
Note 157; The AIPS~ FFTServer Class
How to use the FFTServer class - definitions and tutorial

Anthony G. Willis

Copyright © 1993 AIPS++

Chapter 2: Frequency Domain Data Structures

1 Introduction

The AIPS++ FFTServer class provides application programmers with a very flexible tool for
doing one, two and three dimensional Fast Fourier Transforms. This document describes the public
methods for this class and how to use them.

This class does in-place Fourier transforms, but methods are provided which save the input array
and create a new output array for those programmers who do not want their input data destroyed.

The actual FFT routines used by the FFTServer tool are written in FORTRAN and use the
widely available public domain NCAR FFTPACK code available from Netlib.

2 Frequency Domain Data Structures

The final goal of the radio astronomer is usually to obtain some type of image of a piece of the
sky. When we Fourier Transform an image composed entirely of real numbers (an example would
be an image of the Stokes parameter I) to the frequency, or UV domain, we find that the UV grid
is Hermetian: i.e. a complex data point at -U, -V is the complex conjugate of the data point at +U,
+V. Consequently we only need to sample half the UV grid in order to obtain information about
the entire UV domain. However, if we have a complex image (e.g. the Stokes combination Q + i
U) its Fourier Transform is not Hermetian, and we must sample the full UV domain.

2.1 Hermetian UV grids

Since we only need to sample half the UV domain in order to obtain complete information about
the properties of a hermetian UV grid we store the data for a Hermetian grid differently from that
of a non-Hermetian UV grid. This section describes the layout of a Hermetian UV grid that is
currently used by the AIPS++ classes FFTServer and GridTool. We will describe the format using
a 2-dimensional UV grid as an example. This grid will be transformed to create a real image of
size M x N. The format of the uv grid is shown in Figure 1.

Chapter 2: Frequency Domain Data Structures

R I R I R I
N/2-1

4

v»o

NyquinV
-N/2

0

0

0

0

U-0 M/2-1 Nyquift U (M/2)

u
Figure 1: The UV Grid

The U frequency values are sampled over the range U = 0toU = M/2. Here M/2 is the Nyquist
frequency in U. Since each sample point has both a real and an imaginary value, we require M /
2 + 1 complex numbers along this axis, or2*(M/2 + l) floating point numbers consisting of
real/imaginary pairs. We do not need to sample in the range - (M /2-l)to-l because of the
hermetian symmetry of a uv frequency domain containing Fourier components of a real image.

The V frequency values are sampled over the range V = - N / 2, ..., -1, 0, 1,..., N /2 - 1. Here,
- N / 2 is the Nyquist frequency in V. Therefore we have a total of N sample points along this axis.

The dimensions given above show that if, for example, we are doing an FFT to create a 1024
x 1024 real image, the required size of the uv grid is actually 1026 x 1024. However, as the figure
suggests, we can split the grids up into two sub grids, one containing U data points up to M /2 -1,
and a separate array containing the Nyquist U point at M / 2. That way most of the uv domain
data can be carried around in an array which is the same size, for example 1024 x 1024, as that of
the final real image.

Although Figure 1 formally represents a 2 dimensional frequency grid, note that the frequency
components of a 1 dimensional complex vector in u space can be represented by by the row of data
situated at V = 0. A three dimensional cube with third dimension size Z, would require a series of
grids like that shown for each of the sample points -Z / 2, ..., -1, 0, 1,..., Z /2 - 1.

Normally, any complex arrays that you create from sampled data should not have any values at
the Nyquist frequency. If you do have data at the Nyquist frequency, this is an indication that you
probably have not set up your data sampling interval correctly. For example, if you are creating

Chapter 2: Frequency Domain Data Structures

uv grids with the gridtool, it will warn you when data is placed in the uv grid at the Nyquist
frequency.

An object of class FFTServer contains a private internal array which is used to store the extra
column of Nyquist data. However, we can still transport the Nyquist data along with the main
body of uv data by storing the complex data in a "packed" format. This "packed" format makes
use of the fact that the imaginary data elements at zero frequency and at the Nyquist frequency
all have value 0. Thus, for example, in the case of our two dimensional uv plane, we can store the
real values of the data at (Nyquist U, 0) in the imaginary location at frequency (0,0) and we can
store the real value at (Nyquist U, Nyquist V) in location (0, Nyquist V). The off-axis data points
along the U = 0 and U = Nyquist axes have conjugate symmetry so we can store the (U = Nyquist,
V > 0) data in the locations (U = 0, V > 0), but later compute the overwritten data values using
conjugate symmetry properties. By doing so, we contain all necessary complex data information
for the range 0 to Nyquist, in an array the same size as the transformed real image. The packing
operations for a two dimensional array are illustrated in Figure 2.

