read entry Irom table.
'WRIT' = write entry in table.
'CLOS* = close lile, Hush on write

I I/c0 buller and related storage, also delines lile
il open. Should have been returned by FQINI or
TABINI.

I Next entry number to read or write.
I The column pointer array in order,

FQID, IFFREQ, IFCHW, IFTBW, IFSIDE
I Element count in each column.
I Number ol IF's

OPCODE

BUFFER(4096)

IFQRNO
FQKOLS(MAXFQC)

FQNUMV(MAXFQC
NUMIF

Input/output: (written to or read Irom Irequency table)
FQID I Frequency ID number, is random parameter

in uv-data.
IFFREQ(*) D Relerence Irequency lor each IF (Hz)
IFCHW(*) R Bandwidth ol an individual channel (Hz)
IFTBW(*) R Total bandwidth ol the IF (Hz)
IFSIDE(*) I Sideband ol the IF (-1 => lower, +i => upper)

Output:
IFQRNO I Next row number.
IERR I Error code, 0->0K else TABIO error.

TABNDX
Does I/O to INDEX (NX) extention tables. Usually used after setup by NDXINI.

TABNDX (OPCODE, BUFFER, INXRNO, NXKOLS, NXNUMV,
* TIME, DTIME, IDSOUR, SUBARR, VSTART, VEND, FREQID, IERR)

Inputs:
OPCODE C*4 Operation code:

’READ' = read entry Irom table.
'WRIT' = write entry in table.
’CLOS* - close lile, llush on write

BUFFER(512) I I/O buller and related storage, also delines lile
il open. Should have been returned by NDXINI or
TABINI.

INXRNO I Next scan number to read or write.
NXKOLS(MAXNXC) I The column pointer array in order, TIME,

TIME INTERVAL, SOURCE ID, SUBARRAY, START VIS,
END VIS, FREQID.

13.6. ROUTINES 13-29

NXNUMV(MAXNXC) I Element count in each column, set by NDXINI.
Input/output: (written to or read from INDEX file)
TIME R Center time of the scan (Days)
DTIME R Duration of scan (Days)
IDSOUR I Source ID as defined in then SOURCE
SUBARR I Subarray number.
VSTART I First visibility number in file.
VEND I Last visibility number in file.
FREQID I Freqid of scan
itput:
INXRNO I Next scan number.
IERR I Error code, 0=>0K else TABIO error.

Note: -1=> read but record deselected.

T A B SN
Does I/O to solution (SN) extention tables. Usually used after setup by SNINI.

TABSN (OPCODE, BUFFER, ISNRNO, SNKOLS, SNNUMV,
* NUMPOL, TIME, TIMEI, SOURID, ANTNO, SUBA, FREQID, IFR,
* NODENO, CREAL, CIMAG, DELAY, RATE, WEIGHT, REFA, IERR)

Inputs:
OPCODE

BUFFER(512) I

ISNRNO I
SNKOLS(MAXSNC) I

SNNUMV(MAXSNC) I
NUMPOL I

Input/output:
TIME
TIMEI
SOURID
ANTNO
SUBA
FREQID
IFR
NODENO
CREAL(2,*)
CIMAG(2,*)
DELAY(2,*)
RATE(2,*)
WEIGHT(2,*)
REFA(2,*)

Output:

C*4 Operation code:
'READ* - read entry from table.
'WRIT* = write entry in table.
’CLOS’ = close file, flush on write
I/O buffer and related storage, also defines file
if open. Should have been returned by TABINI or
TABINI.
Next scan number to read or write.

The column pointer array in order, TIME,
TIME INT., SOURCE ID., ANTENNA NO., SUBARRAY,
FREQID, IFR, NODE NO.,
REAL1, IMAG1, DELAY1, RATE1, WEIGHT1, REFANT 1,
Following used if 2 polarizations per IF
REAL2, IMAG2, DELAY2, RATE2, WEIGHT2, REFANT 2,
Element count in each column.

I Number of polarizations per IF.
(written to or read from solution file)
D Center time of solution record (Days)

Time interval covered by record (days)
Source ID as defined in the SOURCE table.
Antenna number.
Subarray number.
Freqid #
Ionospheric Faraday Rotation (rad/m**2)
Interpolation node number
Real part of the complex gain, 1 /Poln/IF
Imag part of the complex gain, 1 /Poln/IF
Residual group delay (sec), 1 /Poln/IF
Residual fringe rate (Hz), 1 /Poln/IF
Weight of solution, 1 /Poln/IF
Ref. ant. of solution, 1 /Poln/IF

13-30 CHAPTER 13. TABLES IN AIPS

ISNRNO I Next solution number.
IERR I Error code, 0=>0K else TABIO error.

Note: -1=> read but record deselected.

TABSOU
Does I/O to SOURCE (SU) extention tables. Usually used after setup by SOUINI.

TABSOU (OPCODE, BUFFER, ISURNO, SUKOLS, SUNUMV, IDSOU, SOUNAM,
* QUAL, CALCOD, FLUX, FREQO, BANDV, RAEPO, DECEPO, EPOCH,
* RAAPP, DECAPP, LSRVEL, LRESTF, PMRA, PMDEC, IERR)

Inputs:
OPCODE C*4 Operation code:

'READ* = read entry from table.
'VRIT' = write entry in table.
’CLOS’ = close file, flush on write

BUFFER(768) I I/O buffer and related storage, also defines :
if open. Should have been returned by SOUINI <
TABINI.

ISURNO I Next scan number to read or write.
SUKOLS(MAXSUC) I The column pointer array in order, ID. NO.,

SOURCE, QUAL, CALCODE, IFLUX, QFLUX, UFLUX,
VFLUX, FREQO, BANDVIDTH, RAEPO, DECEPO, EPOCH
RAAPP, DECAPP, LSRVEL, LRESTF, PMRA, PMDEC

SUNUMV(MAXSUC) I Element count in each column.
Input/output: (written to or read from SoUrce lile)

IDSOUR I Source ID as defined in the SOURCE table.
SOUNAM C*16 Source name
QUAL I Source qualifier.
CALCOD C*4 Calibrator code
FLUX(4,*) R Total flux density I, Q, U, V pol, (Jy)

1 set per IF.
FREQO(*) D Frequency offset (Hz) from IF nominal.
BANDV D Bandwidth (Hz)
RAEPO D Right ascension at mean EPOCH (degrees)
DECEPO D Declination at mean EPOCH (degrees)
EPOCH D Mean Epoch for position in yr. since year 0.0
RAAPP D Apparent Right ascension (degrees)
DECAPP D Apparent Declination(degrees)
LSRVEL(*) D LSR velocity (m/sec) of each IF
LRESTF(*) D Line rest frequency (Hz) of each IF
PMRA D Proper motion (deg/day) in RA
PMDEC D Proper motion (deg/day) in declination

Output:
ISURNO I Next source number.
IERR I Error code, 0=>0K else TABIO error.

Note: -1=> read but record deselected.

Chapter 14
FITS Tapes

14.1 O verview
The principal route for getting data and images into and out of AIPS is by FITS (Flexible Image Transport
System) format files. FITS is an internationally adopted medium of exchange of astronomical data and
allows easy interchange of da ta between observatories and image processing systems. FITS also has the
advantages th a t it is a self-defining form at and th a t the actual b it pattern on the file is independent of the
machine on which the file was written. The purpose of this chapter is to describe the general features of
FITS and the details of the AIPS implementation. This chapter is not intended to be a rigorous description
of the FITS standards. See the chapter on devices for information on read and writing tapes in AIPS. In
addition to tapes, data can be written into FITS form at files on other media; in these cases the files are
considered to be byte stream s organized into 2880 byte logical records.

The fundamental definition of the FITS system is given in Wells, Greisen, and Harten (1981), with an
extension described in Greisen and Harten (1981). A proposed further extension is given in Harten, Grosbol,
Tritton, Greisen and Wells, (1984). FITS has been adopted as the recommended medium of exchange of
astronomical data by the IAU, the Working Group on Astronomical Software (WGAS) of the AAS, and
comparable working groups in Europe. AIPS now also supports the proposal of these working groups for
the writing of blocked FITS tapes.

Because of the great flexibility of the FITS system, many of its features have been adopted for the internal
data storage form at in AIPS. See the chapter on the catalog header for more details on the AIPS internal
storage format.

There are three main portions of a FITS file (1) the m ain header, (2) the m ain data, and (3) any number
of records containing auxiliary information. In addition, an extension of the original definition of the FITS
structure allows storage of ungridded visibility data. Each of these is discussed in detail in the following
sections.

14.2 Philosophy
FITS is a philosophy as much as a da ta form at. The underlying philosophy is to provide a standardized,
simple, and flexible means to transport data between computers or image processing systems. FITS is
standardized in the sense th a t any FITS reader should be able to read any FITS image, a t least to the
degree tha t the array read is of the correct dimensions and the pixel values have at least the correct relative
scaling. In addition, any FITS reader should be able to cope with any FITS form at tape and, a t least, skip
over portions, or ignore keywords, th a t it doesn’t understand. o

The requirement of simplicity means th a t the implementation of FITS reading and writing should be
fairly straightforward on any computer used for astronomical image processing. Simple also implies th a t the
structure of the file should be self-defining and, to a large degree, self-documenting.

The main advantage of FITS is its flexibility. Due to the self-defining nature of the files, a large range
of data transport needs are fulfilled. The introduction of new keywords gives the ability to add new pieces

14-1

14-2 CHAPTER 14. FITS TAPES

of information as needed, and the use of generalized extension files allows almost unlimited flexibility in the
type of information to be stored. Thus, FITS can grow with the needs of the Astronomical community.

The great flexibility of FITS is a potential weakness as well as a strength. There is a great tem ptation
to proliferate keywords and new extension file types. This should be done with great caution. Since FITS
is a worldwide medium of da ta exchange, there needs to be coordination of keywords and extension files to
prevent duplication and inconsistencies in usage.

The most fundamental philosophical ideal of FITS is that no change in the system should render old tapes
illegal or unreadable. This philosophy is reflected in the AIPS implementation of FITS in that all obsolete
implementations (e.g., old CLEAN component or antenna extension files) are trapped and processed in the
most accurate manner possible.

14.3 Im age Files
The most common form of astronomical information is the image and historically the first FITS tape files
were for multi-dimensional images. The following sections describe FITS image files.

14.3.1 Overall Structure
The structure of a FITS image file consists of one or more records containing ASCII header information
followed by one or more binary data records. (These may be followed by other records which are discussed
in another section.)

All “logical” records on FITS files are 2880 8-bit bytes long, with one or more records per tape block.
Blocking factors from 1 through 10 are now allowed by international agreement and are supported since
the 15APR87 release of AIPS. The number of bits in a FITS record is an even multiple of words and bytes
on any computer ever sold commercially. The definition of FITS allows standard ANSI labeled tapes, but
the AIPS implementation only writes unlabeled tapes. Labeled tapes may be read by AIPS, but verbs like
AVFILE require the user to take the label files into account.

Each FITS header record contains 36 80-byte “card images” written in 7-bit ASCII (sign bit set to
zero). These header records contain all the information necessary to read, and hopefully, label the image.
In addition, other information including the processing history may be given.

Following the header records come the data records. These records contain the pixel values in one of
several binary formats.

14.3.2 Header Records
Each “card image” in the header is in the form,

keyword = value / comment

Keywords should be no more than 8 characters long and the keyword = value should be readable by Fortran
77 list-directed I/O . To accommodate more primitive systems, a fixed format is m andatory for the required
keywords and suggested for the optional keywords. This fixed format is as follows:

1. Keyword name beginning in column 1.
2. “= ” in column 9
3. T or F (logical true or false) in column 30.
4. Real part (integer or floating) right justified, ending in column 30.
5. Imaginary part (integer or floating) right justified, ending in column 50.
6. Character string with a beginning “ ’ ” in column 11 and an ending “ ’ ” in or after column 20

14.3. IMAGE FILES 14-3

The first keyword in a header must be SIMPLE and have a value of T (true), if the file conforms to FITS
standards, and an F (false), if it doesn’t. (The ASCII string “SIMPLE = T ” occupying the first 30 bytes
of a file of 2880-byte records is the “signature” of FITS.) The keywords and values must convey the size
of the image and the number of bits per pixel value. Optionally, the coordinate system, scaling and other
information may be given. In the AIPS implementation, a considerable amount of information is given.

Keywords
The following keywords (data type) are required for ALL FITS files (for all time) in the order given.

1. SIMPLE (logical) says if the file conforms to FITS standards.
2. BITPIX (integer) is the number of bits used to represent the pixel value; 8 = > 8 bit unsigned integers,

16 = > 16 bit, twos complement signed integers, 32 = > 32 bit, twos complement signed integers, -32
= > IEEE 32 bit floating point values, -64 = > IEEE 64 bit floating point values.

3. NAXIS (integer) is the number of axes in the array.
4. NAXIS 1 (integer) is the number of pixels on the fastest varying axis.
5. up to NAXIS999 (integer) is the number of pixels on the 999 th fastest varying axis.
6. END — the last keyword must be END. The last header record should be blank filled past the END

keyword.
AIPS routines can accept up to 7-dimensional images. If a tape might contain more than one logical record
per tape block, then there is an additional required keyword. Since it can do no harm , it should always be
included; it has no meaning for non-tape FITS files. It is

1. BLOCKED (logical) states whether a tape may be blocked with more than one logical record per tape
block.

The following optional keywords were suggested by Wells et. al. (1981). Their order (between the
required keywords and the END keyword) is arbitrary; in general, all of these keywords appear in an AIPS
FITS header.

1. BSCALE (floating) is the scale factor used to convert tape pixel values to true values (true = [tape *
BSCALE] + BZERO).

2. BZERO (floating) is the offset applied to true pixel values (see BSCALE).
3. BUNIT (character) gives the brightness units.
4. BLANK (integer) is the tape pixel value assigned to undefined pixels.
5. OBJECT (character) is the image name.
6. DATE (character) is the date the file was written (’d d /m m /y y ’)
7. DATE-OBS (character) is the date of data acquisition (’d d /m m /y y ’).
8. ORIGIN (character) is the tape writing institution.
9. INSTRUME (character) is the da ta acquisition instrument.

10. TELESCOP (character) is the d a ta acquisition telescope.
11. OBSERVER (character) is the observer name / identification.
12. blank in col 1-8 (none) means columns 9 - 8 0 are a comment.
13. COMMENT (none) means columns 9 - 8 0 are a comment.

14-4 CHAPTER 14. FITS TAPES

14. HISTORY (none) means columns 9 - 8 0 are a comment.
15. CRVALn (floating) is the value of physical coordinate on axis n at the reference pixel.
16. CRPIXn (floating) is the array location of reference pixel along axis n. CRPIX may be a fractional

pixel and/or be outside of the limits of the array.
17. CDELTn (floating) is the increment in physical coordinate along axis n as the array index increases

by 1.
18. CTYPEn (character) is the type of physical coordinate on axis n.
19. CROTAn (floating) is the rotation angle of actual axis n from stated coordinate type.
20. DATAMAX (floating) is the maximum data value in file (after scaling).
21. DATAMIN (floating) is the minimum data value in file.
22. EPOCH (floating) is the epoch of coordinate system (years).

Of these keywords, all are well defined except the rotation; see the chapter on the catalog header for more
details on the current AIPS rotation conventions. AIPS routines can currently read up to 32768 header
records each consisting of 36 card images.

History
In the AIPS implementation, the “HISTORY” cards contain the entries of the history file associated with
the image. As they appear on the tape, these history entries Me in the form:
HISTORY tsknam keyword1=value1, keyword2=value2 ... / comment

where “tsknam ” is the name of the task (or AIPS) making the entry and the keywords are the AIPS adverbs
used. Thus, these history records may be used to carry AlPS-specific values which don’t have official
keywords. This feature is used, for example, to determine the default file name, class, etc. when reading a
file which was written on an AIPS system.

AIPS Non-standard Image File Keywords
There Me a number of keywords used by AIPS which Me not standMd.

1. TABLES (integer) is the number of tables following the file, (now obsolete)
2. DATE-MAP (character) is the date the map was made, (’d d /m m /y y ’)
3. OBSRA (floating) is the Right ascension of the antenna and delay tracking position used for the

observations.
4. OBSDEC (floating) is the declination of the antenna and delay tracking position used for the observa

tions.
5. VELREF (floating) is the reference velocity.
6. ALTRVAL (floating) is the value of the alternate (frequency/velocity) axis a t the alternate reference

pixel (ALTPIX).
7. ALTRPIX (floating) is the alternate (frequency/velocity) reference pixel.
8. RESTFREQ (floating) is the rest frequency of the spectral line being observed.
9. XSHIFT (floating) is the offset of the phase center from the tangent point of the Right ascension after

any rotation.

14.3. IMAGE FILES 14-5

10. YSHIFT (floating) is the offset of the phase center from the tangent point of the declination after any
rotation.

A number of keywords which are specific to AIPS are hidden on HISTORY cards. These keywords are
recognized if the first symbol in columns 10 - 17 is one of the following: ’A IPS’, ’VLACV’, or ’RANCID’.

1. IMNAME (character) the name of the file in an AIPS (or RANCID) system used to generate the FITS
tape.

2. IMCLASS (character) the class of the AIPS file.
3. IMSEQ (integer) the sequence number of the AIPS file.
4. USERNO (integer) the AIPS user number.
5. PRODUCT (integer) the type of CLEAN image. l= > n o rm al clean, 2=>com ponents, 3=>residual,

4=>points.
6. NITER (integer) the number of CLEAN components used for the image.
7. BMAJ (floating) the m ajor axis (FW HP) of the restoring beam, (degrees)
8. BMIN (floating) the minor axis (FW HP) of the restoring beam.
9. BPA (floating) the position angle (from north through east) of the m ajor axis of the restoring beam.

AIPS also recognizes, but does not write, the following non-standard keywords:
1. OPHRAE11 (floating) an obscure number related to the Right ascension of the center on an image

made on the VLA pipeline PDP11.
2. OPHDCE11 (floating) an obscure number related to the declination of the center on an image made

on the VLA pipeline PDP11.
3. MAPNAM11 (character) the name of the file on the VLA pipeline PDP11.

Any keywords which are not recognized by AIPS are written into the history file.

Coordinate Systems
The coordinate type and the system used for each type is given by the CTYPEn values. The character strings
used for these values are identical to the strings used in the AIPS catalog header record (CAT4(K4CTP+n-
1)). The coordinate type is encoded into the first 4 characters of the coordinate type string (e.g., ’R A -’
indicating Right ascension) and the system used is encoded into characters 5 - 8 (e.g., ’-SIN’ indicating a
sine projection onto the sky). The coordinate systems and their symbolic names are described in detail in
the chapter on the catalog header and AIPS Memo Numbers 27 and 46. The coordinate system used to
describe the polarization of an image needs careful attention.

The AIPS convention for projected geometries is to specify the tangent point of the projection as the
reference pixel, even though this need not correspond to an integer pixel and need not even be contained
in the array given. The tangent point is the position on the sky where the plane on which the image is
projected is tangent to the celestial sphere. For images derived from synthesis arrays, this is the position
for which u, v, and w were computed. The reference pixel for a synthesis array beam image is the phase
reference of the image; this should be the position of the peak of the beam (pixel value = 1.0).

The use of one rotation angle per axis cannot be used to define a general rotation of the axis system.
Since the AIPS catalog header uses the same convention, the same problems occur internally to AIPS. See
the chapter on the AIPS catalog header for a brief discussion of the conventions used in AIPS. The same
conventions are used when reading and writing FITS tapes.

14-6 CHAPTER 14. FITS TAPES

Example Image Header
The following is an example of an image header written by AIPS (with most of the HISTORY entries
removed).
000000000111111111122222222223333333333444444444455555555556666666666
123456789012345678901234567890123456789012345678901234567890123456789
SIMPLE = T
BITPIX = 16
NAXIS = 4
NAXIS1 = 2048
NAXIS2 = 1024
NAXIS3 = 1
NAXIS4 = 1
EXTEND = T Tables following main image
BLOCKED = T Tape may be blocked
OBJECT = ’3C405 ’ Source name
TELESC0P= 1)
INSTRUME= } }

OBSERVER^ ’PERL ’
DATE-0BS= ’27/10/82’ Observation start date dd/mm/yy
DATE-MAP= ’14/07/83’ Date of last processing dd/mm/yy
BSCALE = 7.04625720812E-05 Real = Tape * BSCALE + BZERO
BZERO = 2.18688869476E+00
BUHIT = ’JY/BEAM ’ Units of flux
EPOCH = 1.950000000E+03 Epoch of RA, Dec
DATAMAX = 4.495524406E+00 Max pixel value
DATAMIM = -1.217470840E-01 Min pixel value
CTYPE1 = ’RA-- SIM’
CRVAL1 = 2.99435165226E+02
CDELT1 = -4.166666986E-05
CRPIX1 = 1.024000000E+03
CR0TA1 = 0.000000000E+00
CTYPE2 = ’DEC— SIM’
CRVAL2 = 4.05961940065E+01
CDELT2 = 4.166666986E-05
CRPIX2 = 5.130000000E+03
CR0TA2 = 0.000000000E+00
CTYPE3 = ’FREQ ’
CRVAL3 = 4.86635000000E+09
CDELT3 = 1.250000000E+07
CRPIX3 = 1.000000000E+00
CR0TA3 = 0.000000000E+00
CTYPE4 = ’STOKES ’
CRVAL4 = 1.00000000000E+00
CDELT4 = 1.000000000E+00
CRPIX4 = 1.000000000E+00
CR0TA4 = 0.000000000E+00
HISTORY UVLOD /DATA BASE CREATED BY USER 76 AT 14-JUL-1983 10:17:
HISTORY UVLOD 0UTMAME= ’CYGA ’ OUTCLASS-’XY ’
HISTORY UVLOD OUTSEQ= 1 OUTDISK= 3

ORIGIV ’AIPSNRAO VLA VAX3 ' /
DATE = ’19/08/83’ / TAPE VRITTEI OH DD/MM/YY
HISTORY AIPS IMHAME=’CYGA ’ IMCLASS=’IMAP ’ IMSEQ= 1

HISTORY AIPS USERNO= 76
END

14.4. RANDOM GROUP (UV DATA) FILES 14-7

Units
The units for pixel values and coordinate systems should be SI units where appropriate (e.g., velocities in
meters/sec); angles in degrees; pixel values in Jy, Jy /beam , magnitudes, or m agnitudes/pixel.

14.3.3 Data Records
The data array starts at the beginning of the record following the last header record. The data occurs in the
order defined by the header - in increasing pixel number, with axis 1 the fastest varying and the last axis
defined the slowest varying. D ata is packed into the 2880 byte records with no gaps; tha t is, the first pixel
of any given axis does not necessarily appear in the first word of a new record.

The bits in each word are in order of decreasing significance with the sign bit first. This convention
means the PDP-11 and VAX machines will have to reverse the order of the bytes in 16- and 32-bit words
before writing, or after reading, the tape. There are a number of AIPS utility routines for converting FITS
tape data to the local convention; these are briefly described in the following list. Complete details of the
call sequences etc. are given a t the end of the chapter on the Z routines.

1. ZCLC8 converts local characters to standard 8-bit ASCII.
2. ZC8CL extracts 8-bit standard characters from a buffer and stores them in the local character form.
3. ZI16IL extracts 16-bit twos complement integers from a buffer and puts them in a local integer array.
4. ZI32IL extracts 32-bit twos complement integers from a buffer and puts them in a local array of integers.
5. ZI8IL converts 8-bit unsigned binary numbers to local integers.
6. ZILI16 converts a buffer of local integers to a buffer of standard 16-bit, twos complement integers.
7. ZRLR32 converts local single precision floating point values to IEEE 32 bit values.
8. ZRLR64 converts local double precision floating point values to IEEE 64 bit values.
9. ZR32RL converts IEEE 32 bit floating point values to local single precision.

10. ZR64RL converts IEEE 64 bit floating point values to local double precision.
11. ZR8P4 converts between IBM form at integers and double precision .

14.4 Random Group (U V data) Files
The extension of the original FITS standards described by Greisen and Harten (1981) allows uv data to be
written in FITS files. These files are called “Random group” FITS files. This extension is to allow multiple
“images,” i.e., rectangular d a ta arrays, each of which^is arbitrarily located on some “axes” . Thus, each data
array is preceded by a number of “random ” parameters which describe its location on axes on which it is not
regularly gridded, e.g., u, v, w, time, and baseline. The definition of what constitutes an “axis” is extremely
vague. Currently, AIPS FITS routines can accept up to 7 actual axes in the regular portion of a group and
up to 20 random param eter words; the AIPS catalog header has space for 14 random param eter labels. The
structure of a group is shown in the following.

14-8 CHAPTER 14. FITS TAPES

I rl, r2, r3, ... rk I pll, pl2, ... pmn |

where rl ... rk are random parameters 1 through k
pll ... pmn are the pixel values in the order

defined for image arrays. Two dimensions
are used only for demonstration.

FITS image files are actually a subset of this more general structure, but, for historical reasons, the random
group FITS is treated as a special case of the image file. This has unfortunate consequences as will shortly
become obvious. Most of the features of random group files are identical to image files and the discussion in
the following section will concern the differences between image and random group FITS files.

AIPS uv data files will generally have a number of associated extension tables. The FITS format for
these tables is described later in this chapter; the details of the tables themselves are given in the chapter
on calibration and editing.

14.4.1 Header Record
For obscure historical reasons, random group FITS files are declared to have zero pixels on the first axis; the
first real axis is labeled axis 2 and so on. This will allow FITS image readers th a t don’t know about random
group files to do something reasonable, i.e., skip over the file. Thus a random group FITS file has one more
axis described in the header than actually occurs in the data.

In addition to playing games with the axis numbers, random group FITS headers have the following
required keywords (in any order):

1. GROUPS (logical) is true (T) if the data file is a random group FITS file.
2. PCOUNT (integer) is the number of random parameters preceding each data array.
3. GCOUNT (floating) is the number of groups in the file.

The random parameters may be labeled and scaled in a fashion similar to image axes and pixels. In addition,
multiple-word precision in some of the random parameters is allowed by giving multiple random parameters
the same label. If several random parameters have the same name (PTYPE), their values should be summed
after scaling. Labeling and scaling use the following optional keywords (arbitrary order):

1. PTYPEn (character) is the label for the n-th random parameter. If several random parameters have
the same value of PTY PEn they should be summed after scaling.

2. PSCALn (floating) gives the scale factor for random parameter n. True.value = tape.value * PSCALn
+ PZEROn

3. PZEROn (floating) gives the scaling offset for random param eter n.
A number of keywords, which are specific to AIPS, are hidden on HISTORY cards. These keywords are
recognized if the first symbol in columns 10 - 17 is one of the following: ’A IPS’, ’VLACV’, or ’RANCID’.

1. SORT ORDER (character) the order of the groups.
2. WTSCAL (floating) an additional scaling factor for visibility weights.

14.4.2 Data Records
The binary data records are stored, beginning in the first record following the last header record, in much
the same way that image files are stored; the beginning of a group does not necessarily correspond to the
beginning of a record. The same pixel data types are allowed as for image files (note: the data type must
be the same for all values, both random parameters and the “data” array).

14.4. RANDOM GROUP (UV DATA) FILES 14-9

Units of Random Parameters
The FITS conventions do not include a way of specifying the units of random parameters; however, SI units
should be used where possible. The conventions used by AIPS for the random param eter types (PTYPEn)
are given in the following:

1. ’U U \ ’VV’, ’W W ’: These are the spatial frequency coordinates in seconds of light travel time.
2. ’BASELINE’: This is the baseline code as antennal*256 -f antenna2 + 0.01 * (array -1). Antenna

numbers specify entries in the Antenna table (’AIPS AN’) following the data. Each array has an
antenna table; the version (EXTVER) number of the table is the array number.

3. ’DATE’: The time tags for the data are kept in the form of Julian date in days.
4. ’SOURCE’: The source identification number specifies an entry in the source (’AIPS SU’) table, which

must follow the data if this random param eter is present.
5. ’FQID’: The frequency/bandwidth identification number specifies an entry in the frequency (’AIPS

FQ ’) table, which must follow the data if this random param eter is present.

Units of the Regular Axis Coordinates
The units of the regular axis coordinates are defined by convention; the conventions used by AIPS for the
regular axis types (CTYPEn) are the following:

1. ’COMPLEX’: the complex axis consists of the brightness, baseline value subtracted, and (optional)
weight. Magic value blanking is supported.

2. ’STOKES’: this axis is used to describe which Stokes’ parameters are given; the conventions are the
same as used internally in AIPS. These conventions are discussed in the chapter on disk I/O .

3. ’FR EQ ’: the frequency axis coordinates are in Hz.
4. ’IF ’: The IF axis is a construct which allows irregularly spaced groups of frequency channels. The IF

number specifies an entry in the (’AIPS FQ ’) table which must follow the data if this axis is present.
This table gives the offsets from the reference frequency specified by the FREQ axis.

5. ’RA’ and ’DEC’: the celestial coordinates are given in degrees.

Weights and Flagging
Uv FITS files written by AIPS have as their first (real, i.e., second in the header) axis the ’COM PLEX’
axis which is dimensioned 3. The values along this axis (coordinate values 1, 2, and 3) are real part (in
Jy), imaginary part, and (optional) weight. A non-positive weight indicates that the the visibility has been
flagged. The scaling desired for the weight may be different than th a t for the real and imaginary parts, so
an additional scaling factor is stored in the header as a HISTORY entry as follows:
HISTORY AIPS VTSCAL = 2.76756756757E+01

/ CMPLX WTS=WTSCAL*(TAPE*BSCALE+BZERO)

The use of WTSCAL allows the reader to recover the same values for the weights as the AIPS file which was
used to generate the FITS file. If WTSCAL is ignored (or absent), the relative, but not absolute, scaling of
the weights is preserved.

In addition to the form described above, AIPS will accept other forms of weighting/flagging data.
1. Magic value blanking. In this case, the COMPLEX axis is dimensioned 2 (real and imaginary) and the

header keyword BLANK is used to indicate undefined data values. Thus, if either the real or imaginary
parts are ’blanked’, the data is assumed to be flagged (invalid).

2. Random param eter flagging. D ata written on the VLA pipeline/ISIS(?) is in this format. The weights
and flags are passed as random param eters but no one seems to understand the flagging bits.

14-10 CHAPTER 14. FITS TAPES

Antennas and Subarrays
If data from different arrays (or different configurations of an array) are combined, the physical identity of a
given antenna number may not be constant in a given data base. In order to identify the physical antennas
involved in a given visibility record, AIPS uses a subarray number. The (subarray number - 1) * 0.01 is
added to the baseline number to identify the subarray.

There is an antenna file, or list, for each subarray. The information about the antennas (e.g., locations,
etc.) is given in the antenna files. Currently, AIPS writes these files as extension table files (described later)
with the file version number corresponding to the subarray number.

AIPS will also recognize antenna locations given in the HISTORY cards. An example (from Greisen and
Harten 1981) of this follows:
COMMENT ANTENNA LOCATIONS IN NANOSECONDS:
HISTORY VLACV ANT N= 2 X= 5470.525 Y=-14443.276 Z= -8061.210 ST=,AW4>
HISTORY VLACV ANT N= 4 X= 1667.280 Y= -4396.334 Z= -2452.399 ST=,CW8'
HISTORY VLACV ANT N= 5 X= 37.719 Y= 135.627 Z= -50.585 ST=,DE2'
HISTORY VLACV ANT N= 6 X= 3353.710 Y= -8816.123 Z= -4910.700 ST^BWe'
HISTORY VLACV ANT N= 7 X= 118.761 Y= 445.786 Z= -170.397 ST=,DE4’
HISTORY VLACV ANT N= 9 X= 10924.708 Y=-28961.684 Z=-16194.042 ST^'AWe*

COMMENT FORMULA FOR BASELINES BETWEEN ANTENNA I AND J (I<J):
COMMENT BASELINE(IJ) = LOCATION(I) - LOCATION(J)

COMMENT FORMULA FOR UU, W , WW :
COMMENT UU = BX * SIN(HA) + BY * COS(HA)
COMMENT VV = BZ * COS(DEC) + SIN(DEC) * (BY * SIN(HA) - BX * COS(HA))
COMMENT WW = BZ * SIN(DEC) + COS(DEC) * (BX * COS(HA) - BY * SIN(HA))

WHERE UU AND W ARE THEN ROTATED TO THE EPOCH

The above example also defines the antenna geometry and u, v, and w terms used for VLA data (-SIN
projection).

Coordinates
The coordinate systems used to write FITS uv data tapes are very similar to the AIPS internal systems;
the major difference being the use of ’DATE’ (giving the Julian date) for time tagging the data rather than
’T IM E I’ (giving the time in days from the beginning of the experiment). Another difference is the use of
seconds for u, v, and w in FITS, but wavelengths a t the reference frequency inside AIPS. See the uv data
section of the disk I/O chapter for more details of the AIPS internal uv data coordinate systems.

Sort Order
The ordering of visibility records is variable and may be changed by programs such as AIPS task UVSRT.
The sort order is given as a two character code in the FITS header as in the following example:
HISTORY AIPS SORT ORDER = 'XY*

Data sorted in AIPS has a two-key sort order with the first key varying the slower. The two keys are coded
as characters given by the following table:

B => baseline number
T => tim e o rd e r
U => u spatial frequency coordinate
V => v spatial frequency coordinate
W => w spatial frequency coordinate

14.4. RANDOM GROUP (UV DATA) FILES 14-11

R => baseline length
P => baseline position angle
X => descending ABS(u)
Y => descending ABS(v)
Z => ascending ABS(u)
M => ascending ABS(v)
* => not sorted

14.4.3 Typical VLA Record Structure
The following is a uv FITS header for multi-source, continuum VLA data for data written in scaled 16
bit integers which demonstrates the use of multiple precision random parameters. Most of the HISTORY
records are removed from this example and it has been edited for clarity. The header indicates tha t the data
in this example is followed by extension tables.

000000000111111111122222222223333333333444444444455555555556666666666
123456789012345678901234567890123456789012345678901234567890123456789
SIMPLE = T
BITPIX = 16
MAXIS = 7
MAXIS1 = 0 Mo standard image just group
MAXIS2 = 3
MAXIS3 = 4
MAXIS4 = 1
MAXIS5 = 2
MAXIS6 = 1
MAXIS7 = 1
EXTEMD = T Tables following main image
BLOCKED = T Tape may be blocked
OBJECT = ’MULTI Source name
TELESC0P= ’VLA ’
IMSTRUME- ’VLA
0BSERVER- >VC35 ’
DATE-0BS= ’02/12/84’ Observation start date dd/mm/yy
DATE-MAP= ’09/11/86’ Date of last processing dd/mm/yy
BSCALE = 4.98494155534E-05 Real = tape ♦ BSCALE + BZERO
BZERO = 0.00000000000E+00
BUMIT = ’JY ’ Units of flux
EPOCH = 1.950000000E+03 Epoch of RA, Dec
BLAMK = -32768 Tape value of blank pixel
CTYPE2 = ’COMPLEX ’
CRVAL2 = 1.00000000000E+00
CDELT2 = 1.000000000E+00
CRPIX2 = 1.000000000E+00
CR0TA2 = 0.000000000E+00
CTYPE3 = ’STOKES »
CRVAL3 = -1.00000000000E+00
CDELT3 = -1.000000000E+00
CRPIX3 = 1.000000000E+00
CR0TA3 = 0.000000000E+00
CTYPE4 = ’FREQ ’
CRVAL4 = 1.66499989984E+09
CDELT4 = 5.000000000E+07

14-12 CHAPTER 14. FITS TAPES

CRPIX4
CR0TA4
CTYPE5
CRVAL5
CDELTS
CRPIX5
CR0TA5
CTYPE6
CRVAL6
CDELT6
CRPIX6
CR0TA6
CTYPE7
CRVAL7
CDELT7
CRPIX7
CR0TA7
GROUPS
GCOURT
PCOUIT
PTYPE1
PSCAL1
PZEROl
PTYPE2
PSCAL2
PZER02
PTYPE3
PSCAL3
PZER03
PTYPE4
PSCAL4
PZER04
PTYPE5
PSCAL5
PZEROS
PTYPE6
PSCAL6
PZER06
PTYPE7
PSCAL7
PZER07

HISTORY
HISTORY
HISTORY

l.OOOOOOOOOE+OO
O.OOOOOOOOOE+OO

'IF
= 1.OOOOOOOOOOOE+OO

l.OOOOOOOOOE+OO
1.OOOOOOOOOE+OO
O.OOOOOOOOOE+OO

= ’RA »
0.OOOOOOOOOOOE+OO

l.OOOOOOOOOE+OO
l.OOOOOOOOOE+OO
O.OOOOOOOOOE+OO

= ’DEC
= 0.OOOOOOOOOOOE+OO

1.OOOOOOOOOE+OO
1.OOOOOOOOOE+OO
O.OOOOOOOOOE+OO

T
14655.

7
= »UU *

3.38531271081E-09
0.OOOOOOOOOOOE+OO

= 'VV *
3.22965771440E-09
0.OOOOOOOOOOOE+OO

= 'VV ’
3.66412235782E-10
0.OOOOOOOOOOOE+OO

= 'DATE '
2.50000000000E-01
2.44603650000E+06

= 'DATE '
1.52587890600E-05
0.OOOOOOOOOOOE+OO

= 'BASELIHE'
= 1.OOOOOOOOOOOE+OO

0.OOOOOOOOOOOE+OO
= 'SOURCE '

1.22137404580E-04
0.OOOOOOOOOOOE+OO

/ Vhere BASELIHE = 256*AIT1 + AIT2 + (ARRAY#-1)/100
FILLR / IMAGE CREATED BY USER 103 AT 09-I0V-1986 15:49:35
FILLR OUTMAME=»MULTI ' OUTCLASS**FILLR '
FILLR OUTSEQ= 4 OUTDISK= 2

u in seconds

v in seconds

v in seconds

Date + time as Julian date (days)

Ant1*256 + Ant2 + (subarray-1)*0.01

Source ID number.

15APR87' /
/ File vritten on dd/MM/YY

IMCLASS='FILLR ' IMSEQ= 4

ORIGII = 'AIPSHRAO CVAX
DATE = '13/11/86'
HISTORY AIPS IMHAME='MULTI
HISTORY AIPS USERI0= 103 /
HISTORY AIPS SORT ORDER = »TB'

/ Vhere T means time (IAT)
/ Vhere B means baseline ntun

HISTORY AIPS VTSCAL = 1.83759533423E+00 / CMPLX VTS=VTSCAL*

14.4. RANDOM GROUP (UV DATA) FILES 14-13

(TAPE*BSCALE+BZERO)
END

14.4.4 Single Dish Data
Observations made with filled aperature instruments are frequently made a t essentially random positions
on the sky, possibly using a number of offset feeds or detectors. This type of data may be convienently
described using the random groups (UV FITS) format. The FITS form of this data is the same as visibility
data except that the number and meaning of the random parameters are different. The celestial coordinates
may be either Right Ascension and declination or projected coordinates about a specified tangent point.

A logical record consists of all da ta recorded from a given beam on the sky at a given time. A dummy
AN table is optional.

Single Dish Random Parameters
The single dish random param eter types (PTYPEn) are described in the following:

1. ’RA’ and ’D EC’: These random param eters are the Right Ascension and Declination of the observation
in degrees. If the coordinates have been projected onto the tangent plane then the RA and Declination
types become ’RA—xxx’ and ’D EC-xxx’ where -xxx is the projection code. See the chapter on AIPS
catalog headers and /or AIPS memoes 27 and 46 for details of the projection codes. These random
parameters are required but the order is arbitrary.

2. ’DATE’: The time tags for the d a ta are kept in the form of Julian date in days. This random param eter
is required but the order is optional.

3. ’BEAM’: This random param eter gives the beam number 4- 256. This random param eter is optional.
The beam offset makes the d a ta look more like uv data and more of the the AIPS uv data tasks will
work for this data.

4. ’SCAN’: This random param eter gives the scan number. This random param eter is optional.
5. ’SAMPLE’: This random param eter gives the sample number in the scan. This random param eter is

optional.

Single Dish Regular Axis Coordinates
The units of the regular axis coordinates are defined by convention; the conventions used by AIPS for the
regular axis types (CTYPEn) are the following:

1. ’COMPLEX’: the complex axis consists of the real, imaginary and (optional) weight. Magic value
blanking is supported. The imaginary part may be used to carry any baseline values which have been
subtracted. This axis is required.

2. ’STOKES’: this axis is used to describe which Stokes’ parameters are given; the conventions are the
same as used internally in AIPS. These conventions are discussed in the chapter on disk I/O . This axis
is required.

3. ’FR EQ ’: the frequency axis coordinates are in Hz. This axis is required.
4. ’IF ’: The IF axis is a construct which allows irregularly spaced groups of frequency channels. The IF

number specifies an entry in the (’AIPS FQ ’) table which gives the offsets from the reference frequency
specified by the FREQ axis. This axis is optional but if it is present, then an “FQ” table must also be
present.

14-14 CHAPTER 14. FITS TAPES

5. ’RA’ and ’DEC’: the celestial coordinates are given in degrees. The values associated with these
axes are irrelevant (although they should be present) for unprojected data. For data with projected
coordinates the coordinate values of these axes should be the tangent point, i.e. the position on the
sky at which the plane onto which the coordinates are projected is tangent to the celestial sphere and
these axes should become ’RA—ccc’ and ’DEC-ccc’ where ccc is the projection code. These axes are
required.

Weights and flagging are handled the same as for visibility data. Sort order is the same as for visibility data
except that the sort codes for sorting by u and v become:

U => ordered by RA
V => ordered by Declination
X => descending ABS (RA)
Y => descending ABS (Declination)
Z => ascending ABS (RA)
M => ascending ABS (Declination)

Example Single Dish Data File Header
The following is a FITS header for a single dish data file containing 16 frequency channels and a single IF
and using unprojected coordinated. The data in this file is written in 16 bit scaled integers. The first two
lines are not part of the FITS file.
00000000011111111112222222222333333333344444444445555555S556666666666
123456789012345678901234567890123456789012345678901234567890123456789
SIMPLE = T
BITPIX = 16
MAXIS = 6
MAXIS1 = 0 Mo standard image just group
MAXIS2 = 3
MAXIS3 = 1
MAXIS4 = 16
MAXIS5 = 1
MAXIS6 = 1
EXTEMD = T Tables following main image
BLOCKED = T Tape may be blocked
OBJECT = 'ALL SKY ' Source name
TELESC0P= '300 FT '
IMSTRUME= '6 CM '
0BSERVER= 'PHAHT0M ’
DATE-0BS= '02/12/86' Observation start date dd/mm/yy
DATE-MAP= '09/11/87' Date of last processing dd/mm/yy
BSCALE = 4.98494155534E-05 Real = tape * BSCALE + BZERO
BZERO = 0.00000000000E+00
BUMIT = 'JY ' Units of flux
EPOCH = 1.950000000E+03 Epoch of RA, Dec
BLAMK = -32768 Tape value of blank pixel
CTYPE2 = 'COMPLEX '
CRVAL2 = 1.00000000000E+00
CDELT2 = 1.000000000E+00
CRPIX2 = 1.000000000E+00
CR0TA2 = 0.000000000E+00
CTYPE3 = 'STOKES '
CRVAL3 = -1.00000000000E+00

14.5. EXTENSION FILES 14-15

CDELT3
CRPIX3
CR0TA3
CTYPE4
CRVAL4
CDELT4
CRPIX4
CR0TA4
CTYPE5
CRVAL5
CDELT5
CRPIX5
CR0TA5
CTYPE6
CRVAL6
CDELT6
CRPIX6
CR0TA6
GROUPS
GCOUHT
PCOUNT
PTYPE1
PSCAL1
PZEROl
PTYPE2
PSCAL1
PZER02
PTYPE3
PSCAL3
PZER03
PTYPE4
PSCAL4
PZER04
PTYPE5
PSCAL5
PZER05
ORIGIN
DATE
HISTORY

END

= -l.OOOOOOOOOE+OO
= 1.OOOOOOOOOE+OO
= 0.OOOOOOOOOE+OO
= 'FREQ '

1.66499989984E+09
5.000000000E+07

= 1.OOOOOOOOOE+OO
0.OOOOOOOOOE+OO

= 'RA '
= 0.OOOOOOOOOOOE+OO

l.OOOOOOOOOE+OO
l.OOOOOOOOOE+OO
0.OOOOOOOOOE+OO

= 'DEC
0.OOOOOOOOOOOE+OO

l.OOOOOOOOOE+OO
l.OOOOOOOOOE+OO
0.OOOOOOOOOE+OO

T
14655.

5
= 'RA '
= 1.09890000000E-02
= 0.OOOOOOOOOOOE+OO
= 'DEC '

1.09890000000E-02
= 0.OOOOOOOOOOOE+OO
= 'BEAM '

3.66412235782E-10
= 0.OOOOOOOOOOOE+OO
= 'DATE '

2.50000000000E-01
2.44603650000E+06

= 'DATE '
1.52587890600E-05

= 0.OOOOOOOOOOOE+OO
= 'AIPSNRAO CVAX
= '13/11/87 '
AIPS WTSCAL =

RA in degrees

Declination in degrees

Beam number

Date + time as Julian date (days)

15APR87' /
/ File written on dd/mm/yy

1.83759533423E+00 / CMPLX VTS=WTSCAL*
(TAPE+BSCALE+BZERO)

14.5 E xtension F iles
There is frequently auxiliary information associated with an image or data set which needs to be saved in
the same tape file. Examples of this in AIPS are the Antenna files and CLEAN component files. There is
currently a draft proposal to the IAU (Harten et. al. 1984) defining a standard format for the invention of
extension files to be written after the main data records (if any) and defining a “Tables” type extension file.
The tables extension files will be able to carry information which can be expressed in the form of a table.
AIPS also makes use of a 3-D Table extension which is similar to tables but allows arrays as table entries.
The following section will describe the proposed standards which are being incorporated into AIPS.

14-16 CHAPTER 14. FITS TAPES

The standard, generalized extension file is not a true tape file in the sense th a t it is separated by tape EOF
marks, but is a number of records inside a FITS file which contains information of relevance to the file. Each
standard extension “file” will have a header which is very similar to the main FITS header. This header
consists of one or more 2880 8-bit byte “logical” records each containing 36 80-byte “card images” in the
form:

keyword = value / comment

The extension file header begins in the first record following the last record of main data (if any) or following
the last record of the previous extension file. The format of the generalized extension “file” header is such
that a given FITS reader can decide if it wants (or understands) a given extension file type and can skip
over the extension file if the reader decides it doesn’t.

Most of the standards concerning data types and bit orders for the main FITS data records also apply
to extension files. One difference is th a t 8-bit pixel values can be used to indicate ASCII code.

The use of the generalized extension “files” requires the use of a single additional keyword in the main
header:

1. EXTEND (logical) if true (T) indicates that there may be extension files following the data records
and, if there are, th a t they conform to the generalized extension file header standards.

The required keywords in an extension file header record are, in order:
1. XTENSION (character) indicates the type of extension file, this must be the first keyword in the

header.
2. BITPIX (integer) gives the number of bits per “pixel” value. The types defined for the main data

records plus 8-bit ASCII are allowed.
3. NAXIS (integer) gives the number of “axes” ; a value of zero is allowed which indicates th a t no data

records follow the header.
4. NAXIS 1 (integer) is the number of “pixels” along the first axis (if any).
5. NAXISn (integer) is the number of “pixels” along the »th axis.
6. PCOUNT (integer) is the number of “random” parameters before each group. This is similar to the

definition of random group main data records. The value may be zero.
7. GCOUNT (integer) is the number of groups of data defined as for the random group m ain data records.

If an image-like file (e.g., a table file) is being written this will be 1.
8. END is always the last keyword in a header. The remainder of the record following the END keyword

is blank filled.
There are three optional standard keywords for extension file header records. The order, between the required
keywords and the END keyword, is arbitrary.

1. EXTNAME (character) can be used to give a name to the extension file to distinguish it from
other similar files. The name may have a hierarchal structure giving its relation to other files (e.g.,
“m apl .cleancomp”)

2. EXTVER (integer) is a version number which can be used with EXTNAME to identify a file.
3. EXTLEVEL (integer) specifies the level of the extension file in a hierarchal structure. The default

value for EXTLEVEL should be 1. AIPS has not implemented a heirarchical structure for tables.
The number of bits in an extension file (excluding the header) should be given by the formula:

14.5.1 Standard Extension

14.5. EXTENSION FILES 14-17

MBITS = BITPIX * GCOUNT * (PCOUNT + HAXIS1 * NAXIS2 * ... * NAXISn)

The number of data records following the header record are then given by:
IRECORDS = INT ((MBITS + 23039) / 23040)

It is im portant that the above formulas accurately predict the number of data records in an extension “file”
so that readers can skip over these “files” . The data begins in the first record following the last record of
the header.

Extreme caution must be exercised when inventing new types of extension files. In particular, duplication
of types, or several types with the same function, must be avoided. This means that when a new extension
file type is invented, it should be as general as possible so that it may be used for other similar problems.

14.5.2 Tables Extension
A very common type of extension file is one containing data that can be expressed in the form of a table.
T hat is, a number of entries which are all identical in form. A general, self-defining table extension file type
is proposed by Harten et. al. (1984). The following sections describe the proposed format.

The table extension file uses ASCII records to carry the tabular information. Each table entry will contain
a fixed number of entries (although the number can vary between different extension files). For each entry
is given (1) a label (optional), (2) the beginning column, (3) an undefined value (optional), (4) a Fortran
form at to decode the entry, (5) scaling and offset information (optional), and (6) the units (optional).

Tables Header Record
The keywords for tables extension file headers are given in the following:

1. XTENSION (character) is required to be the first keyword and has a value ’TABLE ’ for table extension
files.

2. BITPIX (integer) is a required keyword which must have a value of 8 indicating printable ASCII
characters.

3. NAXIS (integer) is a required keyword which must have a value of 2 for tables extension files.
4. NAXIS1 (integer) is a required keyword which gives the number of characters in a table entry (i.e.,

“row”).
5. NAXIS2 (integer) is a required keyword which gives the number of entries in the table (i.e., number of

rows). A value of 1 is allowed.
6. PCOUNT (integer) is a required keyword which must have the value of 0 for tables extension files.
7. GCOUNT (integer) is a required keyword which must have the value of 1 for tables extension files.
8. TFIELDS (integer) is a required keyword which must follow the GCOUNT keyword. TFIELDS gives

the number of fields in each table entry.
9. EXTNAME (character) is the name of the table.

10. EXTVER (integer) is the version number of the table.
11. EXTLEVEL (integer) is the hierarch al level number of the table, 1 is recommended, (optional)
12. TBCOLnnn (integer) the byte number of the first character in the nnn’th field.
13. TFORM nnn (character) the Fortran form at of field nnn (I,A,E,D)

14-18 CHAPTER 14. FITS TAPES

14. TTYPEnnnn (character) the label for field nnn. (optional, order arbitrary)
15. TUNITnnn (character) the physical units of field nnn. (optional, order arbitrary)
16. TSCALnnn (floating) the scale factor for field nnn. True.value = tape_value * TSCAL + TZERO.

Note: TSCALnnn and TZEROnnn are not relevant to A-format fields. Default value is 1.0 (optional,
order arbitrary)

17. TZEROnnn (floating) the offset for field nnn. (See TSCALnnn.) Default value is 0.0 (optional, order
arbitrary)

18. TNULLnnn (character) the (tape) value of an undefined value. Note: an exact left-justified match to
the field width as specified by TFORM nnn is required, (optional, order arbitrary)

19. AUTHOR (character) the name of the author or creator of the table, (optional, order arbitrary)
20. REFERENC (character) the reference for the table, (optional, order arbitrary)
21. END must always be the last keyword and the remainder of the record must be blank filled.

The TFORMnnn keywords should specify the width of the field and are of the form Iww, Aww, Eww.dd, or
Dww.dd (integers, characters, single precision and double precision). If -0 is ever to be distinguished from
+0 (e.g., degrees of declination), the sign field should be declared to be a separate character field.

Table Data Records
The table file data records begin with the next record following the last header record and each contains
2880 ASCII characters in the order defined by the header. Table entries do not necessarily begin at the
beginning of a new record. The last record should be blank filled past the end of the valid data.

Example Table Header and Data
The first two lines of numbers are only present to show card columns and are not part of the extension file.

