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Chapter 2: Frequency Domain Data Structures 

1 Introduction 

The AIPS++ FFTServer class provides application programmers with a very flexible tool for 
doing one, two and three dimensional Fast Fourier Transforms. This document describes the public 
methods for this class and how to use them. 

This class does in-place Fourier transforms, but methods are provided which save the input array 
and create a new output array for those programmers who do not want their input data destroyed. 

The actual FFT routines used by the FFTServer tool are written in FORTRAN and use the 
widely available public domain NCAR FFTPACK code available from Netlib. 

2 Frequency Domain Data Structures 

The final goal of the radio astronomer is usually to obtain some type of image of a piece of the 
sky. When we Fourier Transform an image composed entirely of real numbers (an example would 
be an image of the Stokes parameter I) to the frequency, or UV domain, we find that the UV grid 
is Hermetian: i.e. a complex data point at -U, -V is the complex conjugate of the data point at +U, 
+V. Consequently we only need to sample half the UV grid in order to obtain information about 
the entire UV domain. However, if we have a complex image (e.g. the Stokes combination Q + i 
U) its Fourier Transform is not Hermetian, and we must sample the full UV domain. 

2.1 Hermetian UV grids 

Since we only need to sample half the UV domain in order to obtain complete information about 
the properties of a hermetian UV grid we store the data for a Hermetian grid differently from that 
of a non-Hermetian UV grid. This section describes the layout of a Hermetian UV grid that is 
currently used by the AIPS++ classes FFTServer and GridTool. We will describe the format using 
a 2-dimensional UV grid as an example. This grid will be transformed to create a real image of 
size M x N. The format of the uv grid is shown in Figure 1. 
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Figure 1: The UV Grid 

The U frequency values are sampled over the range U = 0toU = M/2. Here M/2 is the Nyquist 
frequency in U. Since each sample point has both a real and an imaginary value, we require M / 
2 + 1 complex numbers along this axis, or2*(M/2 + l) floating point numbers consisting of 
real/imaginary pairs. We do not need to sample in the range - (M /2-l)to-l because of the 
hermetian symmetry of a uv frequency domain containing Fourier components of a real image. 

The V frequency values are sampled over the range V = - N / 2, ..., -1, 0, 1,..., N /2 - 1. Here, 
- N / 2 is the Nyquist frequency in V. Therefore we have a total of N sample points along this axis. 

The dimensions given above show that if, for example, we are doing an FFT to create a 1024 
x 1024 real image, the required size of the uv grid is actually 1026 x 1024. However, as the figure 
suggests, we can split the grids up into two sub grids, one containing U data points up to M /2 -1, 
and a separate array containing the Nyquist U point at M / 2. That way most of the uv domain 
data can be carried around in an array which is the same size, for example 1024 x 1024, as that of 
the final real image. 

Although Figure 1 formally represents a 2 dimensional frequency grid, note that the frequency 
components of a 1 dimensional complex vector in u space can be represented by by the row of data 
situated at V = 0. A three dimensional cube with third dimension size Z, would require a series of 
grids like that shown for each of the sample points -Z / 2, ..., -1, 0, 1,..., Z /2 - 1. 

Normally, any complex arrays that you create from sampled data should not have any values at 
the Nyquist frequency. If you do have data at the Nyquist frequency, this is an indication that you 
probably have not set up your data sampling interval correctly. For example, if you are creating 
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uv grids with the gridtool, it will warn you when data is placed in the uv grid at the Nyquist 
frequency. 

An object of class FFTServer contains a private internal array which is used to store the extra 
column of Nyquist data. However, we can still transport the Nyquist data along with the main 
body of uv data by storing the complex data in a "packed" format. This "packed" format makes 
use of the fact that the imaginary data elements at zero frequency and at the Nyquist frequency 
all have value 0. Thus, for example, in the case of our two dimensional uv plane, we can store the 
real values of the data at (Nyquist U, 0) in the imaginary location at frequency (0,0) and we can 
store the real value at (Nyquist U, Nyquist V) in location (0, Nyquist V). The off-axis data points 
along the U = 0 and U = Nyquist axes have conjugate symmetry so we can store the (U = Nyquist, 
V > 0) data in the locations (U = 0, V > 0), but later compute the overwritten data values using 
conjugate symmetry properties. By doing so, we contain all necessary complex data information 
for the range 0 to Nyquist, in an array the same size as the transformed real image. The packing 
operations for a two dimensional array are illustrated in Figure 2. 
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Hguxe 2: Packing the UV grid 