NnriatV

ffl

"" o*

)

0_

o"

Njqnfct 17

u
Hguxe 2: Packing the UV grid

The FFTServer tool expects to get complex frequency data in packed form and unpacks this
data just before performing a complex to real transform. The Nyquist data are unpacked and stored
in the internal private Nyquist array. This array, along with the unpacked main array containing
the majority of the uv data, is passed to the low level FORTRAN routines which perform the fft.
The unpacking operations for a two dimensional matrix are illustrated in Figure 3.

Chapter 2: Frequency Domain Data Structures

NjrqwtV

v -

Nyq^lV

■». t- 5

o^ J||

7"

2

Nj^DMt U NyqnMU

Hgure 3a: Uiq>ack - Step 1

U

Figure 3b: Unpads - Step 2

Most FFTs expect to get frequency data in a form something like 0, 1, ..., Nyquist, ..., -1. Our
uv grid (Figure 1) has its V frequencies ordered as Nyquist, ..., -1, 0, 1, ..., Nyquist - 1. So, if
we want to do a Fourier transform from the uv frequency domain to the image domain, we must
reorder the uv grid shown in Figure 1 by flipping the top and bottom halves of the main array and
the Nyquist array. This operation is done by the exchangeUV method described in Chapter 5 and
shown in the diagram below.

R I R I R I

NyquiftV
-N/2

- —

t
_ & —

/

—

i

&

U-0 M/2-1 Nyqui* U (M/2)

u
Figure 4: Exchange UV

The real image that emerges from an FFT will have the point that defines the phase reference
position situated in the lower left hand corner of the image. However, since radio astronomers
normally define the phase reference position to be situated in the centre of the field, we must flip
the quadrants of the image that emerges from the fft to obtain a picture that makes sense to most
of us. This flip Image method which implements this operation is illustrated for the 2 dimensional
case in Figure 5. Our particular sequence of operations means that the phase reference pixel in

Chapter 2: Frequency Domain Data Structures

the image will be located at point M / 2 +1, N / 2 + 1, or 513, 513 for an image with 1024 x 1024
points.

Figure S: Flip Image

So the steps that occur inside the fft method for going from the frequency domain to the image
domain are

- unpack uv frequency data
- exchange the uv data to arrange frequencies in correct order
- do fft from uv to image domain
- flip image that comes out of fft

If we want to do an FFT from the image domain to the frequency domain we perform these

steps in reverse order.

- flip image so phase reference point is first point in to fft
- do fft from image domain to uv frequency domain
- exchange the uv data to arrange frequencies with zero frequencies in

centre of the uv grid
- pack uv frequency data

2.2 Pull Complex UV grids

In the case of a complex UV grid without Hermetian symmetry, we must sample and store data
covering the full UV domain, not just half of it. In this case, where we will have a final complex
sky image with M x N complex numbers, the FFTServer expects to get a UV grid set out as shown
in the following figure:

Chapter 3: Base Class Methods

N/2-1

NypfeV
-N/2

-M/2
NrpteU

U-0
U

M/2-1

complex UV grid

If we flip the quadrants of this UV grid, then the data in U will be ordered from 0 ... M/2
- 1, Nyquist, ... -1 and the data in V will be ordered from 0 ... N /2 - 1, Nyquist, ... -1. As
we discussed in the previous section this is the sequence expected by most FFT algorithms. Then
we can perform a full complex <> complex FFT to go to the image domain. The complex image
that comes out of the FFT has its phase reference position situated in the lower left hand corner
of the image just as did the real image described in the previous section. So we must again flip
the quadrants of the image to obtain one with its phase reference point at the centre. So the steps
that occur inside the full complex fft method for going from the frequency domain to the complex
image domain are

- flip UV grid so zero frequency data are at the origin
- do fft from complex uv to complex image domain
- flip complex image that comes out of fft

If we want to do an FFT from the complex image domain to the complex frequency domain we
perform these steps in reverse order.

- flip complex image so phase reference point is first point in to fft
- do fft from complex image domain to uv frequency domain
- flip the quadrants of the uv data to arrange frequencies with

zero frequencies in centre of the uv grid

3 Base Class Methods

Chapter 3: Base Class Methods

3.1 Class FourierTool

The FFTServer class inherits from a base class called FourierTool. FourierTool is the class
which contains the Nyquist data array used in the case of Hermetian UV grids and has methods
to handle this array. I suggest that any classes which handle Fourier domain data inherit from
this base class so that they have predefined methods to handle the Nyquist array. At present
the FFTServer and GridTool classes inherit from this base class. A diagram of the relationship
between the FourierTool, FFTServer and GridTool classes is shown below.

The public class methods of FourierTool allow the apphcations programmer to manipulate the
Nyquist U data that are stored inside the Nyquist array that is internal to the class. The functional
relationships of the FourierTool class are illustrated in the following diagram.