1 2 3 4 5 6 7
12345678901234567890123456789012345678901234567890123456789012345678901
XTEMSI0H= ' TABLE > / Extension type
BITPIX = 8 / Printable ASCII codes
MAXIS = 2 / Table is a matrix
VAXIS1 = 60 / Vidth ol table in characters
HAXIS2 = 449 / lumber ol entries in table
PCOUMT = 0 / Random parameter count
GCOUHT = 1 / Group count
TFIELDS = 3 / lumber ol lields in each row
EXTHAME = 'AIPS CC * / AIPS clean components
EXTVER = 1 / Version number ol table
TBC0L1 = 1 / Starting char. pos. ol lield n
TF0RM1 = 'E15.6 i / Fortran lormat ol lield n
TTYPE1 = 'FLUX t / Type (heading) ol lield n
TUIIT1 = 'JY > / Physical units ol lield n
TSCAL1 = 1.0 / Scale lactor lor lield n
TZERO1 = 0.0 / Zero point lor lield n
TBC0L2 = 17 / Starting char. pos. ol lield n
TF0RM2 = 'E15.6 > / Fortran lormat ol lield n
TTYPE2 = 'DELTAX > / Type (heading) ol lield n
TUHIT2 = 'DEGREES / Physical units ol lield n
TSCAL2 = 1.0 / Scale lactor lor lield n
TZER02 = 0.0 / Zero point lor lield n

14.5. EXTENSION FILES 14-19

TBC0L3
TF0RM3
TTYPE3
TUNIT3
TSCAL3
TZER03
EID

= 'E15.6
= ’DELTAY
= *DEGREES

33 / Starting chair, pos. ol lield n
/ Fortran lormat ol lield n
/ Type (heading) ol field n
/ Physical units ol lield n

1.0 / Scale lactor lor lield n
0.0 / Zero point lor lield n

The rest of the header block is blank filled. The data cards start on the next block boundary.
0.183387E+00
0.146710E+00
0.117368E+00
0.938941E-01
0.183387E+00

-0.138889E-03
-0.138889E-03
-0.138889E-03
-0.138889E-03
-0.138889E-03

0.694444E-04
0.694444E-04
0.694444E-04
0.694444E-04
0.694444E-04

14.5.3 3- D Tables Extension
There are several types of extension files in AIPS which do not fit, in a natural way, into the FITS Tables
format (e.g., gain and calibration tables). These files tend to be large, and conversion to and from ASCII
can be expensive. A “3-D” extension to the FITS tables format, in which an entry can be a 1-dimensional
array, gives the needed flexibility. Use of binary data, including IEEE floating point formats, allows efficient
implementation of readers and writers.

Each row in a 3-D table entry contains a fixed number of entries (although the number can vary between
different extension files). The header is a standard FITS extension header; for each table entry is given (1)
the size and data type of the entry, (2) a label (optional), (3) the units (optional), and (4) an undefined
value (optional). An entry may be om itted from the table, but still defined in the header, by using a zero
repeat count in the TFORM n entry.

3-D Tables Header Record
The keywords for 3-D tables extension file headers are given in the following:

1. XTENSION (character) is required to be the first keyword and has a value ’3DTABLE’ or ’A3DTABLE’
for table extension files.

2. BITPIX (integer) is a required keyword which must have a value of 8.
3. NAXIS (integer) is a required keyword which must have a value of 2 for 3-D Tables extension files.
4. NAXIS1 (integer) is a required keyword which gives the number of 8-bit bytes in a table row.
5. NAXIS2 (integer) is a required keyword which gives the number of rows in the table. A value of 1 is

allowed.
6. PCOUNT (integer) is a required keyword which must have the value of 0 for tables extension files.
7. GCOUNT (integer) is a required keyword which must have the value of 1 for tables extension files.
8. TFIELDS (integer) is a required keyword which must follow the GCOUNT keyword. TFIELDS gives

the number of fields in each table entry.

14-20 CHAPTER 14. FITS TAPES

9. EXTNAME (character) is the name of the table.
10. EXTVER (integer) is the version number of the table.
11. EXTLEVEL (integer) is the hierarchal level number of the table, 1 is recommended, (optional)
12. TFORMnnn (character) is the size and data type of field nnn. If repeat count is absent, it is assumed

to be 1. A value of zero is allowed, (required, order arbitrary)
13. TTYPEnnnn (character) the label for field nnn. (optional, order arbitrary)
14. TUNITnnn (character) the physical units of field nnn. (optional, order arbitrary)
15. TNULLnnn (integer) the value of an undefined value. These are only for integer data types; for floating

data types, the IEEE nan (not a number) values are used.
16. AUTHOR (character) the name of the author or creator of the table, (optional, order arbitrary)
17. REFERENC (character) the reference for the table, (optional, order arbitrary)
18. END must always be the last keyword and the remainder of the record must be blank filled.

If -0 is ever to be distinguished from +0 (e.g., degrees of declination), the sign field should be declared
to be a separate character field.

Table Data Records
The 3-D table file binary data logical records begin with the next record following the last header record and
each contains 2880 8-bit bytes in the order defined by the header. Table entries do not necessarily begin at
the beginning of a new record. The last record should be zero filled past the end of the valid data.

The data types are defined in the following list (r is the repeat count):
1. tL. A logical value consists of an 8-bit ASCII “T ” indicating true and “F” indicating false.
2. rX. A bit array will start in the most significant bit of the byte and the following bits in the order of

decreasing significance in the byte. Bit signifigance is in the same order as for integers. A b it array
entry consists of an integral number of bytes with trailing bits zero.

3. rl. A 16-bit integer is a two’s complement integer with the bits in decreasing order of significance.
4. rJ. A 32-bit integer is a two’s complement integer with the bits in decreasing order of significance.
5. rA. Character strings are 8-bit ASCII characters in their natural order.
6. rE. Single precision floating point values are in IEEE 32-bit precision format with the bits in the

following order:
1 2 3

01234567890123456789012345678901
S6866666emmmmroinmiBininiBnuBiniBiiiiHininnuninm

sign = -1 ** s, exponent = eee..., mantissa = l.mmmmm... .
The value is given by:

value = sign * 2 **(exponent-127) * mantissa

Note: these values have a “hidden” bit and must always be normalized. The IEEE nan (not a number)
values are used to indicate an invalid number; a value with sign and all exponent bits set is recognized
as a nan. The IEEE special values (-0., + / - Infinity) are not recognized. A multiplication by a factor
of 4.0 converts between VAX F and IEEE 32-bit formats.

14.5. EXTENSION FILES 14-21

7. rD. Double precision floating point values are in IEEE 64-bit precision format with the bits in the
following order:

1 2 3
01234567890123456789012345678901
seeeeeeeeeeemmmmmmmmiiunmnHnmmmmminm
3 4 5 6
23456789012345678901234567890123
mmmmmmmmnmmmmmmmmmmmnminminnunmmmniin

sign = -1 ** s, exponent = eee..., mantissa = 1.mmmmm... . The value
is given by:

value = sign * 2 **(exponent-1023) * mantissa

Note: these values have a “hidden” bit and must always be normalized. The IEEE nan (not a number)
values are used to indicate an invalid number; a value with sign and all exponent bits set is recognized
as a nan. The IEEE special values (-0., +/- Infinity) are not recognized. A multiplication by a factor
of 4.0 converts between VAX G and IEEE 64-bit formats.

Example 3- D Table Header
The first two lines of numbers are only present to show card columns and are not part of the extension file.

1 2 3 4 5 6
1234567890123456789012345678901234567890123456789012345678901234
XTENSI0N= ’A3DTABLE * / Extension type
BITPIX = 8 / Binary data
NAXIS = 2 / Table is a matrix
NAXIS1 = 12 / Vidth ol table in bytes
NAXIS2 = 449 / Number ol entries in table
PC0UNT = 0 / Random parameter count
GCOUNT = 1 / Group count
TFIELDS = 3 / Number ol lields in each row
EXTNAME = 'AIPS CC ’ / AIPS CLEAN components
EXTVER = 1 / Version number ol table
TF0RM1 = ’ IE ’ / Count and data type ol lield
TTYPE1 = ’FLUX ’ / Type (heading) ol lield n
TUNIT1 = ’JY ’ / Physical units ol lield n
TF0RM2 = * IE ’ / Count and data type ol lield
TTYPE2 = ’DELTAX * / Type (heading) ol lield n
TUNIT2 = ’DEGREES ’ / Physical units ol lield n
TF0RM3 = ’IE ’ / Count and data type ol lield
TTYPE3 = ’DELTAY ’ / Type (heading) ol lield n
TUNIT3
EID

= ’DEGREES ’ / Physical units ol lield n

The rest of the header block is blank filled. The binary data starts on the next logical block boundary. The
last record of table data is zero filled past the end of the valid data.

14-22 CHAPTER 14. FITS TAPES

14.5.4 Older AIPS Tables
Prior to the (presumed) establishment of the standard tables extension files, AIPS had its own tables file
format and a large number of tapes have been written with these tables. These old tables were encoded in
ASCII and could have any number of columns in the table. However, all values in the table had to be of the
same data type and written with the same format. AIPS FITS readers will continue to recognize and deal
with these obsolete tables indefinitely. The following sections describe these tables.

General Form of Header
The presence of the old form at AIPS tables is indicated in the main header by the presence of the integer
keyword TABLES which gives the number of tables following the data records. Each table has a header
record in a manner similar to the now standard extension file header, but with different keywords. The
header contains the following keywords:

1. TABNAME (character) gives the name of the file.
2. TABVER (integer) gives the version number of the file.
3. TABCOUNT (integer) gives the number of entries in the table.
4. TABWIDTH (integer) gives the number of values per table entry.
5. TABCARDS (integer) gives the number of values per card image.
6. TTY PEn (character) gives a label for the n ’th column.
7. NUMTYPE (character) gives the data type used for internal storage (1*2, R*4, R*8)
8. FORMAT (character) gives the form at for the table elements.
9. END is the last keyword.

Data Records
The data records consist of values encoded in ASCII in 36 80-byte card images per record in a free field
format. The values are encoded TABCARDS values per 80-byte card image.

CC Files
The details of the old AIPS CLEAN component (CC) table file are illustrated in the following example of
a header. Component positions are given in degrees from the tangent point (reference pixel) of the image
in the projected and rotated plane (i.e., not true RA and dec). Component flux densities are in Janskys.
CLEAN components are stored, 2 per card image, written as 6E13.5.
TABHAME = 'AIPS CC' / AIPS CLEAI C0MP0IEITS
TABVER = 1 / VERSIOI HUMBER
TABCOUHT= 100 / # LOGICAL RECORDS II TABLE
TAB¥IDTH= 3 / # VALUES PER LOGICAL RECORD
TABCARDS= 6 / # VALUES PER CARD IMAGE
TTYPE1 = 'DELTAX ' / COLUMI 1 LABEL
TTYPE2 = 'DELTAY » / COLUMI 2 LABEL
TTYPE3 = 'FLUX(JY)» / COLUMI 3 LABEL
IUMTYPE = 'R*4 ' / OUR UTERIAL STORAGE SIZE
FORMAT =
EID

’E13.5 » / FORMAT ACTUALLY USED HERE

14.6 AIPS FITS INCLUDES 14-23

AN Files
The details of the old AIPS antenna table file are illustrated in the following example of a header. Antenna
positions are given in seconds (light travel time)
TABNAME = ’AIPS AN’ /ANTENNA IDS, LOCATIONS
TABVER = 1 /VERSION HUMBER
TABC0UNT= 28 / # LOGICAL RECORDS IN TABLE
TABWIDTH= 5 / # VALUES PER LOGICAL RECORD
TABCARDS= 5 / # VALUES PER CARD IMAGE
TTYPE1 = ’AN NO. ’ / COLUMN 1 LABEL
TTYPE2 = ’STATION ’ / COLUMN 2 LABEL
TTYPE3 = ’LX ’ / COLUMN 3 LABEL
TTYPE4 = ’LY ’ / COLUMN 4 LABEL
TTYPE5 =
END

’LZ ’ / COLUMN 5 LABEL

14.6 A IPS FITS INCLUDES
There are several AIPS INCLUDES which contain tables of KEYWORD names, data types, and pointers to
the AIPS catalog header. Each of the sets consists of a declaration and EQUIVALENCE include (Dnnn.inc)
and a DATA include (Vnnn.inc). These includes can be used directly by routines such as FPARSE. The
basic components of these includes is shown below:

1. AWORD (character*8) - this array contains the recognized keywords. This array can be sent to
GETCRD as the list of keywords.

2. NCT (integer) - this gives the number of required keyword names in CWORD, which is equivalenced
at the beginning of AWORD.

3. NKT (integer) - this gives the number of optional keywords names in KWORD, which is equivalenced
into AWORD after CWORD.

4. ATYPE (integer) - this array gives the data types corresponding to keywords in AWORD. l= > logical
variable, 2=>num erical value, and 3=>string.

5. APOINT (integer) - this array contains pointers in the common in the include DHDR.INC to the AIPS
catalog header in the form 1000*nbytes + 100*offset + position of pointer in common. Here nbytes
gives the number of bytes used in the AIPS catalog header (2 means an integer which is really usually
four 8-bit bytes) and the offset is the character offset past the position indicated by the header pointer.
The text of these includes is in the following sections.

14.6.1 DFUV.INC
C Include DFUV.
C FITS parsing, esp. with uv data

INTEGER ATYPE(151), AP0IIT(151), CTYPE(ll), KTYPE(140),
* CPOIHT(ll), P0IHT(140), VKT, NCT
CHARACTER AW0RD(151)*8, CW0RD(11)*8, KW0RD(140)*8, Kl(74)*8,

* K2(66)*8
EQUIVALENCE (AWORD(l), CVORD(l)), (AWORD(86), K2(l)),
* (AWORD(12), KWORD(1), Kl(l))
EQUIVALENCE (APOINT(l), CPOINT(l)), (AP0INT(12), POINT(l))
EQUIVALENCE (ATYPE(l), CTYPE(l)), (ATYPE(12), KTYPE(1))

C End DFUV.

14-24 CHAPTER 14.

14.6.2 DFIT.INC
C Include DFIT.

IITEGER ATYPEC83), AP0INT(83), CTYPE(IO), KTYPE(73), CPOIIT(IO),
* POUT (73), IKT, ICT
CHARACTER AV0RD(83)*8, CV0RD(10)*8, KW0RD(73)*8
EQUIVALENCE (AWORD(l), CWORD(l)), (AVORD(ll), KWORD(l))
EQUIVALENCE (APOINT(l), CPOIIT(l)), (APOIIT(ll), POIIT(l))
EQUIVALENCE (ATYPE(l), CTYPE(l)), (ATYPE(ll), KTYPE(1))

C End DFIT.

14.6.3 VFUV.INC
C Include VFUV.
C FITS parsing, esp. with uv data

DATA NCT/11/, NKT/140/
DATA CVORD/'SIMPLE ','BITPIX ','NAXIS ','NAXIS1

’NAXIS2 ' 'IAXIS3 ' 'NAXIS4 ,'NAXIS5 ',
'NAXIS6 ' 'IAXIS7 ' 'NAXIS8 /

DATA K1 /'OBJECT ' 'TELESCOP' 'INSTRUME ,'OBSERVER',
'DATE-OBS' 'DATE-MAP' 'BSCALE ,'BZERO ',
'BUNIT ' 'CTYPE1 ' 'CTYPE2 ,'CTYPE3 ',
'CTYPE4 ' 'CTYPE5 ' 'CTYPE6 ,'CTYPE7 ',
'CTYPE8 ' 'CRVAL1 ' 'CRVAL2 ,'CRVAL3 ',
'CRVAL4 ' 'CRVAL5 ' 'CRVAL6 ,'CRVAL7 ',
'CRVAL8 ' 'CDELT1 ' * CDELT2 ,'CDELT3 ',
'CDELT4 ' 'CDELT5 ' 'CDELT6 ,'CDELT7 ',
*CDELT8 ' 'CRPIX1 ' 'CRPIX2 ,'CRPIX3 ',
'CRPIX4 ' 'CRPIXS ' 'CRPIX6 ,'CRPIX7 ',
'CRPIX8 ' 'CROTA1 ' 'CR0TA2 ,'CR0TA3 ',
*CR0TA4 ' 'CR0TA5 ' 'CR0TA6 ,'CR0TA7 ',
'CR0TA8 ' 'EPOCH ' 'DATAMAX ,'DATAMIN ',
'BLANK 'IMNAME ' 'IMCLASS ,'IMSEQ ',
'USERIO ' 'PRODUCT ' 'NITER ,'BMAJ
'BMII ' 'BPA ' 'VELREF ,'ALTRVAL ',
'ALTRPIX ' 'OBSRA ' 'OBSDEC ,'RESTFREQ',
'XSHIFT ' 'YSHIFT ' 'DATE ,'ORIGIN ',
'ISCALE ' ' IZERO 'y

DATA K2 /'GROUPS ' 'GCOUNT ' 'PCOUNT ,'PTYPEl ',
'PTYPE2 ' ' PTYPE3 ’ 'PTYPE4 ,'PTYPE5 ',
'PTYPE6 ' 'PTYPE7 ' 'PTYPE8 ,'PTYPE9 ',
'PTYPEIO ' 'PTYPE11 ' 'PTYPE12 ,'PTYPE13 ',
'PTYPE14 ' 'PTYPE15 ' 'PTYPE16 ,'PTYPE17 ',
'PTYPE18 ' 'PTYPE19 ' 'PTYPE20 ,'PSCALl ',
'PSCAL2 ' 'PSCAL3 ' 'PSCAL4 ,'PSCAL5 ',
'PSCAL6 ' 'PSCAL7 ' 'PSCAL8 ,'PSCAL9 ',
'PSCALIO ' 'PSCAL11 ' 'PSCAL12 ,'PSCAL13 ',
'PSCAL14 ' 'PSCAL15 ' 'PSCAL16 ,'PSCAL17 ',
'PSCAL18 ' 'PSCAL19 ' 'PSCAL20 ,'PZEROl ',
'PZER02 ' 'PZER03 ' 'PZER04 ,'PZEROS ',
'PZER06 ' 'PZER07 ' 'PZER08 ,'PZER09 ',
'PZEROIO ' 'PZEROll ' 'PZER012 ,'PZER013 ',
'PZER014 ' 'PZER01S ' 'PZER016 ,'PZER017 ',
'PZER018 ' 'PZER019 ' 'PZER020 ,'TABLES ',

FITS TAPES

14.6. AIPS FITS INCLUDES 14-25

»SORTORDR*,»WTSCAL »/
C l=Logical variable
C 2=Number
C 3=String

DATA CTYPE /l,2,2,2, 2,2,2,2, 2,2,2/
DATA KTYPE /3,3,3,3, 3,3.2,2, 3,3,3,3, 3,3,3,3, 3,2,2,2,
* 2,2,2,2, 2,2,2,2, 2,2,2,2, 2,2,2,2, 2,2,2,2,
* 2,2,2,2, 2,2,2,2, 2,2,2,2, 2,3,3,2, 2,2,2,2,
* 2 ,2 ,2 ,2 , 2 ,2 ,2 ,2 , 2 ,2 ,3 ,3 , 2 ,2 , 1 ,2 ,2 ,
* 20*3, 20*2, 20*2, 2,3,2/

C nbytes=2 => 4-byte integer
C 1000*nbytes + 100*offset +
C position ol pointer in common
C MKIBPXMKIDIM KIHAX =>

DATA CPOINT / 0, 2000, 2040, 2041, 2141, 2241, 2341, 2441,
* 2541, 2641, 2741/

C KHOBJ KHTEL KHIIS KHOBS KHDOB KHDMP"KDBSC"KDBZE"
DATA POIHT / 8001, 8002, 8003, 8004, 8005, 8006, 8000, 8000,

C KHBUN KHCTP =>
* 8007, 8009, 8109, 8209, 8309, 8409, 8509, 8609,

C KDCRV = >
* 8709, 8029, 8129, 8229, 8329, 8429, 8529, 8629,

C KRCIC =>
* 8729, 4010, 4110, 4210, 4310, 4410, 4510, 4610,

C KRCRP =>
* 4710, 4011, 4111, 4211, 4311, 4411, 4511, 4611,

C KRCRT =>
* 4711, 4012, 4112, 4212, 4312, 4412, 4512, 4612,

C KREPO KRDMX KRDMH KRBLK KHIMN KHIMC
* 4712, 4013, 4014, 4015, 4016,12017, 6218,

C KIIMS KIIMU KITYP KIIIT KRBMJ KRBMH KRBPA KIALT
* 2042, 2043, 2044, 2035, 4020, 4021, 4022, 2045,

C KDARV KRARP KDORA KDODE KDRST KRXSH KRYSH
* 8033, 4023, 8030, 8031, 8032, 4024, 4025, 0,

C KIGCN KIPCH
* 0, 8000, 8000, 1001, 2034, 2039,
* 20*8008, 20*8000, 20*8000, 2000, 2044, 4000/

C End VFUV

14.6.4 VFIT.INC
C Include VFIT

DATA ICT/10/, HKT/73/
DATA CWORD /'SIMPLE '.'BITPIX ','HAXIS '.'HAXISl',
* ’VAXIS2 ','VAXIS3 \'NAXIS4 ','HAXIS5 \
* 'MAXIS6 *,'IAXIS7 '/
DATA KWORD /»OBJECT ',»TELESCOP»,»IHSTRUME»,»OBSERVER *,
* 'DATE-OBSVDATE-MAPVBSCALE ','BZERO »,
* 'BUHIT ’,'CTYPEl »,»CTYPE2 '.'CTYPES »,
* *CTYPE4 *,*CTYPE5 *,»CTYPE6 »,'CTYPE7 »,
* 'CRVAL1 *,1CRVAL2 ','CRVAL3 »,'CRVAL4
* ’CRVAL5 *,* CRVAL6 *,'CRVAL7 ',’CDELT1 »,
* *CDELT2 *,* CDELT3 »,»CDELT4 ',*CDELT5 »,

14-26 CHAPTER 14. FITS TAPES

* 'CDELT6 ,’CDELT7 ’,’CRPIX1 ’,’CRPIX2)

* 'CRPIX3 ,’CRPIX4 ’,’CRPIX5 ’,’CRPIX6 9

* 'CRPIX7 ,’CR0TA1 ',’CR0TA2 ’,’CR0TA3)

* »CR0TA4 ,' CR0TA5 ’,’CR0TA6 ’,* CR0TA7 9

* ’EPOCH ,’DATAMAX ’,’DATAMIH ’,'BLANK >

* 'IMNAME ,’IMCLASS ’,’IMSEQ ’,’USERNO >
* ’PRODUCT ,’MITER ’,’BMAJ *,'BMIN)
* ’BPA ,’VELREF ’,’ALTRVAL ’,'ALTRPIX i

♦ 'OBSRA ,’OBSDEC ’,’RESTFREQ’,'XSHIFT }

* ’YSHIFT ,’DATE ’,’ORIGIN ’,'TABLES >

* ’0PHRAE11 ,’0PHDCE11’,’MAPNAM11’,'ISCALE)

* 'IZERO /
C l=Logical variable
C 2=Number
C 3=String

DATA CTYPE /l,2,2,2, 2,2,2,2, 2,2/
DATA KTYPE /3,3,3,3, 3,3,2,2, 3,3,3,3, 3,3,3,3, 2,2,2,2,

* 2 ,2 ,2 ,2 , 2 ,2 ,2 ,2 , 2 ,2 ,2 ,2 , 2 ,2 ,2 ,2 , 2 ,2 ,2 ,2 ,
* 2,2,2,2, 2,2,2,2, 3,3,2,2, 2,2,2,2, 2,2,2,2,
* 2 ,2 ,2 ,2 , 2 ,3 ,3 ,2 , 2 ,2 ,3 ,2 , 2 /

C 1000*nbytes + 100*offset +
C position of pointer in common
C MKIBPX"KIDIM KINAX

DATA CPOINT / 0, 2000, 2040, 2041, 2141, 2241, 2341, 2441,
* 2541, 2641/

C KHOBJ KHTEL KHISS KHOBS KHDOB KHDMP"KDBSC"KDBZE"
DATA POINT / 8001, 8002, 8003, 8004, 8005, 8006, 8000, 8000,

C KHBUN KHCTP =>
* 8007, 8009, 8109, 8209, 8309, 8409, 8509, 8609,

C KDCEV => KRCIC =>
* 8029, 8129, 8229, 8329, 8429, 8529, 8629, 4010,

C KRCRP =>
* 4110, 4210, 4310, 4410, 4510, 4610, 4011, 4111,

C KRCRT = >
, * 4211, 4311, 4411, 4511, 4611, 4012, 4112, 4212,

C KREPO KRDMX KRDMN KRBLK
* 4312, 4412, 4512, 4612, 4013, 4014, 4015, 4016,

C KHIMH KHIMC KIIMS KIIMU KITYP KINIT KRBMJ KRBMN
* 12017, 6218, 2042, 2043, 2044, 2035, 4020, 4021,

C KRBPA KIALT KDARV KRARP KDORA KDODE KDRST KRXSH
* 4022, 2045, 8033, 4023, 8030, 8031, 8032, 4024,

C KRYSH
* 4025, 0, 0, 2000, 4100, 4200,12017, 8000,
* 8000/

C End VFIT.

14.7 A IPS FITS Parsing R outines
There are several AIPS utility routines which are useful for parsing (reading) FITS header records. These
routines are briefly described in the following; details of the call sequences etc. will be given later.

1. EXTREQ parses a FITS file looking for required extension file keywords.

14.7. AIPS FITS PARSING ROUTINES 14-27

2. F PARSE parses a FITS header card, interpretes the card image, and puts the data value into the
correct location in the AIPS catalog header. This routine is for standard uv FITS headers, but with
the substitution of the INCLUDES DFIT.INC and VFIT.INC for DFUV.INC and VFUV.INC, would
work for images as well. The routine will work for FITS image tapes written on the VLA pipeline.

3. GETCRD obtains a given card image from a header block of FITS data and looks for keywords in a
supplied table.

4. GETSYM finds the next symbol in a buffer. A symbol is defined to begin with a letter and have up
to 8 alpha-numeric characters.

5. GETLOG obtains the value of a logical variable from a buffer.
6. GETNUM converts an ASCII numeric field into a double precision value.
7. GETSTR obtains a character string from a buffer.
8. GETKEY returns keyword values from a buffer.
9. GTW CRD reads input buffer and finds symbol value from a list of possible symbols; accepts wild

cards.
10. IDWCRD searches a character string for a symbol value from a list of possible symbols using wild

cards. Like GTW CRD except it works from a character string rather than a FITS buffer.
11. R3DTAB reads 3-D table da ta from tape and translates it to an AIPS table file.
12. RWTAB translates ASCII table da ta to an AIPS table file.
13. TABAXI reads a card image array containing a FITS table header and returns the values for required

keywords. Like EXTREQ except it works from a character string rather than a FITS buffer.
14. TABHDK parses a character card image processing FITS table header keywords. Like TABHDR except

it works from a character string rather than a FITS buffer.
15. TABHDR reads a FITS table header and returns the values for recognized symbols.

Following are the details of the call sequences and functions of the AIPS FITS parsing utility routines.

14.7.1 EXTREQ
This routine will parse a block from a FITS file and look for the required cards of a FITS extension header
block, namely XTENSION, BITPIX, NAXIS, NAXISn, PCOUNT, GCOUNT.

EXTREQ (FDVEC, TBIHD
Inputs:

FDVEC 1(50)
Input/Output:

TBIHD
TAPBUF
FITBLK

Outputs:
ICARD
EXTEH
EOF
IERR

I
K *)
C*2880

I
L
L
I

, TAPBUF, FITBLK, ICARD, EXTEH, EOF, IERR)

File descriptor lor TAPIO input stream

Pointer in FITBLK
TAPIO i/o buller
a block ol FITS header data.

The number ol the last card parsed.
T means extension record, F means no.
T means end ol lile on 1st record.
0=ok, l=messed up. An error message will

be printed.

14-28 CHAPTER 14. FITS TAPES

FPARSE (parse FITS card) will unpack and interpret a card image from a block of FITS data and put that
data into the internal AIPS header. Corrects for dummy 1st axis in Groups extension.

14.7.2 FPARSE

FPARSE (ICARD, FITBLK, PSCAL, POFF, PTYPES, TABLES, EHD, GROUP,
* BITPIX, BSC, BZE, IERR)

Inputs:
ICARD I
FITBLK C+2880

In/out:
PSCAL D(20)
POFF D(20)
PTYPES C*8(20)
TABLES I
END L
GROUP I

BITPIX I
BSC D(2)
BZE D(2)

Output:
IERR I

COMMON /MAPHDR/
COMMON /FITINF/

The card number (1-36) in block to interpret
A block ol FITS header data.

Random parameter scalings
Random parameter offsets
Random parameter types
Tables extension
True if end card found, else false.
Set to 0 or 1 as NAXIS1 not= or = 0.
Checked if GROUPS keyvord found later.
Number bits/pixel on the tape
Scaling factor: (1) tape, (2) history
Scaling offset: (1) tape, (2) history

error code 0=ok. l=error.

14.7.3 GETCRD
GETCRD (get card) will obtain a given card image from a header block of FITS data, look for a recognizable
key word from a supplied table and return information to the calling routine. Looks for keywords after
’HISTORY AIPS’, ’HISTORY VLACV’, ’HISTORY RANCID’, or ’HISTORY VLA’

GETCRD (ICARD, NOSYM, STRSYM, SYMTAB, FITBLK, NPNT, KL, SYMBOL,
* TABNO, ISHIST, END, IERR)

Inputs:
ICARD
NOSYM
STRSYM
SYMTAB
FITBLK

In/out:
NPNT

KL

Outputs:
SYMBOL
TABNO
ISHIST
END
IERR

valid keyword, 2=card ends or other trouble

I the card image (1-36) in FITS data block.
I the number of entries in key word table.
I Start search with symbol # STRSYM
C(NOSYM)*8 keywords
C*2880 the block of FITS header cards.

I The position to start scan in array KL.
Returns the last position scanned plus one.

C*80 On input, the card image if NPNT > 1,
else returns the card image.

C*8 the symbol found on the card.
I SYMBOL matches SYMTAB(TABNO).
L True if history card else false.
L True if end card found, else false.
I 0=match found, l~no match on otherwise

14.7. AIPS FITS PARSING ROUTINES 14-29

14.7.4 GETKEY
Given a character string of the form: “SYMBOL = some.value” , determine the type of some.value, its value,
and put all of this stuff in KEYVAL.

GETKEY (SYMBOL, KL, NPHT, IUMKEY, KEYWRD, KEYVAL, KEYCHR, KEYTYP, IERR)
Inputs:

C*8 Characters from KL. "SYMBOL = ..."
C*(*) Input line o1 the lorm "SYMBOL = some_value"

SYMBOL
KL

In/Out:
HPNT
HUMKEY
KEYWRD
KEYVAL

KEYCHR

KEYTYP

IERR

I The character position alter the "="
I The number of keywords already in KEYVAL etc.
C(*)*8 Keywords
D(*) List ol arbitrary keyword numeric values:

KEYVAL(n) => Value in D.
C(*)*8 List ol arbitrary keyword character values:

KEYCHR(n) => string il KEYTYP(n)=3.
I(*) Type code: l=>Double, 2=>single, 3=>char.

4=>integer, 5=>logical
I Error code. 0=ok.

14.7.5 GETLOG
Obtains the value of a logical variable from buffer.

GETLOG (KB, LIMIT, KBP, IL)
Inputs:

KB 0 8 0 Card image
LIMIT I Humber ol characters in KB
KBP I Pointer position at start

Outputs:
KBP I Pointer position ol next lield
IL I Value ol logical lield

0— > .false.
1— > .true.
2— > invalid

14.7.6 GETNUM
Converts ASCII numeric field into double precision number.

GETNUM (KB, KBPLIM, KBP, X)
Inputs:

KB 0 8 0 character buller
KBPLIM I max # characters in buller
KBP I start ol numeric lield

Outputs:
KBP I start ol next lield (incl blanks)
X D numerical value: sets to magic indel

Common:
DERR.IHC

Irom DDCH.IHC when overllow exponent or when
there are no numeric characters lound

Sets ERRHUM to 27 on lailures

14-30 CHAPTER 14. FITS TAPES

Obtains a character string from a buffer.
GETSTR (KB, KBPLIM, NMAX, KBP, ISTR, HCHAR)
Inputs:

KB C*80 character buller
KBPLIM I size ol buller
NMAX I max string length in characters
KBP I start position in KB

Outputs:
KBP I start position in KB next lield
ISTR C*(*) string, blank lilled
NCHAR I # characters (0 => no string lound)

14.7.7 GETSTR

14.7.8 GETSYM
Scrutinizes a card image to look for the next symbol. A symbol begins with a letter and contains up to eight
alpha-numeric characters (A-Z,0-9,_). This routine is used for interpreting a FITS file and for interpreting
the HI files.

GETSYM (LBUFF, NPNT, SYM, IERR)
Inputs:

LBUFF C*80
NPNT I

Output:
NPNT I
SYM C*8
IERR I

Card image
Pointer to lirst character

Pointer value alter getting symbol
Symbol, padded with blanks
Return code

0— > Found legal symbol lollowed by
1— > Ran oil the end ol the card
2— > Symbol had >8 chairacters
3— > Found legal symbol with no

or SYM is HISTORY or COMMENT
4— > Found a */* symbol
5— > Symbol contains an illegar char

14.7.9 GTWCRD
GTWCRD (get wild card) will obtain a given card image from a header block of FITS data, search table
SYMTAB for a recognizable key word in the form KEYWORDn where ’n ’ is an integer between 1 and
NLIMIT(i) where i corresponds to the position of the keyword in SYMTAB. If NLIMIT(i)=0 KEYWORD
must match the SYMTAB entry exactly.

GTWCRD (ICARD, NOSYM, NLIMIT, SYMTAB, FITBLK, NPNT, CARD, SYMBOL,
* TABNO, NFOUND, END, IERR)

Inputs:
the card image (1-36) in FITS data block,
the number ol entries in key word table.
Upper limit on ’n*. 0 means KEYWORD must
match symbol table value exactly.

C(NOSYM)*8 Keywords.
C*2880 the block ol FITS header cards.

ICARD
NOSYM
NLIMIT

I
I
I(NOSYM)

SYMTAB
FITBLK

Outputs:
NPNT Pointer in CARD alter "="

14.7. AIPS FITS PARSING ROUTINES 14-31

CARD C*80 Card image.
SYMBOL C*8 Symbol before "="
TABNO I KEYWORD matches SYMTAB(TABNO).
NFOUND I Value of 'n» for KEYWORDn.
END L True if end card found, else false.
IERR I 0=match found, l=no match on othervise

valid keyvord, 2=card ends or other trouble

14.7.10 IDWCRD
IDWCRD (IDentify Wild CaRD) search table SYMTAB for a recognizable key word in the form KEY-
WORDn where ’n ’ is an integer between 1 and NLIMIT(i) where i corresponds to the position of the
keyword in SYMTAB. If NLIM IT(i)=0 KEYWORD must match the SYMTAB entry exactly.

IDWCRD (CARD, NOSYM, NLIMIT, SYMTAB, NPNT, SYMBOL, TABNO, NFOUND,
* IERR)

Inputs:
CARD C*80 Input card image.
NOSYM I the number of entries in key vord table.
NLIMIT I(NOSYM) Upper limit on ’n*. 0 means KEYWORD must

match symbol table value exactly.
SYMTAB C(NOSYM)*8 Keyvords.
sputs:
NPNT I Pointer in CARD after "="
SYMBOL C*8 Symbol before "=".
TABNO I KEYWORD matches SYMTAB(TABNO).
NFOUND I Value of 'n» for KEYWORDn.
IERR I 0=match found, 1-no match on othervise

valid keyvord, 2=card ends or other trouble

14.7.11 R3DTAB
This routine will read the da ta section of a FITS 3-D table and copy the da ta to the AIPS version of the
table.

R3DTAB (FDVEC, TBIND, DPTR, INBLK, NAXIS, IBLK, TAPBUF, IERR)
Inputs:

FDVEC I(S0) File descriptor vector for TAPIO input
DPTR 1(128,2) Data Pointers, used in table file control.
INBLK I Number of FITS blocks for table file.
NAXIS 1(2) Length of columns (in chair), number of rovs

In/Out:
TBIND I Buffer pointer in TAPBUF
IBLK 1(512) Disk Table file I/O buffer.
TAPBUF K*) Tape I/O buffer.

Outputs:
IERR I Error code. 0=ok.

14.7.12 RWTAB
This routine will read the da ta section of a FITS extension file of type TABLE and decode this information
using data obtained from the header section of the extension file, and write the AIPS version of a table file.
Limited to tables lines < = 2880 characters.

14-32 CHAPTER 14. FITS TAPES

RWTAB (FDVEC, TBIND,
Inputs:

FDVEC
DPTR
IHBLK
MAXIS

In/Out:
TBIHD
IBLK
TAPBUF

Outputs:
IERR

1(50)
1(128,2)
I
1(2)

I(>=512)
I (*)

DPTR, IHBLK, HAXIS, IBLK, TAPBUF, IERR)

File descriptor vector for TAPIO input
Data Pointers, used in table file control.
Humber of FITS blocks for table file.
Length of columns (in char), number of rows

Buffer pointer in TAPBUF
Disk Table file I/O buffer.
Tape I/O buffer.

Error code. 0=ok.

14.7.13 TABAXI
Parses FITS cards, searching for specification of required table header keywords.

TABAXI (CARDS, HAXIS, HAXIES, PCOUHT, GCOUHT, IERR)
Inputs:

CARDS
HAXIS

Outputs:
HAXIES
PCOUHT
GCOUHT
IERR

C(*)*80 Input First FITS cards of a TABLE
I Humber of dimensions

I(HAXIS) Length of each dimension
I Random parameter count
I Groupt count
I 0=ok, 4-HAXIES error

5=PC0UHT error, 6=G0UHT error,
An error message will be printed.

14.7.14 TABHDK
Interprets TABle HeaDer Keywords on an input card image and puts the data for recognized symbols into
a set of output arrays. Selected ’SINGLDSH’ keywords are kept; the rest are ignored

TABHDK (CARD, HLUH, HBLK, MAXKEY, HUMKEY, KEYWRD, KEYVAL, KEYCHR,
* KEYTYP, IERR)

Inputs:
CARD
HLUH
HBLK
MAXKEY

In/Out:
HUMKEY

Outputs:
KEYWRD
KEYVAL

KEYCHR
KEYTYP
IERR

Commons:
/EXTHDR/
/THDR/

C*80 FITS Card image
I History file LUH.
1(256) History file I/O buffer.
I Maximum number of keys in arrays

I Location to store next keyword

C(*)*8 Keywords
D(*) List of arbitrary numeric/logical values:

KEYVAL(n) => Value in D.
logicals coded as -1.0=>F, 1.0=>T.

C(*)*8 List of character keyword values values.
I(*) Keyword type codes.
I error code 0=ok. l=error.

Extension file values.
Header values for a tables extension file.

14.8. REFERENCES 14-33

14.7.15 TABHDR
Will read a FITS table header until an END card is found. It will obtain and interpret each card image and
put the data for the symbols it recognizes into a set of output arrays. Selected ’SINGLDSH’ keywords are
kept; the rest are ignored

TABHDR (FDVEC, TBIND, ICARD, HLUN, HBLK, TABTYP, NUMKEY, KEYWRD,
* KEYVAL, KEYCHR, KEYTYP, TAPBUF, FITBLK, IERR)

Inputs:
FDVEC
ICARD
HLUN
HBLK
TABTYP

In/Out:
TBIND
TAPBUF
FITBLK
NUMKEY

Outputs:
KEYVRD
KEYVAL

KEYCHR
KEYTYP
IERR

Commons:
/EXTHDR/ Extension file values.
/THDR/ Header values for a tables extension file.

14.8 R eferences
Wells, Greisen, and Harten 1981, Astronomy and Astrophysics Supplement series, vol. 44, pp 363 - 370.
Greisen and Harten, 1981, Astronomy and Astrophysics Supplement Series, vol. 44, pp 371 - 374. Harten,

Grosb0l, Tritton, Greisen and Wells 1984, draft reproduced in the IAU Commission 9 Astronomical Image
Processing Circular. Also appeared in Mem. S. A. It., 56, 437 (1985).

1(50) File descriptor vector for TAPIO input
I The card number (1-36) in block to interpret
I History file LUN.
1(256) History file I/O buffer.
I Table type 0=>FITS ASCII, 1=> FITS 3-D

I Buffer pointer in FITBLK
I(*) TAPIO i/o buffer in use
C+2880 A block of FITS header data.
I on Input the max. number of keywords, on

output the number of arbitrary keyword/value
pairs found.

C(*)*8 Keywords
D(*) List of arbitrary numeric/logical values:

KEYVAL(n) => Value in D.
logicals coded as -1.0=>F, 1.0=>T.

C(*)*8 List of character keyword values values.
I(*) Keyword type codes.
I error code 0=ok. l=error.

14-34 CHAPTER 14. FITS TAPES

Chapter 15
The Z Routines

15.1 O verview
The AIPS system has a number of types of routines in which the details depend on the hardware and/or
operating system upon which the code is running. These types of routines, which may vary from system to
system, are denoted by the first letter of the name and-include: (1) those which depend primarily on the
operating system or CPU hardware (denoted by a “Z” , thus the “Z” routines), (2) those which depend on
the image display (TV) hardware an d /o r software (the “Y” routines) and (3) those which depend on array
or vector hardware and/or software (the “Q” routines). This chapter discusses the “Z” routines; the “Y”
and “Q” routines are discussed elsewhere in this manual.

In principle, sill th a t is required to make AIPS work on a new machine is to develop a disk file structure
and create a set of “Z” , “Q” and “Y” routines to interface AIPS programs to the operating system, the file
structure, the array or vector functions and the image display. If routines other than “Z” (or “Y” and “Q”)
routines are modified, then they will have to be modified every time the AIPS system is updated. For this
reason, we recommend th a t no routines other than “Z ”, “Y ” or UQ” routines should be modified as part of
the installation on a new system.

This chapter will describe the functions of the upper layer of Z routines; in any implementation, there
will probably be additional lower level machine-dependent routines. These Z routines form the basis of a
virtual operating system under which the application code runs. Careful study of an existing implementation
of AIPS is recommended before attem pting a new installation.

The upper layer of the “Z” routines is defined by the contents of the directory with logical name APLGEN.
Many of the routines in this directory are in fact generic and call second level routines to do the actual system-
dependent operation. The second level “Z” routines called from first level “Z” routines in APLGEN are also
included in APLGEN although many are in stubbed form. Many of the first level “Z” routines appear in
APLGEN in stubbed form for completeness. Second (or lower) level “Z” routines should never be called
from non “Z” routines.

For purposes of discussion, the Z routines will be divided up into a number of overlapping categories:
1. System Functions - These routines do various system functions, such as starting and stopping processes,

inquiring what processes are running, and inquiring how much space is available on a given disk drive.
2. Disk I/O and File Manipulation - These routines create, destroy, expand, contract, open, close, read,

and write disk files.
3. Devtce I/O - These routines talk to the terminals, the tape drive, graphics devices, image displays, etc.

This area overlaps heavily with the disk I/O area.
4. Data Manipulation Routines - These routines convert data formats from external numbers and char

acters to local and vice versa, and move bits and bytes.
5. D irectory and Text File R outines - These routines read the directories for, and read and/or write the

contents of, text files.

15-1

15-2 CHAPTER 15. THE Z ROUTINES

6. Television I/O routines. These routines are discussed in the chapter on televisions and only a brief
description is given in this chapter.

7. Virtual Devices - These routines communicate through network protocols to other processes, which
may reside on another computer, which are connected to a physical device.

8. Miscellaneous - There are a number of routines, such as that which initializes the Device Characteristics
Common, which do not easily fit in one of the other categories.

A detailed description of the call sequences to the non-TV specific first level “Z” routines and listings of the
relevant INCLUDE files are at the end of this chapter.

15.1.1 Device Characteristics Common
Many of the parameters describing the host operating system and installation in AIPS programs are carried
in the Device Characteristics Common, which is obtained using the include DDCH.INC. The text of this
include file can be found at the end of this chapter.

The contents of the Device Characteristics common are initialized by a call to ZDCHIN. Details of the
call sequence can be found at the end of this chapter. Many of the values in the Device Characteristics
common are read from a disk file. The values in this file can be read and changed using the stand-alone
utility program SETPAR. The constants kept in this common, the values in DEVTAB, and the use of logical
unit numbers are described in the chapter on disk I/O .

15.1.2 F T A B

The FTAB array in the device characteristics common is used to keep AIPS and system I/O tables. The
FTAB has separate areas for the three different kinds of I/O : (1) device I/O to devices which may not need
I/O tables, (2) non-map or regular I/O , which is single buffered, wait mode I/O and 3) map I/O , which can
be double buffered, non-wait mode I/O .

The FTAB has space for one system I/O table for non-map files and two system I/O tables for m ap files
and space for 16 integer words for application routines to use for map I/O . The size of the entries in FTAB
for the different types of I /O are carried in the Device Characteristics Common. The type of the I /O (map
or non-map) is declared by the calling routine to the file/device open routine ZOPEN. In general, the FTAB
is used to carry any system dependent information necessary for I/O to the device or file. Note: the size of
FTAB is dimensioned in the DDCH.INC include for all applications.

The FTAB is divided up by ZDCHIN into three areas, one for each type of I/O . These areas are described
in the following:

1. Non-FTAB I/O - This area has NTAB1 entries, each NBTB1 bytes long. The first integer word in
each entry is zero, if th a t entry is not in use, and the LUN of the corresponding device, if the entry is
in use.

2. FTAB “non-map” I/O - This area has NTAB2 entries, each NBTB2 bytes long. The first of these
is zero, if tha t entry is not in use, and the LUN of the corresponding device, if the entry is in use.
Following is space for one copy of whatever system I/O table is required for the host system.

3. FTAB “map” I/O - This area has NTAB3 entries, each NBTB3 bytes long. The first 16 integer words
in each entry are reserved for application routines; the first of these is zero, if th a t entry is not in use,
and the LUN of the corresponding device, if the entry is in use. Following these 16 integers is space
for two copies of whatever system I/O table is required for the host system.

Note that a byte is defined in this manual as half a integer, except for most tape and other device I /O where
it means 8 bits.

15.1. OVERVIEW 15-3

15.1.3 Logicals
The specification of directories inside of AIPS is almost always in terms of a logical directory; tha t is a
variable whose value is the name of the directory or otherwise specifies the directory. Under VMS these are
VMS logicals and under Unix they are environment variables. If AIPS is to be implemented in an operating
system th a t does not have an equivalent facility then it must be invented for the AIPS environment. In file
names these logicals are given in the form used in VMS, i.e. “logical:filename” .

15.1.4 Disk Files
The AIPS system uses binary files for data and text files for source code and other information. The location
and physical name of the various files depends very much on the host system and installation. The physical
name of a file is derived by ZPHFIL and the location of a file is determined by ZPHFIL and ZOPEN (or
ZTOPEN or ZTXOPN for text files).

Binary (data) files
Binary files are divided into two types, “m ap” and “non-map” files corresponding to the two types of I/O .
Normally most AIPS binary files on a given disk are put in a single area or directory. Current implemen
tations of AIPS use 8 characters for the basic physical name and 3 more if private catalogs are supported.
Applications software will handle up to 48 characters in a name including logicals and/or directory names.

An example from a VAX system with private catalogs is “DAOn:ttrcccvv.uuu” ; where n is the one relative
AIPS disk drive number, DAOn: is a logical variable which is assigned to a directory, t t is a two character
file type (e.g., ’MA’), r is the data form at version code (’A ’/B ’,...), ccc is the catalog slot number (hex), vv
is the version (hex) (01 for “MA” and “UV” files), and uuu is the user’s number in hexadecimal notation.

“Map” type files are files on which it should be possible to double buffer. It should be possible to expand
or contract “m ap” . These files should be as contigious as possible since contiguous files are more efficient,
but they cause problems finding space for large files. These files should be capable of random access with
I/O beginning on a disk sector boundary.

“Non-map” files should also be expandable and contractable. These files should be capable of random
access with I/O beginning on a disk sector boundary. In practice, there is no longer any real difference
between “m ap” and “non-map” files and the distinction in AIPS is purely for historical reasons.

Text files
Text files are used for storing source code and control information such as the RUN and H ELP/IN PU T files
as well as a means of communicating information between AIPS and the external world. There are currently
two systems of accessing text files; the older one which is read-only is for access to AIPS system text files.
A second system will read or write arbitrary text files.

AIPS system text files are accessed using a combination of ZTOPEN, ZTREAD and ZTCLOS. The type
of the text file is specified to ZPHFIL as one of several types; the directory may be further selected by the
ZTOPEN argument VERSON which can specify the version (directory or area). The member (or file) name
is specified to ZTOPEN and may contain up to eight characters. These types, and the files kept in each of
the AIPS system text file directories, are described in the following:

1. HE - These are the HELP files which specify which AIPS adverbs are to be sent to tasks and contain
the primary user documentation.

2. RU - The RUN files usually contain instructions for the AIPS program. Other types of text files may
appear in this area as input for AIPS tasks.

General text files may be accessed using a combination of ZTXOPN, ZTXIO, and ZTXCLS. ZTXOPN
will open a file whose specifications is up to 48 characters and must include a logical (environment variable
under Unix) pointing to the directory. A file to be written must not previously exist unless the APPEND
option is specified. ZTXIO can read or write lines to/from this text file and ZTXCLS will close it.

15-4 CHAPTER 15. THE Z ROUTINES

15.2 System Functions
There are a number of functions involving processes or system resources, which must be done in a system-
dependent fashion. These include controlling processes (starting, killing, suspending and resuming) and
determining the time, date, name of the current process, and the amount of CPU time used by the current
task. Some of these may require special privileges.

The AIPS interactive program may start independent processes, called tasks, which do most of the
computations. In order to start a task, AIPS first writes the task’s adverbs (determined from the associated
HELP file and the current POPS adverb values) together with an initial value of the task return code (-999)
into the task data (TD) file, closes the TD file, and starts the task.

AIPS then loops with a fixed time delay (3 sec. for interactive, 8 sec. for interactive with POPS adverb
DOWAIT=TRUE and 20 sec. for batch) until one of two conditions exist. These conditions are (1) the value
in the TD file of the return code has changed or (2) the task is no longer running. In case 1, AIPS resumes
normal operation; in case 2, if the value of the return code is unchanged, the task is assumed to have failed
and any scratch files are destroyed. In case 1 or case 2, if the value of the return code is modified, AIPS
continues and processes the return code. A non-zero return code indicates tha t the task failed.

The following list gives a short description of the first level system routines; complete descriptions of the
call sequences can be found at the end of this chapter.

• ZABORT establishes or carries out (when appropriate) abort handling.
• ZACTV8 activate the requested program, returning process ID information.
• ZCPU return current process CPU tim e and 10 count.
• ZDATE return the local date.
• ZDCHIN initialize message, device and Z-routine characteristics commons.
• ZDELAY delay current process a specified interval.
• ZFREE display available disk space.
• ZGNAME get name of current process.
• ZPRIO raise or lower the process priority.
• ZSETUP performs system-level operations after VERNAM, TSKNAM, NPOPS known.
• ZSTAIP does any system cleanup needed at the end of interactive AIPS session.
• ZTACTQ inquires if a task is currently active on the local computer.
• ZTIME return the local tim e of day.
• ZTKILL deletes (or kills) the specified process.
• ZTQSPY display AIPS account or all processes running on the system.
• ZTRLOG translate a logical name.
• ZWHOMI determines AlPSxn task name; sets NPOPS, assigns TV and TK devices.
The following items are second level system routines in APLGEN; others may be needed in a given

implementation.
• ZABOR2 establishes or carries out (when appropriate) abort handling.
• ZDCHI2 initialize device and Z-routine characteristics commons - local vals.
• ZDCHIC set more system parameters; make them available to C routines.

15.3. DISK I/O AND FILE MANIPULATION ROUTINES 15-5

• ZDELA2 delay current process a specified interval.
• ZFRE2 return AIPS data disk free space information.
• ZPRJ2 raise or lower the process priority.
• ZSTAI2 does any system cleanup needed at the end of interactive AIPS session.
• ZTACT2 inquires if a task is currently active on the local computer.
• ZTQSP2 display AIPS account or all processes running on the system.

15.3 Disk I/O and File M anipulation R outines
This section describes the routines needed for m anipulating disk data (binary) files. The physical names of
disk data files are always constructed by ZPHFIL and these files are always opened by ZOPEN. There are
separate routines for writing to the message file (ZMSGCL, ZMSGDK, and ZMSGOP) to avoid recursion
when reporting an error message from one of the I/O routines.

Short descriptions of the first level disk file.routines are given in the following list; detailed descriptions
of the call sequences are given a t the end of the chapter.

• ZCLOSE closes open devices: disk, line printer, terminal.
• ZCMPRS release space from the end of an open disk file.
• ZCREAT creates a disk file.
• ZDESTR destroy a closed disk file.
• ZEXIST return file size and, consequently, whether file exists.
• ZEXPND expand an open disk file — either map or non-map are allowed.
• ZFIO reads and writes single 256-integer records to non-map disk files.
• ZFULLN convert file name to full pathnam e with no logicals.
• ZMIO random-access, quick return (double buffer) disk I/O for large blocks.
• ZMKTMP convert a “tem porary” file name into a unique name.
• ZMSGCL close Message file or terminal.
• ZMSGDK disk I/O to message file.
• ZMSGOP open a message file or message terminal.
• ZMSGXP expand the message file.
• ZOPEN open binary disk files and line printer and TTY devices.
• ZPHFIL construct a physical file or device name from AIPS logical parameters.
• ZPHOLV construct a physical file - version for UPDAT.
• ZRENAM rename a disk file.
• ZTFILL zero-fill, initialize a file I /O table (FTAB) entry.
• ZWAIT wait for asynchronous (“MAP”) I/O to finish.
The following items are second level disk I/O routines in APLGEN; others may be needed in a given

implementation.

