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1 Introduction 
In a recent AIPS++ design note, I described and advocated an approach to 
the Imaging Model which was based upon linear algebra (Cornwell, 1992). The 
use of linear algebra concepts leads quite naturally to a simple, clear and con¬ 
cise conceptual definition of Imaging Model, together with the services it pro¬ 
vides. Given the apparent attractiveness (at least to me) of this mathematical 
approach, it is natural to ask whether something similar can be done for cali¬ 
bration. If the answer is no, then we still stand to gain by understanding why 
not. 

Before proceeding, I want to emphasize that I am attempting to develop 
a conceptual framework for calibration, not a computational framework. In 
the Imaging Model, this meant that although linear algebra was invoked as 
the concept behind Imaging Model, it would only be in rare simple cases that 
straightforward linear algebra (such as matrix multiply or matrix inverse) would 
actually be used for the computations. In general, one would use the short cuts 
(such as the circulant approximation for convolution) for most computations 
that we use now. Similarly in this discussion, the emphasis is on concepts 
rather than computations. 

2 Summary of the recommended Imaging Model 
The logic in the first memo leads to the idea that the Imaging Model be regarded 
as an class representing a linear equation AI = D where I is the sky brightness, 
D is the data and A is an operator (usually a matrix) which converts sky to 
data. The only services required of the Imaging Model are: 

invertable returns true if the linear equation is invertable, 

invert returns A"1! for given /, 



predict returns AI for given /, 

solve returns APwD for given £>, optionally normalized by the diagonal el¬ 
ements of APwA (if AFwA is diagonal, the normalized version is the 
solution to the normal equation), 

residual returns (.A/ — D)Tw{AI — D) and ATw;(A/ — D) for given / and D, 
optionally normalized by the diagonal elements of ^wA, 

observe returns AFwAI for given J, optionally normalized by the diagonal 
elements of AFwA, 

Hdiagonal returns the diagonal elements of AFwA. 

Bob Hjellming pointed out the utility of the first two services for simple 
well-conditioned imaging problems like single dish processing. In many cases, 
however, A is singular and so a non-linear algorithm must estimate the sky 
/ using some extra information. In doing so it calls upon the services of the 
Imaging Model to interact with the data. 

One could imagine defining a special Imaging Model such that the matrix 
A is supplied explicitly in the constructor. These various services would then 
be realized by actually calling the relevant Math routines. In view of some 
misunderstanding of the first memo, I should emphasize that only in the rare 
simple cases will any of these operations be implemented using simple matrix 
algebra. In general, special properties of the matrix A must be used to make 
the computation feasible. A particular example which should reassure those 
who are nervous of this abstract formulation is that programs like APCLN will 
have nearly all the same basic operations but arranged in a slightly different 
way. There should be no efficiency loss in adopting my proposed definition of 
Imaging Model. 

In current AIPS+-1- terms, D is a YegSet and / is an Image. 
At this point it is worth restating just why we have a need for the Imaging 

Model. The answer is that we want to decouple some aspects of deconvolution 
algorithms from the details of the data. In this proposal, deconvolution algo¬ 
rithms interact with data only through the services provided by the Imaging 
Model. Hence new deconvolution algorithms can be introduced easily without 
having to explicitly write a version for each type of Telescope. If we accept 
this goal for deconvolution, the next obvious step is to see whether it can be 
extended to calibration. This really leads to two quite separate questions: first, 
can we abstract the calibration of Telescopes into an equation part (analogous to 
Imaging Model) and a solver part (analogous to the deconvolution algorithm)? 
and second, can we abstract the calibration of a Telescope into a class which 
can be called upon in selfcalibration? I address these two questions in turn. 



3    Splitting Calibration 
My discussion of Imaging Model could be applied to any linear system of equa¬ 
tions. Is calibration linear? I can think of three levels of difficulty in calibration: 

Linear Single dish calibration often involves simple ratios of averaged data 
points and often can reasonably be formulated as linear algebra. 

Mildly non-linear The ANTS0L approach to interferometer calibration is 
formally non-linear since it solves an equation like: 

9i9j = Xij (1) 

However, in practice, this can be solved quite easily using simple gradient 
search techniques since the gains gt are often roughly the same scale. 