Class FourierTool

Chapter 3: Base Class Methods

3.2 FourierTool Methods

This section gives a detailed description of how to use the methods defined in the FourierTool
base class. Examples of using these methods are shown in Chapter 6.

• void pack(Array<T> ft uv.grid);

• void pack(Array<S> ft uv.grid) ;

where T can be one of float or double, and S can be one of Complex or DComplex. (We actually
have two overloaded templated pack functions, but obviously, to the applications programmer they
look like one function.)

This operation takes the Nyquist data stored internally inside an FourierTool object and stores
it in the uv array for transport elsewhere.

• void unpack (Array<T> ft uv.grid) ;

• void unpack (Array<S> ft uv.grid) ;

where T can be one of float or double, and S can be one of Complex or DComplex. This
operation extracts the Nyquist data packed into a uv array, and stores it internally inside the
FourierTool object. It then overwrites that part of the uv grid which was being used to store the
Nyquist data with the appropriate data from the complex conjugate part of the uv grid.

The figures in the previous chapter illustrate the packing and unpacking operations in a graphical
format.

• void reset();

This method resets the internal Nyquist array to have a value of zero.

• const Array<T> ft extractNYFQ ;

• const Array<S> ft extractNYCQ;

where T can be one of float or double, and S can be one of Complex or DComplex. These
methods copy the internal Nyquist array into an external array that can be viewed or manipulated
by the programmer.

• const Array<T> ft insertNYFQ ;

Chapter 4: General Purpose Methods

• const Array<S> ft insertNYCO;

where T can be one of float or double, and S can be one of Complex or DComplex. These
methods copy an externally defined array of data into the the internal Nyquist array. They can be
used to insert a Nyquist array back into a FFTServer onject after the array has been modified for
some reason.

• void expand (Array<T> ft) ;

• void expand(Array<S> ft) ;

where T can be one of float or double, and S can be one of Complex or DComplex.

These methods allow you to attach the contents of the internal Nyquist array on to the end of
an unpacked UV array so that the entire range of data for frequencies in U from 0 to Nyquist are
stored in one array. The U dimension of the array will be increased by 2 for the case where T is
either float or double, and by 1 for the case S is either Complex or DComplex.

Note that in order to perform this operation an internal temporary array whose size is that of

the final output array will be used.

• void shrink (Array<T> ft) ;

• void shrink(Array<S> ft) ;

where T can be one of float or double, and S can be one of Complex or DComplex.

These methods take an array which contains Nyquist data at the end of the U dimension, copy
the Nyquist data into the internal Nyquist array, and then delete the Nyquist data from the input
array. The U dimension of the array will be decreased by 2 for the case where T is either float or

double, and by 1 for the case S is either Complex or DComplex.

Note that in order to perform this operation an internal temporary array whose size is that of

the final output array will be used.

An expanded array of this type should NOT be used as an initializer for the FFTServer class.

4 General Purpose Methods

Chapter 4: General Purpose Methods 10

This chapter describes the FFTServer methods which will most likely be used by the typical
applications programmer. Some more esoteric methods which are not likely to be used very often,
or are called internally by the methods described here, are discussed in the next chapter.

• FFTServerQ;

FFTServer<T, S> (Array<T> ft) ;

FFTServer<T, S> (Array<S> ft);

FFTServer<T, S> (IPosition ft);

where T can be one of float or double, and S can be one of Complex or DComplex. Not all
combinations are possible: if T is float then S must be Complex. If T is double then S must be
DComplex.

These are the constructors for the class. The FFTserver must know what size array it is working
with so that an internal array for storing Nyquist data is set up with the correct dimensions. Once
you have initialized an FFTServer for an array of a particular size, you can use the same FFTServer
on other arrays of the same size without having to reinitialize. The constructor also initializes an
internal work array with sine and cosine values. The initialization of the work array allows you to
save some cpu time if you are going to do a series of one-dimensional FFTs on vectors that are
all the same size. The array type used for the initialization can be any of Vector, Matrix, Cube,
or generic Array. You can also initialize the FFTServer by means of an IPosition vector which
contains the shape of the input or output real image.

Here is a simple example of creating an FFTServer object.

Matrix<float> abc(128,128);
FFTServer<float,Complex> fft(abc);

This example created an object called fft which will handle fits for any real 128 x 128 two
dimensional array or any complex 64 x 128 matrix.

An equivalent initialization could be done by

MatriKf loat> abc (128,128) ;
IPosition Shape(abc.ndimO);
Shape = abc.shape();
FFTServer<float,Complex> fft(Shape);

The next example set up an FFTServer object for handling a Complex array.