15-6 CHAPTER 15. THE Z ROUTINES

• ZCMPR2 truncate a disk file, returning blocks to the system.
• ZCREA2 create the specified disk file.
• ZDACLS close a disk file.
• ZDAOPN open the specified disk file.
• ZDEST2 destroy a closed disk file.
• ZEXIS2 return size of disk file and if it exists.
• ZEXPN2 expand an open disk file.
• ZFI2 read/write one 256-integer record from /to a non-map disk file.
• ZMI2 read/write large blocks of data from /to disk, quick return.
• ZMSGWR call MSGWRT based on call arguments - for C routines to call MSGWRT.
• ZPATH convert a file name ’Logicahfile’ to full path name.
• ZRENA2 rename a file.
• ZWAI2 wait for read/w rite large blocks of data from /to disk.

15.4 D evice (non-disk) I /O R outines
Several of the routines discussed in the disk I /O section will also work on other devices. There are a number
of special functions required for non-disk devices. One example of these is the routine to talk to a terminal;
some operating systems don’t allow Fortran I/O to a terminal, so this I/O is done through the routine
ZTTYIO.

The following list gives a short description of these routines; complete descriptions of the call sequences
can be found at the end of this chapter.

• ZBKLD1 initialize environment for BAKLD.
• ZBKLD2 does BACKUP operation: load images from tape to directory.
• ZBKLD3 clean up system things for BAKLD ending.
• ZBKTP1 initialize BACKUP to tape operation for BAKTP.
• ZBKTP2 write a cataloged file plus extensions to BACKUP tape in BAKTP.
• ZBKTP3 clean up host environment a t end of BAKTP.
• ZDOPRT reads bit file and causes it to be plotted on printer/plotter.
• ZENDPG advance printer if needed to avoid electrostatic-printer “burn-out”
• ZLASCL close and spool a laser printer prin t/p lo t file.
• ZLASIO open, write to, close and spool a laser printer p rint/plot file.
• ZLASOP open a laser printer p rin t/p lo t file.
• ZLPCLS close an open printer device.
• ZLPOPN open a line-printer text file.
• ZLWIO open, write to, close and spool a PostScript p rint/plot file.

15.4. DEVICE (NON-DISK) I/O ROUTINES 15-7

• ZLWOP open a PostScript (LaserWriter) prin t/p lo t file.
• ZMOUNT mount or dismount magnetic tape device.
• ZPRM PT prom pt user and read 80-characters from CRT screen.
• ZPRPAS prom pt user and read 12-character password (invisible) from CRT.
• ZTAPE mount, dismount, position, write EOF, etc. for tapes.
• ZTAPIO tape operations for IM PFIT (compressed FITS transport tape).
• ZTKBUF flush TK buffer if needed, then store 8-bit byte in buffer.
• ZTKCLS close the TK device.
• ZTKFI2 read/w rite from /to a Tektronix device.
• ZTKOPN open a TK device.
• ZTPCLD close pseudo-tape disk file.
• ZTPCLS closes a tape device (real or pseudo-tape disk).
• ZTPMID pseudo-tape disk read/w rite for 2880-bytes records.
• ZTPMIO read/w rite tape devices with quick return I/O methods.
• ZTPOPD open a pseudo-tape, sequential disk file for FITS.
• ZTPOPN open tape or pseudo-tape device.
• ZTPWAD ”wait” for 10 operation to complete on pseudo-tape disk file (ZTPMID).
• ZTPWAT wait for asynchronous 10 to finish on tape or pseudo-tape disk.
• ZTTBUF reads term inal input with no prom pt or wait - simulates TV trackball.
• ZTTYIO read/w rite buffer to terminal.
The following items are second level system routines in APLGEN; others may be needed in a given

implementation.
• ZLASC2 spool a closed laser printer p rin t/p lo t file.
• ZLPCL2 queue a file to the line printer and delete.
• ZLP0P2 open a line-printer text file - actual OPEN call.
• ZM0UN2 mount or dismount magnetic tape device.
• ZTAP2 position (forward/back record/file), write EOF, etc. for tapes.
• ZTKCL2 close a Tektronix device.
• ZTK 0P2 read/w rite from /to a Tektronix device.
• ZTPCL2 close a tape device.
• ZTPMI2 tape read/w rite.
• Z T P0P2 open a tape device for double-buffer, asymchronous 10.
• ZTPWA2 wait for read/w rite from /to a tape device.
• ZTTCLS close a term inal device.
• ZT T 0P2 open a message terminal.
• ZTTOPN open a term inal device.

15.5 D ata M anipulation R outines
The internal form in which characters, reals and integers are stored varies from computer to computer, but
a given FITS data tape should be able to be read on any AIPS system. Thus it is necessary to be able to
convert between the external (FITS or other) formats and the internal formats. The format of data on FITS
tape files is discussed in another chapter.

The floating point formats, word size and the byte and word order etc. on the current machine are given
in commons in the DDCH.INC INCLUDE.

• BYTFLP (I) Byte flip, 0=none, l=bytes, 2=words, 3=both
• NBITWD (I) no. bits / word
• NBITCH (I) no. bits per character
• NWDPDP (I) no. words / double-precision floating point
• SPFRMT (I) Single precision floating-point format code: 0 = > OTHER, 1=> IEEE, 2= > VAX F,

3= > VAX G, 4 = > IBM (not supported yet).
• DPFRM T (I) Double precision floating-point format code (see codes for SPFRMT)
The following list gives the names and uses of the upper level data manipulation “Z” routines. Details

of the call sequences are given later in this chapter.
• ZBYMOV move 8-bit bytes from in-buffer to out-buffer.
• ZBYTFL interchange bytes in buffer if needed to go between local and standard.
• ZC8CL convert packed ASCII buffer to local character string.
• ZCLC8 convert local character string to packed ASCII buffer.
• ZDHPRL convert 64-bit HP floating buffer to local DOUBLE PRECISION values.
• ZDM2DL convert Modcomp REAL*6 and REAL*8 to local double precision.
• ZGETCH get a character from a HOLLERITH word.
• ZGTBIT get array of bits from a word.
• ZI16IL convert FITS-standard 16-bit integers to local integers.
• ZI32IL convert FITS-standard 32-bit integers from buffer into local integers.
• ZI8IL convert 8-bit unsigned integers in buffer to local integers.
• ZILI16 convert local integers to 16-bit FITS integers in a buffer.
• ZILI32 convert local integer into FITS-standard 32-bit integers.
• ZMCACL convert Modcomp compressed ASCII to Hollerith characters (for FILLR).
• ZPTBIT put array of bits into a word.
• ZPUTCH inserts 8-bit “character” into a word.
• ZR32RL convert 32-bit IEEE floating buffer to local REAL values.
• ZR64RL convert 64-bit IEEE floating-point buffer to local “DOUBLE PRECISION” .
• ZR8P4 converts pseudo 1*4 to double precision - for tape handling only.
• ZRDMF convert DEC Magtape Format (36 bits data in 40 bits) to 2 integers.

15-8 CHAPTER 15. THE Z ROUTINES

• ZRHPRL convert 32-bit HP floating buffer to local REAL values.

• ZRLR32 converts buffer of local REAL values to IEEE 32-bit floating-point.

• ZRLR64 convert buffer of local double precision values to IEEE 64-bit float.
• ZRM2RL convert Modcomp to local single precision floating point.
• ZUVPAK Pack visibility data, 1 correlator per real with magic value blank.

• ZUVXPN Expands packed visibility data and adds weight.

• ZX8XL convert FITS table bit array to AIPS bit array.

• ZXLX8 convert AIPS bit array to FITS binary table bit array.
The following item is a second level binary data conversion routine; others may be needed in a particular

implementation.
• ZBYTF2 interchange bytes in buffer if needed to go between local and standard.

15.6 D irectory and Text F ile R outines
Text files are used for source code and other information and have been discussed previously in this chapter.
There are currently two systems for access to text files one for AIPS system files and the other for general
text files. The following list briefly describes the functions of the first level routines for text files; detailed
descriptions of the call sequences are found a t the end of this chapter.

• ZTCLOS close text file opened with ZTOPEN.
• ZTOPEN open text file - logical area, version, member name as arguments.

• ZTREAD read next 80-character record in sequential text file (ZTOPEN type).
• ZTXCLS close text file opened via ZTXOPN.
• ZTXIO read/w rite a line to a text file.
• ZTXMAT return list of files in specified area beginning with specified chars.
• ZTXOPN open a text file for read or write.
The following items are second level text file routines in APLGEN; others may be needed in a given

implementation.

• ZDIR build a full path name to files in AlPS-standard areas (HE, RU, ...).

• ZT 0PE 2 open text file for ZTOPEN.
• ZTXMA2 find all file names matching a given wildcard specification.
• ZTXOP2 translate the file name and open a text file.

15.6. DIRECTORY AND TEXT FILE ROUTINES 15-9

15-10 CHAPTER 15. THE Z ROUTINES

15.7 Television I /O
System dependent routines are usually needed to communicate with a physical display device. These routines
were discussed in some detail in the chapter on displays and are only brielfy described here.

• ZARGCL close an ARGS TV device.
• ZARGMC issues a m aster clear to an ARGS TV.
• ZARGOP open ARGS TV device.
• ZARGXF translates IIS Model 70 commands into calls to ZARGS for ARGS TV.
• ZDEACL close DeAnza TV device.
• ZDEAMC issue a m aster clear to the TV - for DeAnzas this is a No-Op.
• ZDEAOP opens DeAnza TV device.
• ZDEAXF do I/O to DeAnza TV.
• ZIPACK pack/unpack long integers into short integer buffer.
• ZIVSOP opens IVAS TV device - using the IIS package.
• ZM70CL close an IIS Model 70 TV device, flushing any buffer.
• ZM70MC issues a m aster clear to an IIS Model 70 TV.
• ZM700P open IIS Model 70 TV device.
• ZM70XF read/w rite da ta to IIS Model 70 TV with buffering.
• ZTTBUF reads term inal input with no prom pt or wait - simulates TV trackball.
• ZV20CL close a Com tal Vision 1/20 TV device.
• ZV20MC issue a m aster clear to the TV - for Comtal this is a No-Op.
• ZV200P open Comtal Vision 1/20 TV device.
• ZV20XF read/w rite da ta to Comtal Vision 1/20 TV device.
The following are second level TV I/O routines in APLGEN; in a given implementation there will be

others.
• ZARGC2 close an ARGS TV device.
• ZARG02 open ARGS TV device.
• ZARGS sends command to/from the ARGS TV device.
• ZDEAC2 close DeAnza TV device.
• ZDEA02 opens DeAnza TV device.
• ZDEAX2 do actual read/w rite from /to DeAnza device.
• ZM70C2 close IIS Model 70/75 TV device.
• ZM70M2 issues a m aster clear to an IIS Model 70 TV.
• ZM7002 opens IIS Model 70.75 TV device.
• ZM70X2 read/w rite from /to IIS Model 70/75 device.
• ZV20C2 close Comtal Vision 1/20 TV device.
• ZV20O2 opens Comtal Vision 1/20 TV device.
• ZV20X2 does I/O to Comtal Vision 1/20 TV device.

15.8 V irtual D evices
In many cases it is desirable to communicate with a physical device tha t is directly connected to a process tha t
may reside on another computer. These devices are refered to here as virtual devices as the communication
with them is through network protocols rather than directly. These routines communicate with a generic
device as they may or may not know what physical device they are communicating with. Currently, these
exist only for the display device (TV).

• ZVTVCL close connection in client (virtual-TV) to server (remote, real-TV).
• ZVTVGC close and reopen connection in server (real-TV) to client (virtual-tv).
• ZVTVOP opens connection from client (virtual-TV) to server (real-TV).
• ZVTVRC closes channel in server (real-TV) to client (virtual-TV).
• ZVTVRO open scket in server (real-TV) to any client (virtual-TV).
• ZVTVRX does 10 for server (real TV) to client (Virtual-TV) incl close/reopen.
• ZVTVXF sends data from the client (virtual TV) to server (real TV).
The following are second level virtual device routines in APLGEN; in a given implementation there may

be others.
• ZVTVC2 close virtual TV connection to remote, real-TV computer.
• ZVTVC3 close connection in real-TV computer to client, virtual-TV computer.
• ZVTV02 open connection in client (virtual-TV) to server (remote, real-TV).
• ZVTV03 open connection in server (real-TV) to client (virtual-TV).
• ZVTVX2 writes/reads to /from server for the client (virtual TV) machine.
• ZVTVX3 reads/writes from /to client (virtual TV) for the server (real TV).

15.9 M iscellaneous
Several Z routines don’t fit naturally into any of the above categories. The following list gives a brief
description of each; details of the call sequences and functions are given at the end of this chapter.

• ZADDR determine if 2 addresses inside computer are the same.
• ZERROR prints strings associated with system error codes for Z routines.
• ZHEX encode an integer into hexadecimal characters.
• ZKDUMP display portions of an array in various Fortran formats.
• ZMSGER prints strings associated with system error codes for ZMSG routines.
• ZMYVER returns OLD, NEW, or TST based on translation of logical AIPS-VERSION.
The following item is a second level miscellaneous routine; others may be needed in a particular imple

mentation.
• ZERR02 return system error message for given system error code.

15.8. VIRTUAL DEVICES 15-11

15-12 CHAPTER 15. THE Z ROUTINES

There are several types of INCLUDE file which are distinguished by the first character of their name.
Different INCLUDE file types contain different types of Fortran declaration statem ents as described in the
following list.

• Pxxx.INC. These INCLUDE files contain declarations for parameters and the PARAMETER state
ments.

• Dxxx.INC. These INCLUDE files contain Fortran type (with dimension) declarations, COMMON and
EQUIVALENCE statm ents.

• Vxxx.INC. These contain Fortran DATA statements.
• Zxxx.INC. These INCLUDE files contain declarations which may change from one computer or instal

lation to another.

15.10 INCLUDES

15.10.1 DDCH.INC
C Include DDCH.
C AIPS system parameters

CHARACTER SYSHAM*20, VERHAM*4, RLSNAM*8, DEVHAM(10)*48,
* H0HHAM(8)*48, MAPHAM(12)*48, SYSTYP*4, SYSVER*8
HOLLERITH HBLAHK
DOUBLE PRECISION DBLAHK
REAL XPRDMM, XTKDMM, TIMEDA(IS), TIMESG, TIMEMS, TIMESC, TIMECA,
* TIMEBA(4), TIMEAP(3), FBLAHK, RFILIT(14)
INTEGER NVOL, NBPS, HSPG, NBTB1, NTAB1, HBTB2, NTAB2, NBTB3,

* ITAB3, NTAPED, CRTMAX, PRTMAX, NBATQS, MAXXPR(2), CSIZPR(2),
* HIHTRH, KAPWRD, NWDPDP, HBITWD, NCHLIN, NTVDEV, HTKDEV, BLANKV,
* NTVACC, NTKACC, UCTSIZ, BYTFLP, USELIM, NBITCH, HCHPRT,
* KAP2WD, MAXXTK(2), CSIZTK(2), DASSGN(8,15) , SPFRMT, DPFRMT,
* NSHORT, TTYCAR, DEVTAB(50), FTAB(1024)
COMMON /DCHCHM/ SYSNAM, VERNAM, SYSTYP, SYSVER, RLSNAM,

* DEVNAM, NONNAM, MAPNAM
COMMON /DCHCOM/ DBLANK, XPRDMM, XTKDMM, TIMEDA, TIMESG, TIMEMS,

* TIMESC, TIMECA, TIMEBA, TIMEAP, FBLAHK, RFILIT, HBLAHK,
* HVOL, HBPS, HSPG, HBTB1, HTAB1, HBTB2, HTAB2, HBTB3, HTAB3,
* HTAPED, CRTMAX, PRTMAX, HBATQS, MAXXPR, CSIZPR, HIHTRH,
* KAPWRD, HWDPDP, HBITWD, HCHLIH, HTVDEV, HTKDEV, BLAHKV,
* HTVACC, HTKACC, UCTSIZ, BYTFLP, USELIM, HBITCH, HCHPRT,
* KAP2WD, MAXXTK, CSIZTK, DASSGH, DEVTAB, SPFRMT, DPFRMT,
* HSHORT, TTYCAR
COMMOH /FTABCM/ FTAB

C End DDCH.

15.10.2 DMSG.INC
C Include DMSG.
C AIPS system message common

IHTEGER MSGCHT, HPOPS, HLUSER, HACOUH, MSGSUP, MSGREC,
* MSGKIL, ISBTCH, DBGAIP, MSGDM1, MSGDM2, MSGDM3
CHARACTER MSGTXT*80, TSKHAM*6
COMMON /MSGCOM/ MSGCHT, HPOPS, HLUSER, HACOUH, MSGSUP, MSGREC,

* MSGKIL, ISBTCH, DBGAIP, MSGDM1, MSGDM2, MSGDM3
COMMOH /MSGCHR/ MSGTXT, TSKHAM

C End DMSG.

15.11. ROUTINES 15-13

15.11 R outines
15.11.1 SYSTEM
The following describes the first level System “Z” routines as documented in the APLGEN directory.

ZABORT
Will take one of two actions depending on the value of “action” . If “action” is zero, it establishes abort
handling to clean up for programs in the event of an ABORTASK or otherwise fatal signal. Hangup, interrupt
(except for AIPS or BATER) and quit are ignored. If running under the control of a debugger, it simply
returns (to avoid affecting the debugger signal handling). If “action” is non-zero, it will issue an illegal
instruction in order to induce the abort handler. This is mostly to get a traceback for debugging purposes
(e.g., when an invalid argument to a subroutine is detected).

ZABORT (TSKNAM, ACTION)
Inputs:

TSKNAN C*6 Program name
ACTION I Action indicator code:

0 => establish abort handling
1 => invoke an illegal instruction

Output:
none

Generic version - calls ZAB0R2 alter tests on TSKNAM.

ZACTV8
Activate the specified program and return the activated process identification information.

ZACTV8 (NAME, INPOPS, RVERSN, PID, IERR)
Inputs:

VANE
IVPOPS
RVERSV

In/Out:
PID

C*6
I
048

1(4)

Output:
IERR I

Common: DMSG.IVC
DBGAIP I

Generic version =

Program name
POPS # lor the task to use
Logical name or lully qualilied name ol the
directory Irom vhich to get the required
executable module

Process identilication inlormation used directly
by subsequent calls to ZTACTQ vhere
In: PID(l) - user number lor systems that use

it (= 0 othervise and on all
AIPSB invocations)

Out: PID(2-4) = process ID number(s) as needed

Error return code: 0 => no error
1 => program name too long
2 => activation error

> 10 => start tasks in DEBUG mode il possible
stub

ZCPU
Determines cumulative cpu usage in seconds for this process: i.e. each time a process calls ZCPU during an
execution, TIM E is larger.

15-14 CHAPTER 15. THE Z ROUTINES

ZCPU (TIME, IOCHT)
Output:

TIME R Current CPU accumulation in seconds
IOCVT I 10 count accumulation

Generic version - stub

ZDATE
Returns local date

ZDATE (LDATE)
Output:

LDATE 1(3) local date where
LDATE(l) year since 0.
LDATE(2) month (1-12).
LDATE(3) day (1-31).

Generic version - stub

ZDCHIN
Initialize the device characteristics common and the FCB’s (file control blocks) in FTAB(*) for the maximum
number of different file types that can be open at the same time. Initialize also other machine-dependent
commons and the message common. Note th a t the task name is not set here.

ZDCHII (DODISK, JOBLK)
Inputs:

DODISK L Get SETPAR-controlled parameters from disk
Inputs from common: DMSG.IVC

TSKVAM C*6 Task name if known - else * * (used in ABORT
handler mostly to separate standalones and
tasks)

Output:
JOBLK 1(256) I/O block - no longer used

Output in commons: DDCH.IVC DMSG.IIC
all ... All values set to init except TSKVAM

ZDCHIV starts with hard-coded values. Then, if DODISK is true,
resets those contained in the system parameter file. The utility
program SETPAR is used to alter the system parameter file values.

Critical system constants (all "words" are local integers, all
"bytes” are AlPS-bytes, i.e., 1/2 a local integer and on 64 bit
architectures, double precision contructs should be preprocessed
into their single precision counterparts):
Generic version - calls ZDCHI2, ZDCHIC (init C codes).

ZDELAY
Cause an execution delay for a specified time interval.

ZDELAY (SECS, IERR)
Inputs:

SECS R Vumber of seconds to delay
Output:

15.11. ROUTINES 15-15

IERR I Error return code: 0 => no error
1 => error

Generic version - calls ZDELA2 protecting input argument.

ZFREE
Determine the number of free 256-integer blocks that are available on the disks used for AIPS user data and
print the information on the user’s terminal.

ZFREE (MSLEV, IERR)
Inputs:

MSLEV I Message level to use (1 => to terminal only,
2-5 => also to message lile)

Common /DCHCOM/
NVOL I Number of AIPS disks

Output:
IERR I Error return code: 0 => no error

1 => error
Generic version - uses ZFRE2 to get info.

ZGNAME
Get the name of the current process.

ZGNAME (NAME, IERR)
Output:

NAME C*6 Current process name
IERR I Error return code: 0 => no error

1 => error
Generic version - stub

ZPRIO
Change the execution priority of the current process between th a t of batch and interactive processes.

ZPRIO (OP, IERR)
Inputs:

OP C*4 ’UPPP* to interactive, ’DOWN* to batch
IERR I Error return code: 0 => no error

1 => invalid opcode
2 => illegal request
3 => other

Generic version - uses ZPRI2 to do the real vork.

ZSETUP
Performs any needed system level operations which can be performed only after VERNAM, TSKNAM, and
NPOPS have been determined.

ZSETUP
(no ca ll arguments)
Generic version - only lovers priority of batch jobs from that of
interactive. If batch are started at the interactive priority,
then they can usually go back to interactive vhen needed such as
vhile they possess a valuable device (e.g., a real AP).

15-16 CHAPTER 15. THE Z ROUTINES

ZSTAIP
Performs any operations needed to normalize the local operating system at the conclusion of an interactive
AIPS session.

ZSTAIP (SCRTCH)
Outputs:

SCRTCH 1(256) Scratch buffer

Generic version - calls ZSTAI2 in case there is something to do
in C or Macro, else a null routine.

ZTACTQ
Determines if a specified task is active.

ZTACTQ (HAME, PID, ACTIVE, IERR)
Inputs:

C*6VAME
In/out:

PID

Actual task name,

Output:
ACTIVE
IERR

1(4) Process
In

"ID" code

Out:

PID(l) user number 0 => any
PID(2-4) process # 0 => unknown
PID(l) not changed
PID(2-4) the ID determined here from HAME

L Task active indicator (T => active)
I Error return code: 0 => ok.

2 => invalid task name.
3 => other

Generic version - calls ZTACT2.

ZTIME
returns the local time of day

ZTIME (ITIME)
Output:

ITIME 1*2(3) Local time where: ITIME(l) = hour (0-24)
ITIME(2) = minute (0-60)
ITIME(3) « second (0-60)

Generic version - stub

ZTKILL
Will delete/kill the process specified by NAME.

ZTKILL (IAME, PID, IERR)
Inputs:

VAME C*6 actual task name
PID 1(4) Process "ID" code:

PID(l) user number 0 => any user
PID(2-4) process # 0 => unknown

Output:
IERR I Error number: 0 => ok.

1 => error.
Generic version - stubbed pending development.

15.11. ROUTINES 15-17

Z T Q S P Y
Displays information on the user’s terminal regarding AIPS account originated processes or all processes
running on the system.

ZTQSPY (DOALL, TLIST)
Inputs:

DOALL R > 0.0 => display all processes
Output:

TLIST 1(256) Scratch buffer (not used in generic)
Generic version - uses ZTQSP2.

Z T R L O G
Translate a logical name (i.e., environment variable). NOTE: This routine is ONLY for use by other Z-
routines.

ZTRLOG (LLEH, LOGNAM,
Inputs:

LLEH I
LOGMAN C*(LLEH)
XLEI I

Output:
XLATED C*(XLEH)
XLIB I

IERR I

Generic version - stub

Z W H O M I
Determines the actual task name under which the present version of AIPS is running. It uses this information
to set the value of NPOPS in the common /M SGCOM /. It then assigns the TV and TK devices setting
NTVDEV and NTKDEV in include DDCH.INC.

ZVHONI (IERR)
Output:

IERR I Error return code: 0 => no error
1 => process name is not AIPSz
2 => illegal POPS number
3 => other error

Generic version - uses ZGHAME, ZTRLOG

15.11.2 Disk I/O
The following describes the first level Disk I/O “Z” routines as documented in the APLGEN directory.

Z C L O SE
Close the file associated with LUN removing any exclusive use state and clear the FTAB entry for the LUN.

ZCLOSE (LUI, FIHD, IERR)
Inputs:

LUH I Logical unit number
FIND I Index in FTAB to file control block for LUH

XLEH, XLATED, XLHB, IERR)

Length of LOGMAN (1-relative)
Logical name
Length of XLATED (1-relative)

Translation (blank filled)
Position of last non-blank in XLATED
(1-relative)
Error return code: 0 => no error

1 => error

15-18 CHAPTER 15. THE Z ROUTINES

Output:
IERR I Error return code: 0 => no error

1 => close error
2 => file already closed in FTAB
3 => both errors
4 => erroneous LUV

Generic version.
So longer closes TV devices as of the 150CT87 release.
No longer closes tape devices as of the 15APR87 release.
No longer closes Tektronix devices as of the 150CT87 release.
No longer closes text files as of the 150CT87 release.

ZCMPRS
Releases unused disk space from the end of an open disk file. “Byte” defined as 1/2 of a integer.

ZCMPRS (IVOL, PNAME, LUN, LSIZE, SCRTCH, IERR)
Inputs:

volume number
physical file name
logical unit number under which file is open.

IVOL
PNAME C*48
LUN

In/Out:
LSIZE (In) desired final size in AIPS bytes

(Out) actual final size in AIPS bytes
Outputs:

SCRTCH 1(256)
IERR I

scratch buffer (not used under UNIX).
error code: 0 => ok

1 => input data error
2 => compress error

Generic version - uses ZCMPR2.

ZCREAT
Create a disk file of a specified name and size reserving the disk space.

ZCREAT (IVOL, PNAME, RSIZE, MAP, ASIZE, SCRTCH, IERR)
Inputs:

IVOL I Disk volume containing file
PNAME C*48 Physical file name
RSIZE I Requested size of the file in AlPS-bytes (1/2

of a local integer)
MAP L Is this a "map" file?
:put:
ASIZE I Actual size of file in AlPS-bytes
SCRTCH 1(256) Scratch buffer
IERR I Error return code: 0 => no error

1 => file already exists
2 => volume not found
3 => insufficient space
4 => other
5 => forbidden (reserved)

Generic version - uses ZCREA2

15.11. ROUTINES 15-

ZDESTR
Destroy (i.e., delete) a file. The file should already be closed.

ZDESTR (IVOL, PHAME, IERR)
Inputs:

Disk volume containing lile, 1,2,3,..
Physical lile name (lelt justilied)

IVOL
PHAME

Output:
IERR

I
C*48

Error return code: 0 => no error
1 => lile not lound (no message)
2 => device not lound
3 => lile in use
4 => other

Generic version.

ZEXIST
Determine if a file exists and if so, return its size in AIPS-bytes (1/2 of a local integer).

ZEXIST (IVOL, PHAME, ISIZE, SCRTCH, IERR)
Inputs:

IVOL
PHAME

Output:
ISIZE
SCRTCH
IERR

I Disk volume containing lile, 1,2,3,...
0 4 8 Physical lile name

I File size in AlPS-bytes (1/2 ol a local integer)
I(*) I/O buller
I Error return code: 0 => lile exists

1 => lile does not exist
2 => inputs error
3 => other error

Generic version - SCRTCH not used, calls ZEXIS2.

ZEXPND
Increase the size of a disk file — it must be open

ZEXPHD (LUH, IVOL, PHAME, HREC, IERR)
Inputs:

LUH I LUH ol lile open lile
IVOL I Disk volume containing lile, 1,2,3,...
PHAME 0 4 8 Physical lile name

In/Out:
HREC I # 256-integer records requested/received

Output:
IERR I Error return code: 0 => no error

1 => input error
2 => expansion error
3 => ZEXIST error

Generic version - uses ZEXPH2.

Z FIO
Transfer one logical record between an I/O buffer and device LUN. For disk devices, the record length
always 256 local integers and NREC is the random access record number. For non-disk devices, NREC
the number of 8-bit bytes.

15-20 CHAPTER 15. THE Z ROUTINES

ZFIO (OPER, LUN, FIND, NREC, BUFF,
Inputs:

IERR)

OPER
LUN
FIND
VREC

BUFF
Output:

IERR

C*4
I
I
I

1(256)

Operation code ’READ' or ’WRIT'
Logical unit number
Index in FTAB to lile control block lor LUN
Randon access record number (1-relative) lor
disk translers or number ol 8-bit bytes lor
sequential device translers (e.g., Tektronix
terminals)
I/O buller

errorError return code: 0 => no
1 => lile not open

input error
I/O error
end ol lile

Generic version.
No longer perlorms I/O to TV devices as ol the 15MAR84 release.
No longer perlorms I/O to tape devices as ol the 15APR87 release.
Only perlorms disk and Tektronix device I/O now.

=>
=>
=>

ZFULLN
Convert file name from user specified name with or without a logical to a full path and file name with the
logical translated.

ZFULLN (UIAME, DEFLOG, SUBR, FNAME, IERR)
Inputs:

UNAME 0(*) User specilied name - lirst a logical name,
then a colon, then a lile name (vith or
without a extension). Logical optional.
' ' -> create temporary lile (DEFLOG not ’ ')

DEFLOG 0(*) Delault logical: ' ' => no default
'-1* => UNAME must provide a logical

SUBR 0 6 Subroutine name to be used in creating a
"temporary" lile name. ' ' => no temporary

Output:
FNAME
IERR

0(*) Full lile name
I Error code: 0 => okay

1 => improper combination ol inputs
2 => no translation lor logical
3 => FNAME too short
4 => logical required, not provided

Generic version - may not need to make any machine-specilic versions
unless there is something really special/odd about logical names.

Z M IO
Low level random access, large block, double buffered device I/O .

ZMIO (OPER, LUN, FIND, BLKMO, HBYTES, BUFF, IBUFF, IERR)
Inputs:

OPER 0 4 Operation code 'READ' or 'WRIT'
LUH I Logical unit number

15.11. ROUTINES 15-21

FIHD I Index in FTAB to lile control block lor LUN
BLKNO I Beginning virtual block number (1-relative).

MBYTES I
Block size is given by MBPS in /DCHCOM/.
Number ol AlPS-bytes to transler (an AlPS-byte

IBUFF I
1/2 a local integer).
Buller number to use (1 or 2)

In/out:
BUFF !(*) I/O buller

Output:
IERR I Error return code: 0 => no error

1 => file not open
2 => input error
3 => I/O error
4 => end ol lile

Generic version - uses ZMI2.
Ho longer perlorms I/O to TV devices (15MAR84), to tape devices
(15APR87), and to Tektronix devices (15JUL87) release.

ZMKTMP
Form a unique, fully qualified, temporary file name.

ZMKTMP (FLEff, FILffAM, IERR)
Inputs:

FLEI I Length ol "lilnam"
In/Out:

FILVAM C*(*) File name with the extension .XXXXXX, (e.g.,
"ZXLPRT.XXXXXX"). The extension will be
translormed by 'mktemp* to make "lilnam" a
unique lile name.

Output:
IERR I Error return code: 0 => no error

1 => inputs wrong
3 => lilnam too short

Generic version - stub

ZMSGCL
Close a message file associated with LUN removing any exclusive use state and clear the FTAB entry for
the LUN (much like ZCLOSE but does not call MSGWRT to avoid recursion).

ZMSGCL (LU1, FIHD, IERR)
Inputs:

LUN I Logical unit number
FIND I Index in FTAB to lile control block lor LUN

Output:
IERR I Error return code: 0 => no error

1 => close error
2 => lile already closed in FTAB
3 => both errors
4 -> erroneous LUH

Generic version - uses ZDACLS and ZTTCLS.

15-22 CHAPTER 15. THE Z ROUTINES

ZMSGDK
Transfer one 256-integer record to/from message disk file. Like ZFIO, but does not call MSGWRT to avoid
recursion.

ZMSGDK (OPER, LOT, FIHD, HREC, BUFF, IERR)
Inputs:

OPER
LUH
FIHD
HREC

In/out:
BUFF

Output:
IERR

C*4 Operation code 'READ* or 'WRIT*
I Logical unit number
I Index in FTAB to lile control block for LUN
I Random access record number (1-relative)

In units of 256-integer records.

1(256) I/O buffer

I Error return code: 0 => no error
1 => file not open
2 => input error
3 => I/O error
4 => end of file

Generic version - calls ZFI2

ZMSGOP
Open a message file (much like ZOPEN, but does not call MSGWRT to avoid recursion). Non-map, exclusive,
patient assumed on open.

ZMSGOP (LUH , FIHD, IVOL, PHAME, IERR)
Inputs:

LUH I Logical unit number
IVOL I Disk volume containing file, 1,2,3,
PHAME C*48 Physical file name

Output:
FIHD I Index in FTAB to file control block
IERR I Error return code: 0 -> no error

1 => LUH already in use
2 => file not found
3 => volume not found
4 => exclusive use denied
5 => no room for LUH in FTAB
6 => other open errors

Generic version - calls ZDAOPN, ZTTOPH, ZMSGER.

ZMSGXP
Increase the size of a message file (special version of ZEXPND th a t writes error messages to the terminal
only in order to avoid recursion).

ZMSGIP (LOT, IVOL, PNAME, HREC, IERR)
Inputs:

LUH I LUH of file open message file (must be 12)
IVOL I Disk volume containing file, 1,2,3,...
PHAME C*48 Physical file name

In/Out:
HREC I # 256-integer records requested/received

15.11. ROUTINES 15-23

Output:
IERR I Error return code: 0 => no error

1 => input error
2 => expansion error
3 => ZEXIS2 error

Generic version - calls ZEXPI2, ZEXIS2.

ZOPEN
Open a binary disk file, line printer or terminal Message files, text files, tape devices, Tektronix devices and
TV devices are NOT opened using this routine (see ZMSGOP for message files, ZTOPEN for text files,
ZTPOPN for tape devices, ZTKOPN for Tektronix devices and the device specific routine for TV devices,
e.g., ZM 700P).

ZOPEI (LUI , FIND, IVOL, PIAME, MAP, EXCL, WAIT, IERR)
Inputs:

LUI I Logical unit number
IVOL I Disk volume containing file, 1,2,3,...
PIAME 0 4 8 Physical file name (from ZPHFIL)

For line printers (LUI=1), the output text file
to be kept (’ ’ => use a scratch)

MAP L Is this a "map" file?
EXCL L Exclusive use requested?
VAIT L Wait for exclusive use?

Output:
FI ID I Index in FTAB to file control block for LUI
IERR I Error return code: 0 => no error

1 => LUI already in use
2 => file not found
3 => volume/logical not found
4 => exclusive use denied
5 => no room for LUI in FTAB
6 - > other open errors

Generic version - uses ZDAOPI, ZLPOPI, ZTTOPI
lo longer opens TV devices as of the 15NAR84 release,
lo longer opens tape devices as of the 15APR87 release,
lo longer opens Tektronix devices as of the 150CT87 release,
lo longer opens text files as of the 150CT87 release.

ZPHFIL
Construct a physical file name in PNAM from TYPE, IVOL, NSEQ, and IVER - either for public data files
or user-specific files.

ZPHFIL (TYPE, IVOL, ISEQ, IVER, PIAM, IERR)
Inputs:

TYPE 0 2 Type of file: e.g. 'MA' for map file
IVOL I lumber of the disk volume to be used (1-15)
ISEQ I Sequence number (000-4095)
IVER I Version number (00-255)

Outputs:
PIAM C*48 physical file name, left justified
IERR I Error return code: 0 = good return. 1 = error

15-24 CHAPTER 15. THE Z ROUTINES

Example: If TYPE=*MA\ IV0L=7, AIPSVER=*C», MSEQ=321, IVER=99,
HLUSER=762 then

PHAME=*DA07:MAC14163;1' for public data or
PHAME=*DA07:MAC14163.2FA;1' for private data

vhere 321 = 141 base 16, 99 = 63 base 16, 762 = 2FA base 16

TYPE = ’MT’ leads to special name for tapes
TYPE = ’TK* leads to special name for TEK4012 plotter CRT
TYPE = 'TV* leads to special name for TV device
TYPE = 'ME' leads to special logical for POPS memory files

Generic version - the ZOPEN, ZTRLOG, etc. routines interpret the
resulting VMS-like names.

ZPHOLV
Construct a physical file name in PNAM from TYPE, IVOL, NSEQ, and IVER - either for public data
files or user-specific files. Version of ZPHFIL for UPDAT, in which the Format version codes are passed as
arguments.

ZPHOLV (VERDAT, VERSYS, TYPE, IVOL, HSEQ, IVER, PHAM, IERR)
Inputs:

VERDAT C*1 Data file version code letter
VERSYS C*1 System file version code letter
TYPE C*2 Type of file: e.g. *MA* for map file
IVOL I Humber of the disk volume to be used (1-15)
HSEQ I Sequence number (000-4095)
IVER I Version number (00-255)

Outputs:
PHAM C*48 physical file name, left justified
IERR I Error return code: 0 = good return. 1 = error

Example: If TYPE='MA *, IV0L=7, AIPSVER= * C *, HSEQ=321, IVER=99,
HLUSER*762 then

PHAME=*DA07:MAC14163;1* for public data or
PHAME=*DA07:MAC14163.2FA;1* for private data

vhere 321 = 141 base 16, 99 = 63 base 16, 762 - 2FA base 16

TYPE = 'MT* leads to special name for tapes
TYPE = ’TK* leads to special name for TEK4012 plotter CRT
TYPE = *TV* leads to special name for TV device
TYPE - *ME* leads to special logical for POPS memory files

Generic version - the ZOPEI, ZTRLOG, etc. routines interpret the
resulting VMS-like names.

ZRENAM
Rename a disk file.

ZREHAM (IVOL, OLDHAM, HEVHAM, IERR)
Inputs:

IVOL I Disk volume containing files, 1,2,3,...
OLDHAM C*48 Old physical file name

15.11. ROUTINES 15-25

IEVIAM
Output:

IERR

C*48 lew physical file name

I Error return code: 0 => ok
2 => old file not found
3 => volume not found
4 => old file busy
6 => new file name already exists
7 => other

Generic version.

ZTFILL
Fills in initial values in the FTAB file control block.

ZTFILL (FIID, MAP)
Inputs:

FIID I Index in FTAB to file control block
MAP L Map file indicator

Common: via DDCH.IIC
FTAB I(*) input: FTAB(FIID) = LUI

output: FTAB(FIID+1...) = ? whatever is needed
Generic version - zeros the table.

ZWAIT
Wait until an asynchronous I/O operation completes.

ZWAIT (LUI, FIID, IBUFF, IERR)
Inputs:

I Logical unit number
I Index in FTAB to file control block for LUI
I Buffer # to wait for (1 or 2)

LUI
FIID
IBUFF

Output:
IERR I Error return code: 0 => no error

1 => LUI not open in FTAB
2 => error in inputs
3 => I/O error
4 => end of file
7 => wait service error

Generic version: uses ZVAI2

15.11.3 Non-disk I/O routines
The following describes the first level non-disk I /O “Z” routines as documented in the APLGEN directory.

ZBKLD1
Routine to initialize the host environment in preparation for execution of ZBKLD2 under task BAKLD.

ZBKLD1 (IERR)
Output:

IERR I error code : 0 => okay
1 => can't create listing subdirectory
2 => input error - translates fail

Generic version - stub

15-26 CHAPTER 15. THE Z ROUTINES

ZBKLD2
Host-dependent routine to process input tape for task BAKLD. The input tape is presumed to have been
produced by task BAKTP executing on the same host/OS combination. D ata format is the hosts ’backup’
utility (BACKUP on VMS, ’ta r’ on Unix).

ZBKLD2 (OP, IERR)
Inputs:

OP 0 4 'SKIP' skips over a saveset.
'PRUT' moves over a saveset, listing directory info.
'LOAD' loads a saveset.

Output:
IERR I Error return

Generic version - stub.

ZBKLD3
Routine to clean up host environment after executing task BAKLD.

ZBKLD3 (IERR)
Output:

IERR I Error code: 0 => okay
1 => can't open command file

Generic version - stub.

ZBKTP1
Initialize the host environment in preparation for ZBKTP2. If OPCODE = ’INIT’, initializes the tape too.
(used only by task BAKTP)

ZBKTP1 (ZLUH, ZBKIAM, BAKTXT, ITAPE, ZMTOI, LZMTOI, IERR)
Inputs:

ITAPE
BAKTXT

Outputs:
ZLUI
ZBKIAM
ZMTOI
LZMTOH
IERR

Generic stub

I Tape drive number
0(*) lowest file name for file listing (not used

here, only in VMS now)

I LUI to use
0(*) Command file name
C*(*) Tape name (translation of MTOn) n=HTAPE-l
I Actual length used in ZMTOI
I Error code: 0 => okay

ZBKTP2
Host-dependent subroutine to write a file and its extensions to tape using the hosts ’’backup” utility.

ZBKTP2 (ZLUI, ZBKIAM, BAKTXT, BAKREC, IVOL, ICIO, ITAPE, ZMTOI,
* LZMTOH, IERR)

Inputs:
ZLUI I LUI for command file
ZBKIAM C*(*) lame of command file
BAKTXT C*(*) lowest file name for file listing
BAKREC 0 6 0 ?
IVOL I Disk number

15.11. ROUTINES 15-27

ICIO
IT APE
ZMTON
LZMTOH

Output:
IERR

I Catalog number
I Tape drive number
C*(*) Tape name (translation of MTOn) n=HTAPE-l
I Actual length used in ZMTOI

Error code: 0 => okay, else ZSHCHD
Generic version - stub

ZBKTP3
Clean up host environment after BAKTP execution.

ZBKTP3 (ZLUN, ZBKIAM, IERR)
Inputs:

ZLUH I LUN for command file
ZBKNAM C*(*) Name of command file

Output:
IERR I Error code: 0 => okay, else ZSHCMD

Generic version - stub

ZDOPRT
Read a bit map such as produced by PRTDRW and convert it into a file th a t can be spooled to a Versatec
printer/plotter.

ZDOPRT (IVOL, LUN, ICOPY, PVAME, ISIZE, INBLK, IERR)
Inputs:

IVOL I Disk volume containing file, 1,2,3,.
LUN I Logical unit number
NCOPY I lumber of copies of the plot to make
PIAME C*48 Physical file name (left justified)
ISIZE I Size of IIBLK in words

In/Out:
IIBLK I(*) Scratch buffer

Output:
IERR I Error return code: 0 => no error

1 => error
Generic version - a stub

ZENDPG
Advance the line printer to avoid “burn-out” on electro-static type devices.

ZENDPG (LINE)
Inputs:

LINE I # lines printed on page so far
Generic version, does a partial page.

ZLASCL
Close and spool a file for printing a plot on a laser printer.

15-28 CHAPTER 15. THE Z ROUTINES

ZLASCL (FILNAM, LUH, DELFIL, SYSERR, IERR)
Inputs:

FILHAM C*48 print/plot lile name
LUH I LUH under vhich lile is open
DELFIL I 1 => delete the lile alter print,

Output
SYSERR I system error code (on IERR 2)
IERR I error code: 0 => okay, 1 => error

Generic
close.

version -

0 => keep it

2 => Fortran close error
calls ZLASC2 lor any special stuff alter a Fortran

ZLASIO
Open, write to or close and spool a file for printing a plot on a laser printer.

Operation code: >OPEH\ ,POPH\ ’WRIT’ or * CLOS *
Logical unit number lor the laser printer
Output lile name (used by opcode *OPEH*, *POPH’,
* CLOS *)
Humber ol characters to print in CBUFF
(used by opcode ’WRIT* only)
I/O buller (used by opcode ’WRIT’ only)

Error return code: 0 => no error
1 => invalid opcode
2 => trouble translating logical
3 »> I/O error

Generic version - uses ZFULLI, ZLASOP, ZLASCL

ZLASIO (OP, LUH,
Inputs:

OP C*4
LUH I
OUTFIL C*48

ICHAR I

CBUFF c*(*)
Output:

IERR I

ZLPCLS
Close a line printer file, spool it to a printer and delete it.

ZLPCLS (LUH. IERR)
Inputs:

LUH I Logical unit number
Output:

IERR I Error return code: 0 => no error
1 => close error

Generic version - closes lile, cadis ZLPCL2

ZLPOPN
Open a line printer file.

ZLPOPH (LPFILE, IERR)
Inputs:

LPFIL C*48 File name to use lor line printer lile
Output:

IERR I Error return code: 0 => no error
1 => error, 2 => LPFILE already exists

Generic version - uses ZFULLH, ZLP0P2.

15.11. ROUTINES 15-29

ZLWIO
Open a temporary file for printing a plot on a PostScript printer using the using the name ZLWIO.XXXXXX
where XXXXXX is a unique extension (OP = ’OPEN’), write data to the temporary file (OP = ’W R IT ’),
or close, print and delete the file (O P = ’CLOS’).

ZLWIO (OP, LUH, ICHAR, CBUFF, IERR)
Inputs:

OP 0 4 Operation code (»OPEH\ 'WRIT’ or ’CLOS’)
LUH I Logical unit number
HCHAR I Humber of characters to print ('WRIT' only)
CBUFF C*(*) I/O buffer (’WRIT' only)

Output:
IERR I Error return code: 0 => no error

1 => input error
3 => no such logical device or

forming temporary file name
6 => I/O error

Generic version - calls ZFULLH, ZLWOP, ZLASCL

ZLWOP
Open a file for printing a plot on a QMS Lasergraphix device.

ZLWOP (OP, LUH, FILHAM, IERR)
Inputs:

OP C*4 Operation code: 'OPEH\ 'POPH'
LUH I Logical unit number for the QMS device
FILHAM 0(*) File name

Output
IERR I Error code: 0 => okay

Generic version - simple Fortran open.

ZMOUNT
Issue software mount or dismount for a given tape drive.

ZMOUHT (MOUHT, IDRIVE, IDEIS, IERR)
Inputs:

MOUHT L .TRUE, means mount, .FALSE, means dismount Q
IDRIVE I Tape drive number
IDEHS I Density at which to mount tape (800, 1600 or 6250)

Output:
IERR I Error return code: 0 => no error

1 => error
Generic version - calls ZM0UH2 to do real work

ZPRMPT
Prompts user on CRT screen and reads a line.

ZPRMPT (IPC, BUFF, IERR)
Input:

IPC I prompt character.
Output:

15-30 CHAPTER 15. THE Z ROUTINES

BUFF 0 8 0 line ol user input.
IERR I error code: 0 => ok.

1 => read/write error.
Generic version - stub

ZPRPAS
Prom pts the user on his terminal with the prom pt string “Password:” and then reads back a 12-character
“password” without anything being visible on the screen.

ZPRPAS (PASS, BUFF, IERR)
Outputs:

PASS 0 1 2 Password - 12 unpacked characters: left
justigied and blank lilled.

BUFF 1(256) Scratch buller (il needed)
IERR I Error code: 0 => ok

??? => I/O error ol some sort
Generic version - stub

ZTAPE
Performs standard tape m anipulating functions.

ZTAPE (OP,
Inputs:

OP

LUI
FIID
COUIT

Outputs:
IERR I

LUI, FIID, COUIT, IERR)

0 4 Operation to be perlormed.
’ADVF* = advance lile marks
ADVR - advance records
'BAKF’ = backspace lile marks.
’BAKR’ - backspace records.
'DMIT* = dismount tape.
’MOIT’ = mount tape.
’REVI* = rewind the tape on unit LUI
’WEOF1 = write end ol lile on unit LUI: writes 4

EOFs, positions tape alter lirst one
’MEOF* = write 4 EOF marks on tape, position tape

belore the lirst one
I logical unit number
I FTAB pointer. Drive number lor MOUIT/DISMOUIT.
I lumber ol records or lile marks to skip. On NOUIT

this value is the density.

Error return: 0 => ok
1 = File not open
2 = Input specilication error.
3 = I/O error.
4 = End Of File
5 = Beginning 01 Medium
6 = End 01 Medium

Generic version - uses ZTAP2 and ZMOUIT.

ZTAPIO
Tape operations for IM PFIT (compressed FITS transport tape).

15.11. ROUTINES 15-31

ZTAPIO COPER, LV, NAME, FD, BYTREQ, BYTRED, BUF,
* SYSERR)

Inputs:
OPER C*4 * OPEV’, ’READ’, 1CLOS *
LV I length of name
VAME c*C*) physical file name
BYTREQ I bytes to be read

In/out:
FD IC*) file descriptor Cset on

Output:
BYTRED I Bytes read on READ
BUF IC*) Data buffer read
SYSERR I System error code

Generic version - stub

ZTKBUF
Will flush the Tektronix output buffer TKBUFF, if necessary, then store the low order 8-bit byte of IN into
the proper 8-bit byte of TKBUFF. This is a Z-routine to allow for any required local conversions.

ZTKBUF CIV, IT, FIVD, IERR)
Inputs:

II I Word Iron which to extract the low order
byte and store in TKBUF

IT I Data type indicator:
1 => control
2 => position
3 => char

FIVD I Index in FTAB to file control block for
Tektronix device LUV

Output:
IERR

Common: (DTKS.IHC)
TKSIZE I
TKBUFF RCTKBUFF)
TKPOS I

Generic version.

Error return code:
0 => no error

> 1 => vrite error Cfrom TEKFLS)
Size of TKBUFF in floating point vords
Tektronix output buffer
Current byte position in TKBUFF

ZTKCLS
Close a Tektronix device

ZTKCLS CLUV, FIVD, IERR)
Inputs:

LUV I Logical unit number
FIVD I Index in FTAB to file control block for LUV

Output:
IERR I Error return code: 0 => no error

1 => Von-zero ZTKCL2 error
2 => Von-zero LSERCH error
3 => both 1 and 2
4 => invalid LUV

Generic version - calls ZTKCL2 to perform the actual close.

15-32 CHAPTER 15. THE Z ROUTINES

ZTKFI2
Read/write “nbytes” of data from /to a Tektronix terminal.

ZTKFI2 (OPER, FCB, BUFF, MBYTES, IERR)
Inputs:

OPER C*4 Operation code "READ" or "WRIT"
FCB I(*) File control block lor opened Tektronix
NBYTES I Number ol 8-bit bytes to be translerred

In/out:
BUFF !(•) I/O buller

Output:
IERR I Error return code: 0 => no error

2 => bad opcode
3 => I/O error
4 => end ol lile

Generic version - stub

ZTKOPN
Open a Tektronix device (calls ZTKOP2 to perform the actual open).

ZTKOPM (LUN, FIND, IERR)
Inputs:

LUN
Output:

FIND
IERR

I Logical unit number

I Index in FTAB to lile control block lor LUN
I Error return code: 0 => no error

1 => LUN already in use
2 => no such logical device
3 => device not lound
4 => exclusive use denied
5 => no room lor LUN in FTAB
6 => other open errors

Generic version.

ZTPCLS
Close the tape drive associated with LUN as well as its disk control file removing any exclusive use state
and clew the corresponding FTAB entries. ZTPCL2 actually closes the tape drive and ZDACLS is called to
close the disk control file. Also closes sequential type disk files via ZTPCLD.

ZTPCLS (LUN, FIND, IERR)
Inputs:

LUN I Logical unit number
FIND I Index in FTAB to lile control block lor LUN

Output:
IERR I Error return code: 0 => no error

1 => close error
2 => non-zero LSERCH error
3 => both 1 and 2
4 => invalid LUN

Generic version.

15.11. ROUTINES 15-33

Z T P M IO
Low level sequential access, large record, double buffered tape device I/O .

ZTPMIO (OPER, LUN, FIND, NBYTES, BUFF, IBUFF, IERR)
Inputs:

OPER 0 4 Operation code ’READ' or 'WRIT'
LUI I Logical unit number
FIID I Index in FTAB to file control block for LUI
IBYTES I Number of 8-bit bytes to transfer
BUFF K *) I/O buffer
IBUFF I Buffer number to use (1 or 2)

Output:
IERR I Error return code: 0 => no error

1 => file not open
2 => input error
3 => I/O error
4 => end of file (no messages)

Generic version.

Z T P O P N
Open a tape drive (as well as its corresponding disk control file) for sequential, “m ap” (double buffered,
asynchronous) I /O or open a pseudo-tape sequential disk file. Exclusive use and wait to open are assumed.
Uses a ’T P ’ disk “lock” file for real tapes.

ZTPOPI (LUI, FIND, IVOL, PIAME, OPER, IERR)
Inputs:

LUI I Logical unit number (30 < LUI <= 30 + NTAPED
-> tape, else disk)

IVOL I Tape drive or disk volume containing file
PIAME 0 4 8 tape disk physical file name
OPER 0 4 'READ' => read only or 'WRIT' => read/write

Output:
FIID I Index in FTAB to file control block for LUI
IERR I Error return code: 0 -> no error

1 => LUI already in use
2 => file not found
3 => volume not found
4 => exclusive use denied
5 => no room for LUI in FTAB
6 => other open errors

Generic version.