Strongly non-linear A nice example arises in global fringe fitting in VLBI 
where strange heuristics are needed to get an initial guess for the least- 
squares algorithm which is used to solve for antenna-based phases and 
phase derivatives. While the least-squares algorithm is mildly non-linear, 
obtaining the initial guess is tough and highly non-linear. Another exam¬ 
ple from VLBI is the fully general polarization case. 

Hence my conclusion is that calibration can range from cases where linear 
algebra works, to cases where full non-linear optimization is required. 

Extending the linear equations used in Imaging, we could say that the ob¬ 
served data D is a function of a set of unknown parameters P and some "correct" 
data D. We then have that: 

D = C(D,P) (2) 

where C is now a general non-linear function. Given the parameters P, we 
can predict the data perfectly. The two interesting problems are, first, the 
inverse problem of deriving P from knowledge of the functional form of C, 
measurements of the data vector D and a prediction of D perhaps from the 
Imaging Model D = AI, and, second, deriving D for real observations. 

Note that we could introduce the Imaging Model explicitly by writing, in¬ 
stead, a relation involving the image I and the matrix A: 

D = C(AI,P) (3) 

However, I think that this is not worthwhile at this point and so for the 
moment I will continue with writing D for AI. I will return to this point later 
when I discuss algorithms in more detail. 

Turning to the issue of how to solve equations of this type, we can define a 
X2 term to be minimized in order to derive P: 



X2 = (C(D, P) - D)Tw(C(D, P) - D) (4) 

where w is inverse of the covariance matrix of errors. If the errors are indepen¬ 
dent between data points, then w is diagonal with elements: 

wi,i - -o (5) 
°i 

We consider an approach to solving for the P parameters based upon the 
idea of optimization: many iterative algorithms update an estimate of P based 
upon x2 and its gradient with respect to P: 

^ = 2^f)T
w(C(B,P)-D) (6) 

As before, we can require the services of the Telescope model to calculate 
this term: 

1. Use a service predict to find C(D,P)T, 

2. Subtract D to get C(D, P) - D, 

3. Use a service solve to get: 

^)T»(C(5,P)-D) (7) 

So far, this is all quite obvious but is it helpful? One could imagine feeding 
this Telescope Model to a non-linear least-squares Solver in the same way that 
Imaging Model was fed to an Imager. I can think of several objections to this 
scheme. 

1. Non-linear optimization is much trickier than linear optimization and so 
it often pays to use heuristics to help the solution along. Another way of 
seeing that this must be true is to note that for a general function C(D, P) 
all the derivatives will be important whereas for the linear functions used 
in the Imaging Model, the terms beyond the second derivative ATA are 
irrelevant (actually zero). 

2. Non-linear least-squares problems are often feasible only if the initial guess 
is sufficiently close to the true global minimum (since then derivatives 
higher than the second can be neglected). Often, however, getting an 
initial guess is the hardest step. An example in VLBI global fringe fitting 
was described above. 



3. Another difference from the Imaging Model is in the dimensionality of P. 
In the Imaging Model, there may be 105 — 107 pixels and so A could have 
up to 1014 elements. In calibration, the number of free parameters could 
be very small (even as small as one for an amplitude scale) and so one could 
imagine using second derivative information, something that was assumed 
to be impossible for Imaging and may be vital in some particularly difficult 
cases of calibration. 

The overwhelming conclusion is that the scheme I proposed for the Imaging 
Model cannot be easily extended to non-linear functions such as that found in 
calibration. The answer to the first question ("can we abstract the calibration 
of Telescopes into an equation part and a solver part?") is No. 

4 Calibration as a service 

I now turn to the second question: "can we abstract the calibration of a Tele¬ 
scope into a class which can be called upon in selfcalibration?". 

For Imaging we need calibrated data. For this we require a service apply of 
Telescope Model which returns D = C~1(D,P). The instrumental parameters 
P are internal to a Telescope Model and are estimated using a service solve 
which solves Dcai = C(D, P) where Deal is the data set observed for calibration. 
Presumably gain numbers are stored in things like tables inside the Telescope 
Model, but that does not concern us here. 