The FFTServer tool expects to get complex frequency data in packed form and unpacks this 
data just before performing a complex to real transform. The Nyquist data are unpacked and stored 
in the internal private Nyquist array. This array, along with the unpacked main array containing 
the majority of the uv data, is passed to the low level FORTRAN routines which perform the fft. 
The unpacking operations for a two dimensional matrix are illustrated in Figure 3. 
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Figure 3b: Unpads - Step 2 

Most FFTs expect to get frequency data in a form something like 0, 1, ..., Nyquist, ..., -1. Our 
uv grid (Figure 1) has its V frequencies ordered as Nyquist, ..., -1, 0, 1, ..., Nyquist - 1. So, if 
we want to do a Fourier transform from the uv frequency domain to the image domain, we must 
reorder the uv grid shown in Figure 1 by flipping the top and bottom halves of the main array and 
the Nyquist array. This operation is done by the exchangeUV method described in Chapter 5 and 
shown in the diagram below. 
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Figure 4: Exchange UV 

The real image that emerges from an FFT will have the point that defines the phase reference 
position situated in the lower left hand corner of the image. However, since radio astronomers 
normally define the phase reference position to be situated in the centre of the field, we must flip 
the quadrants of the image that emerges from the fft to obtain a picture that makes sense to most 
of us. This flip Image method which implements this operation is illustrated for the 2 dimensional 
case in Figure 5.  Our particular sequence of operations means that the phase reference pixel in 
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the image will be located at point M / 2 +1, N / 2 + 1, or 513, 513 for an image with 1024 x 1024 
points. 

Figure S: Flip Image 

So the steps that occur inside the fft method for going from the frequency domain to the image 
domain are 

- unpack uv frequency data 
- exchange the uv data to arrange frequencies in correct order 
- do fft from uv to image domain 
- flip image that comes out of fft 

If we want to do an FFT from the image domain to the frequency domain we perform these 

steps in reverse order. 

- flip image so phase reference point is first point in to fft 
- do fft from image domain to uv frequency domain 
- exchange the uv data to arrange frequencies with zero frequencies in 

centre of the uv grid 
- pack uv frequency data 

2.2 Pull Complex UV grids 

In the case of a complex UV grid without Hermetian symmetry, we must sample and store data 
covering the full UV domain, not just half of it. In this case, where we will have a final complex 
sky image with M x N complex numbers, the FFTServer expects to get a UV grid set out as shown 
in the following figure: 
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If we flip the quadrants of this UV grid, then the data in U will be ordered from 0 ... M/2 
- 1, Nyquist, ... -1 and the data in V will be ordered from 0 ... N /2 - 1, Nyquist, ... -1. As 
we discussed in the previous section this is the sequence expected by most FFT algorithms. Then 
we can perform a full complex <> complex FFT to go to the image domain. The complex image 
that comes out of the FFT has its phase reference position situated in the lower left hand corner 
of the image just as did the real image described in the previous section. So we must again flip 
the quadrants of the image to obtain one with its phase reference point at the centre. So the steps 
that occur inside the full complex fft method for going from the frequency domain to the complex 
image domain are 

- flip UV grid so zero frequency data are at the origin 
- do fft from complex uv to complex image domain 
- flip complex image that comes out of fft 

If we want to do an FFT from the complex image domain to the complex frequency domain we 
perform these steps in reverse order. 

- flip complex image so phase reference point is first point in to fft 
- do fft from complex image domain to uv frequency domain 
- flip the quadrants of the uv data to arrange frequencies with 

zero frequencies in centre of the uv grid 

3 Base Class Methods 
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3.1 Class FourierTool 

The FFTServer class inherits from a base class called FourierTool. FourierTool is the class 
which contains the Nyquist data array used in the case of Hermetian UV grids and has methods 
to handle this array. I suggest that any classes which handle Fourier domain data inherit from 
this base class so that they have predefined methods to handle the Nyquist array. At present 
the FFTServer and GridTool classes inherit from this base class. A diagram of the relationship 
between the FourierTool, FFTServer and GridTool classes is shown below. 

The public class methods of FourierTool allow the apphcations programmer to manipulate the 
Nyquist U data that are stored inside the Nyquist array that is internal to the class. The functional 
relationships of the FourierTool class are illustrated in the following diagram. 

