From: Brian Glendenning
Images, coordinates, confusion
Date: Wed, 18 Mar 92 00:44:27 EST

Late night musings on your note.

First, I think this is the kind of discussion I think we need to get
into for the next stage of the design; thanks for the time you put
into writing it up. You should think about sending it out generally or
discussing it in the morning.

As I understand your points, they are summarized something like:
1. The current system is cumbersome

Absolutely true; for this prototype we didn’t worry at all about being
concise, although we (well, I should say "I") agree that the next
system needs to have more "expressive power."

2. Conceptually complicated

This I think is only partly true. You are becoming frustrated because
you can’t consistently use coordinates the way you’d like to. I think
this is because you are extending the prototype beyond its original
intention. Our explicit goal was to make image classes to allow us to
do a simple clean in a particular way we were thinking of. You are
trying to do something else and are discovering that you don’t have
the infrastructure to do it in a convenient way. We realized when
writing it that there were useful accesses that we weren’t writing.
You broke the prototype, but we knew it would break if extended. Don’t
forget the limited scope we were charged with when we started this
prototype.

I am personally pretty sympathetic to the view, though, that having
three kinds of user-visible coordinates overwhelms the benefits the
additional system gives you. This is something that I suspect you’ll
be able to give us insight into. (Whether or not all types are useful
internally to the class is not relevant to the class user).

3. Not efficient

Guilty; I don’t think we should be worrying about efficiency with this
prototype.

4. Breaks Encapsulation

Not guilty; getting and setting a buffer (scrolling
window/subimage/...) of values no more breaks encapsulation than doing
so with a single value. The only way we can hope to have an efficient
system is to do things exactly like this.

It is certainly true that the exact details of how we want to "buffer"
pixel accesses and tie those pixels to the coordinates needs to be
thought out more completely (I think Bill Cotton’s prototype might
have something to say here).

5. Insufficient communication

I agree. I think part of this can be improved by changes in
organization (for instance, I think all astronomical structures should
be in one "group,” I’ve suggested to Geoff that a reorganization into
three groups - support, structure, user interface - be done.
Furthermore I think everyone should be a member of two groups and
participate (at about a 3:1 ratio) in both groups). The organizational
changes won’t be enough though, and we’ll need to be more explicit in
making our "needs" to other groups known.

One amusing way to avoid surprises might be for an "independent”
person to write the testbed program, or at least to extend it.

6. The image class needs to be rethought

Yes. I still tend to think that what’s happening is that you're
breaking the prototype in unsurprising ways. Nevertheless we’re all (I



presume) in agreement that these classes (like everything) needs to be
rethought out in a serious way for the next stage of the project.

This is fun.

—— s ———— ———————————————————— . T T — = = T o o T ————————————— ——————————— —

From: Lloyd Higgs
Subject: Reply to Mark Holdaway
Date: Wed, 18 Mar 92 16:54:48 EST

Mark Holdaway has compiled a series of comments on perceived deficiences in the
the difficulties that he and Sanjay had when they tried to use them in
implementing a CLEAN procedure. On the whole, his comments are valid, but I
disagree with some of them in detail. My personal response to the five areas of his not

The Coordinate System is Cumbersome:

I think this is a fair comment, but I don’t think that the corollary
is that it (they) should be discarded. Clearly the user should be shielded
almost entirely from Pixel coordinates. Unfortunately, methods using these
coordinates abound and probably should be removed or made private. Certainly
equivalent overloaded methods using ImPixel coordinates should be created.

Mark’s example of the difficulty in accessing reference values and
deltas from the CoordSys object is valid, but was just not provided for in the
prototype class. There it was assumed that details of coordinate conversion
should be shielded from the user -- one gives it a coordinate and asks for
the equivalent coordinate in another system. If one wants efficient methods to
get at detailed parameters within the coordinate-system structure, new methods
are obviously required. I was slightly disturbed that this example looked as
if one were trying to make the "new" system perform exactly as if one was
merely translating AIPS or SDE methods to aips++. We don’t want
to have our choice of new ways of doing things being based entirely on the
way they are done in AIPS. Nevertheless, the comment is valid, and more
discussion between the image-handling and uv-data groups would have resulted
in the provision of more useful methods.

Conceptually Complicated and Uncleanly Divided:

I disagree with the first part of this statement but agree with the
latter. As stated above, Pixel coordinates should be essentially invisible
to the applications programmer (unless he really needs them!).

Coordinate Wish List:

I am not sure whether parameters such as OBSRA and OBSDEC belong
amongst the attributes of a CoordSys class or whether they belong in some
table of parameters attached to an Image. The current contents of a CoordSys
class are nearly divorced from observational parameters; they just define a
transformation from one system to another. The reference coordinates and deltas,
are of course observation related.

The attributes of a CoordSysType object have not been developed
at all in the prototype. Axis contents would have to be either specific
attributes in the class, or implicitly defined from the CoordSysType
identification.

Efficiency versus Encapsulation:

I am sure that trade-offs in this area will have to be made in a
real system. One problem with direct access to the data is, of course,
that one then HAS to deal with Pixel coordinates.

Recommendations:

I agree that more dialog between the image-handling and uv data
groups should have taken place before the prototype was implemented. However,
we must remember that many of the problems arose when the latter group
was asked to implement the CLEAN algorithm, while in the original prototype
design exercise, the former group was going to do this. The methods



implemented were based on a CRC CLEAN exercise carried out by the image-
handling group. Changing horses towards the end of the prototype obviously
caused some of the problems.

I am not sure that it is the ImPixel coordinate system which is
causing the confusion -- I think it is the Pixel coordinate system!

In conclusion, I still think that the basic concepts developed for
Images are sound, but much has to be done in the area of implementing
friendlier methods. Areas where a lot of new thinking is required, however, is
in the area of regions of interest (rectangles, polygons, or bit masks; numbers of the

Lloyd Higgs