Chapter 4: General Purpose Methods 11

Matrix<Complex> abc(128,128);
FFTServer fft_complex<float,Complex> (abc);

This example creates an object called fft.complex which will handle ffts for any 128 x 128
two dimensional Complex array. (Since the internal initialization of the FFTServer mostly employs
real, rather than complex numbers, this initialization will also allow you to transform 256 x 128
real arrays)

• "FFTServer();

The class destructor. It is currently trivial.

• void fft(Array<T> ft data, int dir) ;

This function performs in-place real to complex and complex to real fit's, depending on the
value of dir.

'dir > 0' Real to complex fft. The result is returned in data, data is organised in real and
imaginary pairs after the transform.

'dir ■ 0' Complex to real fft, with no scaling. Initially, data is organised in real/imaginary
pairs. Real result is returned in data.

'dir < 0' Complex to real fft, with scaling. Initially, data is organised in real/imaginary
pairs. The real result is returned in data. The scaling factor is 1/(number of
elements in data).

In this transform, all data are stored in arrays of type float or double. If the data actually
represent complex numbers, then each complex number pair is stored in the array in the sequence
real followed by imaginary.

• Array<S> rcf ft (Array <T>& rdata) ;

This member performs a real to complex fft. The real data is provided in the array rdata, which
is preserved. The result is returned in a complex array. This creates a new array containing the
complex output. The original real input image is preserved.

Here is an example using this method.

Matrix<float> show_how_mat(512,512); show_how_mat = float(0.0);

Chapter 4: General Purpose Methods 12

showJiow_mat(256, 256) = 10.0; // assign some data to matrix
show_how_mat(299, 349) = 20.0; // show_how_mat
FFTServer show_fft<float,Complex> (show.how.mat);

// initialize an FFTServer object
// show.fft

Matrix<Complex> show_how_uv_mat * show_fft.rcfft(show_how_mat);
// do real to complex fft

show_how_uv_mat is a complex array of size 256 x 512, containing the uv data in a packed
format.

Since rcf ft works with arrays, the same type of operator will work with either vectors, matrices
or cubes.

Vector<float> show_how_vec(512); show_how_vec ■ float(0.0);
show_how_vGc(256) =10.0; // assign some data to vector
show_how_vec(299) =20.0; // show_how_vec
FFTServer show.fft_vec<float, Complex> (show.how.vec);

// initialize an FFTServer object,
// show_fft_vec

Vector<float> show_how_uv_vec = show_fft_vec.rcfft(show_how_vec);
// do real to complex fft

show.how_uv_vec is a complex vector of size 256, containing the frequency data in a packed
format. For a one-dimensional vector, this means that the real part of the first complex point is
the real value for frequency 0, and the imaginary part of the first complex point is actually the real
value for the Nyquist frequency.

• Array<T> erf ft (Array <S> ftcdata, int do.scale = -1) ;

This member does a complex to real fft. The complex data is provided in the array cdata,
which is preserved. A new array containing the real output is created.

Here is an example of this method.

Natrix<Complex> show_how_cmplx(256,512); shov.hov.cmplx = Complex(0.0,0.0);
shov.hov.cmplx(128, 256) = Complex(10.0, 0.0);

// assign some data to matrix show_how_cmplx
show.how_cmplx(149, 349) = Complex(20.0,10.0);

// ditto
FFTServer show_fft_cmplx<float, Complex> (shov.how.cmplx);

// initialize an FFTServer object, shov.fft
Matrix<float> show.how.image = show_fft_cmplx.crfft(show_how_cmplx);

Chapter 4: General Purpose Methods 13

// do complex to real fft

show_how_ image is a real matrix of size 512 x 512 containing the image.

Since erf ft works with arrays, the same type of operator will work with either vectors, matrices
or cubes.

Vector<Complex> show_how_vec(256); show.how.vec = Complex(O.O);
show_how_vec(128) = Complex(10.0,10.0);

// assign some data to vector shov.hov.vec
show_how_vec(58) = Complex(20.0,5.0);

// ditto
FFTServer show_fft_vec<float, Complex> (show_how_vec);

// initialize an FFTServer object,
// show_fft_vec

Vector<float> show_how_vector = show_fft_vec.crfft(show_how-vec);
// do complex to real fft

show_how_vector is a real vector of size 256.

By default, erf ft will normalize the data before returning it. The scaling factor is l/(number
of elements in data). If you do not wish to have automatic scaling, then you must call erf ft, with
a second integer parameter having a value >= 0, eg

Vector<float> show_how_vector = show_fft_vec.crfft(showJiow_vec, 0);

If you are making maps from a uv grid, you would want to avoid this automatic scaling since it is
likely that the sum of the weights associated with the uv grid will not correspond to the automatic
scaling factor defined above.

• void exf f t (Array<S> ft data, int dir);

This method does n dimensional (well, up to 3 dimensional) complex to complex in-place FFTs.