Class FourierTool 
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3.2 FourierTool Methods 

This section gives a detailed description of how to use the methods defined in the FourierTool 
base class. Examples of using these methods are shown in Chapter 6. 

• void pack(Array<T> ft uv.grid); 

• void pack(Array<S> ft uv.grid) ; 

where T can be one of float or double, and S can be one of Complex or DComplex. (We actually 
have two overloaded templated pack functions, but obviously, to the applications programmer they 
look like one function.) 

This operation takes the Nyquist data stored internally inside an FourierTool object and stores 
it in the uv array for transport elsewhere. 

• void unpack (Array<T> ft uv.grid) ; 

• void unpack (Array<S> ft uv.grid) ; 

where T can be one of float or double, and S can be one of Complex or DComplex. This 
operation extracts the Nyquist data packed into a uv array, and stores it internally inside the 
FourierTool object. It then overwrites that part of the uv grid which was being used to store the 
Nyquist data with the appropriate data from the complex conjugate part of the uv grid. 

The figures in the previous chapter illustrate the packing and unpacking operations in a graphical 
format. 

• void reset(); 

This method resets the internal Nyquist array to have a value of zero. 

• const Array<T> ft extractNYFQ ; 

• const Array<S> ft extractNYCQ; 

where T can be one of float or double, and S can be one of Complex or DComplex. These 
methods copy the internal Nyquist array into an external array that can be viewed or manipulated 
by the programmer. 

• const Array<T> ft insertNYFQ ; 
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• const Array<S> ft insertNYCO; 

where T can be one of float or double, and S can be one of Complex or DComplex. These 
methods copy an externally defined array of data into the the internal Nyquist array. They can be 
used to insert a Nyquist array back into a FFTServer onject after the array has been modified for 
some reason. 

• void expand (Array<T> ft) ; 

• void expand(Array<S> ft) ; 

where T can be one of float or double, and S can be one of Complex or DComplex. 

These methods allow you to attach the contents of the internal Nyquist array on to the end of 
an unpacked UV array so that the entire range of data for frequencies in U from 0 to Nyquist are 
stored in one array. The U dimension of the array will be increased by 2 for the case where T is 
either float or double, and by 1 for the case S is either Complex or DComplex. 

Note that in order to perform this operation an internal temporary array whose size is that of 

the final output array will be used. 

• void shrink (Array<T> ft) ; 

• void shrink(Array<S> ft) ; 

where T can be one of float or double, and S can be one of Complex or DComplex. 

These methods take an array which contains Nyquist data at the end of the U dimension, copy 
the Nyquist data into the internal Nyquist array, and then delete the Nyquist data from the input 
array. The U dimension of the array will be decreased by 2 for the case where T is either float or 

double, and by 1 for the case S is either Complex or DComplex. 

Note that in order to perform this operation an internal temporary array whose size is that of 

the final output array will be used. 

An expanded array of this type should NOT be used as an initializer for the FFTServer class. 

4 General Purpose Methods 
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This chapter describes the FFTServer methods which will most likely be used by the typical 
applications programmer. Some more esoteric methods which are not likely to be used very often, 
or are called internally by the methods described here, are discussed in the next chapter. 

•  FFTServerQ; 

FFTServer<T, S> (Array<T> ft) ; 

FFTServer<T, S> (Array<S> ft); 

FFTServer<T, S> (IPosition ft); 

where T can be one of float or double, and S can be one of Complex or DComplex. Not all 
combinations are possible: if T is float then S must be Complex. If T is double then S must be 
DComplex. 

These are the constructors for the class. The FFTserver must know what size array it is working 
with so that an internal array for storing Nyquist data is set up with the correct dimensions. Once 
you have initialized an FFTServer for an array of a particular size, you can use the same FFTServer 
on other arrays of the same size without having to reinitialize. The constructor also initializes an 
internal work array with sine and cosine values. The initialization of the work array allows you to 
save some cpu time if you are going to do a series of one-dimensional FFTs on vectors that are 
all the same size. The array type used for the initialization can be any of Vector, Matrix, Cube, 
or generic Array. You can also initialize the FFTServer by means of an IPosition vector which 
contains the shape of the input or output real image. 

Here is a simple example of creating an FFTServer object. 

Matrix<float> abc(128,128); 
FFTServer<float,Complex> fft(abc); 

This example created an object called fft which will handle fits for any real 128 x 128 two 
dimensional array or any complex 64 x 128 matrix. 

