
From: Dave Shone 
Subject: ++Green Bank - Part 2; suggestions for what we should do next 
Date: Fri, 20 Mar 92 11:48:03 EST 

Here are a few suggestions for consideration by the meeting this 
afternoon, although I think we'll want more time to think about these 
and others too (I hope).  Although I've been thinking about this for a 
few days, I've set these thoughts down in a hurry in order that others 
can be made aware of them before the meeting.  In addition, the way 
forward may in part be determined by the deliberations of the steering 
committee, next week. 

Scope of the work to be done 

It still seems likely that we need to define major interfaces in the 
system (principal data classes, persistence methods, parameter 
handling etc.) before the group dissipates at the end of June.  These 
will certainly be refined afterwards, but if a significant amount of 
design remains to be done in these areas, we may have great 
difficulties. 

In order to have confidence in such a design, we must prototype a 
number of areas.  However, a number of areas could usefully be 
prototyped independently, save for their dependence on a fair amount 
of infrastructure such as a user interface, realistic persistent data 
format etc.  This sort of "bootstrapping" problem is inevitable in a 
new system such as aips++, but it represents a major obstacle to 
achieving our goal for June 30. 

I believe we require some sort of infrastructure for prototyping parts 
of the system such as the "logical" data system (YegSet handling, 
calibration etc.).  Other parts (such as persistent data formats and 
associated method, user and graphical interfaces etc.) could be 
designed and prototyped in parallel rather than having to be done 
beforehand. 

YegSets etc., and logical and physical persistence data structures 

I shall briefly digress to describe the basis of what I propose. 

The Green Bank scheme (with appropriate modifications) seems to be the 
logical (in more ways than one) starting point for what we do next, 
but it says little about physical data structures (although a number 
of ideas were discussed, nothing concrete was devised in this area). 
This limitation confers a few benefits though: 

* The data classes can be implemented in a number of ways, 
and thus prototyped using an initial implementation 
which does not support all requirements (such as 
integration times which vary from one baseline to 
another). 

* The eventual implementation might be able to support 
a number of physical data formats. 

These ideas are not new; Don Wells has already advanced the idea that 
his DynaFITS concept could be made to cope with a number of 
different data formats. 

I'm still inclined to regard the objects we wish to manipulate as 
"logical views" of the actual data - we often wish to look at the 
same data in different ways, with different methods.  Whenever 
possible, we should try to do things this way, if only for efficiency, 
e.g., if we wish to form new ways of viewing our data, we don't always 
want to make a new copy of the bits that are common to the different 
views. 

What should we actually do? 



Please bear in mind that these are no more than suggestions; I realise 
that they may provoke a few knee-jerk reactions, and I, too, have 
reservations.  Nevertheless, I think these ideas may be worth 
exploring, given that we have a great deal to do in a short time. 

I suggest that, for the purpose of prototyping the logical 
data system of the Green Bank scheme, we adopt the physical data 
formats and parameter system of an existing system, and in the first 
instance, I propose that should be AIPS.  All I/O should be performed 
using prototype code.  A simple user parameter system would read the 
AIPS Task Data files, and any other inter task communication would be 
handled by the prototype.  Thus, apart from task initiation and user 
parameter setting, the prototype would not depend on AIPS code. 
Certainly, there should be no need to use any AIPS routines in the 
prototype code, although simplifying assumptions might have to be made 
about the data structures. 

The AIPS catalog system might be used to maintain associations between 
objects, and we might implement a number of the object classes in the Green 
Bank scheme as new kinds of binary extension tables.  In addition, we 
must attempt to handle single dish data, most probably as a new 
physical data type. 

In parallel to the prototyping of the logical data system, work would 
continue on the design and prototyping of the "real thing", as well 
as any other parts of the system for which an interface must be 
produced by June 30th.  The DynaFITS concept is something to 
consider, possibly in conjunction with the Cotton-Tody variable-length 
binary tables proposal for conventional FITS.  In addition, for 
ultimate efficiency, we may require a real object persistence mechanism, 
rather than something which does a logical-to-physical mapping.  Only 
prototyping will tell us the answers to these questions. 

Alternatives 

My suggestion is based on the fact that AIPS is a reasonable fit to 
what we wish to do in a prototype, and many of us are fairly familiar 
with it.  However, I believe there are a few alternatives: 

* Use FITS disc files - but this will require more 
work on the parameter system.  We might use parts 
of Tim Cornwell's SDE system for this. 

* Use another system such as Khoros.  This might be more 
acceptable to many, since it is closer to what we 
are aiming for.  However, the learning curve and 
the need to implement new data structures might require 
more work.  I know very little about Khoros; could we 
implement a FITS-like physical data system and build 
the Green Bank prototype on top of this? 

* Use something else - suggestions? 

Dave 