'dir > 0' complex to complex forward (image to UV domain) fft. The result is returned in
data.

'dir = 0' complex to complex backward (UV domain to image) fft, with no scaling.

'dir < 0' complex to complex backward (UV domain to image) fft, with scaling. The scaling
factor is 1/(number of elements in data).

Chapter 4: General Purpose Methods 14

See Chapter 6 for examples of doing complex to complex FFTs and the relationship between
complex images and real images.

• void nyfft(Array<T> ftdata, int dir) ;

Real to complex and complex to real fft in n-dimensions. The nyquist data is carried in the last
two columns of data. So if the image size is X * Y * Z, the size of data must be (X + 2) * Y * Z.
See the description of method fft for an explanation of the dir parameter.

Since this method expects that Nyquist data is explicitly stored in the last two columns, no
packing or unpacking of Nyquist data is done.

• float scaleFac tor (void) ;

Return the scale factor used in the most recently performed complex to real fft.

float scale.value = show_fft_cmplx.scaleFactor();

• float wtsum(Array<T> ft) ;

This method sums up the values in a weights array created by the GridTool, and associated
with a Hermetian UV grid. Then proper scaling of an image produced from the FFT of a gridded
uv plane can be done.

Matrix <float> image(1024,1024), wts(513,1024);
FFTServer fft<float, Complex> (image);

grid uv data into into image with aid of gridtool, etc
the gridtool will assign weight values to the

weight array, wts
fft.fft(image,0); // FFT uv plane to image domain

// but don't do default normalization
// scaling is done by dividing
// by sum of weights

float sum_of.weight = fft.wtsum(wts);
image = image / sum. of .weight; // normalize fft

• float cxWtsum(Array<T> ft) ;

This function sums up the weights associated with a full complex grid for FFT normalization.

Chapter 5: Special Purpose Methods 15

• void uvassign(Array<T> ft, Array<float> ft)

• void uvassign(Array<S> ft, Array<f loat> ft)

This method copies uv grid weights associated with a Hermetian UV grid on to a uv grid in
preparation for doing a real to complex FFT for an antenna pattern. Packing is also done.

image = 0.0;
fft.uvas sign (image, wts); // copy wts array to image array
fft.f ft (image, 0); // do the fft
image = image / sum. of .weight; // normalize by sum of weights

... voila, an antenna pattern

• void cxUVassign(Array<S> ft, Array<float> ft)

This method copies uv grid weights associated with a full complex UV grid on to a uv grid in
preparation for doing a complex to complex backward FFT for an antenna pattern.

5 Special Purpose Methods

The following methods are public members of the FFTServer class, but are unlikely to be used
by the casual programmer. If needed, they have normally been called internally by functions such
as erf ft.

• void fliplmage (Array <T> ft image, int image.type=f f tparms: :DEF_INAGE.TYPE);

• voidflipImage(Array<S>&image, int image_type=ff tparms: :DEF_IMAGE_TYPE) ;

For an n-dimensional image, divide the image into 2~n equal parts and swap each of these parts
with that which diametrically opposes it. So, for a matrix, flip quadrants, for a cube, flip octants,
etc. If image_type is not equal to fftparms::DEFJMAGE_TYPE (0) then the array "image" is
assumed to be carrying two additional columns for nyquist data.

• void exchangeUV (Array <T> & image) ;

• void exchangeUV (Array<S> & image);

Exchanges column uv locations for FFT so that data fed to FFT are in frequency order 0 ...
N/2 -1, Nyquist ... -1.

Chapter 6: Some Detailed Examples 16

6 Some Detailed Examples

Here is a sequence of one dimensional ffts that use the methods described above.

cout«"test in-place 1-d fft"«endl;
Vector<float> oned(16); oned=float(0.0); // declare and initialize

// a real vector of size 16
oned(8) = float(1.0); // assign value 1 to central

// element
cout«"initial 1 d real array "«endl;
cout«oned«en<il;

FFTServer testld<float, Complex>(oned); // initialize fft server;
testld.fft(oned, 1); // do real to complex fft
cout«"fft,d 1 d complex array "«endl;
cout«oned«endl;

testld.fft(oned, -1); // do reverse complex to real fft
cout«"fft,d 1 d final real array "«endl;
cout«oned«endl;

cout«"test non in-place 1-d fft"«endl;
Vector<Complex> resultId = testld.rcfft(oned);

// do real to complex fft
cout«"fft,d 1 d complex array "«endl;
cout«result ld«endl;
testId.unpack(resultId); // Unpack Nyquist data
cout«,,fft,d 1 d unpacked complex array "«endl;
cout«result ld«endl;
Array<Complex> NyquistC = testId.extractNYCQ;