An equivalent initialization could be done by 

MatriKf loat> abc (128,128) ; 
IPosition Shape(abc.ndimO); 
Shape = abc.shape(); 
FFTServer<float,Complex> fft(Shape); 

The next example set up an FFTServer object for handling a Complex array. 
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Matrix<Complex> abc(128,128); 
FFTServer fft_complex<float,Complex> (abc); 

This example creates an object called fft.complex which will handle ffts for any 128 x 128 
two dimensional Complex array. (Since the internal initialization of the FFTServer mostly employs 
real, rather than complex numbers, this initialization will also allow you to transform 256 x 128 
real arrays) 

• "FFTServer(); 

The class destructor. It is currently trivial. 

• void fft(Array<T> ft data, int dir) ; 

This function performs in-place real to complex and complex to real fit's, depending on the 
value of dir. 

'dir > 0' Real to complex fft. The result is returned in data, data is organised in real and 
imaginary pairs after the transform. 

'dir ■ 0' Complex to real fft, with no scaling. Initially, data is organised in real/imaginary 
pairs. Real result is returned in data. 

'dir < 0' Complex to real fft, with scaling. Initially, data is organised in real/imaginary 
pairs. The real result is returned in data. The scaling factor is 1/(number of 
elements in data). 

In this transform, all data are stored in arrays of type float or double. If the data actually 
represent complex numbers, then each complex number pair is stored in the array in the sequence 
real followed by imaginary. 

• Array<S> rcf ft (Array <T>& rdata) ; 

This member performs a real to complex fft. The real data is provided in the array rdata, which 
is preserved. The result is returned in a complex array. This creates a new array containing the 
complex output. The original real input image is preserved. 

Here is an example using this method. 

Matrix<float> show_how_mat(512,512); show_how_mat = float(0.0); 
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showJiow_mat(256, 256) = 10.0; // assign some data to matrix 
show_how_mat(299, 349)  = 20.0; //      show_how_mat 
FFTServer show_fft<float,Complex> (show.how.mat); 

// initialize an FFTServer object 
//      show.fft 

Matrix<Complex> show_how_uv_mat * show_fft.rcfft(show_how_mat); 
// do real to complex fft 

show_how_uv_mat is a complex array of size 256 x 512, containing the uv data in a packed 
format. 

Since rcf ft works with arrays, the same type of operator will work with either vectors, matrices 
or cubes. 

Vector<float> show_how_vec(512); show_how_vec ■ float(0.0); 
show_how_vGc(256) =10.0; // assign some data to vector 
show_how_vec(299) =20.0; //      show_how_vec 
FFTServer show.fft_vec<float, Complex> (show.how.vec); 

// initialize an FFTServer object, 
//      show_fft_vec 

Vector<float> show_how_uv_vec = show_fft_vec.rcfft(show_how_vec); 
// do real to complex fft 

show.how_uv_vec is a complex vector of size 256, containing the frequency data in a packed 
format. For a one-dimensional vector, this means that the real part of the first complex point is 
the real value for frequency 0, and the imaginary part of the first complex point is actually the real 
value for the Nyquist frequency. 

•  Array<T> erf ft (Array <S> ftcdata, int do.scale = -1) ; 

This member does a complex to real fft. The complex data is provided in the array cdata, 
which is preserved. A new array containing the real output is created. 

Here is an example of this method. 

Natrix<Complex> show_how_cmplx(256,512); shov.hov.cmplx = Complex(0.0,0.0); 
shov.hov.cmplx(128, 256)  = Complex(10.0, 0.0); 

// assign some data to matrix show_how_cmplx 
show.how_cmplx(149, 349) = Complex(20.0,10.0); 

// ditto 
FFTServer show_fft_cmplx<float, Complex> (shov.how.cmplx); 

// initialize an FFTServer object, shov.fft 
Matrix<float> show.how.image = show_fft_cmplx.crfft(show_how_cmplx); 
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// do complex to real fft 

show_how_ image is a real matrix of size 512 x 512 containing the image. 

Since erf ft works with arrays, the same type of operator will work with either vectors, matrices 
or cubes. 

Vector<Complex> show_how_vec(256); show.how.vec = Complex(O.O); 
show_how_vec(128) = Complex(10.0,10.0); 

// assign some data to vector shov.hov.vec 
show_how_vec(58) = Complex(20.0,5.0); 

// ditto 
FFTServer show_fft_vec<float, Complex> (show_how_vec); 

// initialize an FFTServer object, 
//      show_fft_vec 

Vector<float> show_how_vector = show_fft_vec.crfft(show_how-vec); 
// do complex to real fft 

show_how_vector is a real vector of size 256. 