Z T P W A T
Wait until an asynchronous tape or sequential pseudo-tape disk file I/O operation completes.

ZTPWAT (LUI, FIID, IBUFF, LBYTES, IERR)
Inputs:

LUI I Logical unit number
FIID I Index in FTAB to file control block for LUI
IBUFF I Buffer # to wait for (1 or 2)

Output:
LBYTES I Number 8-bit bytes read/vritten (+1 if tape tape

15-34 CHAPTER 15. THE Z ROUTINES

record longer than requested)
IERR I Error return code: 0 => no error

1 => LUH not open in FTAB
3 => I/O error
4 => end ol lile
7 => wait service error

Generic version - calls ZTPVA2, ZTPVAD, ZERROR.

ZTTBUF
Dumps the contents (if any) of the input buffer into the array BUF without issuing a prom pt or waiting for
input. It does the terminal open, a call to some read with timeout set to 0, and the close.

ZTTBUF (BUF, BYTCHT, SYSERR, IERR)
Outputs:

BUF C*(*) Input buller
BYTCKT I Humber ol bytes (characters) read
IOSB I System error code
IERR I Returned error code: 0 = OK

2 = no access to terminal
3 - 1 0 error
8 = channel not deassigned

This routine was written to simulate trackball buttons on
the keyboard. Andy Lubenow 22 lov 1983
Generic version - stub

ZTTYIO
Perform I/O to a terminal.

ZTTYIO (OPER, LUH, FIHD, HCHARS, BUFF, IERR)
Inputs:

OPER C*4 Operation code 'READ* or 'VRIT*
LUI I Logical unit number
FIID I Index in FTAB to lile control block lor LUH
HCHARS I # characters to transler (<= 132)

In/out:
BUFF c*(*) I/O buller containing characters (1-256)

Output:
IERR I Error return code: 0 => no error

1 => lile not open
2 => input error
3 => I/O error
4 => end ol lile

Generic version: lormatted 10 does carriage control on output based
on parameter TTYCAR.

15.11.4 Data Manipulation
The following describes the first level data m anipulation “Z” routines as documented in the APLGEN
directory.

15.11. ROUTINES 15-35

ZBYMOV
Moves a string of bytes from INB to OUTB. Byte = 8 bits (NOT an AIPS half-integer byte). This is used
with tape input and outpu t only.

ZBYMOV (HMOVE, IIP, IHB, OUTP, OUTB)
Inputs:

IMOVE I Humber of 8-bit bytes bytes
IHP I First value in IHB to move (8-bit byte offset)
IHB I(*) Input buffer.
OUTP I Location in OUTB to put first 8-bit byte (8-bit

byte offset)
Output:

OUTB I(*) Output buffer.
Generic version - stub.

ZBYTFL
Interchange the low order and high order bytes for all words in the input buffer and put the results in output
buffer (which may be the same as the input buffer). For machines tha t are not byte flipped, the output
buffer is identical to the input buffer (see BYTFLP in ZDCHIN). Any required byte swapping is performed
via a cadi to ZBYTF2. NOTE a byte is 8 bits here.

ZBYTFL (IVORDS, HBUF, OUTBUF)
Inputs:

IVORDS I lumber ol 16-BIT words to byte swap
HBUF I*2(*) Input buffer

Output:
OUTBUF I*2(*) Output buffer containing the byte swapped

words
Generic version - uses ZBYTF2 and ZADDR, works for 16, 32, 48, and
64-bit machines only

ZC 8C L
Convert 8-bit ASCII standard characters in a buffer to local character form.

ZC8CL (ICHAR, IP, IIBUF, OUTBUF)
Inputs:

ICHAR I lumber of characters to convert
IP I Starting position in input buffer in units of

8-bit characters (1-relative)
IIBUF R(*) Input buffer containing 8-bit ASCII characters

Output:
OUTBUF C*(*) Output buffer containing characters in local

form beginning in position 1
Generic version - assumes locaCL characters are ASCII.
Requires locad development if IBITVD not n*8.

ZCLC8
Convert local characters in a buffer to standard 8-bit ASCII character form.

15-36 CHAPTER 15. THE Z ROUTINES

ZCLC8 (ICHAR, IHBUF, HP, OUTBUF)
Inputs:

I
C*(*)
I

NCHAR
IIBUF
IP

Number ol characters to convert
Characters in local lorm
Starting position in output buller in units ol
8-bit characters (1-relative)

Output:
OUTBUF R(*) Buller containing characters in 8-bit ASCII lorm

Generic version - assumes local characters are ASCII.
Requires local development il IBITWD not n*8.

ZDHPRL
Converts from 64 bit Hewitt-Packard floating format to local double precision.

HP R*8 lormat:
1 2 3 4 5 6

0123456789012345678901234567890123456789012345678901234567890123

The value can be determined as lollows:
manl = gmmmmmmmfflmmmmminmmniraminimnnimmiTmiinmmm a ^Ho’ S Complement

s ig n ed in te g e r .
man2 = nnnnnnnnnnnnnnnnnnnnnnnn is a POSITIVE unsigned integer,
exp = zeeeeeee is a two’s complement signed integer,
value = (manl * 16777216 + man2) ♦ 2.0D0 ** (exp - 55)

ZDHPRL (IVAL, IP, IIB, OUTB)
Inputs:

IVAL I lumber ol values to convert
IP I First value in IIB to convert
IIB D(*) 64-bit HP lormat values

Output:
OUTB D(*) Local lormat values.

Generic version; should work on any machine.

ZDM2DL
Convert Modcomp R*6 (zero padded to D) or R*8 data into local double precision.

ZDM2DL (IV0RDS, IIBUF, OUTBUF)
Inputs:

IV0RDS I Length ol the input buller in words
IIBUF D(*) Input buller containing Modcomp R*6 (zero padded

to D) or D*8 data
Output:

OUTBUF D(*) Output buller containing local D.P. data
lotes:
(1) The IIBUF should have its bytes llipped by a call to ZBYTFL

which will leave the values split between 2 local integers.
Do not call ZI32IL which nay swith 16-bit words, or ZI16I1
which will expand each 16-bit part to 32-bits.

(2) First 32 bits:
Expects, alter word llip on VMS only, a sign bit in bit 31
(l=>negative), bits 22:30 are the exponent biased by 512,

15.11. ROUTINES 15-37

bits 0:21 axe the normalized fraction. Negative values are
obtained by 2's complement of the whole word.

Second 32 bits:
Just extended precision bits.

(3) Should work inplace.
Generic version --- stubbed.

ZGETCH
Extracts the character in position NCHAR of the HOLLERITH argument WORD and inserts it in the least
significant bits of the INTEGER argument ICHAR with zero in the rest. It should also work for INTEGER
WORD as long as NCHAR is valid. Characters are numbered from 1 in the order in which they would be
printed by a Fortran “A” format specifier. NOTE - we actually get 8 bits here - so this routine works for
bytes too.

ZGETCH (ICHAR, WORD, NCHAR)
Inputs:

WORD R Word from which the character is to be extracted
NCHAR I Position of character to extract

Output:
ICHAR I Extracted character in LS bits, zero in the rest

Generic version - stub

ZGTBIT
Get the lowest order “nbits” bits of the bit pattern in “word” and return them in the array BITS with the
lsb in bits[0]. For example, if
word = 0 0 0 0 0 1 0 1 . . . 0 0 0 1 0 0 1 1

MSB LSB
and nbits = 3 then bits[0] * 1 , bitsfl] = 1 and bits[2] - 0

ZGTBIT (MBITS, WORD, BITS)
Inputs:

MBITS I Number of bits
WORD I Word from which to extract bits

Output:
BITS I(*) Bit array (values 0 or 1)

Generic version - slow.

ZI16IL
Extract 16-bit, 2’s complement integers from am input buffer and put them into an output buffer in local
integer form. This must work even when the address of the input and output buffers is the same.

ZI16IL (NVAL, NP, IMB, OUTB)
Inputs:

MVAL I Number of 16-bit integers to extract
MP I Starting position in the input buffer counting

from 1 in units of 16-bit integers
IMB 1*2(*) Input buffer

Output:
OUTB I(MVAL) Output buffer

Generic version - assumes that the local machine is 32-bit with a
valid IHTEGER*2 Fortran data type

15-38 CHAPTER 15. THE Z ROUTINES

ZI32IL
Extract 32-bit, 2’s complement integers from an input buffer and put them into an output buffer in local
large integer form. This must work even when the address of the input and output buffers is the same. The
IBM order applies to the input (i.e., the most significant part of the 32-bit integer is in the lower index of
the input buffer and the least significant p u t is in the higher index.

ZI32IL (IVAL, IP , IIB, OUTB)
Inputs:

IVAL I # values to extract
IP I Starting position in the input buffer (1-relative)

in units of 32-bit integers
INB I(*) Input buffer

Output:
OUTB I(*) Output buffer

Generic version - does byte order flip in 16-bit words and a flip
of the order o l the words. This assumes local 32-bit integers, but
the capability of IHTEGER*2 as veil.

ZI8IL
Convert 8-bit unsigned binary numbers to local integers. This must work even when the input and output
buffers are the same.

ZI8IL (IVAL, IP, IIB, OUTB)
Input8:

IVAL I
IP I

I (*)

lumber ol 8-bit values to convert
Starting position in the input buffer counting
from 1 in units of 8-bit values
Input bufferIIB

Output:
OUTB

Generic version - for IBITVD = n*8 uses ZGETCH, else is stubbed
I(IVAL) Output buffer

ZILI16
Convert a buffer of local integers to a buffer of standard 16-bit, 2’s complement integers.

ZILI16 (IIIT, IIB, IP, OUTB)
Inputs:

IIIT I lumber of integers to convert
IIB K O Input buffer (start at index 1)
IP I Starting index in the output buffer (1-relative)

in units of 16-bit integers
Output:

OUTB K *) Output buffer
Generic version - assumes that the local machine is 32-bit with a
valid IITEGER*2 Fortran data type

ZILI32
Convert a buffer of local large integers to a buffer of standard 32-bit, 2’s complement integers. This must
work even when the address of the input and output buffers is the same. The IBM order applies to the
output (i.e., the most significant part of the 32-bit integer is in the lower index of the output buffer and the
least significant part is in the higher index).

15.11. ROUTINES 15-39

ZILI32 (HVAL, IHB, HP, OUTB)
Inputs:

HVAL I # integers to convert
IHB K O Input buffer (start at index 1)
HP I Starting position in the output

(1-relative) in units of 32-bit
buffer
integers

Output:
OUTB I(HVAL) Output buffer

Generic version - does byte order flip in 16-bit words and a flip
of the order of the words. This assumes local 32-bit integers, but
the capability of INTEGER*2 as well.

ZMCACL
Convert Modcomp compressed ASCII characters to local uncompressed characters. Successive calls will
append data to the end of the output buffer. One compressed record is processed per call.

NOTE: this routine will not work in place.
Modcomp compressed ASCII form at for each logical record:
BYTE Use
0 ASCII ETX (Hex 03)
1 checksum (optional)

2-3 byte count, negative -> end of file (not on tape?)
(I0TE: may be bytes 1-2)

4- Compressed ASCII characters. A HULL (Hex 00) terminates.
A negative value (most significant bit on) indicates a
repetition of the previous character the number of times
indicated by the absolute value of the negative number.
Example: an ASCII *C* followed by a byte with the HEX
value FF (2*s complement -1) indicates two ’C's.

ZMCACL (MBYTES, IHBUF, OUTBUF, LASTCH)

Inputs:
IHBUF ! (*)

In/out:
HBYTES I

LASTCH I

Output:
OUTBUF I(*)

Input buffer of Modcomp compressed ASCII
packed characters

(In) Maximum number of bytes to convert
(Out) Humber of bytes added to the output

buffer
Position of the next character in the output
buffer (zero before first call)

Output buffer containing packed characters
(due to the expansion of the data, the size
of the output buffer is not strictly
predictable)

Generic version (stubbed)

ZPTBIT
Build WORD from NBITS bit values contained in the array BITS, where BITS[1] supplies the lsb, BITS[2]
the next higher bit, etc. The rest of the bits in WORD are set to zero. For example, if

15-40 CHAPTER 15. THE Z ROUTINES

bits[1:*] = 0 1 1 1 0 1 0 1 ... 0 1 1 1 0 0 0 0

LSB MSB
and IBITS = 4, then WORD = 14 (decimal)

ZPTBIT (IBITS, WORD, BITS)
Inputs:

IBITS I Humber ol bits to use Irom the array "bits"
BITS I(*) Array ol bit values (0 or 1)

Output:
WORD I Result containing bit pattern Irom the lirst

"nbits" values ol the array "bits"
Generic version - stub

ZPUTCH
Inserts the character contained in the least significant bits of the INTEGER argument ICHAR into the
NCHAR position of the HOLLERITH argument WORD. It should also work for INTEGER WORD as long
as NCHAR is valid. Characters are numbered from 1 in the order in which they would be printed by a
Fortran “A” format specifier.

ZPUTCH (ICHAR, WORD, ICHAR)
Inputs:

ICHAR I Character to insert in LS bits
ICHAR I Position in WORD to store character

Output:
WORD H Word into vhich character is to be inserted

Generic version - stub

ZR32RL
Converts from 32 bit IEEE floating form at to local single precision.
The IEEE lormat is:

1 2 3
01234567890123456789012345678901
seeeeeee emmmmmmmmmmmmmmmmmmmmmmm

vhere sign = -1 ** s, exponent = eee..., mantissa = l.mmmmm...

The value is given by:

value = sign * 2 **(exponent-127) * mantissa

Note: these values have a “hidden” b it and must always be normalized The IEEE nan (not a number)
values are used to indicate an invalid number; a value with sign and all exponent bits set is recognized as
“nan” .

The AIPS internal format for an invalid number is the value which has the same bit pattern as ’INDE’.
The IEEE special values (-0., + / - Infty) are not recognized.
A multiplication by a factor of 4.0 converts between VAX F and IEEE 32 bit formats.

ZR32RL (IVAL, IP, IIB, OUTB)
Inputs:

15.11. ROUTINES 15-41

HVAL I Humber ol values to convert
HP I First value in IHB to convert
IHB R(*) 32-bit IEEE lormat values

Output:
OUTB R(*) Local lormat values ("nan" values are replaced

with AIPS* indelinite value = ’IHDE')
Generic version - does IEEE and VAX F lormats lor 32-bit machines,
is stubbed with STOP lor all others.

ZR64RL
Converts from 64 bit IEEE floating form at data to local double precision (or corresponding 64 bit precision).

The IEEE format is:

1 2 3 4 5 6
0123456789012345678901234567890123456789012345678901234567890123

flmmmmmmrammmffiBimmmminmmmmiimmmmiimmmiiinnninmminininmininminmmiMnmminin

where sign = -1 ** s, exponent = eee..., mantissa = l.mmmmm...

The value is given by:

value = sign * 2 **(exponent-1023) * mantissa

Note: these values have a “hidden” b it and must always be normalized The IEEE nan (not a number) values
are used to indicate am invalid number; a value with sign and all exponent bits set is recognized as a “nan” .

The AIPS internal form at for an invalid number is the value which has the same bit pattern as ’INDE
The IEEE special values (-0., + / - Infty) are not recognized.
A multiplication by a factor of 4.0 converts between VAX G and IEEE 64 bit formats.
ZR64RL (HVAL, HP , IHB, OUTB)
Inputs:

HVAL I Humber ol values to convert
HP I First value in IHB to convert
IHB D(*) 64-bit IEEE lormat values

Output:
OUTB D(*) Local lormat values ("nan" values are replaced

with AIPS* D.P. blank = 'IHDE ')
Generic version - does IEEE and VAX G lormats lor 32-bit machines,
is stubbed with STOP lor all others.

ZR8P4
Converts between pseudo 1*4 and Double Precision. The m ain use of this is to handle 1*4 integers in buffers
with madnly 1*2 integers for tape IO - i.e. EXPORT amd IBM format headers. The assumption is th a t the
full buffer has been treated with (on read of tape) ZI16IL and needs to be repacked to 32 bits and then
changed to local integer and then to local D.P. And the reverse on tape writing.

ZR8P4 (OP, IHTG, DX)
Inputs:

OP C*4 '4IB8' IBM 1*4 to D
,8IB4* D to IBM 1*4

In/out:

15-42 CHAPTER 15. THE Z ROUTINES

IHTG 1(2) the I
DX D the D

IBM pseudo-I*4 has the form ol a 2's complement, 32-bit integer
vith the most signilicant 16 bits in the I word ol lover index and
the least signilicant 16 bits in the I vord ol higher index.
Generic version - may vork lor all

Z R D M F
Convert data packed in DEC-M agtape format (DMF) to pairs of local 32-bit integers.

The DMF format is:

Track 1 2 3 4 5 6 7 8
Byte

1 F0 FI F2 F3 F4 F5 F6 F7
2 F8 F9 F10 Fll F12 F13 F14 F15
3 F16 F17 R0 R1 R2 R3 R4 R5
4 R6 R7 R8 R9 R10 Rll R12 R13
5 0 0 0 0 R14 R15 R16 R17

where Rn refers to the right halfword, Fn to the left halfword.
Since the purpose of this routine is to read Modcomp tapes written with this peculiar format, F I 6, F17,

R16 and R17 (the high order bits) are zero for VLA data, but are used for the word count.
The first word (5 bytes) of a tape block contains the word count of the block. The word count is a

16-bit, twos-complement integer comprised of bits R2-R16. All other words are treated as pairs of 16-bit,
twos-complement integers comprising bits F0-F15 and R0-R15.

Input data is assumed to be packed into 1 1 /8 integers and output data will be returned in a pair of local
integers per DEC-10 word. The first integer of each pair corresponds to the left DEC-10 halfword (zero for
the word count) and the second to the right halfword. The sign of each halfword is preserved on expansion
to a local integer.

ZRDMF (MWORDS, IIBUF, OUTBUF, FLAG)

Inputs:
MWORDS I

IIBUF I(*)
FLAG I

Output:
OUTBUF I (*)

Length ol the input buller in DEC-10
vords
Input buller containing DMF lormat data
II > 0, the lirst vord vord is the
beginning ol a tape block

Output buller containing tvo local
integers per input DEC-10 vord

Generic version (stubbed).

ZRHPRL
Converts from 32 bit Hewitt-Packard floating form at to local single precision.

HP R*4 lormat:
1 2 3

01234567890123456789012345678901
smmmmmaunmmmmmmmmmminmmminmeeeeeeez

The value can be determined as lollovs:
man = »mMmmmTmnmTnfflmnmnimmnnninn»nimn is a tVO'S Complement signed

15.11. ROUTINES 15-43

integer.
exp = zeeeeeee is a two's complement signed integer,
value = man * 2.0 ** (exp - 23)

ZRHPRL (IVAL, IP, IIB, OUTB)
Inputs:

IVAL I lumber of values to convert
IP I First value in IIB to convert
IIB R(*) 32-bit HP format values

Output:
OUTB R(«0 Local format values.

Generic version; should work on any machine.

ZRLR32
Converts from local single precision to 32 bit IEEE floating format. See ZR32RL for the description of IEEE
32 bit format. The AIPS internal form at for an invalid number is the value which has the same bit pattern
as ’INDE’.

A multiplication by a factor of 4.0 converts between VAX F and IEEE 32 bit formats.
ZRLR32 (IVAL, IP, IIB, OUTB)
Inputs:

IVAL I lumber of values to convert
IP I First value in OUTB for result
IIB R(*) Local format values

Output:
OUTB R(*) 32-bit IEEE FORMAT values (’IIDE* values sire

replaced with "nan")
Generic version - does IEEE and VAX F formats for 32-bit machines,
is stubbed with STOP for all others.

ZRLR64
Converts from local double precision (or corresponding 64 bit precision) to 64 bit IEEE floating form at. See
ZR64RL for a description of the IEEE 64 bit format.

The AIPS internal form at for an invalid number is the value which has the same bit pattern as ’INDE ’.
A multiplication by a factor of 4.0 converts between VAX G and IEEE 64 bit formats.
ZRLR64 (IVAL, IP, IIB, OUTB)
Inputs:

IVAL I
IP I
IIB D(*)

Output:
OUTB D(*)

lumber of values to convert
First location in OUTB for results
Local format values

64-bit IEEE format values (*IIDE
replaced with "nan")

values are

Generic version - does IEEE and VAX G formats for 32-bit machines,
is stubbed with STOP for all others.

ZRM2RL
Convert Modcomp single precision floating point data into local single precision floating point.

15-44 CHAPTER 15. THE Z ROUTINES

ZRM2RL (IWORDS, IIBUF, OUTBUF)
Inputs:

IWORDS I Length ol the input buller in words
IIBUF R(*) Input buller containing Modcomp R*4 data

Output:
OUTBUF R Output buller containing local REAL data

lotes:
Belore call, input buller should have its bytes llipped via
ZI32IL which will leave the values in one local 32-bit integer

Expects, alter word llip, sign bit in bit 31 (l=>negative),
bits 22:30 are the exponent biased by 256(?), bits 0:21 are
the normalized Iraction. legative values are obtained by 2's
complement ol the whole word.

Should work inplace.

Generic version - stub

ZUVPAK
Routine to pack uv data with magic value blanking. One AIPS logical uv data record is processed at a time.
Two values are packed into a single read value.

ZUVPAK (ICORR, VISII, WTSCL, VISOUT)
Inputs:

ICORR I lumber ol correlator values in data
VISII R(3,*) Unpacked uv data as real, imag and weight per

correlator.
Output:

WTSCL R(2) "Weight" and "scale" random parameters lor the
packed record.

VISOUT R(*) Packed visibility data with local magic value
blanking.

Version lor machines with valid integers hall the size ol reals.

ZUVXPN
Routine to expand packed uv data to unpacked form. One AIPS logical uv data record is processed at a
time.

ZUVXPI (ICORR, VISII, WTSCL, VISOUT)
Inputs:

ICORR I lumber ol correlator values in data
VISII R(*) Packed visibility data with local magic value

blanking.
WTSCL R(*) "Weight" and "scale" random parameters lor the

packed record.
Output:

VISOUT R(3,*) Unpacked uv data as real, imag and weight per
correlator.

Version lor machines with valid integers hall the size ol reals.

15.11. ROUTINES 15-45

ZX 8X L
Converts a FITS table bit array to an AIPS bit array. An AIPS bit array has the bits in locations of increasing
signifigance NBITWD per integer. A FITS bit array has the bits in order of decreasing signifigance with 8
bits per real world byte, zero filled

ZX8XL (MBIT, IIB, OUTB)
Inputs:

MBIT I Number ol bits
INB I(*) Input buller ol FITS bit array data as 8-bit byte

stream.
Output:

OUTB I(*) Out buller ol AIPS bit array data.
Generic version: works whenever local integer is a multiple ol 16
bits said has no more than 64 bits.

ZX LX 8
Converts an AIPS table b it array to an FITS bit array. An AIPS bit array has the bits in locations of
increasing signifigance NBITW D per integer. A FITS bit array has the bits in order of decreasing signifigance
with 8 bits per real world byte, zero filled.

ZXLX8 (MBIT, INB, OUTB)
Inputs:

VBIT I Number ol bits
IVB I(*) Input buller ol AIPS bit array data.

Output:
OUTB I(*) Out buller, note an integral number ol 16-bit

integers in OUTB sure modilied. OUTB is lelt in
the lorm ol IEEE integers (i.e. ms byte lirst).

Generic version: works whenever local integer is a multiple ol 16
bits and has no more than 64 bits.

15.11.5 Directory and Text File
The following describes the first level text file “Z” routines as documented in the APLGEN directory.

Z T C L O S
Close the text file and clear the FTAB entry associated with LUN.

ZTCLOS (LUN, FIND, IERR)
Inputs:

LUV I Logical unit number
FIND I Index in FTAB lor LUN

Output:
IERR I Error return code: 0 => no error

1 => close error
2 => lile already closed in FTAB
3 => both errors
4 => erroneous LUV

Generic version.

15-46 CHAPTER 15. THE Z ROUTINES

ZTOPEN
Open a text file - logical area, version, member name as arguments

ZTOPEI (LUH, FIHD, IVOL, PHAME, MHAME, VERSOH, WAIT, IERR)
Inputs:

LUH I Logical unit number
IVOL I Disk volume containing file, (not used)
PHAME C*48 Physical file name, only used to determine file

type or logical area
MHAME 0 8 Text file name
VERSOH 0 4 8 Logical name for directory or version of

directory to search (for file-specific
directories)

L T => wait until file is available (not used)WAIT
Outputs:

FIHD
IERR

I Index in FTAB for LUH
I Error return code: 0 => no error

1 => LUH already in use
2 => file not found
3 => volume not found
4 => file locked
5 => no room for LUH in FTAB
6 => other open errors

Generic version - uses ZDIR, ZFULLH, and Fortran functions IHQUIRE
and then calls ZT0PE2.

ZTREAD
Read the next sequential 80-character card image from a text file.

ZTREAD (LUH, FIHD, RBUFF, IERR)
Inputs:

LUH I Logical unit number
FIHD I Index in FTAB for LUH

Output:
RBUFF 0 8 0 I/O buffer for card image
IERR I Error return code: 0 => no error

1 => file not open
2 => end of file
4 => other I/O error

Generic version - assumes simple Fortran 10.

ZTXCLS
Close the text file and clear the FTAB entry associated with LUN.

ZTXCLS (LUI, FIHD, IERR)
Inputs:

LUH I Logical unit number
FIHD I Index in FTAB for LUH

Output:
IERR I Error return code: 0 => no error

1 => close error
2 => file already closed in FTAB

15.11. ROUTINES 15-47

3 => both errors
4 => inputs error

Generic version: uses Fortran CLOSE

Z T X IO
Read/w rite the next sequential line from /to a text file.

ZTXIO (OPER, LUN, FIND, LINE, IERR)
Inputs:

Operation code ('READ* or 'WRIT')
Logical unit number
Index in FTAB for LUN

OPER C*4
LUN I
FIND I

Input/output:
LINE C*(*)

Output:
IERR

Line of text. For WRIT, ZTXIO writes the lull
string including any trailing blanks. Use ITRIM
and substring notation in the call if you desire
only up to the last non-blank (which is usually
preferable!). On READ, adequate size must be
declared in calling routine.

Error return code: 0 => no error
1 -> file not open
2 => end of file
3 => input error
4 => other I/O error

Generic version.

Z T X M A T
Open a directory and find a list of member file names whose first NCH characters m atch the first NCH
characters of MNAME plus extension (based on file type).

ZTXMAT (IVOL, PNAME, MNAME, ICH, VERSOH, HAMES, HHAM, IERR)
Inputs:

IVOL I Disk volume containing file, (ignored)
PHAME C*48 Physical file name (only used to determine

file type)
MHAME C*8 Test file name
HCH I Humber of characters to compare (<= 8)

0 is okay -> get full directory
VERSOH C*48 Logical name for directory or version of

directory to search (for file type
specific directories)

In/out:
HHAM I Humber of names in HAME: input = max,

output * actual used
Output:

HAMES H*8(*) File names which match the given file spec
HOTE HOLLERITH for lower level routines

IERR I Error return code: 0 => no error
1 => no matches found
2 => error in inputs
3 => error opening directory

Generic version - uses ZDIR, ZFULLH, ZTXMA2

15-48 CHAPTER 15. THE Z ROUTINES

ZTXOPN
Open a text file.

ZTXOPH (OPCODE, LUH, FIHD, OUTFIL, APPEHD, IERR)
Input8:

OPCODE
LUH
OUTFIL
APPEHD

Outputs:
FIHD
IERR

C*4 Open lor ’READ’ or 'WRIT*
I Logical unit number
C*48 Physical lile name
L II true append new text to end of old file,

(OPCODESWRIT' only).

I Index in FTAB lor LUH
I Error return code: 0 => no error

1 => error in inputs
2 => LUH already in use
3 => no room lor LUH in FTAB
4 => trouble translating logical
5 => lile already exists
6 => open error

Generic version --- uses ZTX0P2 lor actual open.

15.11.6 Virtual Devices
The following describes the first level virtual device “Z” routines as documented in the APLGEN directory.

ZVTVCL
Close the virtual TV device channel in the client (VTV) machine to the server (remote, real-TV) machine -
uses ZVTVC2.

ZVTVCL (LUH, FIHD, IERR)
Inputs:

LUH I Logical unit number
FIHD I Index in FTAB to lile control block lor LUH

Output:
IERR I Error return code: 0 => no error

1 => close error or H ush error
2 => lile already closed in FTAB
3 => both errors
4 => erroneous LUH

Generic version - cedis ZVTVC2.

ZVTVGC
Opens the connection in TVMON to the remote machine which is running the AIPS VTV (Virtual TV)
code. This differs from ZVTV03 in th a t the socket is already there and an old connection must be closed
before a new one cam be accepted. Called by ZVTVRX.

ZVTVGC (FCB, IERR)
Outputs:

FCB I(*) File descriptor
IERR I Error: 0 => okay

Generic version - stub

15.11. ROUTINES 15-49

ZVTVOP
Does whatever is needed to open communication from the current program to a remote machine that has a
real TV display attached. This is a generic upper level Z routine.

ZVTVOP (LUI, IHD, IERR)
Output:

IERR I Error code: 0 => ok
1 = LUH already in use
2 = file not found
3 = volume not found
4 = excl requested but not available
5 = no room for lun
6 = other open, errors

Generic version - uses ZVTV02 and ZPHFIL.

ZVTVRC
Close the virtual TV device channel: from receiver point of view

ZVTVRC (LUH, FIHD, IERR)
Inputs:

LUH I Logical unit number
FIID I Index in FTAB to file control block for LUH

Output:
IERR I Error return code: 0 => no error

1 => close error or flush error
2 => file already closed in FTAB
3 => both errors
4 => erroneous LUH

Generic version - uses ZVTVC3.

ZVTVRO
Does whatever is needed to enable communication from the current program (TVMON) on a machine th a t
has a real TV display attached to any remote machine needing the display. This is a generic upper level Z
routine.

ZVTVRO (LUH, IHD, IERR)
Inputs:

LUH I An LUH to use (not TVLUH or TVLUH2)
Output:

IID I FTAB location opened
IERR I Error code: 0 => ok

1 - LUI already in use
2 = file not found
3 = volume not found
4 = excl requested but not available
5 = no room for lun
6 = other open errors

ZVTVRX
Performs “I/O ” over some communication mechanism to a cooperating program with the intention of driving
a real TV device controlled by this program.

15-50 CHAPTER 15. THE Z ROUTINES

ZVTVRX (FIHD, BUFSV, HBUF, IERR)
Inputs:

FIHD I
BUFSV I

In/Out:
HBUF

Output:
IERR

I (*)

FTAB location for socket to remote machine
Humber 16-bit integers total data to send
If BUFSV > 0, write to client; if <= 0, read
from client machine.

Buffer: in FITS
(1 , 2)
(3,5)
(6)
(7)
(8)
(9..)

standard 16 bit
READ or VRIT
subroutine name packed ASCII
BUFSV - 8
BUFSR
error returned to client
extra data

Error code: 0 => ok.
Generic version - does little except call ZVTVX3

Z V T V X F
Performs “I/O ” over some communication mechanism to a cooperating program with the intention of driving
a real TV device controlled by the cooperating program.

ZVTVXF (BUFSV, BUFSR, HBUF, IERR)
Inputs:

BUFSV
BUFSR

In/Out:
HBUF

I
I

I (*)

Humber 16-bit integers extra data to send
16-bit integers of extra data to receive

Buffer:
(1 . 2)
(3,5)
(6)
(7)
(8)
(9..)

in FITS standard 16 bit
READ or VRIT
subroutine name packed ASCII
BUFSV
BUFSR (TV IERR returned)
error return
extra data

Output:
IERR Error code: 0 => ok.

Generic version - does little except call ZVTVX2

15.11.7 Miscellaneous
The following describes the first level miscellaneous “Z” routines as documented in the APLGEN directory.

Z A D D R
Determine if two addresses are the same.

ZADDR (ADDR1, ADDR2, IERR)
Inputs:

addr 1 1*2 Address 1
addr2 1*2 Address 2

Output:
ierr I Error return

0 => addresses are the same
1 => addresses are different

Generic version - stub

15.11. ROUTINES 15-51

ZERRO R
This routine will a ttem pt to translate the system error code and if appropriate (i.e., FCB(l).NE.-999) print
the name of the file or device on which the error occurred as well as the contents of the the file control block
(blocks, if map I/O).

Z-routine vhere the error occurred
System error code (also stored in FCB)
Physical lile name; ' ’ => unknown (omit)
File control block in FTAB lor the lile (or
device) also containing the system error code
FCB(l) = -999 => omit
Map or non-map I/O involved?

ZERROR (ZRTIAM, !
Inputs:

ZRTIAM C*6
SYSERR I
PIAME C*48
FCB I(*)

MAP L
Common: DMSG.INC

DBGAIP I MOD(DBGAIP,10) > 2 => lorce ZERR02 call
MOD(DBGAIP,10) > 2 => dump FCB(s)

Generic version - calls ZERR02.

ZHEX
Convert decimal to nc character hexidecimal ’string’ - leading blanks su-e made into 0’s, i.e. ” illegal” Fortran
format Znc.nc

ZHEX (IVAL, IC, HVAL)
Input:

IVAL I Decimal value to convert
IC I Vidth ol receiving lield

Output:
HVAL C*(*) String receiving hexidecimal conversion

Generic version - klunky but works

ZKDUMP
Dump portions of an array in a variety of formats (e.g., Fortran I, E, A and hexidecimal).

ZKDUMP (II, 12, K, C)
Inputs:

11 I First subscript in integer array to dump
12 I Last subscript in integer array to dump
K I(*) Integer array
C R(*) Real array equivalenced to K in calling routine

Generic version - uses ZHEX, assumes 32-bit integers

ZMSGER
This routine will a ttem pt to translate the system error code and if appropriate (i.e., FCB(l).NE.-999) print
the name of the file or device on which the error occurred as well as the contents of the the file control block
(blocks, if map I/O). For MSGWRT - to avoid recursions.

ZMSGER (ZRTIAM, SYSERR, PIAME, FCB, MAP)
Inputs:

ZRTIAM C*6 Z-routine vhere the error occurred
SYSERR I System error code (also stored in FCB)

15-52 CHAPTER 15. THE Z ROUTINES

PIAME
FCB

C*48
I (*)

MAP L
Common: DMSG.IIC

DBGAIP I

Physical lile name; * * => unknown (omit)
File control block in FTAB lor the lile (or
device) also containing the system error code
FCB(l) = -999 => omit
Map or non-map I/O involved?

MOD(DBGAIP,10) > 2 => lorce ZERR02 call
MOD(DBGAIP,10) > 2 -> dump FCB(s)

Generic version - calls ZERR02.

ZMYVER
Determine the default AIPS version (OLD or NEW or TST). Error messages are only written to the terminal
since this routine is called before message handling via MSGWRT is established.

ZMYVER
(no call arguments)

Output in DDCH.IIC:
VERIAM C*4 String = 'OLD:', 'IEV:' or ’TST:*

Generic version.

C hapter 16
Calibration and Editing

16.1 Introduction
This chapter will describe the system of routines to edit and calibrate “raw” data multi-source uv data and
single dish data files. This chapter is intended to be used both by programmers writing calibration or editing
application software and programmers m aintaining the more fundamental routines.

The basic design of this system is patterned after the now defunct VLA calibration system implemented
on a Dec-10. All data for a single observing band (e.g., C band) with compatable sets of frequencies and
polarizations are kept in raw form in a single file. Tables which contain calibration and editing information
are manipulated until the user is satisfied with the results (or simply exhausted). The calibration and
editing tables may then be applied to the data to produce single-source, calibrated and edited da ta files in
the traditional AIPS form.

There are two parallel and overlapping calibration systems, one for interferometer (also called uv data)
and the other for single dish data or other filled aperature measurments. The former system is to make
amplitude and phase like corrections and the la tter for am plitude and pointing corrections. These calibration
systems depend heavily on the use of tables and the reader is encouraged to review the chapter on tables in
this manual. Access to the raw data files is through the routines UVGET and SDGET for interferometer
and single dish data. These routines can optionally calibrate and edit a selected subset of the da ta and
return it in a specified set of Stokes’ parameters.

16.2 M ulti-source uv D ata Files
The most useful organization of uv d a ta for purposes of editing and calibration is to have all da ta which is
to be calibrated together in the same file in time order. The structure of multi-source files is very similar
to single-source files, both types are described in detail in the chapter on disk files. Multi-source files differ
from single source files by the presence a source number random param eter, an optional FQ (frequency set[)
identifier random param eter, and a number of tables extension files. Because of the similarity with single-
source files, the bulk of AIPS software can process multi-source as well as single-source files if no distinction
needs to be made between sources. Descriptions of the contents of the calibration and editing tables are
given in Appendix C. Access to raw interferometer data is through the routine UVGET (see the detailed
description at the end of this chapter). UVGET can select and optionally edit and calibrate the data.

16.2.1 Distinguishing Sources
Each logical record in a multi-source file contains a source identification number as a random parameter; the
source information for the individual sources is kept in the source (SU) table. W hen the name, position, flux
density, etc. of a given source is needed, the appropriate record of the source table should be consulted. The
position of the source number random param eter is obtained by UVPGET and placed in the DUVH.INC

16-1

16-2 CHAPTER 16. CALIBRATION AND EDITING

include common as ILOCSU. See the chapters on the catalog header records and disk files for more details
on determining the structure of the logical records.

16.2.2 Time Order
The most convenient order for multi-source files is time-baseline order; that is, strictly in time order. This
allows indexing the data, which, in turn, allows rapid access to small portions of the file. For this reason,
most of the calibration and editing software require the data to be in time order and require an index (NX)
table or, at least, are much more efficient if one is available.

16.2.3 Scans
Observations generally consist of a series of “scans” or sequences of data on the same source. Since the
duration of some of these observations may be quite long, the AIPS definition of a scan is more general and
a long sequence on the same source may be broken into several “scans” . The definition of a scan is the data
described by an index (NX) table entry, which must be a contiguous sequence of data all on the same source.

16.2.4 Subarrays
Some data sets may contain observations of several sources at the same time by different members of the
array; this is especially common in VLBI data, for which all array elements will not be able to see a given
source over the same time range. This complication is dealt with by the concept of subarrays. A further
complication is tha t the AIPS definition of subarrays allows partially or completely disjoint sets of antennas
in different subarrays; this allows combining data from distinct synthesis arrays, while keeping track of what
data came from where. I t may be desirable to calibrate data from separate arrays together to insure th a t
the phases all refer to the same place on the sky.

Each subarray in a da ta base will have a corresponding antenna (AN) table defining the properties of
the array members and the actual observing date and frequency; this is the case even if the contents of the
antenna files are identical. More details on the use of subarrays can be found in the chapter on disk files and
later in this chapter.

16.2.5 Compressed Data
D ata may be kept in “Compressed” form with individual correlation values packed into a single real word.
The details of this packing are machine dependent and is done by the routines ZUVPAK and ZUVXPN.
These packed values may be blanked by magic value blanking to indicate that they are flagged and each
visibility record will have a single weight and scaling random parameters. The use of the compressed format
for interferometer data is transparent when UVGETUVGET is used for access as the data is returned in
expanded form.

16.2.6 Frequency Sets (FQ id)
A given set of data may have data taken with different sets of frequencies or bandwidths a t different times;
as for example, in rotation measure experiments or frequency switched spectral line observations. These
may be kept in the same da ta set if they all have the same number of IFs, channels and polarizations. A
given set of frequencies and bandwidths are specified by an entry in the FQ table. A random param eter in
each visibility record labeled “FQID” specifies the entry in the FQ table that describes the frequencies and
bandwidths of that record.

16.2.7 Tables
The manipulation of tables is at the heart of the calibration and editing software and much information
about the contents of the associated uv data file is contained in them. Some of the tables, such as the source
(SU), antenna (AN) and frequency (FQ) tables, are necessary to interpret values in the uv data file. Other

16.3. EDITING BASICS 16-3

tables, such as the flag (FG), calibration (CL and CS), and solution (SN) tables, contain information which
can be used to edit and/or calibrate the data.

A short description of the m ajor tables follows; a detailed definition of each table is given at the end of
this chapter.

• AN table : this table defines the array geometry, the observing date and frequency, and some time
invariant properties of each array element such as the instrum ental polarization parameters.

• BL table : this table contains the gain corrections which is peculiar to pairs of antennas (baseline) and
cannot be factored into antenna based components.

• BP table : this table contains antenna based gain corrections for each spectral channel in a data base.

• CL table : this table contains the calibration information necessary to calibrate the contents of an
interferometer data file. Multi-source files only.

• CS table : this table contains the calibration information necessary to calibrate the contents of a single
dish data file. Amplitude and pointing corrections are included.

• FG table : this table contains descriptions of data to be rejected from further consideration. Multi
source files only.

• FQ table : this table gives the frequency offset of each IF from the reference frequency. This allows
IFs to have arbitrary frequency offsets. Multiple sets of frequencies and/or bandwidths are allowed
with the use of a “FQID” random param eter which specifies the entry in this table. The calibration
routines currently (1990) only process a single FQ id at a time.

• NX table : the index table contains an index of the uv da ta file. Multi-source files only.
• SN table : this table contains the solutions obtained from a calibration routine. The contents of these

tables are applied to the CL table for multi-source files and to the data for single-source files.
• SU table : the source table contains the information peculiar to a given source such as the name and

position.

16.3 Editing Basics
The terms editing and flagging will be used interchangeably in this chapter. The processes of editing is to
remove data that is defective or otherwise unwanted. This is done in the context of the calibration software
by specifying the unwanted data in terms of tim e range, subarray, source, antenna or baseline, etc. These
descriptions of the data to be removed are kept in the flag (FG) table with a short, optional description of
the reason the data is unwanted.

When these flags are applied, bad data is indicated by a non-positive weight associated with the relevant
complex value. If all such values in a given logical record are marked bad, then the calibration software
will not pass th a t logical record. Editing is invoked in UVGET or SDGET by setting DSEL.INC variable
DOFLAG = .TRUE, and FGVER to the desired FG table version number.

16.4 Interferom etric Calibration Basics
Calibration is the process of removing the instrumental and atmospheric effects from the data and referring
the residual phases to the desired position on the sky. Note: the phase of the visibility da ta is the residual
phase after the model phase at the reference position is subtracted. Most of the instrum ental and all of the
atmospheric effects are a function of antenna rather than baseline. Baseline dependent calibration, if done
at all, is only done after the antenna based calibration. The bulk of the calibration software is for antenna
based calibration.

16-4 CHAPTER 16. CALIBRATION AND EDITING

Calibration information can be derived from external sources, such as system tem perature measurements,
atmospheric models, etc., or from internal methods, such as observations of sources with known flux density,
position and structure (calibrator sources).

A related means of calibration is self-calibration, in which the current model of a source (e.g., CLEAN
components) is iteratively used to determine the instrumental or atmospheric effects directly from the ob
servations of the source of interest. This technique may lead to a considerable increase in the dynamic range
of the final image at the cost of losing precise positional and/or flux density scale information.

The information needed to calibrate the data in a multi-source file is kept in the calibration (CL) table.
In the case of external calibration, the corrections may be applied directly to the CL table. The process
of internal calibration interacts with editing and other uncertainties and so frequently takes a number of
iterations.

The calibration information needed is: (1) a complex gain for each correlator value (complex visibility),
and, for VLBI data, (2) a residual group delay to correct the derivative of phase with frequency, and
(3) a residual phase delay rate (sometimes called fringe rate) to correct the time derivative of the phase.
The calibration to be applied to a given visibility measurement is interpolated from the CL table entries
surrounding the visibility measurement in time.

16.4.1 Internal Calibration
Internal calibration is a two-step process; the first step is usually to determine calibration values from
calibrator source observations; these solutions are kept in a solution (SN) table. The second step is to
apply these solutions to the calibration (CL) table. Solutions for different calibrator sources may need to be
determined independently and these solutions are put in separate SN tables. Thus, when the SN table are
to be applied to the CL tables, there may be several such tables.

The reference times of the SN and CL tables entries will, in general, not be the same; the CL table entries
are usually generated when the data is first read into the system. Solutions may be determined from all the
data from a given scan or from shorter periods. The SN tables are applied to the CL tables by interpolating
between SN table entries to the times of the CL table records and then applying the residual corrections
from the SN table to the CL table.

An additional complication is th a t a given CL table may have been applied to the data before the
determination of a set of solutions. In this case, the SN table needs to be applied to the CL table which was
used to calibrate the data. In general, it is the responsibility of the user to insure tha t the correct version of
the CL table is used.

16.4.2 Smoothing
Under some circumstances, the user will wish to smooth some aspect of the solutions (e.g., the group delay
residual) before applying it to the CL table. This is done by concatenating the SN tables, adjusting them
to a common reference antenna, and then smoothing the combined table before applying it to the CL table.

16.4.3 Reference Antennas
An interferometer only measures phase differences between antennas, so internal calibration cannot determine
absolute phases. It is usually the practice to refer the phases derived from internal calibration to a given
antenna known as the reference antenna. Phase corrections (including delay and rate) cannot be smoothed
or interpolated using solutions based on different reference antennas. Solutions using different reference
antennas must be re-referenced to the same antenna before smoothing or interpolation. Since all calibration
in AIPS involves interpolation, the solutions must always be re-referenced to the same antenna. Routine
CALREF rereferences all phase like data in a given SN table to a common antenna. Details of this routine
are given at the end of this chapter.

16.5. OBSERVING MODEL 16-5

16.5 O bserving M odel
The phases of the visibility data are actually the residuals from a model phase. The total phase and its
cousins (i.e., phase delay, group delay, and their time derivatives) are useful values in their own right. These
values can be used to determine the locations of the antennas and the sources, and the orientation of the
earth, to high accuracy.

The total phase-like model values are also necessary if high accuracy earth models (precession, UT1
corrections, polar motion, solid earth tides, ocean loading, etc., etc.) are to be used to apply phase corrections
to the data. The need for such corrections increases with baseline length and is essential for phase coherent
interferometers with baselines of length a thousand km or more.

The total model applied to the data is kept in the calibration (CL) table. The model is expressed in
terms of delays and their time derivatives. Because dispersive media are involved, both the group and phase
delay must be kept. The to tal model is arbitrarily divided into three parts: (1) a sinusoidal term, (2) an
“atmospheric” term and (3) a “clock” term. The sinusoidal term is intended to contribute the bulk of the
delay, being the delay due to the positions of the array elements on the earth or of a satellite in orbit. Since
the sinusoidal term is purely geometrical, there is no distinction between group and phase delay. (Note: use
of a sinusoidal term may be changed to a polynomial in the future).

The distinction between the “atmospheric” and “clock” terms is, as yet, poorly defined, but both are
allowed to have group and phase delay components. Whenever a new residual correction is determined, e.g.,
when an SN table is applied to the CL table, the “atmospheric” or “clock” total model values need to have
the corresponding correction made. This procedure will result in to tal model values when the calibration
process is complete.

16.6 A pplying Calibration to Interferom eter D ata
This section describes the various calibration and spectral smoothing operations that can be invoked using
UVGET for interferometer data. These functions are controlled by variables in the commons in DSEL.INC
as described below. The values in the DSEL.INC commons are most convienently initialized using routine
SELINI. Desired options may then be explicitly set.

16.6.1 Amplitude, Phase, Delay and Rate
Amplitude, phase, delay and fringe rate corrections Me invoked by setting DSEL.INC variable DOCAL=.TKVE.
and CL USE to the version number of the CL (multi-source) or SN (single-source file) table to be applied. This
corrections is done in DATCAL using interpolated values in tables maintained by CGASET and CSLGET.
An amplitude correction is applied to correct for am plitude loss due to time averaging if a fringe rate correc
tion is made; this corrections is baseline dependent. To make this correction DSEL.INC variable DXTIME
should be set to the integration tim e of the data in days.

The weights associated with the data may be calibrated by the am plitude correction. This is necessary
if the weights are to be proper statistical weights but this is inconsistent with older useage. The question
of calibration of weights is frequently left as a user option and is enabled by setting DSEL.INC variable
DOWTCL-. TRUE.

16.6.2 Baseline Dependent Calibration
Instrumental errors may be introduced in a m annar which cannot be factored into antenna specific compo
nents. The corrections for this type of error is called baseline dependent calibration. Baseline dependent
errors may be due to such effects as bandpass mismatches or defects in the correlation process. In principle,
these effects can be multiplicative or additive although a t present only multiplicative corrections are fully im
plemented. Baseline dependent corrections, both additive and multiplicative, are contained in the BL table.
Baseline dependent calibrations maybe time variable, in which case the applied correction is interpolated in
time. Baseline dependent corrections are applied in DATCAL using a table maintained by BLSET. Baseline
dependent calibration is invoked by setting DSEL.INC variable DOBL=.THVH. and BLVER to the version
of the desired BL table.

16-6 CHAPTER 16. CALIBRATION AND EDITING

16.6.3 Bandpass Calibration
D ata in which multiple frequency samples are present in the same IF generally require a frequency dependent
amplitude and/or phase correction. These are generally needed due to imperfect filters in the signal pro
cessing system in the individual antennas and thus may be factored into antenna based components. These
corrections may be slowly variable with time. Amplitude and phase corrections may be determined from
interferometric observations or am plitude corrections from autocorrelation measurments. These bandpass
corrections are kept in the BP table and are applied by DATBND using tables maintained by BPGET,
SCLOAD and SCINTP. The call sequence to these routines is described in detail at the end of this chapter.
These routines have three modes of operation: 1) a constant set of corrections; 2) using the corrections
closest in time; and 3) full interpolation in time of the bandpass corrections. Several scratch files may be
used in this process, bandpass calibration is invoked using DSEL.INC variable D0BAND=1,2 or 3 for the
three option described above and BP VER set to the desired BP table.

16.6.4 Spectral Smoothing
Spectral measurments are sometimes smoothed to increase the signal to noise ratio in features wider than
the channel separation or as a filter to remove the Gibbs Phenomenon (ringing due to truncation of the lag
function). In the later case, a Hanning smoothing is effective. The currently available smoothing methods are
Hanning, Gaussian, boxcar and sine. Spectral smoothing is invoked by setting DSEL.INC variable DOSMTH
to .TRUE, and specifing the desired smoothing in array SMOOTH. Initialization for smoothing is done by
SETSM and the smoothing is done by SMOSP.

16.6.5 Polarization Calibration
The instrumental polarization calibration constants for a single FQ id are contained in the subarray AN
table. Several possible parameterizations of the instrumental polarization are possible but only a linear
approximation for circular or linear (but not mixed) feeds are fully supported. More details are given in
the description of the AN table given in Appendix C. If DSEL.INC variable DOPOL=.TRUE, then routine
DATPOL will correct for the instrumental polarization and remove the effects of parallactic angle rotation
for antellas with an alt-az mount. The VLA is recognized as a special case in which all antennas have the
same parallactic angle. This requires that no parallactic angle corrections have been made prior to this.

At low frequencies a further corrections for ionospheris Faraday rotation will also be required. This
information, if present, is kept in the CL table and is applied if polarization calibration is applied. This
correction is applied by DATPOL using tables in DSEL.INC maintained by CSLGET and CGASET using
values read from the CL table.

16.7 D ata Selection
Data may be selected using a number of criteria specified via commons in DSEL.INC. Sources may be
specified by name using character array SOURCS, a single qualifier SELQUA or calibrator code SELCOD
(’ ’ means any, ’* ’ means any non blank calibrator code, ’-CAL’ means all but calibrators and anything
else requires a match). Source selection is done by routine SOUFIL which indicates the selected sources by
source id number in DSEL.INC variables NSOUWD, DOSWNT, SOUWAN and SOUWTB.

Selection by time is specified in array TIMRNG which gives the start date, hour, minute, second, end
day, hour, minute and second. Day numbers are zero relative with respect to the subarray reference date.
All zeroes mean all times are selected. A list of antennas whose data is to be included is specified by array
ANTENS. If all elements of ANTENS are positive then selected data are to come from only those antennas.
If any value is negative, then data using the antennas specified by the absolute values of the elements in
ANTENS are to be ignored. The subarray may be selected using SUBARR for which zero means all. D ata
may be specified to be in an annulus in the uv plane by UVRNG. The first and second elements of this array
are the inner and outer radii of the annulus in 1000’s of wavelengths and zeroes mean all. The annulus is
defined at the reference frequency of the subarray.

1 6.8. TABLE ACCESS ROUTINES 16-7

A range of spectral channels can be specified using BCHAN and ECHAN which are the lowest and
highest channel numbers in each IF; zero means all. Similarly, a range of IFs may be specified with BIF and
EIF. The desired Stokes’ (polarization) type may be specified by STOKES. This will cause the Stokes’ type
requested to be returned if possible. The setup for this translation is done in DGINIT and the translation is
done in routine DGGET. A blank value of STOKES means don’t translate; other values are ’I ’, ’Q ’, ’U’, ’V’,
’IQ U \ ’IQUV’, ’IV ’, ’R R ’, ’L L \ ’RL’, ’LR’ ’HALF’ (parallel pol.) and ’FULL’ (RR,LL,RL and LR). Setting
variable DOACOR-.TRUE, causes UVGET to return any auto correlation da ta found; DOXCOR=.TRUE,
requests cross correlation data. DOFQSL=.TRUE, requests selection by FQ id where the desired FQID is
given by FRQSEL. The value of FRQSEL may be determined directly by the user or specified by Frequency
and bandwidth; this is done in routine FQMATC.