// Extract Nyquist data
cout«"fft,d 1 d Nyquist data "«endl;
cout«NyquistC«endl; // display it

testId.pack(resultId); // repack the Nyquist data
Vector<float> reverseld = testld.erfft(resultId);

// do complex to real fft
cout«"fft,d 1 d real array "«endl;
cout«reverseld«endl;

This code produces the result

test in-place 1-d fft
initial 1 d real array
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]

fft'd 1 d complex array

Chapter 6: Some Detailed Examples 17

[1, 1, 1, 0, 1, -0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0]

fft'd 1 d final real array
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]

test non in-place 1-d fft
fft'd 1 d complex array
[(1, 1), (1, 0), (1, -0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0)]

fft'd 1 d unpacked complex array
[(1, 0), (1, 0), (1, -0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0)]

fft'd 1 d Nyquist data
C(l, 0)]

fft'd 1 d real array
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]

The following code shows some manipulations of a 2 dimensional array

#include <iostream.h>
♦include <aips/FFTServer.h>
#include <aips/Complex.h>
#include <aips/ArrayIO.h>
main()
//
// test 2-dimensional Fourier transform stuff
//
{
try {
Matrix<float> array(8,8); array=0; // declare an array in the

// image domain
array(2,2) =1.0; // stick in some point sources
array(3,3) = 1.0;
array(4,4) = 1.0;
cout «,,initial test array\n";
cout«array«endl;cout.flush(); // display initial array
IPosition Shape(2);
Shape = array.shape();
FFTServer<float, Complex> testfft(Shape); // initialize an FFTServer object
testfft.fft(array,1); // FFT to UV domain
cout «"fft'd array in packed formXn";
cout « array «"\n"; // display UV array in packed form
testfft.unpack(array); // get UV array into unpacked form
Matrix<float> Nyquist = testfft.extractNYFQ; // Extract Nyquist data
cout «"Nyquist array\n";
cout«Nyquist«endl;cout.flushO; // display Nyquist data
cout «"unpacked array\n";

Chapter 6: Some Detailed Examples 18

cout «array«endl; cout.f lush() ;
testfft.expand(array);

cout «" expanded array\n";
cout « array «endl;cout.flush();
testfft.nyfft(array,-1);

cout «"output from nyfft (image domain)Xn";
cout « array «endl;cout.flush(); //

//
testfft.nyfft(array,1); //

// display unpacked array
// add Nyquist data to end of
// unpacked array

// display expanded array
// use FFT nyfft method to
// transform expanded array
// back to image domain

display result of nyfft
note 2 extra rows

fft back to Fourier domain

testfft.shrink(array);

cout <<"shrunken array\n";
cout «array«endl; cout. f lushQ ;
testfft.pack(array);
cout «"packed array\n";
cout «array«endl; cout.f lushQ ;
testfft.fft(array,-1);

cout «,lreverse fft'd array\n";
cout « array «"\n";

catch (AipsError x) <
cout « "Caught exception at line " « x.throvnLineQ
« " from file " « x.thrownFileQ « endl;

cout « "Message is: " « x.getMesgO « endl;
} end.try;

// delete Nyquist data from end
// of unpacked array

// display shrunken array
// pack array for reverse FFT

// display packed array
// FFT back to image domain with
// scaling

// display final result; this better
// equal what we started with!

Running this program should produce output similar to that which follows. (NOTE: the output
has been slightly idealized; numerical roundoff in particular implementations of an FFT will result
in actual runs producing small numbers close to but not precisely zero, such as -4.37114e-08.) The
X(U) axis is along the columns (down the page) while the Y(V) axis is along the rows (across the
page).

initial test array
Axis Lengths: [8, 8] (NB: Matrix in Row/Column order)
[0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0
0, 0, 1, 0, 0, 0, 0, 0
0, 0, 0, 1, 0, 0, 0, 0
0, 0, 0, 0, 1, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0]

Chapter 6: Some Detailed Examples 19

fft'd array in packed form
Axis Lengths: [8, 8] (NB: Matrix in Row/Column order)
[1, 0.292893, 0, 1.70711, 3, 0.292893, 0, 1.70711
3, 0.292893, -1, -1.70711, 1, 0.292893, -1, -1.70711
0.292893, 0, 1.70711, 3, 1.70711, 0, 0.292893, 1
0.292893, -1, -1.70711, 0, 1.70711, 1, -0.292893, 0
0, 1.70711, 3, 1.70711, 0, 0.292893, 1, 0.292893
-1, -1.70711, 0, 1.70711, 1, -0.292893, 0, 0.292893
1.70711, 3, 1.70711, 0, 0.292893, 1, 0.292893, 0
-1.70711, 0, 1.70711, 1, -0.292893, 0, 0.292893, -1]