By default, erf ft will normalize the data before returning it. The scaling factor is l/(number 
of elements in data). If you do not wish to have automatic scaling, then you must call erf ft, with 
a second integer parameter having a value >= 0, eg 

Vector<float> show_how_vector = show_fft_vec.crfft(showJiow_vec, 0); 

If you are making maps from a uv grid, you would want to avoid this automatic scaling since it is 
likely that the sum of the weights associated with the uv grid will not correspond to the automatic 
scaling factor defined above. 

•  void exf f t (Array<S> ft data, int dir); 

This method does n dimensional (well, up to 3 dimensional) complex to complex in-place FFTs. 

'dir > 0'     complex to complex forward (image to UV domain) fft. The result is returned in 
data. 

'dir = 0'     complex to complex backward (UV domain to image) fft, with no scaling. 

'dir < 0'     complex to complex backward (UV domain to image) fft, with scaling. The scaling 
factor is 1/(number of elements in data). 
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See Chapter 6 for examples of doing complex to complex FFTs and the relationship between 
complex images and real images. 

• void nyfft(Array<T> ftdata, int dir) ; 

Real to complex and complex to real fft in n-dimensions. The nyquist data is carried in the last 
two columns of data. So if the image size is X * Y * Z, the size of data must be (X + 2) * Y * Z. 
See the description of method fft for an explanation of the dir parameter. 

Since this method expects that Nyquist data is explicitly stored in the last two columns, no 
packing or unpacking of Nyquist data is done. 

• float scaleFac tor (void) ; 

Return the scale factor used in the most recently performed complex to real fft. 

float scale.value = show_fft_cmplx.scaleFactor(); 

• float wtsum(Array<T> ft) ; 

This method sums up the values in a weights array created by the GridTool, and associated 
with a Hermetian UV grid. Then proper scaling of an image produced from the FFT of a gridded 
uv plane can be done. 

Matrix <float> image(1024,1024), wts(513,1024); 
FFTServer fft<float, Complex> (image); 

grid uv data into into image with aid of gridtool, etc 
the gridtool will assign weight values to the 

weight array, wts 
fft.fft(image,0); // FFT uv plane to image domain 

// but don't do default normalization 
//      scaling is done by dividing 
//     by sum of weights 

float sum_of.weight = fft.wtsum(wts); 
image = image / sum. of .weight;      // normalize fft 

• float cxWtsum(Array<T> ft) ; 

This function sums up the weights associated with a full complex grid for FFT normalization. 
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• void uvassign(Array<T> ft, Array<float> ft) 

• void uvassign(Array<S> ft, Array<f loat> ft) 

This method copies uv grid weights associated with a Hermetian UV grid on to a uv grid in 
preparation for doing a real to complex FFT for an antenna pattern. Packing is also done. 

image = 0.0; 
fft.uvas sign (image, wts); // copy wts array to image array 
fft.f ft (image, 0); // do the fft 
image = image / sum. of .weight; // normalize by sum of weights 

...  voila,  an antenna pattern 

• void cxUVassign(Array<S> ft, Array<float> ft) 

This method copies uv grid weights associated with a full complex UV grid on to a uv grid in 
preparation for doing a complex to complex backward FFT for an antenna pattern. 

5 Special Purpose Methods 

The following methods are public members of the FFTServer class, but are unlikely to be used 
by the casual programmer. If needed, they have normally been called internally by functions such 
as erf ft. 

• void fliplmage (Array <T> ft image, int image.type=f f tparms: :DEF_INAGE.TYPE); 

• voidflipImage(Array<S>&image, int image_type=ff tparms: :DEF_IMAGE_TYPE) ; 

For an n-dimensional image, divide the image into 2~n equal parts and swap each of these parts 
with that which diametrically opposes it. So, for a matrix, flip quadrants, for a cube, flip octants, 
etc. If image_type is not equal to fftparms::DEFJMAGE_TYPE ( 0 ) then the array "image" is 
assumed to be carrying two additional columns for nyquist data. 