16.8 Table A ccess R outines
Much of the table access is built into the data access routines, but some tables (e.g., the source) may need
to be accessed more generally. Most of the commonly used tables will have special access routines which
are described in detail in the chapter on tables. The detailed descriptions of the contents of these tables are
found in Appendix C.

16.9 Calibration Table R outines
The m anipulation of the SN tables and their application to a CL table is done by a single AIPS task,
CLCAL using routine CLUPDA. This routine concatenates SN tables and re-references the phases to a
common reference antenna, smooths the SN table and applies the combined SN table to specified entries in
an input CL table, and finally writes them to an output table. If no CL table exists in a multi-source file,
one is created and the SN table copied into it. The details of the call sequence of CLUPDA are a t the end
of this chapter.

The detailed contents of the calibration related tables are subject to change with time. To minimize the
difficulties associated with this there are several routines that check if a given table is of the current format
and reformats it if it is an old version. These routines are briefly described in the following and in detail at
the end of this chapter.

• BLREFM - Checks existence of BL table, changes form at if necessary.
• BPREFM - Checks existence of BP table, changes form at if necessary.
• CLREFM - Checks existence of CL table, changes form at if necessary.
• SNREFM - Checks existence of SN table, changes form at if necessary.

16.10 D ata A ccess R outines
The principal means of accessing multi-source data is through the routine UVGET. This routine will apply
a variety of selection criteria, translate polarization types, and, optionally, apply calibration and editing
tables. A detailed description of UGVET is given else where in this chapter. A related routine, CALCOP,
uses UVGET to create and fill a file with the desired data. UVGET also calls DGHEAD which prepares a
catalog header record which describes the output data; this is left in DSEL.INC array CATBLK. The catalog
header record for the input uv data is in array CATUV.

UVGET and CALCOP will work on single-source files as well as multi-source files. This allows calibration
software written for multi-source files to work for single-source files whenever possible.

The communication of the selection criteria, flagging and calibration information, etc. is through a
common contained in the include DSEL.INC. The commons in these includes contain most of the variables
and arrays needed by the inner workings of UVGET.

16-8 CHAPTER 16. CALIBRATION AND EDITING

16.10.1 Structure of the Interferometer Data Access System
UVGET calls a hierarchy of routines to do the necessary functions. While most programmers using UVGET
will not need to be familiar with the details of the inner workings of the UVGET system, some applications
may require knowledge of, or modifications to, this system.

The relations between the m ajor routines of the UVGET system are shown in the following diagram:

Interferometer D ata Calibration

16.10.2 Data Access Routines
In the following, a short description is given for each of the major routines in the data access system; detailed
descriptions of the call sequences etc. are given later in this chapter.

1. UVGET : the top level data access routine. UVGET controls the initialization of the various files and
arrays, calls DATGET to process the data, and closes the necessary files when done.

2. SOUFIL : this routine converts the list of sources to source numbers, which are filled into a common.
3. GAININ : initializes the gain (CL or SN) table to be applied to the data.
4. DGINIT : sets up to translate da ta (e.g., RR, LL to IPOL), if necessary.
5. POLSET : initializes common arrays needed for polarization calibration.
6. BPASET : initializes common arrays and possibly scratch files for bandpass calibration.
7. SETSM : initializes common variables for spectral smoothing.
8. INDXIN : initializes the index table I/O and finds the first relevant index record.
9. FLGINI : initializes reading flagging (FG) table.

10. DGHEAD : fills the catalog header record to correspond to the output data.
11. VISCNT : estimates the number of visibility records requested from the index table.

16.11. EXAMPLE USING UVGET 16-9

12. DATGET : reads data, applies flagging and calibration, and translates polarization.
13. DATFLG : flags data.
14. SMOSP : smooth spectra.
15. DATCAL : calibrates data.
16. DATPOL : Applies instrum ental polarization corrections, parallactic angle corrections and ionospheric

Faraday rotation corrections. Converts linear feed data to circular if necessary.
17. DATBND : applies bandpass correction.
18. DGGET : translates polarization.
19. NXTFLG : manages the internal arrays containing the currently active flagging criteria.
20. CGASET : interpolates gain table entries to current time.
21. CSLGET : finds gain table entries on both sides of the current time and reads the values into a common

array.
22. BLSET : sets common arrays for baseline dependent calibration.
23. LXYPOL : determines time dependent polarization correction m atrix for data observed with linear

feeds.
24. BPGET : sets current bandpass corrections in common.
25. SCLOAD : m anipulates Bandpass correction scratch files.
26. SCINTP : interpolates bandpass corrections in time.

16.11 Exam ple U sing U V G ET
The following example illustrates the use of UVGET to access a multisource uv data file with calibration
and editing as requested by the user through adverb values passed to the routine. In this example the user
specified calibration and flagging options are applied and the selected data written to a scratch file th a t is
created by CALCOP.
LOCAL IICLUDE ’PARMS.IVC’
C Common vith task adverb values

REAL DISKIS, SEQII, XQUAL, XTIME(8), XBCHAI, XECHAH, XBIF,
* XEIF, XDOCAL, XDOPOL, XSUBA, XFLAG, XGUSE, XBLVER, XDOBHD,
* XBPVER, XSM0THC3), XIVT, XBAID, XFREQ, XFQID
CHARACTER HAMEIH*12, CLAIH*6, XS0UR(30)*8, XCALC0*4, XST0K*4
COMMOH /PARMS/ DISKIH, SEQII, XQUAL, XTIME, XBCHAH, XECHAH, XBIF,

* XEIF, XDOCAL, XDOPOL, XSUBA, XFLAG, XGUSE, XBLVER, XDOBHD,
* XBPVER, XSMOTH, XIHT, XBAID, XFREQ, XFQID
COMMOH /CPARMS/ HAMEIH, CLAIH, XSOUR, XCALCO, XSTOK

LOCAL EID
SUBROUTIHE CALIT (IDISK, ICHO, CATIH, SCRIO, IRET)

C---
C Routine to calibrate and edit & user selected set ol data and
C vrite it to a scratch lile.
C Inputs:
C IDISK I Input lile disk number.
C ICHO I Input lile catalog slot number.
C CATII 1(256) Input lile catalog header record.

16-10 CHAPTER 16. CALIBRATION AND EDITING

c Inputs from common (PARMS.IIC):
c IAMEII C*12 Input uv data file name.
c CLAII C*6 Input uv data file class.
c DISKII R Input uv data file disk no.
c SEQII R Input uv data file sequence no.
c XSOUR C(30)*8 List of source names
c XQUAL R Qualifier selected
c XCALCO C*4 Calibrator code selected.
c XTIME R(8) Time range, start d,h,m,s, end d,h,m,s
c XSTOK C*4 Desired Stokes parameter
c XBCHAI R Lowest channel number to select.
c XECHAI R Highest channel number to select.
c XBIF R Lowest IF number to select.
c XEIF R Highest IF number to select.
c XDOCAL R If > 0 then apply calibration.
c XDOPOL R If > 0 then apply polarization calibration
c XSUBA R Subarray number.
c XFLAG R Flag (FG) table version to apply.
c XGUSE R Calibration (CL or SI) table to apply.
c XBLVER R Baseline dependent (BL) cal table to apply.
c XDOBID R Bandpass calibration code
c XBPVER R Bandpass (BP) table to apply
c XSMOTH R(3) Spectral smoothing parameters.
c XIIT R Integration time of data in seconds.
c XBAID R Selected bandwidth (Hz)
c XFREQ R Selected frequency (Hz)
c XFQID R Selected FQ id. .
c Outputs:
c SCRIO I Scratch file number in DFIL.IIC common.
c IRET I Return code, 0=>0K else failed.

IITEGER IDISK, ICIO, CATIK256), SCRIO, IRET
C

IITEGER XBUFSZ
C XBUFSZ - buffer size (words)

PARAMETER (XBUFSZ=4096)
IITEGER IROUID, BUFSZ, DISK, LUI, I, IIVER, OUTVER, LUII, LUIO
LOGICAL MATCH
REAL BUFFER(XBUFSZ), RPARM(X), VIS(3,X)
IICLUDE »IICS:PUVD.IIC*
IICLUDE ’PARMS.IIC*
IICLUDE »IICS:DSEL.IIC»
IICLUDE »IICS:DMSG.IIC»
IICLUDE »IICS:DHDR.IIC*
IICLUDE »IICS:DUVH.IIC*

C-------------------
C

CALL SELIII
C
C
C

UIAME = IAMEII
UCLAS = CLAIM
UDISK = DISKII

Initialize DSEL.IIC

Put selection criteria into
DSEL.IIC
Select file

16.11. EXAMPLE USING UVGET 16-11

USEQ = SEQIN
C Select data

DO 10 I = 1,30
SOURCS(I) = XSOUR(I)

10 COITIMUE
SELQUA = IROUHD (XQUAL)
SELCOD = XCALCO
CALL RCOPY (8, XTIME, TIMRIG)
STOKES = XSTOK
BCHAN - IROUND (XBCHAN)
ECHAN = IROUHD (XECHAH)
BIF = IROUHD (XBIF)
EIF = IROUHD (XEIF)

C
FGVER = IROUHD (XFLAG)

C
DOCAL = XDOCAL .GT. 0.0
DOPOL = XDOPOL .GT. 0.0
SUBARR = IROUHD (XSUBA)
CLUSE = IROUHD (XGUSE)
BLVER = IROUHD (XBLVER)
DOBAHD = IROUHD (XDOBHD)
BPVER = IROUHD (XBPVER)

C
DO 20 I = 1, 3

SMOOTH(I) = IROUHD (XSMOTH(I))
20 COHTIHUE

DOSMTH = SMOOTH(l) .GT. 0
C

DXTIME = XIHT / 86400.0
C Freq id

IF (XBAHD.GT.O.O) SELBAH = XBAHD
IF (XFREQ.GT.O.O) SELFRQ = XFREQ
FRQSEL = IROUHD (XFQID)
IF (FRQSEL.EQ.O) FRQSEL = -1
LUH = 28
CALL FQMATC (IDISK, ICHO, CATIH, LUH, SELBAH, SELFRQ, MATCH,
* FRQSEL. IRET)
IF (.HOT.MATCH) THEH

IRET = 5
MSGTXT = »H0 MATCH TO SELBAHD/SELFREQ ADVERBS - CHECK IHPUTS’
GO TO 990
EHD IF

IF (IRET.GT.O) GO TO 999
C Init call to UVGET, note that
C RPARM and VIS are not txsed here.

CALL UVGET (’IHIT*, RPARM, VIS, IRET)
IF (IRET.HE.0) GO TO 999

C Call CALCOP to process lile.
DISK = 0
SCRHO = 0
BUFSZ = XBUFSZ * 2
CALL CALCOP (DISK, SCRHO, BUFFER, BUFSZ, IRET)
IF (IRET.HE.0) GO TO 999

Select flagging

Select calibration

Spectral smoothing

16-12 CHAPTER 16. CALIBRATION AND EDITING

C Copy FQ table
IHVER = 1
OUTVER = 1
LUVO = 28
LUII = 29
CALL CHHCOPL, IHVER, OUTVER, LUHO, LUII, DISKIH, DISK, IUCIO,

* SCRIO, CATUV, CATBLK, BIF, EIF, FRQSEL, BUFFER, UBUFF, PBUFF,
* IREF
GO TO 999

C Error message
990 CALL MSGWRT (8)
C
999 RETURN

C--
END

16.12 Single D ish D ata
“Single Dish” data consists of sky brightness measurments or spectra made at arbitrary positions on the sky.
The format of this data is very similar to that of interferometry data with sky brightness and the baseline
subtracted constituting the “real” and “imaginary” parts. A detailed description of the single dish format is
given in the chapter on disk I/O . Access to single dish data is through routine SDGET which can optionally
calibrate amplitudes and/or positions and remove baselines. Many of the single dish calibration and editing
routines are the same as used for interferometery data. This is especially true for flagging (FG table) and
indexing (NX table). For purposes of selection and editing the “Feed Number” takes the place of “baseline”
code in interferometer data. The discussion of editing for interferometry data also applied to single dish
data. Compression of single dish data is not supported. The structure of the single dish calibration routines
is shown in the following diagram:

Single Dish D ata Calibration
The functions of the single dish calibration routines is briefly described in the following and detailed

descriptions are given at the end of this chapter.

1. SDGET : the top level data access routine. SDGET controls the initialization of the various files and
arrays, calls DGETSD to process the data, and closes the necessary files when done.

2. SOUFIL : this routine converts the list of sources to source numbers, which are filled into a common.
3. GACSIN : initializes the calibration (CS) table to be applied to the data.
4. DGINIT : sets up to translate da ta (e.g., RR, LL to IPOL), if necessary.
5. FLGINI : initializes reading flagging (FG) table.
6. INDXIN : initializes the index table I/O and finds the first relevant index record.
7. DGHEAD : fills the catalog header record to correspond to the output data.
8. DGETSD : reads data, applies flagging and calibration, and translates polarization.
9. VISCNT : estimates the number of visibility records requested from the index table.

10. DATFLG : flags data.
11. NXTFLG : manages the internal arrays containing the currently active flagging criteria.
12. DCALSD : calibrates data.
13. SDCSET : interpolates calibration table entries to current time.
14. SDCGET : finds calibration table entries on both sides of the current tim e and reads the values into

a common array.
15. DGGET : translates polarization.

16.13 Text o f IN C L U D E files
There are several types of INCLUDE file which are distinguished by the first character of their name.
Different INCLUDE file types contain different types of Fortran declaration statem ents as described in the
following list.

• Pxxx.INC. These INCLUDE files contain declarations for param eters and the PARAM ETER state
ments.

• Dxxx.INC. These INCLUDE files contain Fortran type (with dimension) declarations, COMMON and
EQUIVALENCE statm ents.

• Vxxx.INC. These contain Fortran DATA statements.
• Zxxx.INC. These INCLUDE files contain declarations which may change from one computer or instal

lation to another.

16.13.1 DSEL.INC
C Include DSEL.
C Commons lor UVGET use

IITEGER XCTBSZ, XBTBSZ, XPTBSZ, XSTBSZ, XTTSZ, XBPSZ,
* XBPBUF

C XCTBSZ=internal gain table size
PARAMETER (XCTBSZ=2500)

C XBTBSZ-baseline table size
PARAMETER (XBTBSZ=3500)

C XPTBSZ=polar. corr. table size

16.13. TEXT OF INCLUDE FILES 16-13

16-14 CHAPTER 16. CALIBRATION AND EDITING

PARAMETER (XPTBSZ=16384)
C XSTBSZ=Source no. table size

PARAMETER (XSTBSZ=500)
C XTTSZ=Pol. trails, table size

PARAMETER (XTTSZ=MAXIF*MAXCHA*2)
C XBPSZ=max. no. BP time entries

PARAMETER (XBPSZ=50)
C XBPBUF=interaal BP I/O buller

PARAMETER (XBPBUF=65536)
C Data selection and control

INTEGER ANTENS(50), IAITSL, ISOUVD, SOUVAI(XSTBSZ), S0UVTI(30),
* ICALWD, CALWAN(XSTBSZ), CALWTN(30), SUBARR, SMOTYP, CURSOU,
* IXKOLS(MAXNXC), NXIUMV(MAXIXC), MVIS, JADR(2,XTTSZ), PMODE,
* LRECII, UBUFSZ, BCHAI, ECHAI, BIF, EIF, IPRMII, KLOCSU, KLOCFQ,
* SELQUA, SMDIV, SM00TH(3), KLOCIF, KLOCFY, KLOCWT, KLOCSC,
* IDECMP, DECMP(2,MAXIF*4), BCHAHS, ECHAIS, FRQSEL, FSTRED,
* FQKOLS(MAXFQC), FQIUMV(MAXFQC)
LOGICAL DOSVIT, DOCVIT, DOAVIT, ALLVT, TRAISL, DOSMTH, ISCMP,
* DOXCOR, DOACOR, DOWTCL, DOFQSL
IITEGER IIXRIO, IIIDEX, FSTVIS, LSTVIS,-IFQRIO
REAL TIMRIG(8), UVRIG(2), IITPRM(3), UVRA(2), TSTART, TEID,
* SELFAC(2,XTTSZ), SMTAB(2500), SUPRAD, SELBAI
CHARACTER S0URCS(30)*16, CALS0U(30)*16, ST0KES*4, IITFI*4,

* SELC0D*4
DOUBLE PRECISIOI UVFREQ, SELFRQ

C Flag table inlo
REAL TMFLST, FLGTID(MAXFLG)
IITEGER IFGRIO
LOGICAL DOFLAG, FLGPOL(4,MAXFLG)
IITEGER FGVER, IUMFLG, FGKOLS(MAXFGC), FGIUMV(MAXFGC),

* KICOR, KICF, KICIF, KICS,
* FLGSOU(MAXFLG), FLGAIT(MAXFLG), FLGBAS(MAXFLG), FLGSUB(MAXFLG),
* FLGBIF(MAXFLG), FLGEIF(MAXFLG), FLGBCH(MAXFLG), FLGECH(MAXFLG)

C CAL table inlo
REAL GMMOD, CURCAL(XCTBSZ), LCALTM, CALTAB(XCTBSZ,2),
* CALTIM(3), RATFAC(MAXIF), DELFAC(MAXIF), DXTIME, DXFREQ,
* LAMSQ(MAXCHA, MAXIF), IFRTAB(MAXAIT, 2), IFR(MAXAIT)
IITEGER ICLRIO, ICLIIR, MAXCLR, CITREC(2,3)
LOGICAL DOCAL, DOAPPL
IITEGER CLVER, CLUSE, IUMAIT, IUMPOL, IUMIF, CIDS0U(2),

* CLKOLS(MAXCLC), CLIUMV(MAXCLC), LCLTAB, LCUCAL, ICALP1, ICALP2,
* P0L0FF(4,2)

C Baseline table inlo
REAL LBLTM, BLTAB(XBTBSZ,2), BLFAC(XBTBSZ), BLTIM(3)
IITEGER IBLRIO, IBLIIR
LOGICAL DOBL
IITEGER BLVER, BLKOLS(MAXBLC), BLIUMV(MAXBLC), IBLP1, IBLP2

C Polarization table.
REAL P0LCAL(2,XPTBSZ), PARAGL(2,MAXAIT), PARTIM
IITEGER PARSOU
LOGICAL DOPOL

C Bandpass table
DOUBLE PRECISIOI BPFREQ(MAXIF)
REAL PBUFF(XBPBUF), TIMEIT(XBPSZ), BPTIM(3), LBPTIM, CHIBID

16.13. TEXT OF INCL UDE FILES 16-15

CHARACTER BPNAME*48
INTEGER IBPRNO, NBPINR, ANTPNT(2), NVISM, NVISS, NVIST
INTEGER BPVER, BPKOLS(MAXBPC), BPNUMV(MAXBPC), NANTBP, NPOLBP,

* NIFBP, HCHNBP, BCHNBP, DOBAND, ANTENT(XBPSZ,MAXANT),
* BPDSK, BPVOL, BPCNO, USEDAH(MAXANT), BPG0T(2),
* KSNCF, KSNCIF, KSNCS, MXANUM

C Channel 0 stuff
INTEGER FSTVS3, LREC3, LSTVS3, NREAD3, FSTRD3, KL0CW3,

* KL0CS3, NDECM3, DECM3(2,MAXIF*4), BIND3, RECN03, LENBU3
LOGICAL ISCMP3, DOUVIN

C File specification.
INTEGER IUDISK, IUSEQ, IUCNO, IULUN, IUFIND, ICLUN, IFLUN,

* IXLUN, IBLUN, IPLUN, IQLUN, LUNSBP, BPFIND, CATUV(256),
* CATBLK(256)
REAL USEQ, UDISK
CHARACTER UNAME*12, UCLAS*6, UFILE+48

C I/O buffers
INTEGER CLBUFF(1024), FGBUFF(512), NXBUFF(512), BLBUFF(512) /

* BPBUFF(32767), FQBUFF(512)
REAL UBUFF(8192)

C Character common
COMMON /SELCHR/ SOURCS, CALSOU, STOKES, INTFN, SELCOD, UNAME,

* UCLAS, UFILE, BPNAME
C Common for UVGET use
C Data selection and control

COMMON /SELCAL/ UVFREQ, SELFRQ,
* USEQ, UDISK, TIMRNG, UVRNG, INTPRM, UVRA, TSTART, TEND, UBUFF,
* SELFAC, SMTAB, SUPRAD, SELBAN,
* INXRNO, NINDEX, FSTVIS, LSTVIS, IFQRIO,
* DOSVNT, DOCVNT, DOAWNT, ALLVT, TRANSL, DOSMTH, ISCMP, DOXCOR,
* DOACOR, DOVTCL, DOFQSL,
* CLBUFF, FGBUFF, NXBUFF, BLBUFF, BPBUFF, FQBUFF,
* IUDISK, IUSEQ, IUCNO, IULUN, IUFIND, ICLUN, IFLUN, IXLUN,
* IBLUN, IPLUN, IQLUN, LUNSBP, BPFIND, CATUV, ANTENS, NANTSL,
* NSOUVD, SOUVAN, SOUVTN, NCALWD, CALVAN, CALVTN,
* SUBARR, SMOTYP, CURSOU, NXKOLS, NXNUMV, FQKOLS, FQNUMV,
* MVIS, JADR, PMODE,
* LRECIN, UBUFSZ, BCHAN, ECHAN, BIF, EIF, NPRMIN, KLOCSU,
* KLOCFQ, SELQUA, SMDIV, SMOOTH, KLOCIF, KLOCFY, KLOCWT,
* KLOCSC, NDECMP, DECMP, BCHANS, ECHANS, FRQSEL, FSTRED

C FLAG table info
COMMON /CFMINF/ TMFLST, FLGTND, IFGRNO, DOFLAG, FLGPOL,

* FGVER, NUMFLG, FGKOLS, FGNUMV, KNCOR, KNCF, KNCIF, KNCS,
* FLGSOU, FLGANT, FLGBAS, FLGSUB, FLGBIF, FLGEIF, FLGBCH, FLGECH

C CAL table info
COMMON /CGNINF/ GMMOD, CURCAL, LCALTM, CALTAB, CALTIM, RATFAC,

* DELFAC, DXTIME, DXFREQ,
* ICLRNO, NCLINR, MAXCLR, CNTREC,
* DOCAL, DOAPPL,
* CLVER, CLUSE, NUMANT, NUMPOL, NUMIF, CIDSOU, CLKOLS, CLNUMV,
* LCLTAB, LCUCAL, ICALP1, ICALP2, POLOFF,
* LAHSQ, IFRTAB, IFR

C BL table info
COMMON /CBLINF/ LBLTM, BLTAB, BLTIM, BLFAC,

16-16 CHAPTER 16. CALIBRATION AND EDITING

* IBLRHO, IBLIIR,
* DOBL,
* BLVER, BLKOLS, BLIUMV, IBLP1, IBLP2

C Pol. table
COMMOI /CPLIIF/ POLCAL, PARAGL, PARTIM, PARSOU, DOPOL

C BP table
COMMOI /CBPIHF/ BPFREQ,
* PBUFF, TIMEIT, BPTIM, LBPTIM, CHIBID,
* IBPRIO, HBPIHR, AITPIT, IVISM, IVISS, IVIST,
* BPVER, BPKOLS, BPHUMV, IAITBP, HPOLBP, IIFBP, HCHNBP, BCHNBP,
* DOBAHD, AITENT, BPDSK, BPVOL, BPCIO, USEDAH, BPGOT,
* KSICF, KSNCIF, KSICS, MXANUM

C Channel 0 common
COMMOI /CHIZ/ FSTVS3, LREC3, LSTVS3, IREAD3, FSTRD3, KL0CW3,

* KL0CS3, IDECM3, DECM3, BIND3, RECH03, LEHBU3,
* ISCMP3, DOUVIH

C
COMMOI /MAPHDR/ CATBLK

C End DSEL.

16.13.2 PUVD.INC
c Include PUVD
c Parameters lor uv data

IITEGER MAXAIT, MXBASE, MAXIF, MAXFLG, MAXFLD, MAXCHA
c

PARAMETER (MAXAIT=45)
MAXAIT = Max. no. emtennas.

c MXBASE = max. no. baselines
PARAMETER (MXBASE= ((MAXAIT*(MAXAIT+l))/2))

c
PARAMETER (MAXIF=15)

MAXIF=max. no. IFs.

c
PARAMETER (MAXFLG=1000)

MAXFLG= max. no. Hags active

c
PARAMETER (MAXFLD=16)

MAXFLD=max. no lields

c
PARAMETER (MAXCHA=512)

MAXCHA-max. no. Ireq. channels.

c Parameters lor tables
IITEGER MAXCLC, MAXSIC, MAXAIC, MAXFGC, MAXIXC, MAXSUC,

* MAXBPC, MAXBLC, MAXFQC
C

PARAMETER (MAXCLC=41)
MAXCLC=m&x no. cols in CL table

C
PARAMETER (MAXSIC=20)

MAXSIC^max no. cols in SI table

C
PARAMETER (MAXAIC-12)

MAXAIC=max no. cols in Al table

C
PARAMETER (MAXFGC=8)

MAXFGC=max no. cols in FG table

C
PARAMETER (MAXIXC=7)

MAXIXC=max no. cols in IX table

C
PARAMETER (MAXSUC=21)

MAXSUC=max no. cols in SU table

C
PARAMETER (MAXBPC=14)

MAXBPC=max no. cols in BP table

16.14. ROUTINES 16-17

C MAXBLC=max no. cols in BL table
PARAMETER (MAXBLC=14)

C MAXFQC=max no. cols in FQ table
PARAMETER (MAXFQC=5)

C End PUVD.

16.14 R outines
16.14.1 BLREFM
Routine to change the form at of the BL table from one containing 13/9 columns to the 14/10 columns needed
by the addition of the FREQID column. NOTE: routine uses LUN 45 as a temporary logical unit number.

BLREFM (DISK, CHO, VER, CATBLK, LUH, IRET)
Inputs:

DISK I Volume number
CIO I Catalogue number
VER I Version to check/modily
CATBLK(256) I Catalogue header
LUI I LUI to use

Output:
IRET I Error, 0 => OK

lote, routine vill leave no trace ol its operation, i.e. BL table
vill be closed on output and vill have same number as one specilied.
Dillerence vill be only that number ol columns has changed il that
is required.

16.14.2 BLSET
Fills current baseline correction table (BLFAC) by interpolation.

BLSET (TIME, IERR)
Inputs:

TIME R Current time (ol data) in days.
Inputs Irom DSEL.IIC:

GMMOD R Mean gain modulus correction, 0->none.
BLTAB(*,2) R Baseline table Irom BL table lile.

The second dimension corresponds to the time
belore and alter the current data time.
Indexing scheme: am entry delined by antl<ant2
starts in element:

lentry * (((antl-l)*numant-((antl+l)*antl)/2 + ant2) - 1) + 1
vhere lentry = 2 * IUMP0L * (EIF-BIF+1)
An entry contains the values in order:
By IF (IUMIF)

By Polarization (IUMP0L)
Reed, part, imaginary part.

BLTIM(3) R Time o f two cail. entries; third value is
time ol current values.

IBLP1 I Pointer in BLTAB, BLTIM to previous time.
IBLP2 I Pointer in BLTAB, BLTIM to next time.
DOBL L 11 true then use baseline correction table,

else initialize BLFAC.

16-18 CHAPTER 16. CALIBRATION AND EDITING

Output:
IERR I Return error code, 0=>0K else error.

Output to DSEL.INC:
BLFAC(*) R Baseline dependent factors as (real, imag)

Includes GMMOD correction if necessary.
Addressing is like BLTAB.
Initialized to 1/GMM0D,0 if D0BL=.FALSE.

16.14.3 BPASET
Sets up the bandpass table array for use by DATBND.
BPASET (IERR)

Inputs from DSEL.INC:
BPBUFFC*)
NBPINR
NANTBP
NPOLBP
NIFBP
NCHNBP

Output:
IERR I

Output to DSEL.INC:
TIHEIT(MAXBP)

BP table I/O TABIO buffer
Number of BP records in file.
Number of antennas
Number of IFs per group (polarizations)
Number of IFs.
Number of channels

Return error code 0=>0K, else failed.

ANTEIT(MAXBP,MAXAIT)
MXANUM

R An index array recording the times of
BP records in the scratch file

I The corresponding antenna index.
I The maximum antenna number

16.14.4 BPGET
Gets next set of bandpass da ta in array PBUFF. Depending on the value of DOBAND will

1. extract data for antenna from scratch file containing averaged data.
2. extract bandpass data closest in time to visibility data
3. will do a linear interpolation in time between the entries.

If options (2) or (3) are selected the I /O rate will be very high and will slow the program down tremendously.
BPGET (TIME, IA1, IA2, IERR)
Inputs:

TIME R Current time of data (days)
IA1 I First antenna to be selected
IA2 I Second antenna to be selected

Inputs from common /.... /
DOBAND I Bandpass selection option
TIMENT
AVTEIT

O u tp u t:
IERR I Return error code. 0=>0K, else error

Output to common /.... /
BPANTI R(*) Array containing bandpass spectrum

for IA1
BPANT2 R(*) Array containing bandpass spectrum

16.14. ROUTINES 16-19

lor IA2
LBPTIM R Time ol current calibration
BPG0T(2) I Antenna numbers ol present calibration.

16.14.5 BPREFM
Routine to change the form at of the BP table from one containing 13/10 columns to the 14/11 columns
needed by the addition of the FREQID column. NOTE: routine uses LUN 45 as a temporary logical unit
number.

BPREFM (DISK, CNO, VER, CATBLK, LUN, IRET)
Inputs:

DISK I Volume number
CNO I Catalogue number
VER I Version to check/modily
CATBLK(256) I Catalogue header
LUN I LUN to use

Output:
IRET I Error, 0 => OK

lote, routine vill leave no trace ol its operation, i.e. BP table
vill be closed on output and vill have same number as one specilied.
Dillerence vill be only that number ol columns has changed il that
is required.

16.14.6 CALCOP
Routine to copy selected da ta from one data file to another optionally applying calibration and editing
information. The input file should have been opened with UVGET. Both files will be closed on return from
CALCOP. Note: UVGET returns the information necessary to catalog the output file. The output file will
be compressed if necessary a t completion of CALCOP.

CALCOP (DISK, CNOSCR, BUFFER, BUFSZ, IRET)
Inputs:

DISK I

BUFFER R(*)
BUFSZ I

Input via common:
LREC I
MRPARM I

In/out:
CIOSCR I

In/out via common:
CATBLK 1(256)

IVIS I
Output:

IRET I

Disk number lor catalogd output lile.
II .LE. 0 then the output lile is a /CFILES/
scratch lile.
Vork buller lor vriting.
Size ol BUFFER in bytes.

(/UVHDR/) length ol vis. record in R vords.
(/UVHDR/) number ol R random parameters.

Catalog slot number lor il cataloged lile;
/CFILES/ scratch lile number il a scratch lile,
IF DISK=CI0SCR=0 then the scratch is created.
On output = Scratch lile number il created.

Catalog header block Irom UVGET
on output vith actual no. records
(/UVHDR/) lumber ol vis. records.

Error code: 0 => OK,
> 0 => failed, abort process.

16-20 CHAPTER 16. CALIBRATION AND EDITING

Usage notes:
(1) UVGET with OPCODE^s'IHIT' MUST be called before CALCOP to setup

for calibration, editing and data translation. If an output
cataloged file is to be created this should be done after the
call to UVGET.

(2) Uses AIPS LUH 24

16.14.7 C A L R E F

Subroutine to adjust the reference antenna in a uv data file. The Table is first read to find all data relating
ANT and REFAN. These data are then smoothed and the resulting ANT-REFAN are used in a second pass
through the table to adjust data using ANT as a reference antenna to REFAN as the reference antenna.
Several work arrays are passed which are used for storing, smoothing and interpolating data. The table should
already be open and BUFFER should be the buffer used by TABINI (or other table opening routines).

CALREF (AHT, REFAH, SUB, KOLS, BUFFER, SMOTIM, MAXTIM,
* FREQ, VRKTIM, V0RK1, V0RK2, W0RK3, V0RK4, WORKS, IRET)

Old reference antenna
Hew reference antenna
Subarray desired
Array of TABIO column pointers in- order:
antenna, ref. antenna, subarray, weight, time,
reed, imag, delay, rate.
Buffer for TABIO use; table must already be
open
Boxcar averaging times (days) l=phase, 2=delay
3 = rate
Maximum number of times (dim of VRKTIM etc)
Frequency of observation (Hz)

Input:
AIT I
REFAH I
SUB I
KOLS 1(9)

BUFFER I(*)

SMOTIM R(3)

MAXTIM I
FREQ R

Output:
VRKTIM R(*)
V0RK1 R(*)
W0RK2 R(*)
V0RK3 R(*)
V0RK4 R(*)
V0RK5 R(*)
IRET I Return code 0=0K, else failed.

16.14.8 CGASET
Gets next set of calibration data in CURCAL, does linear interpolation in time between time entries in
CALTAB. Calls BLSET to fill or initialize BLFAC and apply and baseline dependent calibration then enters
any rate corrections. If the preceeding or following entry is for the current source then only entries for tha t
source is used.

CGASET (TIME, IERR)
Inputs:

TIME R Current time (of data) in days.
Inputs from DSEL.IIC:

CALTAB R(*,2) Cal. table from gain table file
Values in order:
By antenna (IUMAIT)

By IF (IUMIF)

16.14. ROUTINES 16-21

By Polarization (VUMPOL)
Read part, imaginary part,
group delay, phase rate, ref. suit.

LCLTAB I Humber of values in CALTAB per entry (5)
IFRTAB R(*,2) Ionospheric Faraday rotation from cad table,

listed by antenna number
CALTIM R(3) Time of two cal. entries; third value is

time of current values.
CIDSOU 1(2) Previous/next source ID number using ICALPn as

a pointer.
CURSOU I Current source ID number.
ICALP1 I Pointer in CALTAB, CALTIM to previous time.
ICALP2 I Pointer in CALTAB, CALTIM to next time.
IBLP1 I Pointer in BLTAB, if < 0 then BLFAC needs

to be initialized by BLSET.
DOCAL L If true then apply antenna based calibation.
DOBL L If true then apply baseline based calibation.
RATFAC R(*) IF scaling factor to convert s/s to rad/day
DELFAC R(*) IF scading factor to convert s to rad/channel
DXTIME R Integration time of the data in days.

Output:
IERR I Return error code, 0=>0K else error.

Output to DSEL.IVC:
LCALTM R Time of current cadibration. If gain file

is exhausted then 1.0E20 is returned.
CURCAL R(*) Current calibration information.

Vailues in order:
By antenna (VUMAVT)

By IF (EIF-BIF+1)
By Polaurization (VUMPOL)

Real part, imaginary part,
cos(delta), sin(delta), rate

Vhere delta is the phase change between
channels and rate is the fringe rate in
radiams/day

IFR R(*) Current ionospheric rotation measure for each
antenna

BLFAC R(*) Baseline dependent factors.
Initialized to 1/GMM0D,0 if DOBL-.FALSE.
Indexing scheme: aui entry defined by antl<amt2
stairts in element:

lentry * (((amtl-l)*numant-((antl+l)*amtl)/2 + ant2) - 1) + 1
where lentry = 2 * IUMPOL * (EIF-BIF+1)
An entry contains the values in order:
By IF (IUMIF)

By Polarization (VUMPOL)
Reed part, imaginary part.

16.14.9 CLREFM
Routine to change the form at of the CL table from one containing 39/24 columns to the 41/26 columns
needed by the addition of the FREQID and IFR columns. NOTE: routine uses LUN 45 as a tem porary
logical unit number.

16-22 CHAPTER 16. CALIBRATION AND EDITING

CLREFM (DISK, CIO, VER, CATBLK, LUH, IRET)
Inputs:

DISK I Volume number
CHO I Catalogue number
VER I Version to check/modify
CATBLK 1(256) Catalog header
LUH I LUH to use
tput:
IRET I Error, 0 => OK

Hote, routine will leave no trace of its operation, i.e. CL table
will be closed on output and will have same number as one specified.
Difference will be only that number of columns has changed if that
is required.

16.14.10 CLUPDA
Concatanates all SN tables and rereferences to the same reference antenna. Then if SNSMTH is true the
SN table will be smoothed. If DOAPPL (in common) is true then the SN table is applied to the specified
CL table. Leaves the output table sorted in tim e-antenna order.

CLUPDA (SIHGLE, SHSMTH, REFA, IERR)
Inputs:

SIHGLE L If true then the uv data is a single source file
and only SH tables will be processed.

SHSMTH L If true then smooth SH tables.
REFA I The desired reference antenna, 0=most used.

Inputs from DSEL.IHC
DOAPPL
CLVER

CLUSE

If true then apply SH tables to the CL table.
Input Cal (CL) file version number.
For single source files the input SH table.
Cal file version number to put smoothed gains
into and use for calibration.
For single source files the output SH table.
First time to process (days) (no default)
Last time to process (days) (no default)

TSTART R
TEHD R

Output:
IERR I

Useage notes:
1) Uses CLBUFF, BLFAC, CALTAB, BLTAB and UBUFF from /DSEL.IHC/.
2) Sorts the relevant tables.

Return code, 0=>0K, otherwise failed.

16.14.11 CSLGET
Sets up for interpolation in cal (CL or SN) table, reads values from cal table. Assumes only valid, selected
data in open cal table.

CSLGET (TIME, IERR)
Inputs:

TIME R Current data time.
Inputs from DSEL.IHC:

CLBUFF I(*) Cal table I/O TABIO buffer
ICLRHO I Current cal record number
HCLIHR I Humber of cal records in file.

16.14. ROUTINES 16-23

HUMAHT I
HUMPOL I
HUMIF I
GMMOD R

Output:
IERR I

Output to DSEL.IHC
CALTAB R(*,2)

LCLTAB I
IFRTAB R(*, 2)

CALTIM R(3)

CIDSOU 1(2)

ICALP1 I
ICALP2 I

Humber of antennas
Humber of IFs per group (polarizations)
Humber o f IFs.
Mean cal modulus

Return error code 0=>0K, else failed.

Cal. table from cal table file
Values in order:
By antenna (HUMAHT)

By IF (HUMIF)
By Polarization (HUMPOL)

Real part, imaginary part,
group delay, phase rate, ref. ant.

Humber of values in CALTAB per entry (5)
Ionospheric Faraday rotation measure from
cal table. Values listed by antenna.
Time of two cal. entries; third value is
time of current values.
Previous/next source ID number using ICALPn as
a pointer.
Pointer in CALTAB, CALTIM to previous time.
Pointer in CALTAB, CALTIM to next time.

16.14.12 DATBND
Routine which applies the bandpass correction.

DATBHD (TIME, IA1, IA2, VIS, IERR)
Inputs:

TIME R Time of visibility data (in days)
IA1 ' I Antenna number 1
IA2 I Antenna number 2
VIS R(«0 Array of visibility data

Inputs from common
PBUFF R(*) Large array containing bandpass spectra for

several antennas
AHTPHT 1(2) Pointer giving the start address of the specified

antennas bandpass spectra within PBUFF
Outputs:

VIS R(*) Array of corrected visibility data
IERR I If = 0, all OK,

If > 0, error returned from BPGET
Output to common:

CHTREC 1(2,3) Record counts:
(1*2,1) Previously flagged (partly, fully)
(1*2,2) Flagged due to gains (part, full)
(1*2,3) Good selected (part, full)

HOTE: This routine applies the bandpass correction for formulae:

(1) Cross-power: Scorr * Sobs

SQRT (Sant.l * Sant_2)

16-24 CHAPTER 16. CALIBRATION AND EDITING

(2) Total-power: Scorr (Son / Soff) - 1.0

16.14.13 DATCAL
Applies calibration to data.

DATCAL (IA1, IA2, TIME, VIS, DROP, IERR)
Inputs:

IA1 I First antenna number
IA2 I Second antenna number
TIME R Time of record (days)
VIS R(*,*) Input visibility array (not yet converted to

output form.
puts from DSEL . IHC:
DOCAL L If true do antenna calibration.
DOBL L If true do baseline calibration.
DOVTCL L If true calibrate weights.
CURCAL R(*) Current calibration information.

Values in order:
By antenna (IUMAHT)

By IF (EIF-BIF+1)
By Polarization (VUMPOL)

Real part, imaginary part,
cos(delta), sin(delta), rate

Vhere delta is the phase change between
channels and rate is the fringe rate in
radians/day

LCUCAL I lumber of values in CURCAL per entry (5)
P0L0FF I(4,2)Offsets from the beginning of an IF entry in

CURCAL for a given polarization. The first
dimension is the polarization pixel number and
the second is the antenna number of a baseline
(e.g. first or second = 1 or 2).

CALTIM R(3) Time of two cal. entries; third value is
time of current values.

LCALTM R Time of current calibration.
BLFAC R(*) Baseline dependent factors including GMMOD.

Indexing scheme: an entry defined by antl<ant2
starts in element:

lentry * (((antl-l)*numant-((antl+l)*antl)/2 + ant2) - 1) + 1
where lentry = 2 * HUMPOL * (EIF-BIF+1)
An entry contains the values in order:
By IF (IUMIF)

By Polarization (IUMP0L)
Read part, imaginary part.

Applied only to cross corelation data.
Output:
DROP L True if data all flagged.
IERR I Return code, 0-0K, else CGASET error number.

Output to common:
CITREC 1(2,3) Record counts:

(1*2,1) Previously flagged (partly, fully)
(1*2,2) Flagged due to gains (part, full)

16.14. ROUTINES 16-25

(1*2,3) Good selected (part, lull)

16.14.14 DATFLG
Flags data specified in flagging table

DATFLG (RPARM, VIS, DROP, IERR)
Inputs:

RPARM(*) R Random parameter array
VIS(3,*) R Visibility array

Inputs Irom common /CFMIHF/:
CURSOU I Current source number
NUMFLG I Humber ol llagging entries.
TMFLST R Time ol last visibility lor which llagging

was checked.
FLGS0U(*) I Source id numbers to llag, 0=all.
FLGAHT(*) I Antenna numbers to llag, 0=all.
FLGBAS(*) I Baseline (Al*256+A2) numbers to llag, 0=all.
FLGSUB(*) I Subarray numbers to llag, 0=all.

Following should have delaults lilled in.
FLGBIF(*) I First IF to llag.
FLGEIF(*) I Highest IF to llag.
FLGBCH(*) I First channel to llag.
FLGECH(*) I Highest channel to llag.
FLGP0L(4,*)L Flags lor the polarizations, should correspond

to selected polarization types.
Output:

RPARM(*) R Random parameter array
VIS(3,*) R Visibility array
DROP L True il data all llagged.
IERR I Return code, 0=0K, else HXTFLG error number.

16.14.15 DATGET
Reads next selected data record. Applies calibration and editing.

DATGET (RPARM, VIS, TIMLST, IERR)
Inputs Irom DSEL.IHC:

Current IHDEX lile record number.
II .LT. 0 then there is no index lile.
Humber ol entries in the index table
Pointer array lor index records.
List ol antennas selected, 0=>all,
any negative => all except those specilied
Humber ol antennas selected/excluded in AHTEHS
0 = All included.
II .TRUE, then antennas in AHTEHS included.
II .FALSE, then excluded.
Subarray number desired, 0=>any.
Humber ol sources specilied.
II true sources specilied are included
else excluded.
List or source numbers from source lile.
II true, pass autocorrelations.

IHXRHO I

IIHDEX I
HXK0LS(7) I
AHTEHS(50) I

HAHTSL I

DOAVHT L

SUBARR I
HSOUVD I
DOSVHT L

S0UVAH(30) I
DOACOR L

16-26 CHAPTER 16. CALIBRATION AND EDITING

DOXCOR L 11 true, pass crosscorrelations.
TRAHSL L 11 true, translate data to requested stokes.
JADR(2,*) I Table to translate input data to output vis.
TSTART R Stsurt time in days.
TEHD R End time in days.
UVRA(2) R UV range (wavelength squared)
IPRMIH I Ho. random parameters in the input data
HRPARM I Ho. random parameters in output data.
LRECIH I Length ol input record in words.
KLOCSU I Source number pointer in input data.
KLOCWT I Weight pointer lor compressed data.
NDECMP I Number ol entries in DECMP
DECMP 1(2,*) (1,*) = number ol packed correlator values

(2,*) = 0-rel ollset in vis data.
(Irom beginning ol vis data HOT ran. parms.)

DOFQSL L 11 true, FREQSEL random parameter is present
FRQSEL I FQ entry to pass.

Input/output:
TIMLST R Time ol last record

Output:
RPARM(*) R Rsmdom parameter array
VIS(3,*) R Visibility array
IERR I Return code, 0-0K, else UVDISK error number.

Output to common /DSEL.IHC/:
FSTVIS I First word pointer ol current buller.
LSTVIS I Last word pointer ol current buller.
CURSOU I Current source number.

16.14.16 DGGET
Gets requested data from visibility record, reformatting if needed. REQUIRES setup by DGINIT to set
values of MVIS, JADR, SELFAC and ALLWT.

VISIH
IHD
MVIS

R(IHD,*)
I
I

DGGET (VISIH, IHD, MVIS, JADR, SELFAC, ALLWT, VISOUT, DROP)
Inputs:

Input visibility array
First dimension ol VISIH (CATBLK(KIHAX))
Humber ol visibilities in requested output
lormat.
Pointers to the lirst and second visibility
input records to be used in the output record.
II JADR(l,n) is negative use IABS (JADR(l,n))
said multiply the visibility by i (=SQRT(-1))
Factors to be multiplied by the lirst smd
second input vis’s to make the output vis.
Fls^, = .TRUE, il sd.1 visibilities must have
positive weight.

JADR 1(2,*)

SELFAC R(2,*)

ALLWT

Output:
VISOUT
DROP

R(3,*) Output visibility record
L .TRUE, il «J.l data in record llaged.

16.14. ROUTINES 16-27

16.14.17 DGHEAD
Corrects CATBLK in common /M A PH D R / to correspond to UVGET output data. If only one output
source is specified then the information about th a t source is filled in from the source file (if any).

DGHEAD
Inputs from include DSEL.IIC:

BCHAI I First channel desired.
ECHAI I Last channel desired.
BIF I First IF desired.
EIF I Last IF desired.
PMODE I Polarizarion mode (see DGIIIT

0 => same Stokes * as in input,
for codes)

ISOUVD I lumber of sources specified.
DOSVIT L If true sources specified are

else excluded.
included

S0UVAI 1(30) List or source numbers from source file.
Input/Output in common /MAPHDR/:

CATBLK 1(256) Uvdata catalog header record.

16.14.18 DGINIT
Sets up tables for selecting data from vis. record. Checks if requested data in data base. Requires catalog
header record in common /M A PH D R / and setup of common /U V H D R / by UVPGET before call. Note:
STO K ES=’HALF’ will work if only partial information (i.e. 1 polarization) is available in the data.

DGIIIT (STOKES, BCHAI, ECHAV, BIF, EIF, MVIS, JADR, SELFAC,.ALLVT,
* PMODE, IERR)

Inputs:
STOKES C*4 Desired output data format: 'I1,

’IQU*,’IQUV','IV',*RR*,*LL>, »RLJ
'HALF* (=parallel pol.), 'FULL*
First channel desired.
Last channel desired.
First IF desired.
Last IF desired.

Input from common /MAPHDR/
CATBLK 1(256) Catalog header record.

Output:
MVIS I

, >LR»
(=RR,LL,RL,LR)

BCHAI
ECHAI
BIF
EIF

JADR 1(2,*)

SELFAC R(2,*)

ALLVT

PMODE

lumber of visibilities in requested output
format.
Pointers to the first and second visibility
input records to be used in the output record.
If JADR(l,n) is negative use IABS (JADR(l,n))
and multiply the visibility by i (=SQRT(-1))
Factors to be multiplied by the first and
second input vis’s to make the output vis.
Flag, = .TRUE, if all visibilities must have
positive veight.
Polarization mode:

1 = 1 , 2 = V, 3 = Q
4 = U, 5 = IQU, 6 = IQUV
7 = IV, 8 = RR, 9 = LL
10 = RL, 11 = LR, 12 = parallel (RR,LL)

16-28 CHAPTER 16. CALIBRATION AND EDITING

13 = (RR,LL,RL,LR)
IERR I Error flag. 0 => ok, 1 = unrecognized stokes,

2 - data unavailable.

16.14.19 GACSIN
Single dish calibration routine - Initializes CS file, and prepares table to be applied. If there is no CS file
DOCAL is set to .FALSE.

GACSIN (IERR)
Inputs from DSEL.INC:

CLUSE I CS file version number to initialize.
Output:

IERR I Return code, 0 => ok, otherwise CS table exists but
cannot be read.

Output to DSEL.INC:
ICLRNO I Current CS record number
NCLINR I Number of gain records in file.
VUMPOL I Number of polarizations
NUMIF I Number of IFs.

16.14.20 GAININ
Initializes Cal file, and prepares gain table to be applied. If there is no CL file DOCAL is set to .FALSE.
For single source data files am SN table will be used rather than a CL table. Opens gain (CL or SN) and
baseline (BL) tables if necessary.

GAIVIV (IERR)
Inputs from common /DSEL.IVC/

CLUSE

Output:
IERR

Call file version number (CL or SV) to
initialize.

I Return code, 0->0K, otherwise CL table
exists but camnot be read.

Output to common /DSEL.IVC/:
RATFAC(*)
DELFAC(*)
LAMSQ(*, *)

ICLRNO
VCLIVR
VBLIVR
NUMANT
VUMPOL
VUMIF
GMMOD

R IF scaling factor to convert s/s to rad/day
R IF scaling factor to convert s to rad/channel
R Table of wavelength squared (in meters squaured)

for each channel (first aucis) and IF (second
aucis)
Current cad. record number
Vumber of gain records in file.
Vumber of BL records in file.
Number of antennas
Number of polarizations
Number of IFs.
Mean gain modulus

16.14.21 LXYPOL
Fills polarization correction table from info in AN table for Linear polarization feeds (XY).

LXYPOL (PANGLE, IERR)
Inputs:

16.14. ROUTINES 16-29

PAIGLE
Output:

IERR

R(*) Parallactic angles ol the antennas (Rad)

I Return error code, 0=>0K else error.
l=table too small, 2=multiple subarrays,
10 = unknown polarization parameterization,
otherwise GETAIT error.

Output to common /DSEL.IVC/:
PARTIM R Time ol current parallactic angles. (-1.0E10)
PARSOU I Source ID lor current parallactic angles. (-10)
POLCAL R(2,*) Polarization correction

Values in order:
By baseline

By IF (EIF-BIF+1)
A 4x4 complex matrix to be multiplied by

the observed polarization vector
(RR,LL,RL,LR) to produce the
corrected data.

Indexing scheme: an entry delined by antl<ant2
starts in element:

(((antl-l)*numant-((antl+l)*antl)/2 + ant2) - 1) + 1

16.14.22 NXTFLG
Updates flagging tables in common fron an FG table.

VXTFLG (TIME, IERR)
Inputs:

TIME R Current time (days) lor ll&g entries
Inputs Irom common /CFMIVF/(IICLUDEs /DSEL.IIC):

VUMFLG
FGKOLS(8)

FGIUMV(8)
IFGRVO

number ol current FLAG entries.
The column pointer array in order, SOURCE,
SUBARRAY, AVTS, TIMERAVG, IFS, CHAVS, PFLAGS,
REASOV
Element count lor each column
Current FLAG lile record.

Output to common /DSEL.IVC/:
VUMFLG
TMFLST

FLGS0U(*)
FLGAVT(*)
FLGBAS(*)
FLGSUB(*)

FLGBIF(*)
FLGEIF(*)
FLGBCH(*)
FLGECH(*)
FLGP0L(4,*)

FLGTMD(*)
Output:

IERR

I Humber ol llagging entries.
R Time ol last visibility lor which llagging

was checked.
Source id numbers to llag, 0=all.
Antenna numbers to llag, 0sall.
Baseline (Al*256+A2) numbers to llag, 0=all.
Subarray numbers to llag, 0=all.
Following should have del&ults lilled in.
First IF to llag.
Highest IF to llag.
First channel to llag.
Highest channel to llag.
Flags lor the polarizations, should correspond
to selected polarization types.
End tiae ol llag.

Return code, 0=0K, else TABIO error number.

16-30 CHAPTER 16. CALIBRATION AND EDITING

16.14.23 POLSET
Fills polarization correction table from info in AN table.

POLSET (IERR)
Inputs Irom common:

STVEPL
STIORI
STIPST

R(2,*)
R(2,*)
C*8

Output:
IERR

Feed re&l/elipticity (poln, IF)
Feed imag/orientation (poln, IF)
Feed solution type:

’APPROX * => linear approximation
'ORI-ELP * => orientation-ellipticity
*X-Y LIH * => lin. approx. lor lin.

polarized (X-Y) data.

Return error code, 0=>0K else error.
l=table too small, 2-multiple subarrays,
10 = unknown polarization parameterization,
othervise GETAHT error.