Nyquist array
Axis Lengths: [2, 8] (NB: Matrix in Row/Column order)
[3, 1.70711, 0, 0.292893, 1, 0.292893, 0, 1.70711
0, 1.70711, 1, -0.292893, 0, 0.292893, -1, -1.70711]

unpacked array
Axis Lengths: [8, 8] (NB: Matrix in Row/Column order)
[1, 0.292893, 0, 1.70711, 3, 1.70711, 0, 0.292893
0, 0.292893, -1, -1.70711, 0, 1.70711, 1, -0.292893
0.292893, 0, 1.70711, 3, 1.70711, 0, 0.292893, 1
0.292893, -1, -1.70711, 0, 1.70711, 1, -0.292893, 0
0, 1.70711, 3, 1.70711, 0, 0.292893, 1, 0.292893
-1, -1.70711, 0, 1.70711, 1, -0.292893, 0, 0.292893
1.70711, 3, 1.70711, 0, 0.292893, 1, 0.292893, 0
-1.70711, 0, 1.70711, 1, -0.292893, 0, 0.292893, -1]

expanded array
Axis Lengths: [10, 8] (NB: Matrix in Row/Column order)
[1, 0.292893, 0, 1.70711, 3, 1.70711, 0, 0.292893
0, 0.292893, -1, -1.70711, 0, 1.70711, 1, -0.292893
0.292893, 0, 1.70711, 3, 1.70711, 0, 0.292893, 1
0.292893, -1, -1.70711, 0, 1.70711, 1, -0.292893, 0
0, 1.70711, 3, 1.70711, 0, 0.292893, 1, 0.292893
-1, -1.70711, 0, 1.70711, 1, -0.292893, 0, 0.292893
1.70711, 3, 1.70711, 0, 0.292893, 1, 0.292893, 0
-1.70711, 0, 1.70711, 1, -0.292893, 0, 0.292893, -1
3, 1.70711, 0, 0.292893, 1, 0.292893, 0, 1.70711
0, 1.70711, 1, -0.292893, 0, 0.292893, -1, -1.70711]

output from nyfft (image domain)
Axis Lengths: [10, 8] (NB: Matrix in Row/Column order)
[0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0
0, 0, 1, 0, 0, 0, 0, 0
0, 0, 0, 1, 0, 0, 0, 0
0, 0, 0, 0, 1, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0

Chapter 6: Some Detailed Examples 20

0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0]

shrunken array
Axis Lengths: [8, 8] (NB: Matrix in Row/Column order)
[1, 0.292893, 0, 1.70711, 3, 1.70711, 0, 0.292893
0, 0.292893, -1, -1.70711, 0, 1.70711, 1, -0.292893
0.292893, 0, 1.70711, 3, 1.70711, 0, 0.292893, 1
0.292893, -1, -1.70711, 0, 1.70711, 1, -0.292893, 0
0, 1.70711, 3, 1.70711, 0, 0.292893, 1, 0.292893
-1, -1.70711, 0, 1.70711, 1, -0.292893, 0, 0.292893
1.70711, 3, 1.70711, 0, 0.292893, 1, 0.292893, 0
-1.70711, 0, 1.70711, 1, -0.292893, 0, 0.292893, -1]

packed array
Axis Lengths: [8, 8] (NB: Matrix in Row/Column order)
[1, 0.292893, 0, 1.70711, 3, 0.292893, 0, 1.70711
3, 0.292893, -1, -1.70711, 1, 0.292893, -1, -1.70711
0.292893, 0, 1.70711, 3, 1.70711, 0, 0.292893, 1
0.292893, -1, -1.70711, 0, 1.70711, 1, -0.292893, 0
0, 1.70711, 3, 1.70711, 0, 0.292893, 1, 0.292893
-1, -1.70711, 0, 1.70711, 1, -0.292893, 0, 0.292893
1.70711, 3, 1.70711, 0, 0.292893, 1, 0.292893, 0
-1.70711, 0, 1.70711, 1, -0.292893, 0, 0.292893, -1]

reverse fft'd array
Axis Lengths: [8, 8] (NB: Matrix in Row/Column order)
[0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0
0, 0, 1, 0, 0, 0, 0, 0
0, 0, 0, 1, 0, 0, 0, 0
0, 0, 0, 0, 1, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0]

Here are some examples of doing complex to complex FFTs. In the two dimensional case, you
can compare equivalent real <> complex and complex <> complex transforms as the imaginary data
in the complex image are all set to zero.

tinclude <iostream.h>
tindude <aips/FFTServer. h>
tinclude <aips/Complex.h>
tinclude <aips/Arrayl0.h>

main()

Chapter 6: Some Detailed Examples 21

{
try -C
//
// test complex stuff
//
Vector<Complex> vector(8);
vector ■ Complex(0.0);
vector(4) = Complex(1.0,0.0);
cout«"initial vector \n"«vector«endl;
FFTServer<float,Complex> onedfft(vector);
onedfft.cxfft(vector,1);
cout«"FFTd vector \n"«vector«endl;
onedfft.cxfft(vector,-1);

cout«"reverse FFTd vector \nl,«vector«endl;