• void exchangeUV (Array <T> & image) ; 

• void exchangeUV (Array<S> & image); 

Exchanges column uv locations for FFT so that data fed to FFT are in frequency order 0 ... 
N/2 -1, Nyquist ... -1. 
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6 Some Detailed Examples 

Here is a sequence of one dimensional ffts that use the methods described above. 

cout«"test in-place 1-d fft"«endl; 
Vector<float> oned(16); oned=float(0.0); // declare and initialize 

// a real vector of size 16 
oned(8) = float(1.0); // assign value 1 to central 

//  element 
cout«"initial 1 d real array "«endl; 
cout«oned«en<il; 

FFTServer testld<float, Complex>(oned); // initialize fft server; 
testld.fft(oned, 1); // do real to complex fft 
cout«"fft,d 1 d complex array "«endl; 
cout«oned«endl; 

testld.fft(oned, -1); // do reverse complex to real fft 
cout«"fft,d 1 d final real array "«endl; 
cout«oned«endl; 

cout«"test non in-place 1-d fft"«endl; 
Vector<Complex> resultId = testld.rcfft(oned); 

// do real to complex fft 
cout«"fft,d 1 d complex array "«endl; 
cout«result ld«endl; 
testId.unpack(resultId); // Unpack Nyquist data 
cout«,,fft,d 1 d unpacked complex array "«endl; 
cout«result ld«endl; 
Array<Complex> NyquistC = testId.extractNYCQ; 

// Extract Nyquist data 
cout«"fft,d 1 d Nyquist data "«endl; 
cout«NyquistC«endl; // display it 

testId.pack(resultId); // repack the Nyquist data 
Vector<float> reverseld = testld.erfft(resultId); 

// do complex to real fft 
cout«"fft,d 1 d real array "«endl; 
cout«reverseld«endl; 

This code produces the result 

test in-place 1-d fft 
initial 1 d real array 
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0] 

fft'd 1 d complex array 
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[1,  1,   1,  0,  1,  -0,  1,  0,  1,  0,   1, 0,  1, 0,  1,  0] 

fft'd 1 d final real array 
[0, 0,  0,  0, 0,  0, 0,  0,  1, 0,  0, 0,  0,  0, 0,  0] 

test non in-place 1-d fft 
fft'd 1 d complex array 
[(1, 1), (1, 0), (1, -0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0)] 

fft'd 1 d unpacked complex array 
[(1, 0), (1, 0), (1, -0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0)] 

fft'd 1 d Nyquist data 
C(l,  0)] 

fft'd 1 d real array 
[0,  0,  0,  0,  0,  0,  0,  0,   1,  0,  0,  0,  0,  0,  0,  0] 

The following code shows some manipulations of a 2 dimensional array 

#include <iostream.h> 
♦include <aips/FFTServer.h> 
#include <aips/Complex.h> 
#include <aips/ArrayIO.h> 
main() 
// 
// test 2-dimensional Fourier transform stuff 
// 
{ 
try { 
Matrix<float> array(8,8); array=0;      // declare an array in the 

//     image domain 
array(2,2) =1.0; // stick in some point sources 
array(3,3) = 1.0; 
array(4,4) = 1.0; 
cout «,,initial test array\n"; 
cout«array«endl;cout.flush();        // display initial array 
IPosition Shape(2); 
Shape = array.shape(); 
FFTServer<float, Complex> testfft(Shape); // initialize an FFTServer object 
testfft.fft(array,1); // FFT to UV domain 
cout «"fft'd array in packed formXn"; 
cout « array «"\n"; // display UV array in packed form 
testfft.unpack(array); // get UV array into unpacked form 
Matrix<float> Nyquist = testfft.extractNYFQ; // Extract Nyquist data 
cout «"Nyquist array\n"; 
cout«Nyquist«endl;cout.flushO;       // display Nyquist data 
cout «"unpacked array\n"; 
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cout «array«endl; cout.f lush() ; 
testfft.expand(array); 

cout «" expanded array\n"; 
cout « array «endl;cout.flush(); 
testfft.nyfft(array,-1); 

cout «"output from nyfft (image domain)Xn"; 
cout « array «endl;cout.flush();      // 

// 
testfft.nyfft(array,1); // 

// display unpacked array 
// add Nyquist data to end of 
//    unpacked array 

// display expanded array 
// use FFT nyfft method to 
//    transform expanded array 
//    back to image domain 

display result of nyfft 
note 2 extra rows 

fft back to Fourier domain 

testfft.shrink(array); 

cout <<"shrunken array\n"; 
cout «array«endl; cout. f lushQ ; 
testfft.pack(array); 
cout «"packed array\n"; 
cout «array«endl; cout.f lushQ ; 
testfft.fft(array,-1); 

cout «,lreverse fft'd array\n"; 
cout « array «"\n"; 

catch (AipsError x) < 
cout « "Caught exception at line " « x.throvnLineQ 
« " from file " « x.thrownFileQ « endl; 

cout « "Message is: " « x.getMesgO « endl; 
} end.try; 

// delete Nyquist data from end 
//    of unpacked array 

// display shrunken array 
// pack array for reverse FFT 

// display packed array 
// FFT back to image domain with 
//    scaling 

// display final result; this better 
//    equal what we started with! 