In summary, the Telescope Model appears to be a non-linear equation D = 
C(D, P) in the same way that Imaging Model is a linear function D = AI. The 
services of Telescope Model are: 

apply returns the calibrated data D = C~1(D,P), 

solve changes the internal state to P found by solving (in some way) Dcai = 

The inverse in the apply need not be a formal inverse. 

5 Discussion 

Is this a useful abstraction of calibration? Imaging Model is useful principally 
because we know that we will call different types of Imaging Model from various 
types of Imagers. Similarly, we will call Telescope Model from self-calibrating 
Imagers so having a concise description of calibration helps considerably. Per¬ 
haps more important however is the conceptualization of calibration as a non¬ 
linear machine. Solving for calibration changes the internal state of the machine, 
and applying calibration invokes the machine on some data. 



I argued above that calibration could be split into linear, mildly non-linear 
and fully non-linear cases. This means that it would be a good idea to develop 
a facility in AIPS-I-+ for these forms of optimization. It would be best to do 
this now, ahead of any significant work in implementing calibration. 

To summarize the net effect of Imaging Model and Telescope Model, I can 
now describe the general structure of the deconvolution and self-calibration 
procedures. For deconvolution alone, algorithms look like this: 

1. Select an initial model / for the sky, 

2. Use the residual service of Imaging Model to find a residual image APw^AI- 

3. Use the residual image in some algorithm-dependent way to update the 
current estimate of /, 

4. Return to step 2 unless convergence is obtained. 

For deconvolution/self-calibration, algorithms will follow the following gen¬ 
eral pattern: 

1. Select an initial model / for the sky, 

2. Use the predict service of Imaging Model to predict the data D, 

3. Use the solve service of Telescope Model to find the parameters P, 

4. Use the apply service of Telescope Model to correct the data:   D = 
C-\D,P), 

5. Use the residual service of Imaging Model to find a residual image AFw^AI- 

6. Use the residual image in some algorithm-dependent way to update the 
current estimate of /, 

7. Return to step 2 unless convergence is obtained. 

Variants on this exist. For example, the initial model may be generated 
using an approximately calibrated dataset. Furthermore, steps 3 and 4 may 
involve many cycles of a deconvolution procedure. 

In the terminology introduced by Holdaway and Bhatnagar, both deconvo¬ 
lution and deconvolution/self-calibration algorithms are of the class of Imagers. 

If AIPS-I—\- decides to use this formulation of Telescope Model (which is 
more or less that selected at Green Bank: Cornwell and Shone, 1992) the next 
concern is to build the internals for many different types of Telescope Models. 
The interesting questions then become ones of sharing class designs and concepts 
amongst different Telescopes.   It is this step which has consumed much time 



and threatens to lead one into the old mistake of trying to design a very general 
model which can then be specialized to particular cases. I think that the answer 
to this temptation is just to design fairly simple Telescope Models specialized to 
particular Telescopes. Too much agonizing about a putative common calibration 
scheme will lead to paralysis. 

Finally, I would like to discuss how this can be applied to very difficult 
imaging problems in which the calibration intimately affects the way the imag¬ 
ing is performed. An example of such a problem is non-isoplanatic selfcalibra- 
tion/deconvolution. In such cases we can assign the Imaging Model calibratable 
parameters P so that we have the matrix equation: 

D = A(P)I (8) 

The Telescope Model is therefore responsible for creating an Imaging Model 
with estimates for some parameters. In the case of non-isoplanatic imaging, 
these parameters would be the phases of various parts of the sky at various 
times. The imaging proceeds thus: 

1. Select an initial model I for the sky, 

2. Select an initial Imaging Model A(P), 

3. Use the predict service of Imaging Model A(P) to predict the data D, 

4. Use the solve service of Telescope Model to find the parameters P, 

5. Generate a new Imaging Model A(P), 

6. Use the apply service of Telescope Model to correct the data:   D = 
C-\D,P), 

7. Use the residual service of Imaging Model A(P) to find a residual image 
A(P)Tw{A{P)I - D), 

8. Use the residual image in some algorithm-dependent way to update the 
current estimate of /, 

9. Return to step 2 unless convergence is obtained. 

In this approach calibration yields two types of parameters, those indepen¬ 
dent of imaging (e.g. flux scale, overall positions, etc.) and those involved in 
imaging (phases of patches of the sky as a function of time). 
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