Matrix<Complex> narray(4,4);
narray=Complex(0.0);
narray(l,l) = Complex(1.0,0.0)
narray(2,2) = Complex(1.0,0.0)
narray(3,3) = Complex(1.0,0.0)
cout «"initial 2 d complex test array\n";
cout«narray«endl; cout.f lushQ ;
FFTServer<float, Complex> ntestfft(narray);
ntestfft.cxfft(narray,1);
cout «l,fft'd complex array Xn";
cout « narray «"\n";

ntestfft.cxfft(narray,-!);

cout «"reverse fft'd complex array \n";

cout « narray ^'Xn";
Matrix<float> farray(4,4); farray=0.0;
farray(l,l) = 1.0;
farray(2,2) = 1.0;
farray(3,3) = 1.0;
cout «"initial 2 d real test array\n";
cout «f array« endl; cout .flush () ;
FFTServer<float, Complex> ftestfft(farray);
ftestfft.fft(farray,1);
ftestfft.unpack(farray);
ftestfft.expand(farray);

// create 1 d complex vector

// put a signal in the middle
// show initial vector
// initialize an FFTServer
// transform to UV domain
// show complex UV vector
// go back to image domain
// with scaling
// show final result is
// same as initial vector

// create 4x4 complex matrix

// put in some point sources

// show initial matrix
// initialize an FFTServer
// transform to UV domain
// show complex UV grid
// note that Nyquist data
// are in first row
// go back to image domain
// with scaling
// show final result is
// same as initial matrix

// create a 4 x 4 real matrix
// put in some point sources

// show initial matrix

cout «"fft'd complex Hermetian array after
cout « farray «"\n";

ftestfft.shrink(farray);

// create an FFTServer
// do real to complex fft
// get Nyquist data
// put Nyquist data in last
// two rows

expansion \n";
// show expanded Hermetian
// UV grid - compare with
// full complex one above
// put Nyquist data back in

Chapter 6: Some Detailed Examples 22

ftestfft.pack(farray);

ftestfft.fft(farray,-1);

cout «"reverse fft'd array \n";

/ Nyquist array
/ pack, since fft method
/ expects a packed array
/ do complex to real fft
/ with scaling
/ show final result is same
/ as initial matrix

cout « farray «"\n";
y catch (AipsError x) {

cout « "Caught exception at line " « x.thrownLineO
« " from file " « x.thrownFileQ « endl;

cout « "Message is: " « x.getMesgO « endl;
} end.try;

}

Running this program produces

initial vector
[(0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (0, 0), (0, 0), (0, 0)]
FFTd vector
[(1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0)]
reverse FFTd vector
[(0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (0, 0), (0, 0), (0, 0)]

initial 2 d complex test array
Axis Lengths: [4, 4] (NB: Matrix in Row/Column order)
[(0, 0), (0, 0), (0, 0), (0, 0)
(0, 0), (1, 0), (0, 0), (0, 0)
(0, 0), (0, 0), (1, 0), (0, 0)
(0, 0), (0, 0), (0, 0), (1, 0)]

fft'd complex array
Axis Lengths: [4, 4] (NB: Matrix in Row/Column order)
[(3, 0), (1, 0), (-1, 0), (1, 0)
(1, 0), (-1, 0), (1, 0), (3, 0)
(-1, 0), (1, 0), (3, 0), (1, 0)
(1, 0), (3, 0), (1, 0), (-1, 0)]

reverse fft'd complex array
Axis Lengths: [4, 4] (NB: Matrix in Row/Column order)
[(0, 0), (0, 0), (0, 0), (0, 0)
(0, 0), (1, 0), (0, 0), (0, 0)
(0, 0), (0, 0), (1, 0), (0, 0)
(0, 0), (0, 0), (0, 0), (1, 0)]

initial 2 d real test array
Axis Lengths: [4, 4] (NB: Matrix in Row/Column order)
[0, 0, 0, 0
0, 1, 0, 0

Chapter 6: Some Detailed Examples 23

0, 0, 1, 0
0, 0, 0, 1]

fft'd complex Hermetian array after expansion
Axis Lengths: [6, 4] (NB: Matrix in Row/Column order)
[-1. 1, 3, 1
0, 0, 0, -0
1, 3, 1, -1
0, 0, 0, 0
3, 1, -1, 1
0, -0, 0, 0]

reverse fft'd array
Axis Lengths: [4, 4] (NB: Matrix in Row/Column order)
[0, 0, 0, 0
0, 1, 0, 0
0, 0, 1, 0
0, 0, 0, 1]