Running this program should produce output similar to that which follows. (NOTE: the output 
has been slightly idealized; numerical roundoff in particular implementations of an FFT will result 
in actual runs producing small numbers close to but not precisely zero, such as -4.37114e-08.) The 
X(U) axis is along the columns (down the page) while the Y(V) axis is along the rows (across the 
page). 

initial test array 
Axis Lengths: [8, 8]  (NB: Matrix in Row/Column order) 
[0, 0, 0, 0, 0, 0, 0, 0 
0, 0, 0, 0, 0, 0, 0, 0 
0, 0, 1, 0, 0, 0, 0, 0 
0, 0, 0, 1, 0, 0, 0, 0 
0, 0, 0, 0, 1, 0, 0, 0 
0, 0, 0, 0, 0, 0, 0, 0 
0, 0, 0, 0, 0, 0, 0, 0 
0, 0, 0, 0, 0, 0, 0, 0] 
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fft'd array in packed form 
Axis Lengths:   [8,  8]     (NB: Matrix in Row/Column order) 
[1,  0.292893,  0,   1.70711, 3,  0.292893,  0,   1.70711 
3,  0.292893,  -1,  -1.70711,  1,  0.292893,  -1,   -1.70711 
0.292893, 0,   1.70711,  3,   1.70711,  0,  0.292893,  1 
0.292893,  -1,  -1.70711,  0,   1.70711,  1,  -0.292893, 0 
0,   1.70711,  3,   1.70711,  0,  0.292893,  1,  0.292893 
-1,  -1.70711,  0,   1.70711,  1,  -0.292893, 0,  0.292893 
1.70711,  3,   1.70711,  0,  0.292893,  1,  0.292893, 0 
-1.70711, 0,   1.70711,   1,  -0.292893, 0,  0.292893,  -1] 

Nyquist array 
Axis Lengths:   [2, 8]     (NB: Matrix in Row/Column order) 
[3,   1.70711,  0,  0.292893,  1,  0.292893,  0,   1.70711 
0,   1.70711,   1,  -0.292893, 0,  0.292893,  -1,  -1.70711] 

unpacked array 
Axis Lengths:   [8,  8]     (NB: Matrix in Row/Column order) 
[1,  0.292893,  0,   1.70711, 3,   1.70711, 0,  0.292893 
0, 0.292893,  -1,  -1.70711, 0,   1.70711,   1,  -0.292893 
0.292893, 0,   1.70711, 3,   1.70711,  0,  0.292893,  1 
0.292893,  -1,  -1.70711,  0,  1.70711,   1,  -0.292893, 0 
0,   1.70711,  3,   1.70711, 0, 0.292893,   1, 0.292893 
-1,  -1.70711,  0,   1.70711,  1,  -0.292893, 0,  0.292893 
1.70711,  3,   1.70711, 0,  0.292893,  1,  0.292893, 0 
-1.70711, 0,   1.70711,  1,  -0.292893,  0,  0.292893,  -1] 

expanded array 
Axis Lengths:   [10, 8]     (NB: Matrix in Row/Column order) 
[1,  0.292893,  0,   1.70711, 3,   1.70711,  0, 0.292893 
0,  0.292893,  -1,   -1.70711, 0,   1.70711,   1,  -0.292893 
0.292893, 0,   1.70711,  3,   1.70711,  0,  0.292893,  1 
0.292893,  -1,  -1.70711, 0,  1.70711,   1,  -0.292893, 0 
0,   1.70711,  3,   1.70711,  0, 0.292893,   1, 0.292893 
-1,  -1.70711, 0,   1.70711,  1,  -0.292893, 0,  0.292893 
1.70711,  3,   1.70711,  0,  0.292893,  1,  0.292893, 0 
-1.70711, 0,   1.70711,   1,  -0.292893,  0,  0.292893,  -1 
3,  1.70711, 0,  0.292893,  1,  0.292893, 0,  1.70711 
0,   1.70711,   1,  -0.292893, 0,  0.292893,  -1,  -1.70711] 