Output to DSEL.IHC:
PARTIM R Time ol current parallactic angles. (-1.0E10)
PARSOU I Source ID lor current parallactic angles. (-10)
POLCAL R(2,*) Polarization correction

Values in order:
By baseline

By IF (EIF-BIF+1)
A 4x4 complex matrix to be multiplied by

the observed polarization vector
(RR,LL,RL,LR) to produce the
corrected data.

Indexing scheme: an entry delined by antl<ant2
starts in element:

(((antl-l)*numant-((antl+l)*antl)/2 + ant2) - 1) + 1

16.14.24 SCLOAD
Copies part of a ’B P’ scratch file to a second scratch file for more efficient I/O .

SCLOAD (TIME1, TIME2, LUHOP, FIHDOP, CREATE, IERR)
Input:

TIME1 R Time label ol lirst section ol data to be
translerred.

TIME2 R Time label ol second section ol data to be
translerred. II < 0 is ignored.

I LUH ol secondary scratch lile.
L II true must create nev scratch lile.

LUHOP
CREATE

Output:
FIHDOP
IERR

I FTAB pointer lor secondary scratch lile.
I Return error code 0=>0K, else lailed.

16.14.25 SCINTP
When the interpolation mode of bandpass calibration is specified this routine takes the secondary scratch
file created by SCLOAD and interpolates in time between the two entries and writes a scratch file containing
the interpolated data. To save on I /O and interpolation time the third scratch file is updated at 0.2 of the
interval between the two entries.

16.14. ROUTINES 16-31

SCIHTP (TIME, LUNIN, FINDIH, LUNOP, FINDOP, IERR)
Input:

TIME
LUNIN
FINDIN
LUNOP

Output:
IERR

R Current time of data (days)
I LUN of secondary scratch file.
I FTAB pointer for second scratch file.
I LUN of third (interpolated) scratch file.

I Return error code 0=>0K, else failed.

16.14.26 SDCGET
Single dish calibration routine. Sets up for interpolation in cal (CS) table, reads values from cal table.
Assumes only valid, selected da ta in open cal table. Uses calls to TABIO directly for efficiency.

SDCGET (TIME, IERR)
Inputs:

TIME R Current data time.
Inputs from common /DSEL.INC/:

CLBUFF(*)
ICLRNO
VCLIIR
NUMANT
NUMPOL
NUMIF

Output:
IERR

Cal table I/O TABIO buffer
Current cal record number
Number of cal records in file.
Number of beams
Number of IFs per group (polarizations)
Number of IFs.

Return error code 0=>0K, else failed.
Output to common /DSEL.INC/:

CALTAB(*,2) R

LCLTAB
CALTIM(3)

ICALP1
ICALP2

Cal. table from cal table file
Values in order:
By beam (NUMANT)

By IF (IUMIF)
By Polarization (NUMPOL)

Amplitude factor,
offset (before factor)
RA correction
Dec correction.

Number of values in CALTAB per entry (4)
Time of two cad., entries; third vaJ.ue is
time of current vailues.
Pointer in CALTAB, CALTIM to previous time.
Pointer in CALTAB, CALTIM to next time.

16.14.27 SDCSET
Single dish calibration routine: Gets next set of calibration data in CURCAL, does linear interpolation in
time between tim e entries in CALTAB.

SDCSET (TIME, IERR)
Inputs:

TIME R Current time (of data) in days.
Inputs from common /DSEL.IIC/:

CALTAB R(*,2) CaLl. table from gain table file
Values in order:
By beam (lUMAVT)

16-32 CHAPTER 16. CALIBRATION AND EDITING

By IF (HUMIF)
By Polarization (HUMPOL)

Amplitude factor,
offset (before factor)
RA correction
Dec correction.

LCLTAB I Humber of values in CALTAB per entry (4)
CALTIM R(3) Time of two cal. entries; third value is

time of current values.
ICALP1 I Pointer in CALTAB, CALTIM to previous time
ICALP2 I Pointer in CALTAB, CALTIM to next time.

Output:
IERR I Return error code, 0=>0K else error.

Output to common /DSEL.IHC/:
LCALTM R Time of current calibration. If gain file

is exhausted then 1.0E20 is returned.
CURCAL R(*) Current calibration information.

Values in order:
By beam (HUMAHT)

By IF (EIF-BIF+1)
By Polarization (HUMPOL)

Amplitude factor,
offset (before factor)
RA correction
Dec correction.

16.14.28 SDGET

Input8 via DSEL.IHC
UHAME 0 1 2

Subroutine to obtain data from a single dish data base with optioned application of flaging and/or calibration
and/or pointing information. Reads data with a large variety of selection criteria and will reformat the data
as necessary. Does many of the startup operations, finds Single dish uv like data file etc., reads CATBLK
and updates the /U V H D R / common to reflect the output rather than input data.

SDGET (OPCODE, RPARM, VIS, IERR)
Input:

OPCODE 0 4 Opcode -
*IHIT’ => Open files Initialize I/O.
’READ* => Read next specified record.
CLOS => Close files.
(Include DSEL.IHC)
AIPS name of input file.
AIPS class of input file.
AIPS disk of input file.
AIPS sequence of input file.
Hames of up to 30 sources, *** => sill
First character of name *-* => all except those
specified.
Start day, hour, min, sec, end day, hour,
min, sec. 0*s => all.
Range of RA (1) and dec (2) in degrees about
the value in CATBLK at time of READ call to
SDGET. 0=>all.
Stokes types wanted.
1,*Q*,*U*,»V»,*R»,»L',’IQU’,’IQUV*

UCLAS
UDISK
USEQ
SOURCS

0 6
R
R
C(30)*16

TIMRIG R(8)

UVRA R(2)

STOKES 0 4

16.14. ROUTINES 16-33

BCHAH I

ECHAH I
BIF I

EIF I
D0CAL L
SUBARR I
FGVER I

CLUSE
Output:

RPARM
VIS
IERR

’ ’=> Leave data in same form as in input.
First channel number selected, 1 rel. to first
channel in data base. 0 => all
Last channel selected. 0 => all
First IF number selected, 1 rel. to first
IF in data base. 0 => all
Last IF selected. 0 => all
If true apply calibration, else not.
Subarray desired, 0 => all
FLAG file version number, if < 0 then
NO flagging is applied. 0 => use highest
numbered table.
Cal (CS) file version number to apply.

R(*) Random parameter array of datum.
R(3,*) Regular portion of data array.
I Error code: 0 => OK,

-1 => end of data
>0 => failed, abort process.

Output in common /DSEL.IHC/: The default values vill be filled in
if null values vere specified.

CATBLK 1(256) Catalog header block, describes the output
data rather than input.

IPRMIH I Humber or random parameters in the input data.
TRAHSL L If true translate data to requested Stokes’
CHTREC 1(2,3) Record counts:

(1*2,1) Previously flagged (partly, fully)
(1*2,2) Flagged due to gains (part, full)
(1*2,3) Good selected (part, full)

Usage notes:
1) Include DSEL.IHC should be declared in the main

program or at a level that they vill not be overlaid vhile
SDGET is in use (ie. betveen the ’IHIT’ and ’CLOS’ calls)

2) If no sorting is done SDGET uses AIPS luns 25, 28, 29 and 30
(1 map, 3 non map files). If sorting is done (usually possible)
then 8 map and 3 non map files are used (mostly on 0PC0DE=’IHIT’)
and LUHs 16,17,18,19,20,21,22,23,24,25, 28,29,30.

3) OPCODE - ’IHIT’ does the folloving:
- The catalgue data file is located said the catalog header
record is read.

- The index file (if any) is initialized.
- The flag file (if any) is initialized and sorted if necessary

(Must be in time order).
- The CS table (if any) is initialized.
- I/O to the input file is initialized.

The folloving LUHs may be used but vill be closed on
return: 16, 17, 18, 19, 20, 21, 22, 23, 24

The folloving LUHs may be used but vill be open on
return: 25 (uv data), 28 (HZ table), 29 (CS table),

30 (FG table).
HO data are returned from this call.

4) OPCODE = ’READ* reads one record properly selected,
transformed (e.g. I pol.), calibrated and edited as requested
in the call vith OPCODE = ’IHIT’

16-34 CHAPTER 16. CALIBRATION AND EDITING

5) OPCODE = ’CLOS* closes sill files used by SDGET which are still
open. Ho data are returned.

6) II DOCAL is true then the common array CHTREC will contain the
counts of records which are good or fully or partly flagged
both previously and due to flagged gain solutions.

16.14.29 SETSM
SETSM determines the type of spectral smoothing to be applied and sets up the look up table to do it. The
actual smoothing is done in routine SMOSP

SETSM (IRET)
Inputs: (via common)

SMOOTH R(3) Array containing smoothing parms
SMOOTH(l) = type of function

(2) - width of function
in channels

(3) = support of function
in channels

Type of function supported are:
0 => no smoothing
1 => banning
2 => gaussian
3 => boxcar
4 => sin(x)/x

Output:
IRET I Return error code, 0=>0K, otherwise abort.

16.14.30 SELINI
Subroutine to initialize the control values for UVGET in commons in DSEL.INC.

SELIII
(Include DSEL.IHC):
AIPS name of input file, (blank)
AIPS class of input file, (blank)
AIPS disk of input file. (0.0)
AIPS sequence of input file. (0.0)
Hames of up to 30 sources, (blank)
Qualifier wanted (-1 => all)
Cal code (* ')
Timerange (0s => all)
Baseline range (0s => all)
Stokes types wanted, (blank)
First channel number selected, (1)
Last channel selected. (0=>all)
First IF number selected. (1)
Last IF selected. (0=>all)
If true apply calibration, (false)
If true then correct polarization (false)
True if autocorrelations wanted (false)
True if cross-correlations wanted (true)
True if weight calibration wanted, (false)
True if FREQSEL random parm present (false)

tputs via DSEL.IHC
UHAME C*12
UCLAS C*6
UDISK R
USEQ R
S0URCS C(30)*16
SELQUA I
SELC0D C*4
TIMRHG R(8)
UVRHG R(2)
STOKES C*4
BCHAI I
ECHAV I
BIF I
EIF I
DOCAL L
DOPOL L
D0AC0R L
D0ZC0R L
D0VTCL L
D0FQSL L

16.14. ROUTINES 16-35

FRQSEL I
SELBAV R
SELFRQ D
D0BAVD I
BPVAME 0 4 8
D0SMTH L
SMOOTH R(3)
DXTIME R
AVTEVS 1(50)
SUBARR I
FGVER I
CLUSE I
BLVER I
BPVER I

Default FQ table entry to select (-1)
Bandwidth (Hz) to select (-1.0)
Frequency (Hz) to select (-1.0)
>0 if bandpass calibration. (-1)
Vane of scratch file set up for BP* s.
True if smoothing requested, (false)
Smoothing parameters (0.0s)
Integration time (days). (1 sec)
List of antennas selected. (0=>all)
Subarray desired. (0=>all)
FLAG file version number. (0)
Cal (CL or SV) file version number (0)
BL Table to apply (-1)
BP table to apply (-1)

16.14.31 SNREFM
Routine to change the form at of the SN table from one containing 18/12 columns to the 20/14 columns
needed by the addition of the FREQID and IFR columns. NOTE: routine uses LUN 45 as a tem porary
logical unit number.

SVREFM (DISK, CV0, VER, CATBLK, LUV, IRET)
Inputs:

DISK I Volume number
CVO I Catalogue number
VER I Version to check/modify
CATBLK 1(256) Catalogue header
LUV I LUV to use

Output:
IRET I Error, 0 => OK

Vote, routine will leave no trace of its operation, i.e. SV table
will be closed on output and will have same number as one specified.
Difference will be only that number of columns has changed if that
is required.

16.14.32 SOUFIL
Fills in arrays of source numbers to be included or excluded; also checks antennas to be selected.

SOUFIL (IERR)
Inputs from include DSEL.IVC:

S0URCS(30) 0 1 6 Vames of up to 30 sources, *=>all
First character of name => all except those
specified.

CALS0U(30) 0 1 6 Vames of up to 30 calibrators,
or blank =>all, first character of name *-*

-> all except those specified.
SELQUA I Source qualifiers to be selected, -l=>any.

Applied to both S0URCS and CALS0U.
SELC0D 0 4 Calibrator codes to select.

* » => any,
’♦ * s> any non blank calibrator code.
’-CAL* => blank only (no calibrators)

16-36 CHAPTER 16. CALIBRATION AND EDITING

DOAPPL

AVTEIS(SO)

Output:
IERR

Output to DSEL.
HSOUVD

DOSVNT

SOUVAN(30)

S0UWTB(30)

VCALVD
DOCVVT

CALVAVC30)

CALVTB(30)

VAVTSL

DOAWT

Note: also uses

INC
I

anything else => matching CALcodes.
Applied to SOURCS or CALSOU as controlled by
DOAPPL
If true then selection of the sources in
CALSOU is conditioned on SELCOD else
selection of SOURCS is conditioned on SELCOD.
List of antennas selected, 0=>all,
any negative => all except those specified

Return code, 0=>0K, othervise source file
exists but cannot be read.
1=TABI0 problem, 2=no sources or calibrators

Number of sources included or excluded; if
0 all sources are included.

L If .TRUE, then sources in SOUVAN are included
If .FALSE, then excluded.

I The source numbers of sources included or
excluded.

I The SoUrce table rov numbers corresponding
to SOUVAN.

I Number of calibrators included or excluded.
L If .TRUE, then calibrators in CALVAN are

included, if .FALSE, then excluded.
I The source numbers of calibrators included or

excluded.
I The SoUrce table rov numbers corresponding

to CALVAI.
I Number of antennas selected/excluded in ANTENS

0 = All included.
L If .TRUE, then antennas in ANTENS included.

If .FALSE, then excluded.
FGBUFF and UBUFF from /SELCAL/

16.14.33 UVGET
Subroutine to obtain data from a data base with optional application of flaging and/or calibration infor
mation. Reads data with a large variety of selection criteria and will reformat the data as necessary. Does
many of the startup operations, finds uv data file etc, reads CATBLK and updates the DUVH.INC com
mons to reflect the output rather than input data. Most of the input to UVGET is through the commons
in DSEL.INC; the initial (default) values of these may be set using routine SELINI.

UVGET (OPCODE, RPARM, VIS, IERR)
Input:

OPCODE C*4 Opcode:
’INIT* => Open files Initialize I/O.
’READ* => Read next specified record.
'CLOS* => Close files.

Inputs via DSEL.INC (Include DSEL.IIC)
UNAME C*12 AIPS name of input file.
UCLAS C*6 AIPS class of input file.
UDISK R AIPS disk of input file.
USEQ R AIPS sequence of input file.
SOURCS C(30)*16 Names of up to 30 sources, *=>all

16.14. ROUTINES 16-37

First character of name -> all except
those specified.
Start day, hour, min, sec, end day, hour,
min, sec. 0's => all
Minimum and maximum baseline lengths in
1000*8 wavelengths. 0’s => all
Stokes types wanted.
'I','O','U*,*V>,*R',*L*,*IQU*,'IQUV*
* '=> Leave data in same form as in input.
First channel number selected, 1 rel. to first
channel in data base. 0 => all
Last channel selected. 0=>all
First IF number selected, 1 rel. to first
IF in data base. 0 => all
Last IF selected. 0=>all
If true apply calibration, else not.
If true then correct for feed polarization
based on antenna file info.
True if smoothing requested.
True if autocorrelations are requested.
True if weight calibration wanted.
True if FREQSEL random parm present (false)
Default FQ table entry to select (-1)
Bandwidth (Hz) to select (-1.0)
Frequency (Hz) to select (-1.0)
>0 if bandpass calibration. (-1)
lame of scratch file set up for BP's.
True if smoothing requested, (false)
Smoothing parameters (0.0s)
Integration time (days). Used when applying
delay corrections to correct for delay error.
List of antennas selected, 0=>all,
any negative => all except those specified
Subarray desired, 0=>all
FLAG file version number, if < 0 then
V0 flagging is applied. 0 => use highest
numbered table.
Cal (CL or SV) file versxon number to apply.
BL Table to apply .le. 0 => none
BP table to apply .le. 0 => none

Random parameter array of datum.
Regular portion of visibility data.
Error code: 0 => OK,

-1 => end of data
>0 => failed, abort process.

Output in commons in DSEL.IVC: The default values will be filled in
if null values were specified.

UVFREQ D Frequency corresponding to u,v,w
CATBLK 1(256) Catalog header block, describes the output

data rather than input.
VPRMIV I Vumber or random parameters in the input data.
TRAISL L If true translate data to requested Stokes*
CVTREC 1(2,3) Record counts:

TIMRVG R(8)

UVRVG R(2)

STOKES C*4

BCHAH I

ECHAV I
BIF I

EIF I
DOCAL L
D0P0L L

D0SMTH L
D0AC0R L
D0WTCL L
D0FQSL L
FRQSEL I
SELBAV R
SELFRQ D
D0BAVD I
BPVAME C*48
D0SMTH L
SMOOTH R(3)
DZTIME R

AVTEVS 1(50)

SUBARR I
FGVER I

CLUSE I
BLVER I
BPVER
tput:

I

RPARM R(*)
VIS r (3,*:
IERR I

-38 CHAPTER 16. CALIBRATION AND

ISCMP L
KLOCSU I

(142.1) Previously flagged (partly, fully)
(162.2) Flagged due to gains (paxt, full)
(162.3) Good selected (part, full)
True if input data is compressed.
O-rel random parm. pointer for source in input
file.

KLOCFQ I O-rel random parm. pointer for FQ id in input
file.

KLOCIF I O-rel random parm. pointer for IF in input
file.

KLOCFY I O-rel random parm. pointer for freq. in input
file.

KLOCWT I

KLOCSC I

O-rel random parm. pointer for veight in
input file.
O-rel random parm. pointer for scale in
input file.

Usage notes:
1) Include DSEL.INC should be declared in the main program or at a

level that they vill not be overlaid vhile UVGET is in use (ie.
between the ’INIT* and 'CLOS1 calls). SELINI can be used to
initialize the control variables in these commons.

2) If no sorting is done UVGET uses AIPS luns 25, 28, 29 and 30
(1 map, 3 non map files). If sorting is done (usually possible)
then 8 map and 3 non map files are used (mostly on 0PC0DE=*INIT*)
and LUHs 16,17,18,19,20,21,22,23,24,25, 28,29,30,40,42,43,44,45.

3) OPCODE = ’INIT’ does the folloving:
- The catalgue data file is located and the catalog header
record is read.

- The source file (if any) is read.
- The index file (if any) is initialized.
- The flag file (if any) is initialized and sorted if necessary

(Must be in time order).
- The gain table (if any) is initialized.
- The bandpass table (if any) is initialized
- The smoothing convolution table (if any) is initialized
- I/O to the input file is initialized.

The folloving LUNs may be used but vill be closed on
return: 16, 17, 18, 19, 20, 21, 22, 23, 24

The folloving LUNs may be used but vill be open on
return: 25 (uv data), 28 (NX table), 29 (CL or SN table),

30 (FG table), 40 (BL table), 41 (BP table).
NO data are returned from this call.

4) OPCODE = 'READ' reads one visibility record properly selected,
transformed (e.g. I pol.), calibrated and edited as requested
in the call vith OPCODE = ’HIT*

5) OPCODE - ’CLOS* closes all files used by UVGET vhich are still
open. No data are returned.

6) If DOCAL is true then the common array CNTREC vill contain the
counts of records vhich are good or fully or partly flagged
both previously and due to flagged gain solutions.

7) Only one subarray can be calibrated at a time if D0P0L is true.
This is because the polarization information for only one
subarray is kept at a time.

16.14. ROUTINES 16-39

16.14.34 VISCNT
Counts the number of visibility records for the sources selected with the given time range in DSEL.INC. The
index (NX) file should already be open.

VISCVT (IERR)
Inputs Iron commons in DSEL.IIC

R Start time (days)
R End time (days)
I Current INDEX file record number.

If .LT. 0 then there is no index file.
Number of entries in the index table
TABIO buffer for INDEX table.
Number of sources specified.
If true sources specified acre included
else excluded.
List or source numbers from source file.
Selected subarray, 0=>all
Selected freq id, 0=>all

TSTART
TEND
INXRNO

NINDEX
IXBUFF(*)
NSOUVD
DOSVNT

SOUVAN(30)
SUBARR
FRQSEL

Output:
IERR I Return code, 0->0K, l=>no data, 2=>error.

Output to commons in DSEL.IIC
CATBLK(KIGCI) I Visibility count. (CATBLK)

16-40 CHAPTER 16. CALIBRATION AND EDITING

A ppendix C
Details of AIPS files

C .l Introduction
This appendix contains the detailed descriptions of the various files used in AIPS both for user data and
AIPS system functions. The details of the structure, contents and usage are given for each of these file types.
These files are organized into 4 categories in this appendix; 1) AIPS system files, 2) user data files, 3) user
tables and 4) task specific tables.

C.2 A IPS System files
In this section the files th a t the AIPS system uses are described.

C.2.1 Accounting (AC) file
O v erv iew
The account file is used to accumulate information on the use of the AIPS system.

D e ta ils : All user programs in the AIPS system are required to place information on task name, user
number, start date/tim e, elapsed time, and CPU time for each execution in the accounting file. This
information is used by AIPS System Managers for a variety of purposes including the identification of
problem programs and the m aintaining of financial and usage accounting.

N am e: The file name is ACrOOOOO where r is the system form at revision number. It is a permanent file
and must be created a t AIPS system installation. A good initial size is about 100 blocks, but the file will
expand itself one granule a t a time as necessary.

F i l e S t r u c t u r e

The file consists of logical records each 9 words long. There are 28 logical records in each 256-word physical
record. The first logical record contains

FIELD TYPE DESCRIPTIOI

1 I Maximum logical record # now recorded
2 I Max logical record # which will lit in lile
3 I number ol words / logical record
4 I lumber ol logical records / physical record
5 1(5) Reserved

where fields 3 and 4 are clearly ju st for convenience. All other logical records have the structure:
C-1

C-2 APPENDIX C. DETAILS OF AIPS FILES

FIELD TYPE DESCRIPTIOH

1 H(2) Task root name (4 chauracters/word)
2 I POPS number + 100*i (i=l,2,3 lor OLD,HEV,TST)
3 I Logon user number
4 1(2) Start time (packed YY/HM/DD, HH/MM/SS)
S I Total I/O count (vhen possible)
6 R Total real time in seconds
7 R Totad CPU time in seconds

When a program initializes its entry in the file, field 6 is set to zero and field 7 is set to the current CPU
time. When a program closes its entry, field 6 is reset to the difference in the current time and th a t in field
4 and field 7 is reset to the difference between the current CPU time and th a t previously in field 7. Thus,
system overhead times are not fully charged to the program and programs which abort are identifiable by
field 6 equal to zero. I/O count is handled like CPU time.

U s a g e N o t e s

No normal program other than those listed below should access this file. Of course, AIPS System Managers
may need to construct additional, special account management programs.

R o u t i n e s a n d c o m m o n s f o r w r i t i n g t h e a c c o u n t t a s k d a t a f i l e

The primary routine for accessing the file is ACOUNT (IOP, buffer), where IOP = 2 means the entry is
being closed and all other values of IOP mean the entry is being opened. The AIPS, AIPSC, AIPSB, and
BATER programs call ACOUNT directly at appropriate times. Tasks must cadi GTPARM to obtadn their
full identity and their adverb values. Therefore, as soon as the identity is known, GTPARM calls ACOUNT.
When tasks end, they must issue a close message, resume the initiating AIPSxx, and close the account
entry. The subroutine DIETSK (RETCOD, RQUICK, buffer) has been constructed to perform all of these
operations. The last executable statem ent in every task must be a cadi to DIETSK. Subroutines DIE and
TSKEND perform this cadi for some tasks.

The common /M SG CO M / (DMSG.INC) now carries a parameter, NACOUN, which gives the position
in the accounting file being used by the current program. No routine, but ACOUNT, should change this
parameter.

R o u t i n e s a n d c o m m o n s f o r r e a d i n g t h e t a s k d a t a f i l e

A service program, PRTAC, has been written for use by AIPS System Managers and other interested users.
It can be run either as an AIPS task or as a stand-alone program. It prints the contents of the account file
in the forms: (1) sequential listing, (2) totals by POPS number, (3) totals by user number, aind (4) totals
by program name (sorted by CPU auid sorted by number of occurrences). PRTAC accumulates tasks amd
AlPS-like programs separately for types (2) and (3). The user may lim it which of these displays he receives.
He may also lim it the summing and displays to a specific program name, a range of POPS numbers, a range
of user numbers, only programs using more than x seconds of CPU, and/or only programs starting after a
specific date. The displays may be done separately for each AIPS version, or the versions may be lumped
together into a single display. PRTAC has a separate operation code which will clear the file for AIPS
Managers only.

C.2.2 Batch text (BA) file
O v e r v i e w

Batch text files contain a list of 80-character lines to be used as input to the batch versions of AIPS. There
are logically two types of batch text files: the work files used by AIPS and BATER to prepare jobs for
submission and the files actually queued to AIPSBn.

C.2. AIPS SYSTEM FILES C-3

N am es: The former have names BArOOnOm where r is the AIPS format revision code, n is the queue
number (1 < = n < = NBATQS) and m = 1 through NINTRN for the interactive AIPSs and m = NINTRN
+ 1 for BATER. These are permanent files which can grow as needed. The latter have names BArOnnOm
where nn is the lower two digits of the job number (0 1 < = n n < = 6 4) and m is the value of NPOPS used
by the AIPSBm program (i.e. m = BATQUE + NINTRN + 1). These files are created by the checker
version of AIPS and are destroyed by AIPSBm when the batch job terminates.

D a ta s t ru c tu r e s
The physical records in these files are each 256 words. The first four words contain special information
(which is only used in record 1) and the rest of the record contains logical records. There are 11 logical
records in each physical record. The two kinds of files use identical data and pointer structures.

The first four words of the first physical record contain:
FIELD TYPE DESCRIPTION

1 I User number given in the logon
2 I Next available logical record number
3 I Logical record number of last line in file
4 I lumber of 256-word records now in file

The first four words of all other physical records are unused. Each logical record has the structure:
DESCRIPTIOI

Logical record number of next line (0 if none)
Logical record number of previous line (0 if none)

FIELD TYPE

1 I
2 I
3 H(20)

U sage N o te s
The first line in the file is regarded as line 0 and is always blank and always located at logical record number
1. Its sole purpose is to point to the first real line of text. If this convention were not adopted, then it would
not be possible to insert text in front of the existing text in a work file nor to delete the first line in the work
file. The linked list structure of these files is not necessary for the files processed by AIPSBn. However, it is
maintained in order to retain a single, somewhat simpler reading program. In particular, it is used to make
BATLIST and JOBLIST essentially identical.

R o u tin e s a n d co m m o n s fo r re a d in g b a tc h t e x t files
The subroutine PREAD performs all standard reads for POPS language processors. If the variable IUNIT
in common / IO / is set to 3, then the read is done from a batch text file. The operation is controlled by the
common /B A T C H / as :

BATLUI I logical unit number of batch text file
BATIID I pointer to FTAB for the open file
BATREC I logical record number of the last line read

(<= 0 if none)
BATDAT 1(256) contents of last physical record read

The program which uses PREAD for reading batch files must open the file setting appropriate values
in BATLUN, BATIND, and BATREC. If BATREC is set > 0, PREAD will assume th a t the contents of
BATDAT Me valid and contain the logical record referenced by BATREC. PREAD will use the pointer in
the current BATREC to update BATREC and to obtain the next line, performing a read operation only
when required. If the pointer in the current logical record (BATREC) indicates th a t there are no more lines,
then, effectively, an error (end of file) condition has arisen. PREAD signals this by returning a text line of
’EXIT’ or, for UNQUE in AIPS and BATER, ’ENDBATCH’.

C-4 APPENDIX C. DETAILS OF AIPS FILES

The application subroutines AUB and CUB also read batch text files. The verb UNQUE uses the common
/BA TCH / together with PREAD to read the text file being unqueued. The verbs BATEDIT, BATLIST,
and JOBLIST use the common /B W T C H / (see below) to read a file to locate the line to be editted and to
locate the lines to be listed.

R o u tin e s a n d co m m o n s fo r w r itin g b a tc h te x t files
The subroutine PREAD can perform a write to a batch text file of the line which has ju st been read. It does
this under control of the common /B W T C H / as

BWTLUH I logical unit number ol output text lile
BWTIND I pointer to FTAB lor the opened lile
BVTREC I logical record number ol the last line

added to the lile (0 il none)
VASERR L .FALSE. => do the writing
BWTDAT 1(256) contents ol physical record containing

logical record BVTREC
Programs using PREAD and not wishing to write a batch text file must set WASERR = .TRUE.. As

for reading, the text file must be opened and the common initialized by the program which uses PREAD.
The program must also write the last record in BWTDAT to, and close, the file. It should also update the
global pointers in record 1.

At present, the only program which uses PREAD for writing batch text files is AlPSCm. Because of
certain problems with deletion and insertion as well as the need to check for the “magic” character strings
’RUN’ and ’ENDBATCH’, the batch preparation routines use the subroutine BBUILD to write into batch
work files. BBUILD uses the common /B W T C H / (except for WASERR) in a way which is similar to, but
slightly messier than the way used by PREAD.

C.2.3 Batch queing (BQ) file
O verview
The batch queueing file is used to queue jobs to the batch versions of AIPS.

N am e: The file is named BQrOOOOO where r is the system format revision code. It is a permanent file
in area DAOO and must be large enough to hold NBATQS 256-word records.

D a ta s t ru c tu r e
There is one 256-word record in the file for each batch processor: record n corresponding to BATQUE = n
processed by AIPSB(m) (i.e., with NPOPS = m = n -f NINTRN + 1).

Each 256-word block contains structures describing 64 jobs. These structures have the form:

FIELD TYPE DESCRIPTIOI

1 I User number given in the logon
2 I Submission time: 256 * 256 * (year-1900)

+ 256 * month + day
3 I Submission time: 256 * 256 * hours

+ 256 * minutes + seconds
4 I Desired version: 1-3 => OLD, IEV, TST resp.

In addition, the signs and contents of the first two words are used to convey the status of the job as:

word 1 = 0 no job (vacant slot)
word 1 > 0 word 2 > 0 job waiting to run

C.2. AIPS SYSTEM FILES C-5

word 1 > 0 word 2 < 0 job ran and failed
word 1 < 0 word 2 0 job is being submitted
word 1 < 0 word 2 > 0 job is running
word 1 < 0 word 2 < 0 job finished - may be reassigned

U sage N o tes
Job numbers are formed as 100 * n + m , where m is the entry in queue n. It is simply the m ’th 4-word block
in record n. The queueing algorithm is first-in-first-out with a bias toward new users. Thus, the algorithm
first looks for the oldest job subm itted under any user number other than the previous three users of th a t
queue. If it finds no jobs to run, it repeats the search excluding only the previous two user numbers. And
so forth.

R o u tin e s a n d co m m o n s
The principal program to access this file is the subroutine BATQ which performs all normal operations on
the file. It can “OPEN” a job by finding an available job number and setting the values in the slot to show
that the job is being subm itted. It takes the lowest numbered vacant slot or, if there is none, the lowest
numbered job finished slot. BATQ can “RUNN” (queue) a job by converting the user number to a positive
value and inserting the current time. It can “FIND” the next job to run using the algorithm mentioned
above and setting the entry to job running. It can also “CLOS” a job by clearing the entry or, if it was
running, by marking it finished. BATQ uses no commons and requires the calling program to m aintain the
list of previous users. BATQ does update the list on FIND, however. Other operations include “WHOO”
to find the ID of the current job and "FAIL” to mark all currently running jobs as having failed.

The other subroutine which accesses this file directly is AUB (and the BATER version of AUB called
CUB). These routines perform on the BQ file the user-oriented functions:

• QUEUES list job numbers and times in the queue
• JOBLIST list contents of subm itted job
• UNQUE remove job from queue and transfer text of job back to a batch work file

C.2.4 GRIPE (GR) files
Overview
The gripe file contains gripes about the AIPS system; either bug reports or suggestions for improvements,
versions of AIPS.

N am e: The file is named GRrOOOOO where r is the system form at revision code. It is a perm anent file
in area DA00.

D a ta s t r u c tu r e
The first record of the GR file is a header record:

FIELD TYPE DESCRIPTIOI

1 I Current file size in blocks
3 I Current record number
4 I Current character position

The following records contain a series of arbitrary length hollerith entries. An entry is delimiter by the
characters “{” and “}” . Each gripe consists of 10 entries; these are:

1. Date and tim e in form {dd-mmm-yyyy hh:mm:ss}

C-6 APPENDIX C. DETAILS OF AIPS FILES

2. system name {AIPS system name}
3. User number and release date {nnn 15JUL90}
4. User name {User Name}
5. Address { User address}
6. Phone number { User phone number}
7. Text of gripe { I can’t get anything to work...}
8. unused entry { }
9. unused entry { }

10. unused entry { }

U sage N o tes
Gripes are entered by users and may be accessed by users. Gripes are periodically copied to the AIPS gripes
managment system.

R o u tin e s a n d com m ons
The AIPS GR file access is in routine AUC which create entries and give users access to the entered gripes.
Gripes are removed from the GR file on a periodic basis and entered into the AIPS gripes managment system.
This is currently done with the standalone utility routine GR2TEX. Routine AIPSUB:CHGRIP reads and
writes entries in the GR file. CHGRIP accepts and returns character entries without the enclosing “{” and
“}” . AIPS verbs which allow user access to the GR file are:

• GRIPE enter a gripe.
• GRINDEX Index the gripes currently in the GR file.
• GRLIST Displays a sepected gripe.
• GRDROP Delete a specified gripe.

C.2.5 Help (HE) file
O verv iew
Help files are text files used to describe things to the user a t run time.

D e ta ils : Help files are text files stored in a logical area called HLPFIL. A portion of the text in each
help file is displayed on the user’s term inal upon request.

N am es: Each Help file is named with the name of the verb, task, adverb, pseudoverb, or procedure
which it describes.

F ile S t ru c tu re a n d c o n te n ts
The Help files are text files prepared by the local text editor. Each Help file is a separate physical file
in directory with logical name HLPFIL with the first part of the name being the name of the adverb,
verb, task etc to which the file applies. The file name ends with “.HLP” . E.g. the HELP file for help is
HLPFIL:HELP.HLP in VMS notation or SHLPFIL/HELP.HLP in Unix notation.

Since help files are used only to provide run-time assistance to users, they may contain anything the
programmer feels is relevant. Three general guidelines should be followed in order to obtain pleasing displays:0

1. Text should occupy only card columns 1 - 64.

C.2. AIPS SYSTEM FILES C-7

2. Text should be typed in lower case.
3. The file should not contain too many lines. 23 lines will fit on almost every terminal.
Help files are typed following a general pattern. To illustrate this pattern, consider the example:
PRTMSG

! prints selected contents ol the user's message lile
Verb General

This soltvare is the subject ol a User agreement and is
conlidential in nature. It shall not be sold or othervise
made available or disclosed to third parties.

PRTMSG LLLLLLLLLLLLUUUUUUUUUUUU CCCCCCCCCCCCCCCCCCCCCCCCCCCCC
PRTMSG: Verb to print the message log lile
PRIORITY 0.0 10.0 Print messages at or above

this priority.
PRHUMBER -1.0 15.0 AIPS number to be printed

0 -> current, -1 -> all
PRTASK Restrict to task name(s)
PRTIME 0.0 999.9 Only messages younger than

PRTIME (in days) printed
-1.0 132.0 > 0 => output on terminal

> 72 => vidth ol terminal
D0CRT

0UTPRIIT
Printer disk lile to save

PRTMSG
Type: verb
Use: Prints contents ol message lile including log ol input

commands and messages produced by AIPS and by tasks shed
by AIPS. This verb no longer deletes the messages.
Please use CLRMSG to keep your message liles small.

Adverbs:
PRIORITY....Limit print to message having priority >= PRIORITY

Message level 0 (user inputs) is also printed vhen
PRIORITY <= 5.

PRVUMBER__.Selects the AIPS number ol the messages to be
printed. 0 => your current one, -1 => all. See
HELP PRIUMBER lor some details.

PRTASK..... Selects the programs vhose messages are to be
printed. Any program name vhose lirst characters
match the lirst non-blank characters ol PRTASK
vill be selected. Thus, PRTASK = 'UV* vill cause
the messages ol UVMAP, UVSUB, UVC0P, etc. to be
printed. * * -> all tasks by this rule.
I0TE: messages Irom GO, IIPUTS, and all other
verbs are messages Irom AIPS not Irom any other
associated task.

PRTIME..... Only messages younger than PRTIME days vill be
printed. <= 0 => all times printed.

D0CRT...... <= 0 -> print the messages on the line printer
vith times, priorities, etc. listed. > 0 -> shov
the messages in slightly abbreviated lorm on Bthe

C-8 APPENDIX C. DETAILS OF AIPS FILES

terminal. If you have a vide terminal, set DOCRT
to its vidth in characters lor a more complete
display.

OUTPRIHT....Disk lile name in vhich to save to line printer
output (alter printing). * * -> use scratch.

There are four parts to the help file.
1. Precursor lines to give the file name, a one line description, list of categories, and the user agreement

statm ent.
2. The INPUTS section used by AIPS verbs INPUTS, GO, TPU T, etc. This has a fairly strict format.

Adverb names begin in column 1, lower limits to numeric adverbs are free form at in columns 11-22,
upper limits to numeric adverbs are free form at in columns 23-34, and a description of the adverb uses
columns 36-64.

3. Separated from the INPUTS section by a row of 64 minus signs is the HELP section. This is displayed
on the user terminal with verb HELP. The standard form is illustrated above.

4. Separated from the HELP section by another row of 64 minus signs is the EXPLAIN section. This
provides more detailed user information, usually on the printer, with AIPS verb EXPLAIN.

The HELP file ends with a row of 64 minus signs. Some adverbs are used both for starting a task (GO)
and for TELLing it things later. This is indicated by placing an astrisk (“*”) in column 10 of the appropriate
line of the inputs section. If an adverb is not used by GO but is used by TELL place a “?” in column 10.
A line in the help file beginning with a semi-colon is a comment line, never displayed to the user.

U sage N o tes
Help files are an im portant part of AIPS. They are the means by which users can find out how to use AIPS
without leaving the term inal or leafing through thick manuals. Every task, verb, adverb, and pseudoverb
must have a help file. Additional help files may also be created to explain special details. The existence of
such files should be mentioned in the appropriate normal help file.

R o u tin e s a n d co m m o n s fo r re a d in g H elp files
Help files are opened and the member is located by the subroutine ZTOPEN. They are read sequentially by
ZTREAD and closed by ZTCLOS. By convention, the logical unit number used for this is 11. These text
file I/O routines are described elsewhere in this volume.

The subroutine which displays these files is called HELPS. The routine looks for special names which
cause the symbol table to be examined and printed. Any other name is assumed to be a help file name and
the file is opened (ZTOPEN), reaul (ZTREAD), printed (MSGWRT), and closed (ZTCLOS).

R o u tin e s a n d co m m o n s fo r w ritin g H elp files
Help files are prepared by programmers using their local source editors. No routines are to write such files
at run time.

C.2.6 Image catalog (IC) file
O verview

The image catalog contains data for images stored on the TV device th a t identify the images, refer them
back to their originad m ap files, and specify scaling of the X-Y and intensity coordinates. There is a separate
image catalog which performs the same functions for graphics devices (e.g. TEK4012 storage screens).

N am e a n d L o ca tio n : There is one image catalog file for each television device whose physical name
corresponds to ICrOOOOn, where r = the system format revision number n = the device number (0 for
graphics, 1 - n for TVs). They reside in area DA00 and must be created at AIPS installation.

C.2. AIPS SYSTEM FILES C-9

D a ta S t ru c tu re s
G en e ra l: For each grey-scale image plane of the TV device, the IC file contains N 1-block (256-word) records
for cataloging up to N subimages, plus a (N -l) /5 1 + l block directory. The directory immediately precedes
the catalog blocks for each image plane. For each TV graphics overlay plane there is one, undirectoried,
catalog block. These blocks follow immediately after the last grey-scale block.

The IC for pure graphics devices (called TK devices) has one image catalog block for each device in the
system including all “local” TK devices followed by all remote-entry devices. Record number n in this file is
associated with TK device number n (NTKDEV in /D C H C O M /).

The image catalog blocks themselves are essentially duplicates of the map catalog blocks except that
scaling information replaces the extension file index of the map catalog.

Record Formats:
D ire c to ry B lock (G re y -sca le im ag e)

OFFSET LEIGTH TYPE DESCRIPTIOI
0 2 I Sequence number of last sub-image cataloged

on this plane
2 2 I Seq. no. of sub-image in slot 1; 0 if slot empty
4 8 1(4) TV pixel positions of corners of 1st sub-image,

xl,yl,x2,y2
12 2 I Seq. no. of sub-image in slot 2; 0 if empty
14 8 1(4) TV pixel positions of corners of 2nd sub-image

Catalog Block for each image or subimage:
Most of the Image Catalog block is identical to the map catalog block of the source of the image. (See

section on CB files.) Pointers for the Image catalog are found in the DHDR.INC common. The information
on antenna pointing, alternate frequency/velocity axis descriptions, and extension files is replaced in the IC
by:

OFFSET LEIGTH TYPE POUTER DESCRIPTIOI

472 8 R(2) IRRAI Nap values displayed as min k max
brightness (units are those of file,
not the physical ones)

508 4 I IIVOL Disk volume from vhich map came
512 4 I 11 CHO Catalog slot number of orig. map
516 16 1(4) IIVII Map pixel positions of corners of

displayed image (rel. to orig. map)
532 20 1(5) IIDEP Depth of displayed image in 7 -

dimensional map (axes 3 - 7)
552 16 1(4) IICOR TV pixel positions of corners of

image on screen
568 4 I IITRA 2-char code for transfer function

used to compute TV brightness from
map intensity values.

572 4 I IIPLT Code for type of plot.
576 100

U sage N o tes

I(25)II0TH Misc. plot type dependent info.
(at the moment no more than 20 used)

We assume th a t single images only are stored on graphics planes; they are not <

C-10 APPENDIX C. DETAILS OF AIPS FILES

When a grey-image plane is cleared, its directory is zeroed. As images are added to the plane, their
coordinates are written into an open directory slot for tha t plane, along with the current value of the plane
sequence number. The sequence number is then incremented. If an old image is completely overwritten by a
new one, its directory slot is cleared. For partially overlapping images, the sequence number allows the user
to select the one most recently loaded into a given part of the plane.

S u b ro u tin e s :
• YCINIT clears the Image Catalog for a given plane
• YCOVER are there any overlapped images in each on quadrant?
• YCW RIT adds a new block to the catalog
• YCREAD returns the block corresponding to a given TV pixel
• YFIND determines desired image, asks user if > 1 visible

These routines expect the “plane number” as an argument. TV gray scale planes are numbered 1 - NGRAY,
TV graphics overlay planes are numbered NGRAY+1 - NGRAY+NGRAPH, and TK devices are referenced
by any plane number > NGRAY+NGRAPH.

C om m ons:
The COMMON /T V C H A R / referenced by ’DTVC.INC’ contains TV device characteristics such as:

IGRAY = # ol grey-scale planes on this device
IGRAPH = # ol graphics planes
MAXXTV(2) Maximum number ol pixels in x,y directions in image

The common /D C H C O M / (DDCH.INC) contains two im portant param eters in this regard: NTVDEV
and NTKDEV. The subroutine ZDCHIN sets these to the actual number of such devices present locally.
Then, the routines ZWHOMI (in AIPS only) and GTPARM (in all tasks) reset them to the device number
assigned to the current user. ZWHOMI determines these assignments.

C.2.7 TV lock (ID) file
O verv iew

This file is to establish current ownership of a TV display device. To becode the current “owner” of the
device, a process opens the ID file with exclusive use. This prevents other users from attem pting simultaneous
access to the display.

N a m e a n d L o ca tio n : There is one ID file for each television device whose physical name corresponds
to IDrOOOOn, where r is the system form at revision number, and n = the device number (0 for graphics, 1 -
n for TVs). They reside in area DA00 and must be created a t AIPS installation.

D a ta S t ru c tu re s
There is no meaningful data in the ID file.

U sage N o tes
The ID file is opened by YTVOPN using ZOPEN and closed by YTVCLS using ZCLOSE to extablish
exclusive use of the display device.

C.2. AIPS SYSTEM FILES C - ll

C.2.8 POPS memory (ME) file
O v e r v i e w

POPS memory files are used to store copies of the POPS “environment” (procedure source code, symbol
table, procedure executable code, adverbs values, various pointers).

D e ta ils : The files are permanent files and have a size which depends on the size of the LISTF and K
arrays in the version of POPS being used. The formula is 5 times the size of LISTF plus 4 times the size of
K.

N am es: POPS memory files are named MErOOOOn , where r is the system format revision number and
n is NPOPS (the POPS identification number).

F i l e S t r u c t u r e

The structure of the K and LISTF arrays is discussed elsewhere. Here we will show only how they are stored
on disk. The files consist of sequential 256-word records. Using the sizes of the K and LISTF arrays in the
15APR90 version of AIPS, the files are laid out as

FIELD TYPE DESCRIPTIOH

1 1(4096) LISTF in use by the current user
2 1(18944) K array lor initial values and RESTART
3 1(4096) LISTF array lor initial values and RESTART
4 1(18944) K array lor STORE 1 and RESTORE 1
5 1(4096) LISTF array lor STORE 1 and RESTORE 1
6 1(18944) K array lor STORE 2 and RESTORE 2
7 1(4096) LISTF array lor STORE 2 and RESTORE 2
8 1(18944) K array lor STORE 3 and RESTORE 3
9 1(4096) LISTF array lor STORE 3 and RESTORE 3

U ser n o te s
It should not be necessary for users to read or write this file under normal circumstances. Standard POPS
subroutines do all the operations which are required.

R o u tin e s w h ich re a d a n d w r ite P O P S m e m o ry files
The memory files are given their initial values by the program POPSGN. This program does a special
compilation followed by an AlPS-like compilation on text files called POPSDAT for interactive and batch
AIPSs. POPSGN sets all areas of the memory file to the “virgin” K and LISTF arrays which it has computed.

In the POPS programs, the subroutine INIT moves field 3 (“virgin” LISTF) into field 1 (working LISTF)
and moves field 2 into the core copy of the K array. The subroutine STORES updates the working copy of
LISTF (field 1 on disk) and performs the pseudoverbs LIST, STORE, RESTORE, SAVE, GET, CORE, and
SCRATCH. The variables in the common /P O P S / which add this process are

LPAGE number ol 256-word blocks in LISTF (= 16)
MPAGE number ol 256-word blocks in K plus LISTF (= 90)

C.2.9 Message (MS) file
O verv iew
Message log files are used to record the input to, and messages from, adl programs.

D e ta ils : Message files are user-owned files which record all messages except those with no time-variable
information content (e.g. HELPs, interactive instructions) and those explicitly directed to the line printer

C-12 APPENDIX C. DETAILS OF AIPS FILES

(e.g. verbs PRTMSG and PRTHI, tasks PRTIM and PRTPL). All programs a t all POPS numbers use the
message file of the logon user.

N am es: The message file is called MSfuuuOO.uuu, where uuu is the user number in hexadecimal notation
and f is the data form at version code letter.

File Structure
Message files are sequential files consisting of 256-word records. Each of these physical records begins with
two words of special information (which are used only in record 1). The remainder of each physical record
is devoted to 10 logical records.

The special information in word 1 of the first record is simply the current number of messages recorded
in the file and the number of physical records currently in the file. Each logical record has the structure

FIELD TYPE DESCRIPTIOI

1 I message priority (0 - 10) + 16 * POPS number
ol task

2 I message date: YY/MM/DD packed
3 I message time: HH/MM/SS packed
4 H(2) name ol task generating message (5 HOLLERITH

characters)
5 H(20) 80-character message (HOLLERITH characters)

User notes
All programs should use this file for message display. They do this with the subroutine MSGWRT described
below.

Routines and commons for writing message files
The subroutine MSGWRT is the only routine which should be used to write on these files. It is a somewhat
complicated routine and very fundamental to the AIPS system. It uses the commons in include DMSG.INC
as :

number ol messages in lile (< 0 implies don’t
knov and lile is closed)
number ol 256-word records in lile at present
name ol current task
POPS identilication number
user number Irom logon
il = 32000, suppress level 6 * 7 messages
il = 32000, treat this job as a batch job
position in the accounting lile this job
80-character message to be logged in lile and/or
displayed on terminal

MSGWRT opens the message file said initializes MSGCNT, puts the message into the file (unless in-
ftibited), displays the message on the terminal (LUN=6, unless inhibited), and closes the file updating the
recorded message count and resetting MSGCNT. MSGWRT will expand the file with no lim it as needed. It
will complain to interactive users when the number of messages is greater than 750.

NSGCIT I

MSGREC I
TSKIAM C*6
■POPS I
VLUSER I
MSGSUP I
ISBTCH I
IAC0UI I
MSGTXT C*80

Routines and commons for reading message files
The subroutine PRTMSG is used to print, and compress message files. It takes 7 input and 3 output
arguments. The first is an opcode of ’PRIN’ for print, ’DELE’ for compress, or anything else for a typed

C.2. AIPS SYSTEM FILES C-13

summary. The next 6 arguments define the user number, the POPS number (0 = > all), the priority lower
limit for printing, the task name, a tim e cutoff for printing or deleting, and a logical to request the printing
to be on the CRT terminal. The outputs are the number of messages printed/deleted, the number left in
the file, and an error code. See the precursor remarks for the details. The physical file is compressed after
messages are deleted.

C.2.10 Password (PW) file
O verv iew
The PW file contains AIPS user passwords. These are AIPS internal passwords and are not related to system
passwords.

D e ta ils : AIPS user passwords are up to 12 characters kept as 3 hollerith variables. The first of these
words in the (256 integer) record given by:

RECIO = (user.number - 1) / (256/3)) + 1
in word number:

VORD = MOD ((user.number - 1), (256/3)) * 3 + 1
N am es: The password file is called PWfOOOOO., where f is the system form at version code letter.

F ile S t ru c tu r e
Password files are sequential files consisting of 256-word records. User passwords sure stored in blocks of 3
hollerith variables (all in a given record) as described above.

U seage n o te s
All access to the PW file is through ZFIO. AIPS usage of the password file is lim ited to routine AUC. Several
standalone programs also use the password file.

C.2.11 POPS Save-Get (SG) file
O verv iew
POPS memory files are used to store copies of the POPS “environment” (procedure source code, symbol
table, procedure executable code, adverbs values, various pointers). Save/get files are “user-owned” , rather
than the “public” ones described in the ME portion of this appendix.

D e ta ils : The files are semi-permanent files and have a size which depends on the size of the LISTF and
K arrays in the version of POPS being used. The file must be larger than one K plus one LISTF array. The
files are a t least 91 256-word blocks long. Each user having one or more SG files also has an SG directory
file. On ordinary computers this file only requires 8 blocks.

N am es: POPS save/get files are named SGfuuujj.uuu , where uuu is the user logon identification number
in hex and jj is the sequence number in hex of the file in the SG directory. Sequence number 0 is reserved
for the directory file. The da ta format revision letter (A, B, ...) is f.

F ile S t ru c tu r e
The SG directory file consists of 256 logical records, numbered 0 through 255. Each logical record consists
of 7 words. There are 256 / 7 logical records per physical record (36). The first logical record (called no. 0)
is reserved for control information and currently includes:

FIELD TYPE DESCRIPTIOI

1 I Maximum version number nov in use (called m u)

C-14 APPENDIX C. DETAILS OF AIPS FILES

2 I
3 1(2)
4 1(2)
5 I

lumber ol vacant entries with version # < max
Last GET time (packed YY/MM/DD, HH/MM/SS)
Last SAVE time (packed YY/MM/DD, HH/MM/SS)
Reserved

Logical records 1 to 255 (correspond to file version numbers 1 - 255) contain
FIELD TYPE DESCRIPTIOH

1 I Number characters in user-supplied name (<= 0
means empty) + 32 * SG lormat version number

2 1(2) Last SAVE time (packed YY/MM/DD, HH/MM/SS)
3 H(4) User supplied name, blank lilled, 16 char.

The SG data files are described below:
The structure of the K and LISTF arrays is discussed elsewhere. Here we will show only how they are

stored on disk. The files consist of sequential 256-word records. Using the sizes of the K and LISTF arrays
in the Charlottesville version of AIPS, the files are laid out as

FIELD TYPE DESCRIPTION

1 1(256) Header record (see below)
2 1(18944) K array
3 1(4096) LISTF array

The header record a t the present contains only 6 useful words:

FIELD TYPE DESCRIPTION

1 1(3) Date: year since 0, month, day
2 1(3) Time: hour, min, sec ol the last SAVE op

User notes
It should not be necessary for users to read or write these files under normal circumstances. Standard POPS
subroutines do all the operations which are required. They are created at run time by the user as required.
They may be deleted by the user a t run time or by the AIPS manager using FILINI or other utilities.

Routines which read and write POPS memory files
The subroutine STORES creates, writes, and reads the save/get files. The subroutine AU3A reports on disk
usage including such files and can destroy all such files belonging to the logon user. The variables in the
common /P O P S / which aid in this process are

LPAGE number ol 256-word blocks in LISTF (=16)
MPAGE number ol 256-vord blocks in K plus LISTF (s90)

The subroutine SGLOCA, called by STORES, performs normal operations on SG directory files including
creation. The verb SGDESTR performed by the subroutine AU2A handles destruction of individual SG data
files and will destroy an empty directory. AU2A also performs the directory listing function (verb SGINDEX).
Subroutine AU3A will destroy adl the user’s SG files at once (verb SAVDEST).

C.2. AIPS SYSTEM FILES C-15

C .2 .1 2 System parameter (SP) file
O verview
The system param eter file provides programs with information about the system resources th a t are available
to AIPS.

D e ta ils : All AIPS programs read this file as one of the first steps of program execution. This is a
permanent file created a t AIPS installation time either with FILINI or FILAIP or as part of an autom atic
installation procedure th a t is available on a limited number of computers. The size needed is one 256 word
block, rounded up to one granule.

N am e: The file name is SPrOOOOO. where r is the system format revision code letter.

F ile S t ru c tu r e
The file consists of one 256 word logical record.

FIELD TYPE DESCRIPTIOI

1 I lumber ol disk drives available.
2 I lumber ol tape drives available.
3 I lumber ol lines per CRT page.
4 I lumber ol lines per print page.
5 I lumber ol batch queues.
6 I Plotter no. ol X dots per page.
7 I Plotter no. ol Y dots per page.
8 I Plotter no. ol X dots per character.
9 I Plotter no. ol Y dots per character.
10 I Maximum no. ol interactive users.
11 I lumber ol words in AP (in 1024 sections).
12 I lumber ol TV devices available.
13 I lumber ol graphics devices (like TEK 4012) available.
14-63 1(50) Device table (see below).
64 I lo. ol users allowed access to TVs.
65 I lo. ol users allowed access to graphics devices.
66 I lo. ol entries in private catalogs. 0=> public catalog
67 I Mu. user number.
68 I Vidth ol line printer in characters.
69 R # 1024s words ol secondary AP memory.
70 I Shortest vector length to vectorize
71 R lo. or dots per mm on printer
72 R lo. ol dots per mm on graphics screen.
73 H(5) System name or ID (4 characters/lloating point).
78 R(15) Min. TIMDEST time lor each disk (days)
93 R Min. TIMDEST time lor SAVE/GET liles (days)
94 R Min. automatic destruction time lor messages
95 R Min. automatic destruction time lor scratch
96 R Min. destruction time lor empty catalogs.
97 R(4) Times during which AP Batch jobs cannot start.

1, 2 start, stop times (hrs) on weekends
3, 4 start, stop times (hrs) on weekdays

101 R(3) 1 => time between rolls (min)
2,3 polynomial terms lor determining how long
a job must wait belore grabbing the AP.

104 R(120) Lists ol allowed users, 8 per disk lor up to 15
disks. 0=all, -l=scratch only othervise user numbers.
Ordered by disk.

C-16 APPENDIX C. DETAILS OF AIPS FILES

224 R(2) Graphics screen size x,y
226 R(2) Graphics character size x,y

REST OF BLOCK Free

The device table is used to describe the characteristics of a file th a t can be opened on a specific AIPS
I/O logical unit number. The logical unit numbers run from 1 to 50 and are described by its corresponding
device table value. The codes for the device table values are listed below.
DEVICE TABLE TYPE OF FILE OPENED ON THE CORRESPONDING LUN

VALUE
0 File manager file with FTAB
1 Fortran device (no FTAB)
2 Non-file manager with FTAB
3 Other, no FTAB
4 television device with FTAB

If this isn’t clear, don’t be alarmed. The device table need not be changed unless significant alterations
or additions to AIPS are made.

Routines and commons for reading the system parameter file.
The subroutine ZDCHIN (called by every program in the initial stages of execution) will open, read and then
close the system param eter file. The information is then transfered by ZDCHIN to commons DCHCOM and
FTABCM which are found in include file DDCH.INC.

Routine for initializing and updating the system parameter file.
Stand alone program SETPAR allows the AIPS manager to initialize the system param eter file during AIPS
installation or to modify the file when conditions warrant (for example when another disk is made available).
SETPAR is an interactive program with prompts. The first prom pt th a t appears when SETPAR is run is:

Enter: l=Init, 2=Change vals, 3=Change DEVTAB, 4=Quit

Option 1 (INIT). This option is normally chosen during AIPS installation. SETPAR will initialize the
values in the SP file with the default values but SETPAR will not create an SP file. This must be done
with program FILINI or FILAIP. After initializing the values SETPAR will immediately proceed to option
2 described below.

Option 2 (CHANGE VALS) This option allows the AIPS manager to change the current SP file values.
When this option is chosen the current values and a description is printed on the CRT. Then the following
prompt is printed.

Enter number to change or 0 = print, -1 = Return

The “number to change” in the prom pt refers to the number on the far left of the description of the
value. For example if the user wants to change the number of disks available to AIPS from 2 to 3, then the
user finds the following line on the CRT:

1 no. of AIPS data disks 2

In this case the 1 is the “number to change” and 2 is the current number of disks. Thus, the user enters
1 in free format. The next prom pt is:

1 no. of AIPS data disks 2

The user then enters a 3 in free format. The program then reprints the prompt:

C.2. AIPS SYSTEM FILES C-17

Enter number to change or 0 = print, -1 = Return

At this point, the user can change another value by entering the proper positive number, or reprint the
latest values by entering a 0, or return to the very first prom pt (from which the quit command can be issued)
by entering a -1. If values are changed SETPAR will ask for the password before changing the file.

Option 3 (CHG DEVTAB) This option allows the user to change the device table values described above.
The details of operation are very similiar to option 2.

Option 4 (QUIT) This option will save the latest SP file values and stop the program.

C.2.13 Task Show and Tell (TC) file
O v e r v i e w

The Show and Tell file is used to pass param eters to tasks which are already running and which can make
some use of parameters during execution.

D e ta ils : The use of this file is for interactive, but asynchronous, control of tasks. Thus, the only program
to write new parameters into the file is AIPS. Those tasks which can change param eters during execution
(e.g. number of iterations), or which can sensibly be told to quit early may read the file at any time. If
information intended for them is present, then the task should fetch th a t da ta and remove the indication of
the communication to it.

N am e: The file is named TCrOOOOO where r is the system form at code. I t is a permanent file and must
contain at least (4 -I- 8 * NINTRN) 256-word records. It is created during system installation.

F ile S t ru c tu r e
The file consists of 4 directory records followed by up to 120 data records. The directory records contain
64-word logical records one for each value of NPOPS, 4 per physical record. Each 64-word record contain 8
8-word logical records, allowing up to 8 TELL operations to be queued for each POPS number a t any one
time. The structure of these 8-word records is

WORD TYPE DESCRIPTION

1 H(2) Task name (Hollerith)
3 1(2) Time (YY/MM/DD, HH/MM/SS)
5 I User number
6 I Operation
7 1(2) Reserved

The data records follow, one for each operation, 8 for each POPS number. They contain adverb values
specified in the Inputs section of the HELP file by am or “?” in column 10, preceded by the value of the
adverb OPTELL.

C.2.14 Task data (TD) file
O verv iew
The task data file is used to pass da ta to spawned tasks and to return a “return code” to the initiating tasks.

D e ta ils : The only programs in the AIPS system which are allowed to spawn tasks are AIPS, BATER,
AlPSCn, and AIPSBm. These tasks use the task data file to pass binary param eter da ta to spawned tasks.
This file and the TC file are the only mechanism for direct intertask communication. Other forms of intertask
communication are accomplished indirectly via the changes produced in the various catalog, m ap, history,
plot, et. ai files by the normal functioning of verbs and tasks. SHOW and TELL use file type TC to pass
parameters to running tasks in a m anner similar to tha t used for the TD file.

N am e: The file is named TDrOOOOO where r is the system format version number. It is a permanent file
and must contain at least 46 256-word records. It must be created during system installation.

C -l 8 APPENDIX C. DETAILS OF AIPS FILES

File Structure
The file consists of 46 256-word physical records. They are ordered logically in the file as

FIELD TYPE DESCRIPTIOI

1 1(256) Control record
2 1(768) Data area: IPOPS = 1
3 1(768) Data area: IPOPS = 2
4 1(768) Data area: IPOPS = 3
5 1(768) Data area: IPOPS = 4
6 1(768) Data area: IPOPS = 5
7 1(768) Data area: IPOPS = 6
8 1(768) Data area: IPOPS = 7
9 1(768) Data area: IPOPS = 8
10 1(768) Data area: IPOPS = 9
11 1(768) Data area: IPOPS = A
12 1(768) Data area: IPOPS = B
13 1(768) Data area: IPOPS = C
14 1(768) Data area: IPOPS = D
15 1(768) Data area: IPOPS = E
16 1(768) Data area: IPOPS = F

The control record is divided into fifteen five-word entries and the remaining 181 words are ignored. Each
entry has the structure:

WORD TYPE DESCRIPTIOI

1 H(2) Task name: (Hollerith)
3 I Return code
4 1(2) Reserved

The data areas are simply 768 words of binary data. Their structures are almost totally determined by
the task being activated. The only standards are th a t all task-dependent values are in floating point and
that the first N integer values convey

1 I The logon user number
2 I The assigned TV device number
3 I The assigned TK device number
4 I The MSGKILL parameter
5 I The ISBATCH parameter
6 I The DBGAIP parameter (controls print levels,

debugger use...)
7-8 I reserved
9 R DOVAIT value
10 H Version string (4 characters)

Words 11 through 768, as needed, contain the adverb values required by the task in binary form. Note:
character adverbs are sent as Hollerith strings.

Usage Notes
This file is clearly im portant and somewhat dangerous. It must be handled carefully and kept available to
the full system as much as possible. There are standard routines for handling the file. There should not be
a need for new routines and /or new uses of this file.

C.2. AIPS SYSTEM FILES C-19

Routines and commons for writing the task data file
There are two standard subroutines which write on the task data file: AU2 which spawns tasks for AIPS
and AIPSBn and RELPOP which resumes the initiating programs. The subroutines AUA (called CUA
in BATER) which does the verb SUBMIT, CHSTOP which can sta rt up batch queues for AlPSCn, and
GTPARM, which is described in the next section, also write on this file.

Except for the batch submission and activation process, task activation is done by the following process.
AU2 writes the standard values (listed above) into the first 8 integers and 2 reals of the da ta area correspond
ing to the current value of NPOPS (physical records 3*NPOPS - 1 through 3*NPOPS -I- 1). The remainder
is filled by AU2 with the adverb values for the task. Then AU2 places the root task name in record one
in the entry corresponding to the current value of NPOPS (i.e. words 5*N P0PS - 4 through 5*N P0PS -
3) and the initial return code (-999) in the return code entry (5*NPOPS-2). Finally, AU2 releases control
of the task data file, activates the task, and waits for a resumption signal from the spawned task using
subroutine TASKWT. T hat signal is now given by changing the -999 return code to some other value (or
by aborting). AU2 determines the order of the adverbs required by the task by reading adverb names from
the Inputs section of the help text file associated with tha t task. Using the POPS language subroutines,
AU2 locates the adverbs in the symbol table, determines from the symbol table the number of words of data
corresponding to the adverb name and the location of those words in the K array, and moves those words to
the data area. Note th a t this makes tasks impervious to changes in POPS and the structure of the K array.

RELPOP is the subroutine used by spawned tasks to resume AIPS, AIPSBn, and BATER. A one word
“return code” is written on record 1 in the entry corresponding to the current value of NPOPS. At present,
this return code has only a binary meaning. A value of zero means th a t the spawned task was happy, a t
least when it called RELPOP. Any other value implies problems and causes batch jobs to abort.

The activation of AlPSCm and AIPSBn is less complicated. AIPSC requires three adverbs: BATQUE,
the desired batch queue number, DETIME, the desired delay time before starting the job, and VERSION,
the desired release for the AIPSB to be used. AIPSB requires only the job number th a t QMNGR wants
to be run. Thus, Inputs files and language routines are not needed. For reasons of speed and simplicity in
dealing with the message file, the AIPSs now run their batch checkers (AIPSC) their own value of NPOPS.
BATER and its checker both use NPOPS = NINTRN+1. The checker programs will activate the batch
control program QMNGR if it is not already running. To do this, Checker uses the da ta area appropriate
to the value of NPOPS under which the QMNGR is supposed to run (NINTRN+2). Other than these
differences, the activation of AlPSCn and AIPSBm procedes by the same process as for other tasks. (Note:
NINTRN is the maximum number of simultaneous interactive AIPSs allowed.)

Routines and commons for reading the task data file
The subroutine GTPARM is used by all spawned tasks to obtain the data passed by the initiating program.
GTPARM reads the first record in the task data file and locates the entry containing the root task name.
This location implies the value of NPOPS which is to be used and the location in the task da ta file of the
binary data. GTPARM then moves the requested number of words from the disk area to a buffer provided
by the calling program and initializes MSGCNT, NPOPS, NLUSER, TSKNAM, MSGCNT, and DBGAIP
in the include DMSG.INC. Finally, GTPARM zeros the entry containing the task name and updates the
control record (no. 1) in the task da ta file. This last operation is needed in order to prevent interference
between A lPSm ’s and AIPSBm ’s in initiating tasks with the same root name. GTPARM also returns a
param eter (RQUICK) which instructs the task to resume the initiating program as soon as possible or only
after the task has done its thing. It is this parameter which forces batch processes to be synchronous, but
allows asynchronous processes for interactive users. The formula is simply

RQUICK = (.MOT. DOVAIT) .AID. (IPOPS .LE. IIITRI)
.AID. (ISBTCH.IE.32000)

GTPARM also picks up the assigned TV and TK device numbers and the code to suppress messages (if
the user asserted MSGKILL TRUE).

C-20 APPENDIX C. DETAILS OF AIPS FILES

C.2.15 Tape lock (TP) file
O verv iew
The tape dummy file is used as a means to take exclusive use of a tape drive.

D e ta ils : Many systems do not allow a sub-process to take exclusive use of a tape drive. The parent
process (i.e. AIPS) or others can still perform a rewind in the middle of a job which is writing on the tape!
In order to avoid this, ail open operations on tapes also open exclusive a disk (TP) file.

N am e: The files are named TPrOOlOn, where r is the format revision number and n is the tape drive
number. They are permanent files, but need not contain any data. They must be created during system
installation.

F ile S t ru c tu re
The file contains no data and need not even have any records.

U sage N o tes
These files are accessed by ZTPOPN and ZTPCLS and should not be accessed by any other programs.

C.2.16 Task Adverb Save (TS) file
O verview
The Task Save file stores the adverb values for the most recent execution of each task for each user.

D e ta ils : When AIPS, AIPSB, and AIPSC “spawn” tasks they pass adverb values to the task via the
Task D ata file. The values are also saved in a directoried Task Save file. The file contains only one area per
task root name, but can hold areas for a large number of tasks. The adverb values used for the last execution
of a given task may be retrieved from this file using the task’s Inputs file and a process similar to GO. The
adverb values may also be put into the file with the verb TPU T without actually spawning the task.

N am es: The file is named TSfvvvnn.uuu, where, for all interactive AIPS, uuu and vvv are the user
number in hex and nn is 0. For batch AIPS, vvv is 0 and nn is NPOPS. For batch, these files are temporary
and last only through the execution of the batch (or Checker) job. For interactive however, they are created
when first needed and remain until explicitly destroyed, f is the data format revision code letter.

F ile S t ru c tu r e
The first six 256-word blocks in the file consist of 5-word logical records, 51 per block. The first logical
record (called logical record no. 0) contains

FIELD TYPE DESCRIPTIOH

1 I Humber ol 256-word blocks in lile
2 I Humber ol tasks currently in directory
3 1(2) Most recent vrite access (packed YY/MM/DD,

HH/MM/SS)
4 I Reserved

Logical records 1 through 305 contain task information:
FIELD TYPE DESCRIPTIOH

1 H(2) Task name (Hollerith)
2 1(2) Last vrite access time (packed

HH/MM/SS)
YY/MM/DD,

3 I Version code: 1-8 => OLD, IEV, TST,
OLDPSAP, HEVPSAP, TSTPSAP, LOCAL, PRIVATE

C.3. USER DATA FILES C-21

Note that we allow 8-character names here. This perm its a user to save the adverb values for verbs (via
GO verb-name) if so desired. The fact tha t a verb was specified will be trapped and the sequence T PU T
verb-name ; verb-name will be substituted. Of course, the user can simply save the verb param eters with
TPU T verb-name .

The remainder of the file contains task data in the form transm itted to the task in the TD file (see
description of the TD file in this appendix). Only three records per task sure allowed. If the task name occurs
in the directory logical record IN, then the task data occur in physical blocks 3 * IN -f 4 and, if needed, up
to 3 * IN + 6.

Usage Notes
There should be no need for routines other than those listed below to access this file.

R o u tin e s w h ich re a d a n d w r ite th e T ask Save file
The subroutine AU2 performs the operations of GO and T PU T (see description of the TD file in this chapter).
As it does so, it also opens the TS file (creating one if needed) and locates the task name in the directory
(creating an entry and expanding the file, if needed). When it writes a record to the TD file, it writes the
same data to the appropriate record of the TS file.

The subroutine AU2A performs the verb TGINDEX which lists the task names and last write times
found in the TS file directory. AU2A also performs the verb-like portions of the pseudoverb TG ET. Using
code nearly identical to th a t of AU2, it locates the relevant Inputs file and locates the task name in the TS
file directory. It then parses the Inputs file identifying the adverb names and properties via POPS language
processing routines and transfers the adverb values from the TS file to the in-core K array.

C.3 User data files
This section describes files th a t are used for user data files other than tables.

C.3.1 Catalog directory (CA) file
O verv iew

Catalog files contain directory information for the AIPS files stored on a disk.
N am es a n d L o ca tio n s : There is a catalog file on each disk on which user data can be stored. The

catalog refers only to maps, uv data, and scratch files on its own disk volume. The catalogs have physical
names corresponding to “CAfOOOOO” , where f is the current fomat code letter (A, B, ...) and can be user
owned (.uuu = user number in hex) or public (.uuu om itted).

D a ta S tru c tu re s a n d u sag e n o te s
File Structure: Each catalog file contains a one block (256-word) header and a number of catalog directory
blocks. The header block contains principally the number of catalog blocks in the file; this is set when the
file is created or expanded. The directory blocks contain a reference to each catalog entry. The directory
is used to speed catalog searches and also contains the status words th a t register file activity. A catalog to
store N entries must have enough space for 1 + CEIL[N/NLPR] blocks (i.e. catalog blocks + directory),
where NLPR is defined below and is 25 on normal machines.

R e c o rd F o rm a ts :
H e a d e r B lock:

OFFSET LEIGTH TYPE DESCRIPTIOI
0 I I Volume number of disk containing this catalog
1 I I Unused
2 I I lumber of catalog blocks in this file
3 3 1 Date (YYYY, MM, DD) create

C-22 APPENDIX C. DETAILS OF AIPS FILES

6 3 I Time
9 3 I Date
12 3 I Time

Directory Block:
The Mth directory block contains NLPR entries, each NWPL words, indexing the NLPR*(M-1)+1 to

the NLPR*M-1 catalog blocks. In a file with N catalog blocks, the first directory block is the 2nd block in
the file. The parameters are given by NWPL = 10, NLPR=256 / NWPL.
OFFSET LEHGTH TYPE DESCRIPTIOH

0 I I User ID number; or -1 il slot is empty
1 I I Map lile activity status
2 2 1(2) Date/Time lile was last accessed
4 I I User delined sequence number 1 to 9999
5 5 H(5) Image ID as:

User delined name, 12 characters
User delined class, 6 characters
Program delined type, 2 characters

D ire c to ry U sage N o tes :
D ire c to ry : Map name and class are user defined character strings of 12 and 6 characters th a t can be

used to identify and locate a specific map. The strings are stored as Hollerith characters together with the
2-charau:ter string which identifies the “physicad” m ap type, in their slots in the directory. The sequence
number is similarly an arbitrary I reference number. The Map Status is am I number registering the activity
of the map file itself.

STATUS - 0 => no programs are accessing the map lile
= n>0 => n programs are reading the map
= -1 => one program is writing into the lile
= n<0 => 1 + n programs are reading the map, one

program is writing into the lile.

F ile T y p e : This word describes file type. At present only ’MA’ = > m ap and ’UV’ = > single- or
multi-source uv and ’SC’= > scratch files are allowed.

Usage protocols:
Maintaining the integrity of the catalog entries is essential to insure reliable access to the map files. Thus
certain rules should be followed when using the catalog. These rules are coded in to the utility routines
described below; these routines should be used when at adl possible to access the catalog.

Rules:
1. Tadfe exclusive use of the catadog whenever you access it. The required operation should be done quickly

and then the catadog file should be closed and released.
2. The status word must be monitered to see if an intended catadog or m ap operation will disturb an

(asynchronous) operation adready in progress.
Specifically : Do not modify a catalog block, nor write into a map file which is not in a rest state

(STATUS = 0).
If you intend to write into a m ap and STATUS = 0, change the status to “W RITE” (STATUS = -1)

before releasing exclusive use of the catadog.
If you intend to read a m ap file or catalog block, check to see if someone else is writing on it (STATUS

< 0). If so decide whether this is acceptable to your program. If so modify the status to indicate use;

C.3. USER DATA FILES C-23

STATUS = 1 + STATUS il STATUS > 0
STATUS =-1 + STATUS i t STATUS < 0.

Clear status when you have finished your operation. If you were reading, reverse the process ju st de
scribed. If you were writing; STATUS = - (1 + STATUS)

S u b ro u tin e s
• CATDIR searches, lists, and modifies the catalog directory
• CATIO reads and writes catalog blocks and can modify status
• CATOPN opens the catalog file on a given volume
• MCREAT, MAPOPN, MAPCLS, and MDESTR handle most of the catalog bookkeeping while creat

ing, opening, closing, or destroying map files.

C.3.2 Catalog header (CB) file
O verview

Image header files contain descriptions of the form at and contents of standard image files.
N am es a n d L o ca tio n s : There is an image header file for every image stored on disk (MA, UV, SC, or

whatever) and cataloged in the corresponding CA file. The header files have physical names corresponding
to CBfcccOl.uuu where f is the form at revision code, ccc is the catalog number of the image file in the CA
directory file, and uuu is the user number. Note th a t ccc and uuu are in hex.

D a ta S t ru c tu re s a n d u sa g e n o te s
File Structure: Each catalog header file contains a one block (256-word) binary header and a number of
keyword = value entries in as many following blocks as are required. A catalog file must be a t least two
blocks long.

Record Formats:
Catalog Blocks:
TYPE POUTER DESCRIPTIOI

H(2) KHOBJ Source name
H(2) KHTEL Telescope, i.e., ’VLA*
H(2) KHIIS e.g., receiver or correlator
H(2) KHOBS Observer name
H(2) KHDOB Observation date in lormat ’DD/MM/YY1
H(2) KHDMP Date nap created in lormat ’DD/MM/YY’
H(2) KHBUV Map units, i.e., ’JY/BEAM ’
H(2)(7) KHPTP Random Parameter types

KIPTPI= 14 Max. number ol labeled random paramaters
H(2)(7) KHCTP Coordinate type, i.e., ’RA---SIM’

KICTPI= 7 Max. number ol axes
D(7) KDCRV Coordinate value at relerence pixel
R(7) KRCIC Coordinate value increment along axis
R(7) KRCRP Coordinate Relerence Pixel
R(7) KRCRT Coordinate Rotation Angles
R KREPO Epoch ol coordinates (years)
R KRDKX Real value o1 data maximum
R KRDMY Read value ol data minimum
R KRBLK Value ol indeterminate pixel (real

maps only)

C-24 APPENDIX C. DETAILS OF AIPS FILES

I KIGCN Number of random pair, groups.
This is the number of uv data
records.

I KIPCN Number of random parameters
I KIDIM Number of coordinate axes
1(7) KINAX Number of pixels on each axis
I KIIMS Image sequence no.
H(3) KHIMN Image name (12 characters)

KHIMN0= 1 Character offset in HOLLERITH string
H(2) KHIMC Image class (6 characters)

KHIMC0= 13 Character offset in HOLLERITH string
H KHPTY Map physical type (i.e., ’MA'.'UV') (2 char)

KHPTY0- 19 Character offset in HOLLERITH
I KIIMU Image user ID number
I KINIT # clean iterations
R KRBMJ Beam major axis in degrees
R KRBMN Beam minor axis in degrees
R KRBPA Beam position angle in degrees
I KITYP Clean map type: 1-4 => normal,

components, residual, points.
For uv data this word contains a
two character sort order code.

I KIALT Velocity reference frame: 1-3
=> LSR, Helio, Observer +
256 if radio definition.

D KDORA Antenna pointing Right Ascension
D KDODE Antenna pointing Declination
D KDRST Rest frequency of line (Hz)
D KDARV Alternate ref pixel value

(frequency or velocity)
R KRARP Alternate ref pixel location

(frequency or velocity)
R KRXSH Offset in X (rotated RA) of phase center
R KRYSH Offset in Y (rotated Dec) from tangent pt.
H(20) KHEXT Names of extension file types (2 char)

KHEXTI= 20 Max number of extension files
1(20) KIVER Number of versions of corresponding

Comments
General

1. Standard names are given for the pointer variables. The values for the pointers are computed by the
subroutine VHDRIN and are machine-dependent. The values are found in the common /HDRVAL/ via
include DHDR.INC. The characters of each H*8 variable are packed separately (and left-justified) in
as many hollerith variables as required. The image name, class, and physical type are as a 20-character
string in as many Hollerith variables as required.

2. The header contains 256 words and should be contained in the arrays CATBLK(256), CATH(256),
CATR(256) and CATD(128) which are INTEGER, HOLLERITH, REAL, and DOUBLE PRECISION
resp. and are equivalenced. Pointers of the type KI... should refer to CATBLK locations, KH... to
CATH locations, KR... to CATR locations and KD... to CATD locations. E.g. CATD(KDORA)
contains the D pointing right ascension. The variable names used here are now standards and should
be used wherever possible.

C.3. USER DATA FILES C-25

3. When used in the image catalog (IC file) instead of the CB file some param eters are given new meanings.
See the IC file description for details.

Specific
• KHINS: Any special equipment etc. used during observations
• KHPTP: Random param eters are those associated with an irregularly gridded “array” .
• KHCTP: Seven coordinates!!! Four will commonly be used; RA, DEC, FREQ and STOKES.
• KDCRV: In keeping with the FITS form at convention, angles are expressed in degrees.
• KREPO: Somewhat astronomically specific. 1950.0 or 2000.0 are used.
• KRBLK: The value used to specify th a t a pixel is undefined; usually ’INDE’. If there are no blanked

pixels, set to 0.0.
• KHEXT: The types of subsidiary files associated with the map are given by a two letter designation;

eg.’HI’ for history files, ’PL’ plot file.
• KIVER: The current highest version number of the associated file type listed in the same relative array

position in the previous type listing.

Keywords
The keyword section contains one or more records beginning in record two of the file. The first keyword
record uses words one through six as

WORD TYPE USE
1 I lumber ol 256-integer records in
2 I lumber ol keywords in lile

3-6 1(4) Reserved

Keyword N is found in disk record N/51 + 2 a t word 5 * MOD (N,5) -I- 2. In other words, each keyword
logical record requires 5 words, the first logical record in disk record 2 is logical record 0 used for the control
data listed above, and the first word of all disk records (except the control) is ignored. A logical record
contains:

WORD TYPE USE
1-2 H(2) Keyword (8 HOLLERITH characters)
3-4 * Keyword value (word 4 used lor

type 3 and, il VWDPDP = 2,
lor type 1)

5 I Keyword type:
1 double precision lloating
2 single precision lloating
3 character (8 HOLLERITH chars)
4 integer
5 logical

Subroutines
• CATCR creates CA files
• CATDIR searches and modifies the catalog directory, creates CB
• CATIO reads and writes catalog blocks and can modify status

C-26 APPENDIX C. DETAILS OF AIPS FILES

• CATKEY reads/writes keywords in the CB file
• CATOPN opens the catalog file (CA) on a given volume
• MCREAT, MAPOPN, MAPCLS, and MDESTR handle most of the catalog bookkeeping while creat

ing, opening, closing, or destroying map files.

C.3.3 Gain (GA) file
O verview
This extension file for a uv data set contains the gains resulting from ASCAL.

D e ta ils : GA files use the EXTINI-EXTIO file structure. W ith the rescaling factor in the file header.
The logical record length is 256 words

N am es: The file name is GArsssvv where r is the format revision code, sss=catalog number and vv =
version number.

File structure.
The file header record contains the following:

Location
Location Type Description

255 R GM=mean gain modulus.

Logical record structure.
Location
Addr Type lame Description

1 CX GAIV(28,2) IF gains
113 I IFLG(2) Packed logical IF Hags 1st 28=IF 1

2nd 28-IF 2.
115 I BFLG(24) Packed logical baseline llags,

1st 378 = IF 1, next 378 = IF 2.
The order number lor baseline i-j
is j - 28 + i(55 - i)/2

139 I KV Last vis number in the time range.
140 R T1 Start time ol solution interval.

10TE: times are in seconds.
141 R T2 End time ol solution interval.
142 I IREF(2) Relerence antenna lor the 2 IFs.
144 I GACAL(28,2,2) (ant, il, 1) = Tsys (used by VBAVT)

(ant, il, 2) = Tant

User notes.
When calling EXTINI use LREC=256.

Routines to write GA files:
EXTINI and EXTIO, GA files sure currently written by ASCAL.

Routines to access GA files:
EXTINI and EXTIO are used to access GA files.

C.3. USER DATA FILES C-27

C.3.4 History (HI) file
Overview
History files are used to record, in character form, the processing history of an image.

D e ta ils : Although they are in fact separate physical files, they are treated as if they were extensions of
the file containing the image data. There must be one and only one history file for each image. The files are
normally created with relatively modest size and extended when necessary.

N am es: The file names are HlfsssOl , where f is the format version code and sss is the sequential position
of the image header in the catalog file for th a t disk in hex. W ith user owned file systems, the names are
HlfsssOl.uuu, where uuu is the user number in hex.

File Structure
History files consist of sequential 256-word records. Each of these physical records begins with 4 words of
special information (used only in the first record). The rest of each physical record consists of 72-character
logical records in AIPS HOLLERITH form (4 characters per integer or floating). There are NL such logical
records per physical record where NL = 252/(72/4) = 14.

The special da ta in the first record has the form
FIELD TYPE DESCRIPTION

1 I Number of logical records currently in file
2 I Number of logical records which can fit in file

before expansion is required.
3 1(2) Reserved.

The logical records consist of 72 HOLLERITH characters with no required format. However, the following
FITS-like usages are recommended strongly:

1. The first 5 characters should be the left-justified name of the program causing this history record and
the sixth character should be blank.

2. The rest of the card should show param eter values in the form < keyword > = <value> where more
than one keyword may appear on a “card” (logical record). Character string values must be enclosed
in single quotes (’).

3. Information which should never be parsed (i.e. comments) should follow any parsable (i.e. key-
word=value) information and should be preceded by the slash (/) character.

Thus,
IMLOD / Run at 14:23:06 on October 15, 1983
IMLOD INNAME=* CASA * INCLASS=’IPOL' INSEQ=3 / Source select

are good logical records for history files.

U ser n o te s
History files are im portant. Any program which produces an output image should copy the history file(s) of
the input image(s) to the history file of the output image. It should then record in th a t file all param eters
relevant to the function of the program. Param eters which were defaulted by the user should have the
actually-used values inserted in the history file. History files need to be readable both to humans and to
computers. Thus comments and param eter names should not be overly terse or crowded onto the cards.
However, one should also try to avoid having the history files grow without bounds. Thus, excessive com
menting and one keyword per card are poor practices. The parsing rules should be those of ANSII-standard
Fortran 77 list- directed I/O .

C-28 APPENDIX C. DETAILS OF AIPS FILES

Routines and commons for writing history files
There is a collection of basic routines to create, open, add to, read, write, and close history files. They all
use the basic common called /H IC O M / in DHIS.INC:

VHIFIL I
IHIVRD I
HHIWPL I
MHILPR I

max number of history files open at once
number of words/entry in HITAB
words / logical record
logical records / physical record

HITAB I(NHIFIL*NHIWRD) table describing open history files

If HIPNT is the pointer to an entry in HITAB, then the structure is

HITAB(HIPHT+O)
HITAB(HIPHT+1)
HITAB(HIPHT+2)
HITAB(HIPNT+3)
HITAB(HIPIT+4)
HITAB(HIPIT+5)
HITAB(HIPIT+6)

logical unit number of file
pointer to FTAB for file
number of logical records now in file
number logical records which will fit in file
disk number for file
sequential catalog position for image
physical record # now in user-supplied buffer

The user of the standard routines must cause the HITAB to receive an appropriate size and to be
initialized. This may be done by

IICLUDE ’DHIS.IHC*

CALL HIIIIT (n)

where n is the number of history files around and is less than 20. The include ’DHIS.INC’ declares
HITAB(140). If you really must have more than 20 simultaneous HI files, you will need to declare the
COMMON and its variables in your own initialization routine. Do follow the example of DHIS.INC and
HIINIT, however.

The user may create and open a history file with subroutine HICREA or open an old file with HIOPEN.
Among the arguments to these routines is a 256-word buffer which is used as a working buffer by all of the
standard history routines. The programmer should not modify the contents of this buffer between the call to
HIOPEN (or HICREA) and the corresponding call to HICLOS. Separate buffers must be provided for each
open history file. History records are normally added to history files via HIADD. This routine calls HIIO
to perform the actual input/ou tpu t operations (when required only) including expanding the file as needed.
HICLOS is used to complete the writing of the file including updating the pointers in record 1 and to close
the file.

There are a number of less basic routines which provide history- related services. HISCOP copies the
contents of one open history file into another. HENCOl, HENC02, and HENCOO encode and write to files
some of the basic param eters used by most tasks.

Routines and commons for reading history files
At this writing, there are no special routines for reading history files. Normally, one uses HIINIT, HIOPEN,
and HICLOS and the common /H IC O M / as described above. HILOCT may be used to return the location
of the entry in HITAB (called HIPNT above). W ith this pointer, one may use HIIO (or simply ZFIO) to
read the file one physical record a t a time.

C.3. USER DATA FILES C-29

C.3.5 Image (MA) file
O verview
Map data files contain the binary pixel values for the n- dimensional “m ap” array (“image”).

D e ta ils : Each map file holds only one image. The header which describes tha t image is stored in the
catalog file for the disk on which it resides. (See CB file description in this section.)

N am es: Map file physical names are MArsssOl, where r is the form at revision code and sss is the
sequential position of the header in the catalog file for th a t disk. The logical names for map files, used by
users, have no relationship to this physical name.

Record formats
The pixel values are stored in binary form in map files, normally as real values. The image array data are
ordered in the standard Fortran order in which the first axis counter varies fastest. Each “plane” of the
array (one full cycle of the first two axis counters) must begin on a sector boundary and occupy one or
more consecutive sectors as required. Thus, depending on row length and the number of bytes per sector on
the local machine, some disk space may be wasted. This waste is tolerated in order to obtain improved 10
performance on (the normal) row reads and writes. The full map occupies NGPMAP = CEIL ((NSROW
* NAXIS2 * NAXIS3 ...) / NSPG) granules, where NBPS and NSPG are in the common /D C H C O M /
(DDCH.INC) described in Chapter 6 on Disk I/O .

U sage N o tes
Map files are always read with the fast 10 routines MINIT, MDISK, ZMIO, ZWAIT, et ad..

R o u tin e s a n d co m m o n s fo r re a d in g a n d w r itin g m a p files
These routines and commons are described in the chapter on Disk I/O .

C.3.6 Plot (PL) file
O verview
Plot files are a generalized representation of a graphics display. They contain scaling information and
commands for drawing lines, pixels, and characters. Plot files for a certain type of plot (contour maps,
grey scales, etc.) are written by one routine and then another routine must read the plot file and write to
a particular graphics device (plotter, graphics terminal, etc.). In AIPS these functions are performed by
separate tasks. This two step approach offers several advantages. A plot file may exist for an extended
period of time allowing plots to be written to different devices and copies to be generated at later times
without duplicating the calculations needed in madring the plot. Also only one program for a particular plot
need be written instead of one program for each graphics device.

I/O to the plot files consists of reading and writing 256-word blocks. The logical records are of 9 types
and vary in length. W ith the exception of the ’draw pixels’ record, logical records do not span the 256-word
blocks. Unused space a t the end of a block consists of integer zeros. All vadues in the plot file are I variables
or Hollerith characters. This aids in exporting plot files to other computers via tape. Plot files have names
of the form at PLrsssvv, where r is the format revision code, sss is the Catalog slot number of the associated
map, and vv is the version number. Plot files are usually extension files associated with a cataloged map.

R e c o rd lay o u ts
(0) The first physical record contains information about the task which created the file. It is not logically
part of the “plot file” , but is there to provide documentation of the file’s origins should it be needed. The
first logical record (see below) starts in word 1 of the second physical record in the file. The contents of the
first physical record are task-dependent and have the form:

C-30 APPENDIX C. DETAILS OF AIPS FILES

FIELD TYPE DESCRIPTIOI
1. H(3) Task name
2. 1(6) Date/time of file creation YYYY,MM,DD,HH,MM,SS
3. I lumber of words of task parameter data
4. R(*) Task parameter block as transmitted from AIPS

(preferably with defaults replaced by the vaJ
used).

(1) Initialize plot record.
The first logical record in a plot file must be of this type.

FIELD TYPE DESCRIPTION
1. I Opcode (equal to 1 for this record type).
2. I User number.
3. 1(3) Date: yyyy, mm, dd
4. I Type of plot: 1 = miscellaneous

2 = contour
3 = grey scale
4 = 3D profile
5 = slice
6 = contour plus polarization lines
7 = histogram

(2) Initialize for line drawing record. This record provides scaling information needed for a plot. The
plot consists of a ’plot window’ in which all lines axe drawn and a border (defined in terms of character size)
in which labeling may be written. The second record in a plot file must be of this type.
FIELD TYPE DESCRIPTIOI

1. I Opcode (equal to 2 for this record type).
2. I X Y ratio * 100. The Ratio between units on the X axis

and units on the Y axis (X / Y). For example if the
decrement between pixels in the X direction on a map
is twice the decrement in the Y direction the X Y ratio
can be set to 2 to provide proper scaling. Some
programs nay ignore this field. For example IISPL when
writing grey scale plots to the IIS.

3. I Scale factor (currently 16383 in most applications).
This number is used in scaling graph positions before
they are written to disk. BLC values in field 4 are
represented on disk by zero and TRC values are
represented by integers equal to the scale factor).

4. 1(4) The bottom left hand corner X and Y values and the top
right hand X and Y values respectively in the plot
window (in pixels).

6. 1(4) 1000 * the fractional part of a pixel allowed to occur
outside the (integer) range of BLC and TRC (field 4
above) in line drawing commands

6. 1(4) 10 * the number of character positions outside the plot
window on the left, bottom, right, and top respectively

7. 1(5) Location of the X Y plane on axes 3,4,5,6,7. This
field is valid only for plots associated with a map.

(3) Initialize for grey scade record. This record if needed must follow the ’init for line drawing’ record.
This record allows proper interpretation of pixels for raster type display devices. Programs tha t write to line
drawing type devices (e.g. the TEKTRONIX 4012) ignore this record.

C.3. USER DATA FILES C-31

FIELD TYPE DESCRIPTIOI
1. I Opcode (equals 3 lor this record type).
2. I Lowest allowed pixel intensity.
3. I Highest allowed pixel intensity.
4. I lumber ol pixels on the X axis.
5. I lumber ol pixels on the Y axis.

(4) Position record. This record tells a device where to start drawing a line, row/column of pixels or
character string.
FIELD TYPE DESCRIPTIOI

1. I Opcode (equals 4 lor this record type).
2. I scaled x position i.e. a value ol 0 represents the

BLC values delined in the 'init lor line drawing1
record, and a value equal to the scale lactor
represents the TRC value.

3. I Scaled Y position.

(5) Draw vector record. This record tells a device to draw a line from the current position to the final
position specified by this record.
FIELD TYPE DESCRIPTIOI

1. I Opcode (equals 5 lor this record type).
2. I Scaled linal X position.
3. I Scaled linal Y position.

(6) Write character string record. This record tells a device to write a character string starting at the
current position. .
FIELD TYPE DESCRIPTIOI

1. I Opcode (equals 6 lor this record type).
2. I lumber ol chairacter8.
3. I Angle code: 0 = write characters horizontally.

1 = write characters vertically.
4. I X ollset Irom current position in characters * 100
5. I Y ollset Irom current position in characters * 100

(net position relers to lower lelt corner ol 1st char)
6. H(n) Hollerith characters (n = IIT((lield2 +3) / 4))
(7) Write pixels record. This record tells a raster type device to write an n-tuple of pixel values starting

at the current position. Programs th a t write to line drawing type devices ignore records of this type.
FIELD TYPE DESCRIPTIOI

1. I Opcode (equals 7 lor this record type).
2. I lumber ol pixel values.
3. I Angle code: 0 = write pixels horizontally.

1 = write pixels vertically (up).
4. I X ollset in characters * 100.
5. I Y ollset in characters * 100.
6. I(n) n (equal to lield 2) pixel values.

(8) Write misc. info to image catalog record. This record tells the programs th a t write to interactive
devices (TEKPL, IISPL) to put up to 20 words of miscellaneous information in the image catalog starting at
word I2TRA + 2. This information is interperted by routines such as AU9A (TKSKYPOS, TKM APPOS,
etc.). Routines th a t write to non- interactive graphics devices (PRTPL) ignore this record.

C-32 APPENDIX C. DETAILS OF AIPS FILES

FIELD TYPE DESCRIPTIOH
1. I Opcode (equals 8 lor this record type).
2. I Number of vords of information.
3. I(n) Miscellaneous info (n=value of field 2).

(9) End of plot record. This record marks the end of a plot file.

FIELD TYPE DESCRIPTIOH
1. I Opcode (equals 32767 for this record type).

Subroutines and Commons for Writing
• GINIT Creates and opens a plot file, initializes the graphics common GPHCOM and writes an ’Initialize

p lo t’ record.
• GINITL Writes an ’init for line drawing’ record to the plot file.
• GINITG Writes an ’init for grey scale’ record to a plot file.
• GPOS Writes a ’position’ record to the plot file.
• GVEC Writes a ’draw vector’ record to the plot file.
• GCHAR Writes a ’write character string’ record to the plot file.
• GRAYPX Writes a ’write pixels’ record to the plot file.
• GFINIS Writes an ’end of plo t’ record to the plot file and closes the file.
• GPHW RT This routine is called by the above routines if I/O is needed. It writes the current buffer

to the plot file and zeros the buffer. Then the record count and buffer position pointer are updated in
common GPHCOM.

• GPHCOM (common) contains variables used for inter-subroutine communication. It is declared by
including DGPH.INC and has the structure:

GPHSIZ I File size in 256-word blocks
GPHLUH I Logical unit number
GPHIHD I Pointer to FTAB
GPHPOS I Position in work buffer of last word used
GPHRRH I Humber of records written
GPHVOL I Disk volume number
GPHHAM 1(12) Physical file name
GPHX1 R Leftmost (col) pixel position

(as passed in file logical record type 2,
field 4 above; i.e. integer part)

GPHX2 R Rightmost (col) pixel position
GPHY1 R Lowest (row) pixel position
GPHY2 R Highest (row) pixel position
GPHTLO I Lowest allowed pixel value
GPHTHI I Highest allowed pixel value

This common is handled fully by the routines listed here. A user of these routines only needs to declare the
common in his main program to insure that adequate space is reserved for it.

C.3. USER DATA FILES C-33

Subroutines and Commons for Reading.
• TVPL Reads a plot file and writes the corresponding commands to the tv device.
• TVSPCL (common) for inter-subroutine communication for IISDRW and its subroutines.
• PRTDRW Reads a plot file and builds a bit m ap representation on disk. This bit m ap is then written

to a printer/plotter.
• CPRT (common) allows inter-subroutine communication for PRTDRW and its subroutines.
• TEKDRW Reads a plot file and writes the corresponding commands to the TEKTRONIX 4012 graphics

screen.
• TVCHAR (common) for inter-subroutine communication for TEKDRW and its subroutines.
• IMAHDR (common) plot file catalog header information.used in IISDRW, PRTDRW, and TEKDRW.

C.3.7 Slice (SL) file
Overview
Slice files are usually extension files associated with a map file. The slice file contains interpolated data
points th a t lie along a vector from one map pixel to another. End points may be fractions of a pixel. The
slice file may also contain the param eters for a number of models of the slice file. Each model may contain
up to 4 gaussian components.

D e ta ils : SL files use a modified EXTINI-EXTIO file structure. The logical record length is 256 words.
The number of d a ta points in the slice is determined by the following algorithm:

If the length of the vector is greater than 1024 then 4096.
If the length of the vector is greater than 512 then 2048.
If the length of the vector is greater than 256 then 1024.
othervise the no. of points is 512.
N am es: The system name for a slice file is SLrsssw where r is the release code, sss is the catalog slot

number of the associated map file, and vv is the version number (starting at 1) of the slice file.

Record formats
Slice files are sequential files consisting of 256 word records. The first record in the file is of the type created
by EXTINI and contains useful miscellaneous information. The 2nd record contains the inputs the user
specified when creating the slice file. The slice data points s ta rt in record three and continue for as many
records as necessary to use up the data. Models, if extant, immediately follow the data using one record
model.
WORD TYPE DESCRIPTIOI

1 I # 512-byte records in the existing file
2 I # logical records to extend the file vhen req.
3 I max. # of logical records
4 I current number of logical records
6 I # values per logical record.
7 I # of logical records per physical record, if neg then

the # of physical records per logical record.
8 H*6 Creation task name
11 1(6) Creation date, time
17 H*48 F i l e name
29 I Volume number on vhich file resides.
30 H*6 Last vrite-access task

C-34 APPENDIX C. DETAILS OF AIPS FILES

33 1(6) Last vrite-access time.date
39 1(18) reserved. (53-56 used by EXTIO.
57 I Humber of slice data points.
58 I Humber of model records currently in the file.
59 I The record that may contain the first slice model.

Includes header record and numbers from one.

(1) The second physical record
All default values for the fields have been filled in.

WORD TYPE DESCRIPTIOH
1 H*6 Program name (slice).
4 1(3) Date (year, month, day).
7 1(3) Time (hour, min, sec).
10 I Humber of words in the folloving inputs

section of the record (25 at this time).
11 R User number of the map file.
12 H*12 Hame of the associated map file.
15 H*6 Class of the associated map file.
17 R Sequence number of the associated map file.
18 R Disk volume number of slice and map files.
19 R Type of the map file.
20 R(7) Starting pixel of the slice vector.
27 R(7) Ending pixel of the slice vector.
34 R Maximum value of slice pixels.
35 R Minimum value of slice pixels.

(1) Slice data points

WORD TYPE DESCRIPTIOH
1 R(256) Slice data points in floating point.

(2) Slice models.

WORD TYPE DESCRIPTIOH
1 R(12) Parameters for up to 4 gaussian components in the order

maximum amplitude (physical units), position (slice
point), half vidth (slice points), maximum amplitude ...

12 R(12) Errors for corresponding parameters.
25 I Slice points not fitted from the beginning of the slice.
26 I Slice points not fitted from the end of the slice.
27 I Humber of Gaussians.
28 1(3) Date as year, month, day.
31 1(3) Time as hours, minutes, seconds.
34 1(4) Minus ones indicate initial guess for position of

corresponding gaussian component held constant.
38 1(4) Minus ones indicate initial guess for maximum amplitudes

held constant.
42 1(4) Minus ones i n d i c a te i n i t i a l g u ess l o r h a l f w id th s h e ld

constant.

User notes.
When calling EXTINI use LREC=256.

C.4. TABLE DETAILS C-35

R o u tin e s to w r ite SL files:
EXTINI and ZFIO, SL files are currently written by SLICE and SLFIT.

R o u tin e s to access SL files:
EXTINI and ZFIO are used to access SL files.

C .3 .8 U v d a t a (U V) f ile
O verv iew
UV files contain interferometnc data or single dish data randomly sampled on the sky. The files consists
of a series of records each with a set of “random” parameters and a rectangular data array. The “random ”
parameters are descriptions of the associated data array and give such information as u, v, and w or feed
number. The structure of these records is flexible and depends on the particular application.

D e ta ils : A UV file contains an arbitrary number of records in an arbitrary order. A description of the
structure, number and order of records is given in the associated catalog header (CB) record. A number of
extention tables may be need to fully interprete the data.

N am es: UV file physical names are UVrsssOl, where r is the format revision code and sss is the sequential
position of the header in the catalog file for tha t disk. The logical names for UV files, used by users, have
no relationship to this physical name.

R e c o rd fo rm a ts
All data are stored as single precision values. The exception to this is “compressed” form at d a ta in which
“visibility” da ta may be stored in a machine dependent form. D ata are stored with random param eters first
followed by the da ta array in Fortran order. There is no unused space between records and records may
span disk sectors.

U sage N o tes
UV files are always read with the fast 10 routines UVINIT, UVDISK, ZMIO, ZWAIT, et al..

R o u tin e s a n d co m m o n s fo r re a d in g a n d w ritin g U V files
These routines and commons are described in the chapters on Disk I/O and Calibration.

C . 4 T a b l e d e t a i l s

This section describes the standard AIPS tables files. These are user data files using the conventions described
in the chapter on Tables in this volume. These are used heavily in the calibration package.

C.4.1 Antenna (A N) table
O verview
This extension table for a uv data set contains information about the antennas and the array geometry
including conversion from atomic time to sidereal time.

N am e: The file name is ANrsssvv where r is the revision code (A, B...), sss=catalog number and vv =
version number.

C-36 APPENDIX C. DETAILS OF AIPS FILES

File Structure
Logical records consist of the information for a single antenna. In the case of an orbiting antenna the elements
of the orbit are given. For each antenna two polarization feeds are assumed (A and B) For orbiting antennas
the orbital elements are given by ORBPARM. The file header record contains the following KEYWORDs:

Keyvord type Description

ARRAYX D Array center X coordinate (meters, earth center)
ARRAYY D Array center Y coordinate
ARRAYZ D Array center Z coordinate
GSTIAO D GST at IAT=0 (degrees) on ref. date
DEGPDY D Earth rotation rate (deg/IAT day)
FREQ D Obs. Reference Frequency for subarray(Hz)
RDATE A Reference date as »DD/MM/YY»
POLARX E Polar position X (meters) on ref. date
POLARY E Polar position Y (meters) "
UT1UTC E UT1-UTC (time sec.) "
IATUTC E IAT-UTC (time sec.)
ARRHAM A Array name
HUMORB I Humber of orbital parameters
IOPCAL I lumber of polarization calibration constants.
POLTYPE A Feed polarization parameterization, only if the

feed parameters have been entered.
*APPROX * => linear approximation
*ORI-ELP * => orientation-ellipticity
*X-Y LII ' => lin. approx. for lin.

polarized (X-Y) data.

Table entries:
Title Units Code Description

AVIAME 8A Station name
STABXYZ meters 3D X,Y,Z offset from array center
ORBPARM *D Orbital parameters (see note 1)
IOSTA 11 Station number
MITSTA 11 Mount type, 0=altaz, 1=equatorial,

2=orbiting
STAXOF meters IE Axis offset
POLTYA 1A Feed A feed poln. type ’R*,*L*,'X’,*Y*
POLAA degrees IE Feed A feed position single.
POLCALA *E Feed A poln. csJ. parameter, (note 2)
POLTYB 1A Feed B feed poln. type ,*L*,*X*,*Y*
POLAB degrees IE Feed B feed position angle.
POLCALB *E Feed B poln. cal parameters.

U s e r N o t e s
The “code” column is element.count + basic type code, basic type codes: D=Double precision, E=single
precision, A=character, I=integer, L=logical, X =bit.

1. ORBPARM is an array whose dimension is given by the header keyword NUMORB
2. POLCALA and POLCALB are arrays whose dimension is given by the header keyword NOPCAL.

C.4. TABLE DETAILS C-37

Routines to access AN files
ANTINI and TABAN, AN files are currently written by UVLOD, VLBIN, MK3IN and SETAN.

C.4.2 Baseline dependent calibration (BL) table
Overview
This table contains information for baseline dependent (antenna pair) calibration. The complex gains for
each baseline necessary to correct for non-antenna based errors. These errors are assumed to consist of a
multiplicative and an additive portion.

N am es: The file name is BLrsssvv where r is the format revision code, sss=catalog number and vv =
version number.

File structure
Logical records consist of the information for a single baseline at a given tim e for all IF and polarizations.
The file header record contains the following KEYWORDS:

Keyword Code Description

HO.AHT I The number of antennas for which there is
information (actually highest antenna number).

HO.POL I The number of polarizations
IO_IF I The number of IFs.

ible entries:

Title Units code Description

TIME Days IE Time of center of interval since Oh on
reference day.

SOURCE ID 11 Identification number of the source used.
SUBARRAY 11 Subarray number
AHTEHHA1 11 First antenna number.
AVTEIMA2 11 Second antenna number.
FREQ ID 11 Frequency group id.
REAL Ml *E Real part of multiplicative factor for

first polarization, (see note 1)
IMAG Ml *E Imag. part of multiplicative factor for

first polarization.
REAL A1 *E Real part of additive correction for

first polarization.
IMAG A1 *E Imag. part of additive correction for

first polarization.

The following are present only if NO-POL = 2

Title Units code Description

REAL M2

INAG M2

*E Real part of multiplicative factor for
second polarization, (see note 1)

*E Imag. part of multiplicative factor for

C-38 APPENDIX C. DETAILS OF AIPS FILES

second polarization.
REAL A2 *E Real part of additive correction for

second polarization.
INAG A2 *E Imag. part of additive correction for

second polarization.

User notes
The “code” column is element_count + basic type code, basic type codes: D=Double precision, E=single
precision, A=character, I=integer, L=logical, X =bit.

1. “REAL M l” , “IMAG M l” , “REAL A l” , “IMAG A l” , “REAL M2” , “IMAG M2” , “REAL A2” and
“IMAG A2” are arrays whose dimensions are given by the header keyword NO_IF.

2. This table will in practice be used only by standard interface routines.

Routines to access BL files
The AIPS routines BLINI and TABBL will create/read/w rite BL tables. Chapter 13 gives a detailed de
scription of routines to access tables files.

C.4.3 Bandpass calibration (BP) table
Overview
This table contains information for bandpass calibration; this is frequency channel dependent calibration.
The bandpass correction functions are factored into antenna based components.

N am es: The file name is BPrsssvv where r is the format revision code, sss=catalog number and w =
version number.

File structure
Logical records consist of the information for a single antenna at a given time for all IF and polarizations.
The file header record contains the following KEYWORDS:

Keyword Code Description

HO.AVT I The number of antennas for which there is
information (actually highest antenna number)

HO.POL I The number of polarizations
I0_IF I The number of IFs.
IO.CHAH I The number of spectral channels present
STRT_CHI I First channel number present in file.

Table entries:

Title Units code Description

TIME Days ID Time of center of interval since Oh on
reference day.

IITERVAL Days IE Time interval covered.
SOURCE ID 11 Identification number of the source used.
SUBARRAY 11 Subarray number
AITEVVA 11 Antenna number.
BAIDWIDTH Hz IE Bandwidth of individual channels

CA. TABLE DETAILS C-39

IF FREQ Hz *D Reference frequency for each IF
FREQ ID 11 Frequency group id.
REFAHT 1 11 Reference antenna
REAL 1 *E ResJ. part of channel gains for

first polsurization. (see note 1)
IMAG 1 *E Imag. part of channel gains for

first polarization.

The following are present only if NO-POL = 2

Title Units code Description

REFANT 2 11 Reference antenna
REAL 2 *E Real part of channel gains for

second polarization, (see note 1)
IMAG 2 *E Imag. part of channel gains for

second polarization.

U ser n o te s
The “code” column is element_count + basic type code, basic type codes: D=Double precision, E=single
precision, A=character, I=integer, L=logical, X =bit.

1. “REAL 1” , “IMAG 1” , “REAL 2” , and “IMAG 2” are arrays whose dimensions are given by the product
of the header keywords NO-CHAN, and N O JF . They can be considered to be arrays dimensioned
(NO.CHAN ,N O JF).

2. This table will in practice be used only by standard interface routines.

R o u tin e s to access B P files
The AIPS routines BPINI and TABBP will create/read/w rite BP tables. Chapter 13 gives a detailed
description of routines to access tables files.

C.4.4 Clean Components (CC) table
Overview
CLEAN components are stored in this table by CLEAN tasks during the deconvolution process or by
modeling programs. CLEAN point components represent a set of sources which when convolved with the
dirty beam and added to the residual map gives the original dirty map. The Fourier transform of these
POINT components should, after CLEAN converges, reproduce the observed data. Other tasks write CC
files containing Gaussian or other model fits to images or UV data.

N am es: The file name is CCdsssvv, where d is the update code said sss is the sequential position of the
image header in the catalog file for th a t disk and vv is the version number.

F ile S t ru c tu r e
Logical records consist of a single model component. If only three columns are present then the file contains
only point components. CC tables headers contain no KEYWORDS.

T ab le e n tr ie s :
Title Units code Description

FLUX Jy IE Flux density of component.

C-40 APPENDIX C. DETAILS OF AIPS FILES

DELTAX degrees IE Ollset Irom relerence pixel in X direction
(RA lor unrotated images)

DELTAY degrees IE Ollset Irom relerence pixel in Y direction
(Dec lor unrotated images)

The following are optional:

MAJOR AX degrees IE Gaussians: Major axis size (FUHM)
Spheres: Radius

MINOR AX degrees IE Gaussian: Minor axis size.
POSANGLE degrees IE Gaussian: position angle (Irom N thru E)
TYPE OBJ IE Model type:

0 => point model.
1 => gaussian on sky.
2 => gaussian convolved by observation.
3 => uniform, optically thin sphere.

User notes
The “code” column is element.count + basic type code, basic type codes: D=Double precision, E=single
precision, A=character, I=integer, L=logical, X =bit.

The positions given are those projected onto the same plane as the original image i.e. the number of
pixels from the reference pixel times the pixel spacing. If accurate positions are desired the appropriate
transformation must be made.

R o u tin e s fo r accessin g C C files
AIPS routines CCINI, TABINI, TABIO allow read and write access to CC tables. The tasks APCLN,
SDCLN and MX (regular cleaning), IM FIT, JM FIT and UVFIT may write in CC files. The tasks PRTCC
and PRTAB will print the contents of CC tables. Chapter 13 describes the routines to access tables files.

C.4.5 Calibration (CL) table
O verv iew
This extension table for a uv data set contains calibration information and the total observed geometric
observables. This will include both calibration information passed to AIPS from external sources and that
derived from AIPS calibration software. This information will not have been applied to the data. This table
will need to be updated using the contents of the Solution table (SN) when satisfactory gain solutions have
been derived. The information in this table will be used to calibrate data.

The records also contain the geometric observables: to tal group and phase delay and their time derivatives
divided into several parts. These values should be updated whenever this table is updated using a Solution
table.

The total model group and phase delays are divided into three contributions: 1) the geometric delay
which will include terms which can be described by a single 24 hour sinusoid, 2) a atmospheric term, and
3) a “clock” (meaning everything else) term . Interpolation of the geometric term to times other than the
reference time is done using the phase of the sinusoid at the reference time (GEOPHASE) and the earth
rotation rate a t the reference time (GEORATE). The other terms are interpolated by using the first order
time derivatives. The total model values are given by the sum of these three terms. These values are the
total observed values and are not to be applied to the data; the residual values are the corrections which
need to be applied to the data.

N am es: The file name is CLrsssvv where r is update code, sss=catalog number and vv = version number.

C.4. TABLE DETAILS C-41

File Structure
Logical records consist of the information for all IFs for a single antenna. A pair of IFs consists of the IFs
which are cross correlated, for example, right and left circular polarized IFs a t the same frequency. In practice
a pair will consist of a single IF or a pair of orthogonally polarized IFs. All IF pairs must be identical, i.e.,
have the same number and types of IF. The file header record contains the following KEYWORDs:

Keyword Code Description

NO_ANT I The number of antennas for which there is
information (actually highest numbered antenna)

N0_P0L I The number of polarizations.
NO_IF I The number of IFs.
MGMOD E The mean gain modulus for the entire table.

Table entries:

Title Units code Description

TIME Days ID Time of center of interval since Oh on
reference day.

TIME IVTERVAL Days IE Interval over which solution was obtained.
SOURCE ID 11 Identification number of the source used.
AHTEVIA 10. 11 Antenna number.
SUBARRAY 11 Subarray number
FREQ ID 11 Frequency group identifier
I.FAR.ROT IE Ionospheric Faraday rotation (rad/m**2)
GEODELAY Seconds ID The total geometric delay at the reference

time; should include only sinusoidal terms
GEOPHASE Turns ID Fractional (0-1) phase of the reference

time, used to interpolate GEODELAY.
GEORATE Hz ID The time derivative of GEOPHASE = earth

rotation rate at the reference time.
D0PP0FF Hz *E Doppler frequency offset, (see note 1)
CLKGD 1 Seconds *E Clock group delay for pol. 1.
DCLKGD 1 Sec/sec *E Time derivative of CLKGD 1.
CLKPD 1 Seconds *E Clock phase delay for pol. 1.
DCLKPD 1 Sec/sec *E Time derivative of CLKPD 1.
ATMGD 1 Seconds *E Atmospheric group delay for pol. 1.
DATMGD 1 Sec/sec *E Time derivative of ATMGD 1.
ATMPD 1 Seconds *E Atmospheric phase delay for pol. 1.
DATPGD 1 Sec/sec *E Time derivative of ATMPD 1.
REAL 1 *E Real part of the gain calibration factor;

calibrated = raw * CALi * conj(CALj)
for antennas i,j.

IMAG 1 *E Imaginary part of the gain calibration.
DELAY 1 Seconds *E Residual delay of pol. 1
RATE 1 Sec/sec *E Residual rate of pol. 1

lote: DELAY n and RATE n are the residual
values by which the data are to be
corrected during calibration.

TSYS 1 Kelvins ♦E System temperature of pol. 1.

C-42 APPENDIX C. DETAILS OF AIPS FILES

VEIGHT 1 *E Veight of 1st polarization.
REFAHT 1 *1 Reference antenna used for solution.

The following are present only if NO-POL = 2

Title Units code Description

CLKGD 2 Seconds *E Clock group delay for pol. 2.
DCLKGD 2 Sec/sec *E Time derivative of CLKGD 2.
CLKPD 2 Seconds *E Clock phase delay for pol. 2.
DCLKPD 2 Sec/sec *E Time derivative of CLKPD 2.
ATMGD 2 Seconds *E Atmospheric group delay for pol. 2.
DATMGD 2 Sec/sec *E Time derivative of ATMGD 2.
ATMPD 2 Seconds *E Atmospheric phase delay for pol. 2.
DATPGD 2 Sec/sec *E Time derivative of ATMPD 2.
REAL 2 *E Real part of the gain calibration factor

for 2nd polarization.
IMAG 2 *E Imaginary part of the gain calibration.
DELAY 2 Seconds *E Residual delay of pol. 2
RATE 2 Sec/sec *E Residual rate of pol. 2
TSYS 2 Kelvins *E System temperature of pol. 2.
VEIGHT 2 *E Veight of 2nd polarization.
REFAIT 2 ♦I Reference antenna used for solution.

U ser N o tes
The “code” column is element.count 4- basic type code, basic type codes: D=Double precision, E=single
precision, A=character, I=integer, L=logical, X=bit.

1. “DOPPOFF” , “REAL n” , “IMAG n” , “DELAY n” , “RATE n” , “TSYS n” , “W EIGHT n” and “RE
FANT n” are arrays whose dimensions are given by the header keyword NO-IF.

2. The geometric observables should be updated every tim e the file is updated from a Solution (SN) table.

A IP S ro u tin e s to access CL files
CALINI and TABCAL read and write CL tables. Also chapter 13 gives a detailed description of routines to
access tables files.

C.4.6 Frequency (CH) table
O verview
N o te : this table is now replaced by the FQ table and is included here for historical completeness.

This extension table for a uv data set contains relevant information about the IFs in the raw uv data
file. For these purposes an IF consists of the output from a receiver or baseband converter; all measured
polarizations at the same frequency are considered part of the same IF. IFs can be arbitrarily spaced in
frequency. Examples are the A-C and B-D IFs of the VLA and the output of independent video converters
in VLBI recorders. Individual, regularly spaced frequency or delay channels derived from the correlation of
such IFs are not themselves considered IFs.

N am es: The file name is CHrsssvv where r is the form at revision code (A, B,...) disk number, sss=catalog
number and vv = version number.

C.4. TABLE DETAILS C-43

File Structure
The table entries give the frequency offset to the center of the IF and the sideband of each IF. The file header
record contains no KEYWORDS.

Table entries:

Title Units code Description

IF NO. II The IF pixel number of the entry.
FREQUENCY OFFSET Hz ID Frequency offset from ref. freq.

True = Ref + Offset
SIDEBAND II Sideband of each IF

-1 => 0 video freq. is high freq. end
1 => 0 video freq. is low freq. end

User Notes
The “code” column is element_count + basic type code, basic type codes: D=Double precision, E=single
precision, A=character, I=integer, L=logical, X =bit.

The true frequency of the observations are the signed sums of the reference frequency in the subarray
antenna (AN) file, the peculiar source doppler offset from the source table (SU file) Any time dependent
doppler correction from the CL table and the IF frequency offset from this file.

Routines to access CH files
AIPS utility routine CHNDAT will read of create/w rite these tables; CHNCOP will copy all or a subset of
the table. Also see chapter 13 for a detailed description of routines to access tables files.

C.4.7 Single dish calibration (CS) table
Overview
This extension table for a single dish da ta set contains position, gain and baseline offset corrections to be
applied to single dish data in a uv d a ta like form at.

N am es: The file name is CSdsssvv where d = release code, sss=catalog number and vv = version
number.

File structure
Logical records consist of the information for all IFs for a single beam at a give time. The file header record
contains the following KEYWORDS:

Keyword Code Description

NO.BEAK I The number ol beams lor which there is
inlormation

NO_POL I The number ol polarizations.
NO.IF I The number ol IFs.

Table entries:

C-44 APPENDIX C. DETAILS OF AIPS FILES

Title Units code Description

TIME Days IE Time since Oh on reference day.
RA Deg IE apparent RA at center time
DEC Deg IE apparent Dec at center time
BEAM 10. 11 Beam number.
SUBARRAY 11 Subarray number
FACTOR 1 *E Gain factor

calibrated = factor * (raw + offset)
for 1st polarization. (see note 1)

OFFSET 1 *E offset
RAOFF 1 Degrees *E RA correction (to be added)
DECOFF 1 Degrees *E Declination correction

The following are present only if NO-POL = 2

Title Units code Description

FACTOR 2 *E Gain factor
calibrated = factor * (raw + offset)
for 2nd polarization. (see note 1)

OFFSET 2 *E offset
RAOFF 2 Degrees *E RA correction
DECOFF 2 Degrees *E Declination correction

U ser n o te s .
The “code” column is element.count + basic type code, basic type codes: D=Double precision, E=single
precision, A=character, I=integer, L=logical, X =bit.

1. “FACTOR n” , “OFFSET n” , “RAOFF n” and “DECOFF n” are arrays whose dimensions are given
by the header keyword N O JF .

R o u tin e s to access CS files
Routine CSINI will create/initialize/open/read-keywords-from/ write-keywords-to a solution table and TABCS
will do I/O . Also chapter 13 gives a detailed description of routines to access tables files.

C.4.8 Flag (FG) table
O verview
This extension table for a uv data set contains the editing information. This information may or may not
have been applied to the da ta depending on the uv data file type. This file will contain a list of specifications
of data to be flagged.

N am es: The file name is FGrsssvv where r the AIPS update code, sss=catalog number and vv = version
number.

F ile S t ru c tu r e
Each logical record consists of a specification of data to be flagged. These specifications are independent
and may overlap. Data is to be rejected if it is specified in any flagging record that is currently selected.
Any entry may be temporarily disabled by deselecting that table entry. The file header record contains no
K E Y W O R D S .

C.4. TABLE DETAILS

T ab le e n tr ie s :

Title Units code Description

C-45

SOURCE

SUBARRAY
ANTS

TINERANG

IFS

CHANS
PFLAGS

REASON

Days

I I

II
21

2E

21
21
4X

24A

Source id number ol the source to be
flagged.
0 => all sources
Subarray number, 0 => all
1st element = number of the first
antenna, 0 => all baselines to all
antennas flagged. 2nd element =
number of the second antenna,
0 => all baselines to ANTS(l) flagged
Beginning and end time of flagging in
the same system as the data is labeled.
Both = 0 => data flagged for all times.
Numbers of first and last IF group
to be flagged.
First and last channel number in IF group.
Array of flags for the polarizations.
4 are kept even if fever polarizations
are present. Flags in same order as data,
bit set => correlator value flagged.
Reason code for flagging (24 char)

U ser N o tes
The “code” column is element.count + basic type code, basic type codes: D=Double precision, E=single
precision, A=character, I=integer, L=logical, X =bit.

R o u tin e s to access F G files
FLGINI and TABFLG do I /O to flag files. Chapter 13 gives a detailed description of routines to access
tables files.

C.4.9 Frequency (FQ) table
O verview
This extension table for a uv data set contains relevant information about the IFs in the raw uv data file. A
data file may contain data made with different sets of IF frequencies or bandwidths. D ata containing more
than one such frequency group (or set of bandwidths) will have a random param eter indicating an entry in
the FQ table which gives the details of the frequencies and/or bandwidths.

N am es: The file name is FQrsssvv where r is the form at revision code (A, B,...), sss=catalog number
and vv = version number.

F ile S t ru c tu re
The table entries give the frequency offset to the center of the IF, bandwidth and the sideband of each IF.
The file header record contains the following KEYWORD:

Keyword Code Description

NO_IF I The number of IFs.

C-46 APPENDIX C. DETAILS OF AIPS FILES

Table entries:

Title Units code Description

FRQSEL 11 Frequency group identifier
IF FREQ Hz *D Frequency offset from ref. freq

(see note 1)
CH WIDTH Hz *E Channel bandwidth (note 1)
TOTAL BANDWIDTH Hz *E Total bandwidth (note 1)
SIDEBAND *1 Sideband of each IF (note 1)

-1 => 0 freq. is high freq. end
1 => 0 freq. is low freq. end

U ser N o tes
The “code” column is element_count + basic type code, basic type codes: D=Double precision, E=single
precision, A=character, I=integer, L=logical, X =bit.

1. “IF FREQ” , “CH W IDTH” , “TOTAL BANDWIDTH” , and “SIDEBAND” are arrays whose dimen
sions are given by the header keyword N O JF .

2. The true frequency of the observations are the signed sums of the reference frequency in the subarray
antenna (AN) file, the peculiar source doppler offset from the source table (SU file), any time dependent
doppler correction from the CL table and the IF frequency offset from this file.

R o u tin e s to access FQ files
AIPS utility routine CHNDAT will read or create/write these tables; CHNCOP will copy all or a subset of
the table. FQINI and TABFQ also provide access to FQ tables. Also see chapter 13 for a detailed description
of routines to access tables files.

C.4.10 Index (NX) table
O verv iew
This extension table for a uv data set contains an index of the data file. There is an entry for each scan
which gives the source, tim e range, range of visibility numbers and other necessary information. A scan
is defined here to consist of a sequence of data from a given subarray which term inates when the source,
observing band or observing mode changes or there is a gap in the data much longer than the integration
time of the data.

N am es: The file name is NXrsssvv where r is the format revision code, sss=catalog number and vv =
version number.

F ile S t ru c tu re
Logical records consist of the information for a single scan on a single subarray. The file header record
contains no KEYWORDS.

T ab le e n tr ie s :

Title Units code Description

TIME Days IE Tine of center of interval since Oh on
reference day.

TIME IYTERVAL Days IE Interval over which solution was obtained.

C.4. TABLE DETAILS C-47

SOURCE ID 11 Identilication number ol the source used
SUBARRAY 11 Subarray number
START VIS 11 First visibility number (0 relative) ol

data in this scan.
EID VIS 11 Last visibility number (0 relative) ol

data in this scan.
FREQ ID 11 Frequency group identilier.

User Notes
The “code*’ column is element.count + basic type code, basic type codes: D=Double precision, E=single
precision, A=character, I=integer, L=logical, X=bit.

R o u tin e s to access N X files
The AIPS routines NDXINI and TABNDX will create/read/w rite NX tables. Chapter 13 gives a detailed
description of routines to access tables files.

C.4.11 Solution (SN) table
O verv iew
This extension table for a uv data set contains gain solutions derived from calibration software in AIPS.
This information may or may not have been applied to the data or calibration “CL” table depending on the
uv data file type. For m ulti-source files, the SN table is to be applied to the CL table; for single-source data
files, the SN table is applied directly to the data. The table keyword APPLIED indicates if the appropriate
application has been made.

N am es: The file name is SNrsssvv where r = format revision code, sss=catalog number and vv = version
number.

F ile S tru c tu r e
Logical records consist of the information for all IFs for a single antenna. The file header record contains
the following KEYWORDS:

Keyword Code Description

VCLAHT I The number ol antennas 1or vhich there is
information

IO.POL I The number ol IFs per IF pair.
IO_IF I The number ol IF pairs.
SO.IODES I The number ol interpolation nodes.
MGMOD E The mean gain modulus lor the entire table.
APPLIED L II true then the table has already been applied.
TYPE I "Solution" type: l=>"Clock", 2=>"atmosphere"

This is to be used to determine vhich total model
parameters are to be updated.

RA.0FF1 E The right ascension ollset ol the lirst interpolation
node, (degrees)

DEC.OFFl E The declination ollset ol the lirst

RA.OFFn E The right ascension ollset ol the n th
interpolation node n - IO.IODES.

DEC.OFn E The declination ollset ol the n th
interpolation node n = I0.10DES.

C-48 APPENDIX C. DETAILS OF AIPS FILES

Table entries:

Title

TINE

TIME INTERVAL
SOURCE ID
ANTENNA NO.
FREQ ID
I .FAR.ROT
SUBARRAY
NODE NO.
REAL 1

IMAG 1
DELAY 1
RATE 1
VEIGHT 1
REFANT 1

Days ID Tine ol center ol interval since Oh. on
relerence day.

Days IE Interval over which solution was obtained.
II Identilication number ol the source used.
II Antenna number.
II Frequency group identilier
IE Ionospheric Faraday rotation (rad/m**2)
1I Subaxray number
II Node number
*E Real part ol the gain calibration lactor;

calibrated = raw * CALi *
conjg(CALj) lor antennas i,j,
lor 1st polarization, (see note 1)

*E Imaginary part ol the gain calibration.
Seconds *E Residual pair delay lor pol. 1.
Sec/sec *E Residual phase delay rate lor pol. 1.

*E Veight ol 1st polarization
♦I Relerence antenna used lor solution.

Units code Description

The following are present only if NO-POL = 2

Title Units code Description

REAL 2

IMAG 2
DELAY 2
RATE 2
VEIGHT 2
REFANT 2

Seconds
Sec/sec

*E

*E
*E
*E
*E
*1

Reed part ol the gain calibration lactor;
calibrated = raw * CALi *
conjg(CALj) lor antennas i,j,
lor 2nd polarization.
Imaginary part ol the gain calibration.
Residual pair delay lor pol. 2.
Residual phase delay rate lor pol. 2.
Veight ol 2nd polarization.
Relerence antenna used lor solution.

User Notes
The “code” column is element.count + basic type code, basic type codes: D=Double precision, E=single
precision, A=character, I=integer, L=logical, X =bit.

1. “REAL n” , “IMAG n” , “DELAY n” , “RATE n” , “WEIGHT n” and “REFANT n” are arrays whose
dimensions are given by the header keyword NO-IF.

Routines to access SN files
Routine SNINI will create/initialize/open/read-keywords-from / write-keywords-to a solution table and TABSN
will do I/O . Also chapter 13 gives a detailed description of routines to access tables files.

C.4. TABLE DETAILS C-49

C.4.12 Source (SU) table
Overview
This extension table for a uv data set contains relevant information about the sources in a raw uv data file.
This includes positions.

N am es: The file name is SUrsssvv where r is the form at revision code, sss=catalog number and vv =
version number.

File Structure
Each logical record consists of the position and other information about a source in the raw uv data file.
Sources are distinguished in the data file by a source ID number.

For moving sources the apparent position is for 0 hours IAT on the reference day defined in the subarray
AN file. The motion from this position is given by PMRA and PMDEC. The file header record contains the
following KEYWORDS:

Keyvord code Description

HO_IF I The number ol IF pairs.
VELTYP A Velocity type
VELDEF A Velocity definition 'RADIO',»OPTICAL*

T ab le e n tr ie s :

Title Units code Description

ID. 10. 11 The source identification number.
SOURCE 16A lame of the source to be flagged, (16 Chau:)
QUAL 11 Source qualifier
CALCODE 4A Calibrator code (4 char)
I FLUX Jy *E Flux density at reference frequency (Ipol)

(See note 1)
QFLUX Jy *E Flux density at reference frequency (Qpol)
UFLUX Jy *E Flux density at reference frequency (Upol)
VFLUX Jy ♦E Flux density at reference frequency (Vpol)
FREQOFF Hz ♦D Frequency offset (note 1)
BAHDVIDTH Hz ID Bandwidth of channel
RAEPO degrees ID Right ascension at standard mean epoch
DECEPO degrees ID Declination at standard mean epoch
EPOCH years ID Date in years since year 0.0 of the

standard epoch.
RAAPP degrees ID apparent Right ascension at Oh IAT

on reference day in uv file header.
DECAPP degrees ID apparent declination at Oh IAT

on reference day in uv file header.
LSRVEL m/sec *D LSR velocity (see note 1)
RESTFREQ Hz *D Line rest frequency (note 1)
PMRA deg/day ID Proper motion in RA
PMDEC deg/day ID Proper motion in Dec

C-50 APPENDIX C. DETAILS OF AIPS FILES

U ser N o tes
The “code” column is element_count + basic type code, basic type codes: D=Double precision, E=single
precision, A=character, I=integer, L=logical, X =bit.

1. Entries with dimensions marked are arrays whose dimension is given by the header keyword N O JF .
2. The true frequency of the observations are the signed sums of the reference frequency in the catalog

header, the peculiar source frequency offset from this table a time dependent doppler offset from the
CL table and the IF frequency offset from the FQ table.

Routines to access SU files
AIPS routines SOUINI and TABSOU create/read/w rite SU tables. Chapter 13 gives a detailed descriptions
of routines to access tables files.

C.5 Task Specific Tables
A number of tasks use temporary tables to keep track of information. These are described in the following
sections.

C.5.1 SPFLG baseline (BL) table
O verview
N O T E : This temporary table is not to be confused with the standard calibration BL table. T his temporary
extension table for a uv da ta set contains baseline numbers and is used internally by SPFLG.

N am es: The file name is BLrsssvv where r the AIPS format revision code, sss=catalog number and vv
= version number.

F ile S tru c tu re
The file header record contains no KEYWORD:

T ab le e n tr ie s :

Title Units code Description

ANTEHHA1 II First antenna number
AMTEHVA2 II Second antenna number.
BASELI1E II Baseline code number.

User Notes
The “code” column is element_count basic type code, basic type codes: D=Double precision, E=single
precision, A=character, I=integer, L=logical, X =bit.

R o u tin e s to access S P F L G ty p e B L files
uses TABINI and TABIO to read and write its BL tables.

C.5. TASK SPECIFIC TABLES C-51

C.5.2 SPFLG/TVFLG Temporary Flag (FC) table
Overview
This extension table for a uv data set contains a temporary copy of editing instructions. These are used
internally by tasks TVFLG, and SPFLG.

N am es: The file name is FCrsssvv where r the AIPS update code, sss=catalog number and vv = version
number.

File Structure
The details of these files are identical to FG tables.

C.5.3 ANCAL System Temperature (TY) table
Overview
This extension table for a uv data set contains system temperatures and am plitude calibration factors and
is used internally by ANCAL.

N am es: The file name is TYrsssvv where r the AIPS update code, sss=catalog number and vv = version
number.

F ile S t ru c tu r e
The file header record contains the following KEYWORD:

Keyvord code Description

HO_IF I The number ol IFs.

T ab le e n tr ie s :

Title Units code Description

TINE Day IR Time in days
AHTEHHA HO. II Antenna number
CALFAC *R Amplitude calibration lactor 1 / IF
TSYS Kelvin *R System temperature 1/IF

User Notes
The “code” column is element.count + basic type code, basic type codes: D=Double precision, E=single
precision, A=character, I=integer, L=logical, X =bit.

“CALFAC” and “TSYS” are arrays of dimension NO J F .

Routines to access TY files
TYINI and TABTY do I /O to TY files. Chapter 13 gives a detailed description of routines to access tables
files.

C-52 APPENDIX C. DETAILS OF AIPS FILES

Index

AC file C -l
ACOUNT C-2
AIPS batch 9-9, 12-4
AIPS passwords C-13
ALLTAB 13-1, 13-7
AN table 13-14, 13-21, 13-23, 14-9, 16-2, 16-3,

16-6, C-35
AN tables 16-2
ANTINI 13-2, 13-14, C-37
APCLN 10-15, 10-22
APCONV 12-15
APIO 12-11, 12-13, 12-16
astrometry 16-5
AU2 C-19, C-21
AU2A C-21
AU3A C-14
AU5 10-20
AU5A 10-22
AU5B 10-14
AU5C 10-14, 10-22
AU5D 10-23
AU6A 10-19, 10-23
AU6B 10-22
AU6C 10-19
AU6D 10-22
AUB C-5
AUC C-6
AXSTRN 10-20
BA file C-2
BATQ C-5
BIF 16-9
BL table 13-15, 13-24, 16-3, 16-5, 16-28, C-37
BLANK 10-19, 10-22
BLINI 13-2, 13-15, C-38
Blink 10-23
BLKTVF 10-22
BLNKTV 10-22
blocked tapes 14-1, 14-3
BLREFM 13-6, 13-15, 16-7, 16-17
BLSET 16-5, 16-9, 16-17
BLSUM 10-22
BLTFIL 10-22, 10-41
BP table 13-16, 13-25, 16-3, 16-6, C-38
BPASET 16-8, 16-18
BPGET 16-6, 16-9, 16-18

BPINI 13-2, 13-16, C-39
BPREFM 13-6, 13-16, 16-7, 16-19
BQ file C-4
BUFFER 16-9
byte 9-9
BYTE2I 10-11
CA file C-21
CALCOP 16-7, 16-9, 16-19
CALINI 13-2, 13-17, C-42
CALIT 16-9
CALREF 16-4, 16-20
CATBLK 16-9
CATCR C-25
CATDIR C-23, C-25
CATIO C-23, C-25
CATKEY C-26
CATOPN C-23, C-26
CATUV 16-9
CB file C-23
CC table 13-17, 13-18, C-39
CCINI 13-2, 13-17, C-40
CCMERG 13-2, 13-18
CGASET 16-5, 16-6, 16-9, 16-20
CH table C—42
CHGRIP C-6
CHNCOP 13-2, 13-19, 16-9, C-43, C-46
CHNDAT 13-2, 13-18, C-43, C-46
CHNTIC 11-5, 11-14
CHR2H 10-15
CL table 13-17, 13-19, 13-26, 16-2, 16-3, 16-i,

16-5, 16-6, 16-28, C-40
CLAB1 11-5, 11-14
CLAB2 11-5, 11-14
CLCAL 16-7
CLREFM 13-6, 13-19, 16-7, 16-21
CLUPDA 16-7, 16-22
COMLAB 11-5, 11-14
Compressed D ata 16-2
CONDRW 11-5, 11-15
coordinates 14-5, 14-10
COPY 10-15, 12-13
CS 16-2
CS table 16-3, C-43
CSINI C-44
CSLGET 16-5, 16-6, 16-9, 16-22

INDEX-1

CTICS 11-5, 11-15
CURVALUE 10-22
DANT.INC 13-15
DAPC.INC 12-10, 12-11
DATBND 16-6, 16-9, 16-23
DATCAL 16-5, 16-9, 16-24
DATFLG 16-9, 16-13, 16-25
DATGET 16-9, 16-25
DATPOL 16-6, 16-9
DBPR.INC 12-4
DCALSD 16-13
DDCH.INC 11-11, 12-2, 12-3, 12-9, 15-2, 15-8,

15-12, C-10, C-16
DECBIT 10-12, 10-13, 10-19, 10-44
Device Characteristics Common 12-3, 15-2
DFIL.INC 12-6
DGETSD 16-13
DGGET 16-7, 16-9, 16-13, 16-26
DGHEAD 16-7, 16-8, 16-13, 16-26
DGINIT 16-7, 16-8, 16-13, 16-27
DGPH.INC C-32
DHDR.INC C-9, C-24
DHIS.INC C-28
DISK 16-9
DISKIN 16-9
DLINTR 10-19, 10-39
DMSG.INC 15-12, C-12, C-2
DSEL.INC 16-3, 16-5, 16-6, 16-7, 16-13, 16-36
DSKFFT 12-6, 12-17
DTKS.INC 9-12
DTVC.INC 9-12, 10-3, 10-24, C-10
DTVD.INC 10-4, 10-24
DUVH.INC 16-1
EIF 16-9
EXTINI C-26, C-34
EXTIO C-26
EXTREQ 14-26, 14-27
FC table C-51
FG table 13-20, 13-27, 16-2, 16-3, 16-8, 16-12,

16-13, C-44
FILAIP C-15
FILINI C-14, C-15
FILL 10-15, 12-13
FITS 9-11, 15-8
FITS format 14-1, 14-2, 14-3, 14-4, 14-5, 14-7,

14-15, 14-16, 14-17, 14-20
FITS header 14-2, 14-3, 14-4, 14-5, 14-7
FITS images 14-2, 14-7
FITS tables 14-15, 14-16, 14-17, 14-20
FITS uv header 14-8
FLGINI 13-2, 13-20, 16-8, 16-13, C-45
Floating Point Systems 12-2, 12-3, 12-5
FNDCOL 13-6, 13-7
FPARSE 14-27

FQ table 13-18, 13-19, 13-20, 13-28, 14-9, 14-13,
16-2, 16-3, C-45

FQINI 13-2, 13-20, C-46
FQMATC 16-7, 16-9
FRQSEL 16-9
GA file C-26
GACSIN 16-13, 16-28
GAININ 16-8, 16-28
GCHAR 11-4, 11-16, C-32
geodesy 16-5
GETCOL 13-6, 13-8
GETCRD 14-27, 14-28
GETKEY 14-27, 14-28
GETLOG 14-27, 14-29
GETNAN 13-2, 13-21
GETNUM 14-27, 14-29
GETROW 11-17
GETSTR 14-27, 14-29
GETSYM 14-27, 14-30
GFINIS 11-5, 11-17, C-32
GINIT 11-2, 11-17, C-32
GINITG 11-3, 11-18, C-32
GINITL 11-3, 11-18, C-32
GMCAT 11-5, 11-19
GPHW RT C-32
GPOS 11-4, 11-20, C-32
GR file C-5
GRAYPX 11-4, 11-20, C-32
GRBOXS 10-22
GRLUTS 10-19
GRPOLY 10-22, 10-41
GTPARM C-10, C -19
GTW CRD 14-27, 14-30
GVEC 11-4, 11-20, C-32
H2CHR 10-13
HE file C-6
HI file C-27
HIADD C-28
HICLOS C-28
HICREA C-28
HIENH 10-19
HIINIT C-28
HIIO C-28
HILUT 10-19
HIOPEN C-28
HIPLOT 11-5, 11-21
history 14-4
I2BYTE 10-11
I AXIS 1 10-14
IBLED 10-23
IC file C-8
ID file C-10
IDWCRD 14-27, 14-31

FQ id 16-2

INDEX-2

IENHNS 10-19, 10-23, 10-41
ILNCLR 10-42
IMA2MP 10-20
IMANOT 10-14, 10-39
IMCCLR 10-19, 10-23, 10-42
IMCHAR 10-14, 10-18, 10-22, 10-43
IMLCLR 10-19, 10-43
IMLHS 10-24
IMPCLR 10-19, 10-43
IMPOS 10-20
IMVECT 10-14, 10-18, 10-22, 10-23, 10-39
IMXY 10-20
1NDXIN 16-8, 16-13
INTMIO 11-21
INVER 16-9
IREF 16-9
ISCALE 10-14, 10-44
ISTAB 13-1, 13-8
ITICS 10-14
IUCNO 16-9
keyword/value pairs 13-1, 13-2, 13-5
LABINI 11-5, 11-22
LUN 9-12
LUNI 16-9
LUNO 16-9
LUT 10-19
LXYPOL 16-9, 16-28
MA file C-29
MAPCLS 10-13, C-23, C-26
MAPOPN 10-13, 10-22, C-23, C-26
MAXINT 10-19
MCREAT C-23, C-26
MDESTR C-23, C-26
MDISK 10-15, 10-22, C-29
ME file C - l l
METSKA 10-15
MINIT 10-15, 10-22, C-29
Movie 10-23
MOVIST 10-12, 10-13, 10-45
MP2SKY 10-20
MS file C - l l
MSGWRT 10-15, 10-19, 10-20, 16-9, C-12
NDXINI 13-2, 13-21, C-47
NX table 13-21, 13-28, 16-2, 16-3, 16-12, C-46
NXTFLG 16-9, 16-13, 16-29
OFFPSEUD 10-19
OFFSCROL 10-19
OFFTRAN 10-19
OFFZOOM 10-19
OFM 10-19
OUTVER 16-9
PBUFF 16-9
PEAKFN 12-8, 12-18
PFPL1 11-6

PFPL2 11-6
PFPL3 11-6
PL file C-29
PLEND 11-22
PLGRY 11-23
PLMAKE 11-23
PLNGET 12-6, 12-19
plot files 11-1
PLPOS 11-23
PLVEC 11-23
POLSET 16-8, 16-29
POPSGN C - l l
PREAD C-3
PRTAB 13-1
PRTAC C-2
PRTDRW C-33
PRTIM C-12
PRTPL 11-11
PUTCOL 13-6, 13-9
PUVD.INC 13-2, 13-6, 16-16
PW file C-13
QGET 10-15
QINIT 12-4, 12-13
QMNGR C-19
QMSPL 11-11
QPUT 10-15
QRLSE 10-15, 12-4
QROLL 12-4, 12-19
QVADD 12-13
QVCLIP 10-15
QVFIX 10-15
QVSMSA 10-15
QWD 10-15, 12-13
QW R 12-13
R3DTAB 14-27, 14-31
RCOPY 10-13, 16-9
REBOX 10-22
REIMIO 11-24
RELPOP C-19
REMOVIE 10-23
RNGSET 10-13, 10-45
RWTAB 14-27, 14-31
SCINTP 16-6, 16-9, 16-30
SCLOAD 16-6, 16-9, 16-30
SCRNO 16-9
SDCGET 16-13, 16-31
SDCSET 16-13, 16-31
SDGET 16-1, 16-3, 16-12, 16-13, 16-32
SELINI 16-5, 16-9, 16-34
SETPAR 11-11, 15-2, C-16
SETSM 16-6, 16-8, 16-34
SETTVP 10-3
SG file C-13
single dish FITS form at 14-14

INDEX-3

SL file C-33
SMOSP 16-6, 16-9
SN table 13-22, 13-29, 16-2, 16-3, 16-4, 16-5,

16-28, C-47
SNINI 13-2, 13-22, C-48
SNREFM 13-6, 13-22, 16-7, 16-35
sort order 14-10
SOUFIL 16-13, 16-35, 16-6, 16-8
SOUINI 13-2, 13-23, C-50
SP file C-15
SPFLG 10-23
SPFLG BL table C-50
Starlink 11-11
STARPL 11-5, 11-24
STORES C-14
SU table 13-23, 14-9, 16-1, 16-2, 16-3, C-49
SU tbale 13-30
TABAN 13-2, 13-23, C-37
TABAXI 14-27, 14-32
TABBL 13-2, 13-24, C-38
TABBP 13-2, 13-25, C-39
TABCAL 13-2, 13-26, C-42
TABCOP 13-1, 13-9
TABCS C-44
TABFLG 13-2, 13-27, C-45
TABFQ 13-2, 13-28, C-46
TABHDK 14-27, 14-32
TABHDR 14-27, 14-32
TABINI 13-5, 13-6, 13-10, C-40, C-50
TABIO 13-5, 13-6, 13-10, C-40, C-50
TABKEY 13-1, 13-11
TABMRG 13-1, 13-12
TABNDX 13-2, 13-28, C-47
TABSN 13-2, 13-29, C-48
TABSOU 13-2, 13-30, C-50
TABSRT 13-1, 13-13
TABTY C-51
tape files 9-9, 9-10
TAPIO 9-9, 9-10, 9-11, 9-15
TASKWT C-19
TC file C-17
TD file C-17
TEKDRW C-33
TEKFLS 9-13, 9-17
TEKVEC 9-12, 9-13, 9-17
TKCATL 9-13, 9-18
TKCHAR 9-12, 9-13, 9-18
TKCLR 9-12, 9-13, 9-18
TKCURS 9-13, 9-18
TKDVEC 9-12, 9-19
TKPL 9-12
TKVEC 9-13
T P file C-20
TS file C-20

TV displays 10-1
TVBLINK 10-19, 10-23
TVBLNK 10-23
TVBOX 10-22
TVCLOS 10-3, 10-12, 10-13, 10-15, 10-19, 10-

20, 10-40
TVCUBE 10-23
TVFIDDLE 10-19
TVFIDL 10-19, 10-22, 10-43
TVFIDLLE 10-23
TVFIND 10-14, 10-20, 10-40
TVFLG 10-19, 10-23
TVHLD 10-24
TVHUEINT 10-24
TVHXF 10-24
TVLOAD 10-13, 10-22, 10-44
TVLOD 10-22
TVLUT 10-19
TVMBLINK 10-23
TVMLUT 10-19
TVMOVI 10-23
TVMOVIE 10-23
TVNAME 10-20
TVOPEN 10-3, 10-12, 10-13, 10-15, 10-19, 10-

20, 10-40
TVPL 10-18, C-33
TVPOS 10-20
TVPSEUDO 10-19
TVROAM 10-22
TVSCROL 10-19
TVSLICE 10-22
TVSPLIT 10-23
TVSTAT 10-22
TVTRAN 10-19
TVTRANS 10-23
TVTRANSF 10-19
TVW HER 10-14, 10-20, 10-41
TVWIN 10-22
TVWIND 10-13, 10-22, 10-45
TVZOOM 10-19
TY table C-51
TYINI C-51
TYPMOV 10-23
u,v,w computing 14-10
UBUFF 16-9
UV file C-35
uv FITS format 14-7, 14-8, 14-9, 14-10, 14-11,

14-13
UVDISK C-35
UVGET 16-1, 16-3, 16-5, 16-7, 16-8, 16-9, 16-

19, 16-26, 16-36
UVINIT C-35
UVMAP 10-14
UVPGET 16-1

INDEX-4

variable length records 9-9
VBOUT 9-9, 9-19
Vector Function Chainer 12-5, 12-6
Versatec 11-11
VHDRIN C-24
VISCNT 16-8, 16-13, 16-38
X-windows 9-12
Y routines 10-2, 10-6
YALUCT 10-10, 10-24, 10-35
YBUTON 10-11, 10-37
YCHACT 10-11
YCHRW 10-9, 10-25
YC1NIT 10-9, 10-12, 10-15, 10-25
YCMND 10-11
YCMSET 10-11
YCNECT 10-9, 10-26
YCONST 10-10, 10-35
YCOVER 10-9, 10-26
YCRCTL 10-10, 10-31
YCREAD 10-9, 10-20, 10-26
YCUCOR 10-9, 10-22, 10-26
YCURSE 10-9,10-15,10-19, 10-22, 10-23,10-27
YCW RIT 10-9, 10-14, 10-15, 10-27
YDEA.INC 10-11, 10-24
YDOERR 10-11
YFDBCK 10-10, 10-24, 10-36
YFILL 10-9, 10-28
YFIND 10-9, 10-28
YGGRAM 10-11, 10-38
YGRAFE 10-11, 10-38
YGRAPH 10-10, 10-31
YGYHDR 10-11
YIFM 10-10, 10-24, 10-36
YIMGIO 10-10, 10-14, 10-15, 10-18, 10-22, 10-

31
YINIT 10-10, 10-32
YISDRM 10-11
YISDSC 10-11
YISJMP 10-11
YISLOD 10-11
YISMPM 10-11
YLINTV 10-11
YLOCAT 10-9, 10-28
YLOWON 10-9, 10-29
YLUT 10-10, 10-19, 10-32
YMAGIC 10-11
YMKCUR 10-11
YMKHDR 10-11
YMNMAX 10-10, 10-36
YOFM 10-10, 10-19, 10-32
YRHIST 10-10, 10-24, 10-37
Y S C R O L 10-10, 10-19, 10-23, 10-33
YSHIFT 10-10, 10-37
YSLECT 10-9, 10-29

YSPLIT 10-10, 10-23, 10-33
YSTCUR 10-11, 10-38
YTCOMP 10-9, 10-29
YTVCIN 9-12, 9-13, 10-10, 10-33
YTVCL2 10-10, 10-33
YTVCLS 10-9, 10-30
YTVMC 10-10, 10-34
YTVOP2 10-10, 10-34
YTVOPN 10-9, 10-30
YVRTR 10-11
YWINDO 10-9, 10-30
YZERO 10-10, 10-12, 10-15, 10-34
YZOOMC 10-10, 10-19, 10-34
ZABOR2 15-4
ZABORT 15-4, 15-13
ZACTV8 15-4, 15-13
ZADDR 15-11, 15-50
ZARGC2 15-10
ZARGCL 10-5, 15-10
ZARGMC 10-5, 15-10
ZARG02 15-10
ZARGOP 10-5, 15-10
ZARGS 15-10
ZARGXF 10-5, 15-10
ZBKLD1 15-6, 15-25
ZBKLD2 15-6, 15-25
ZBKLD3 15-6, 15-26
ZBKTP1 15-6, 15-26
ZBKTP2 15-6, 15-26
ZBKTP3 15-6, 15-27
ZBYMOV 15-8, 15-34
ZBYTF2 15-9
ZBYTFL 15-8, 15-35
ZC8CL 9-11, 9-19, 14-7, 15-8, 15-35
ZCLC8 9-11, 9-19, 9-20, 14-7, 15-35, 15-8
ZCLOSE 10-15, 15-5, 15-17
ZCMPR2 15-6
ZCMPRS 15-5, 15-18
ZCPU 15-13, 15-4
ZCREA2 15-6
ZCREAT 15-5, 15-18
ZDACLS 15-6
ZDAOPN 15-6
ZDATE 15-4, 15-14
ZDCHI2 15-4
ZDCHIC 15-4
ZDCHIN 15-2, 15-4, 15-14, C-16
ZDEAC2 15-10
ZDEACL 10-5, 15-10
ZDEAMC 10-5, 15-10
ZDEA02 15-10
ZDEAOP 10-5, 15-10
ZDEAX2 15-10
ZDEAXF 10-5, 15-10

INDEX-5

ZDELA2 15-5
ZDELAY 10-15, 15-4, 15-14
ZDEST2 15-6
ZDESTR 15-5, 15-18
ZDHPRL 15-8, 15-36
ZDIR 15-9
ZDM2DL 15-8, 15-36
ZDOPR2 - ZDOPR5 11-11
ZDOPRT 11-11, 15-6, 15-27
ZEDELAY 10-12
ZENDPG 15-6, 15-27
ZERR02 15-11
ZERROR 15-11, 15-51
ZEXIS2 15-6
ZEXIST 15-5, 15-19
ZEXPN2 15-6
ZEXPND 15-5, 15-19
ZFI2 15-6
ZFIO 15-5, 15-19, C-34
ZFRE2 15-5
ZFREE 15-4, 15-15
ZFULLN 15-5, 15-20
ZGETCH 15-8, 15-37
ZGNAME 15-4, 15-15
ZGTBIT 15-8, 15-37
ZHEX 15-11, 15-51
ZI16IL 14-7, 9-11, 9-19, 9-20, 15-8, 15-37
ZI32IL 9-11, 9-21, 14-7, 15-8, 15-38
ZI8IL 9-11, 9-20, 14-7, 15-8, 15-38
ZILI16 9-11, 9-20, 14-7, 15-8, 15-38
ZILI32 9-11, 9-21, 15-8, 15-38
ZIPACK 15-10
ZIVSOP 10-5, 15-10
ZKDUMP 15-11, 15-51
ZLASC2 15-7
ZLASCL 15-6, 15-27
ZLASIO 15-6, 15-28
ZLASOP 15-6
ZLPCL2 15-7
ZLPCLS 15-6, 15-28
ZLPOP2 15-7
ZLPOPN 15-6, 15-28
ZLWIO 15-6, 15-28
ZLWOP 15-7, 15-29
ZM70C2 15-10
ZM70CL 10-5, 15-10
ZM70M2 15-10
ZM70MC 10-5, 15-10
ZM7002 15-10
ZM700P 10-5, 15-10
ZM70X2 15-10
ZM70XF 10-5, 15-10
ZMCACL 15-8, 15-39
ZMI2 15-6

ZMIO 15-5, 15-20, C-29, C-35
ZMKTMP 15-5, 15-21
ZMOUN2 15-7
ZMOUNT 15-7, 15-29
ZMSGCL 15-5, 15-21
ZMSGDK 15-5, 15-21
ZMSGER 15-11, 15-51
ZMSGOP 15-5, 15-22
ZMSGWR 15-6
ZMSGXP 15-5, 15-22
ZMYVER 15-11, 15-52
ZOPEN 10-15, 15-2, 15-5, 15-23
ZPATH 15-6
ZPHFIL 15-5, 15-23
ZPHOLV 15-5, 15-24
ZPRI2 15-5
ZPRIO 15-4, 15-15
ZPRMPT 15-7, 15-29
ZPRPAS 15-7, 15-30
ZPTBIT 15-8, 15-39
ZPUTCH 15-8, 15-40
ZQMSIO 11-11
ZR32RL 9-11, 9 -21 ,14 -7 ,15 -8 ,15 -10 ,15 -43 ,15

8
ZR64RL 9-11, 9-22, 14-7, 15-8, 15-41, 15-43
ZR8P4 14-7, 15-8, 15-11
ZRDMF 15-8, 15-42
ZRENA2 15-6
ZRENAM 15-5, 15-24
ZRHPRL 15-9, 15-42
ZRLR32 14-7, 9-12, 9-22, 15-9, 15-43
ZRLR64 14-7, 9-12, 9-23, 15-9, 15-43
ZRM2RL 15-9, 15-43
ZSETUP 15-4, 15-15
ZSSSCL 10-5
ZSSSMC 10-5
ZSSSOP 10-5
ZSSSXF 10-5
ZSTAI2 15-5
ZSTAIP 15-4, 15-15
ZTACT2 15-5
ZTACTQ 15-6, 15-16
ZTAP2 15-7
ZTAPE 9-9, 9-10, 9-23, 15-7, 15-30
ZTAPIO 15-7, 15-30
ZTCLOS 15-3, 15-9, 15-45, C-8
ZTFILL 15-5, 15-25
ZTIME 10-19, 15-4, 15-16
ZTKBUF 15-7, 15-31
ZTKCL2 15-7
ZTKCLS 9-13, 9-24, 15-7, 15-31
ZTKFI2 15-7, 15-31
ZTKILL 15-4, 15-16
ZTKOP2 15-7

INDEX-6

ZTKOPN 9-12, 9-13, 9-24, 15-7, 15-32
ZTOPE2 15-9
ZTOPEN 15-3, 15-9, 15-45, C-8
ZTPCL2 15-7
ZTPCLD 15-7
ZTPCLS 9-9, 9-24, 15-7, 15-32, C-20
ZTPMI2 15-7
ZTPMID 15-7
ZTPMIO 9-9, 9-25, 15-7, 15-32
ZTPOP2 15-7
ZTPOPD 15-7
ZTPOPN 9-9, 9-25, 15-7, 15-33, C-20
ZTPYVA2 15-7
ZTPWAD 15-7
ZTPWAT 9-9, 9-26, 15-, 15-33
ZTQSP2 15-5
ZTQSPY 15-4, 15-16
ZTREAD 15-3, 15-9, 15-46, C-8
ZTRLOG 15-4, 15-17
ZTTBUF 15-7, 15-10, 15-34
ZTTCLS 15-7
ZTTOP2 15-7
ZTTOPN 15-7
ZTTYIO 15-6, 15-7, 15-34
ZTXCLS 15-3, 15-9, 15-46
ZTXIO 15-9, 15-47
ZTXMA2 15-9
ZTXMAT 15-9, 15-47
ZTXOP2 15-9
ZTXOPN 15-3, 15-9, 15-47
ZUVPAK 15-9, 15-44, 16-2
ZUVXPN 15-9, 15-44, 16-2
ZV20C2 15-10
ZV20CL 10-5, 15-10
ZV20MC 10-5, 15-10
ZV2002 15-10
ZV200P 10-5, 15-10
ZV20X2 15-10
ZV20XF 10-5, 15-10
ZVD.INC 12-8
ZVND.INC 12-8
ZVTVC2 15-11
ZVTVC3 15-11
ZVTVCL 10-5, 15-11, 15-48
ZVTVGC 15-11, 15-48
ZVTV02 15-11
ZVTV03 15-11
ZVTVOP 10-5, 15-11, 15-48
ZVTVRC 10-5, 15-11, 15-49
ZVTVRO 10-5, 15-11, 15-49
ZVTVRX 10-5, 15-11, 15-49
ZVTVX2 15-11
ZVTVX3 15-11
ZVTVXF 10-5, 15-11, 15-50

ZWAI2 15-6
ZWAIT 15-5, 15-25, C-29, C-35
ZWHOMI 15-4, 15-17, C-10
ZX8XL 15-9, 15-44
ZXLX8 15-9, 15-45

INDEX-7 ,