output from nyfft (image domain) 
Axis Lengths:   [10, 8]     (NB: Matrix in Row/Column order) 
[0, 0,  0,  0, 0,  0, 0, 0 
0, 0,  0,  0, 0,  0, 0,  0 
0,  0,   1,  0,  0,  0,  0,  0 
0,  0,  0,   1,  0,  0,  0,  0 
0,  0,  0,  0,   1,  0,  0,  0 
0,  0,  0,  0,  0,  0,  0,  0 
0,  0,  0,  0,  0,  0,  0,  0 
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0, 0, 0, 0, 0, 0, 0, 0 
0, 0, 0, 0, 0, 0, 0, 0 
0,  0,  0,  0,  0,  0,  0,  0] 

shrunken array 
Axis Lengths: [8, 8]  (NB: Matrix in Row/Column order) 
[1, 0.292893, 0, 1.70711, 3, 1.70711, 0, 0.292893 
0, 0.292893, -1, -1.70711, 0, 1.70711, 1, -0.292893 
0.292893, 0, 1.70711, 3, 1.70711, 0, 0.292893, 1 
0.292893, -1, -1.70711, 0, 1.70711, 1, -0.292893, 0 
0, 1.70711, 3, 1.70711, 0, 0.292893, 1, 0.292893 
-1, -1.70711, 0, 1.70711, 1, -0.292893, 0, 0.292893 
1.70711, 3, 1.70711, 0, 0.292893, 1, 0.292893, 0 
-1.70711, 0, 1.70711, 1, -0.292893, 0, 0.292893, -1] 

packed array 
Axis Lengths: [8, 8]  (NB: Matrix in Row/Column order) 
[1, 0.292893, 0, 1.70711, 3, 0.292893, 0, 1.70711 
3, 0.292893, -1, -1.70711, 1, 0.292893, -1, -1.70711 
0.292893, 0, 1.70711, 3, 1.70711, 0, 0.292893, 1 
0.292893, -1, -1.70711, 0, 1.70711, 1, -0.292893, 0 
0, 1.70711, 3, 1.70711, 0, 0.292893, 1, 0.292893 
-1, -1.70711, 0, 1.70711, 1, -0.292893, 0, 0.292893 
1.70711, 3, 1.70711, 0, 0.292893, 1, 0.292893, 0 
-1.70711, 0, 1.70711, 1, -0.292893, 0, 0.292893, -1] 

reverse fft'd array 
Axis Lengths: [8, 8]  (NB: Matrix in Row/Column order) 
[0, 0, 0, 0, 0, 0, 0, 0 
0, 0, 0, 0, 0, 0, 0, 0 
0, 0, 1, 0, 0, 0, 0, 0 
0, 0, 0, 1, 0, 0, 0, 0 
0, 0, 0, 0, 1, 0, 0, 0 
0, 0, 0, 0, 0, 0, 0, 0 
0, 0, 0, 0, 0, 0, 0, 0 
0, 0, 0, 0, 0, 0, 0, 0] 

Here are some examples of doing complex to complex FFTs. In the two dimensional case, you 
can compare equivalent real <> complex and complex <> complex transforms as the imaginary data 
in the complex image are all set to zero. 

tinclude <iostream.h> 
tindude <aips/FFTServer. h> 
tinclude <aips/Complex.h> 
tinclude <aips/Arrayl0.h> 

main() 



Chapter 6: Some Detailed Examples 21 

{ 
try -C 
// 
// test complex stuff 
// 
Vector<Complex> vector(8); 
vector ■ Complex(0.0); 
vector(4) = Complex(1.0,0.0); 
cout«"initial vector \n"«vector«endl; 
FFTServer<float,Complex> onedfft(vector); 
onedfft.cxfft(vector,1); 
cout«"FFTd vector \n"«vector«endl; 
onedfft.cxfft(vector,-1); 

cout«"reverse FFTd vector \nl,«vector«endl; 

Matrix<Complex> narray(4,4); 
narray=Complex(0.0); 
narray(l,l) = Complex(1.0,0.0) 
narray(2,2) = Complex(1.0,0.0) 
narray(3,3) = Complex(1.0,0.0) 
cout «"initial 2 d complex test array\n"; 
cout«narray«endl; cout.f lushQ ; 
FFTServer<float, Complex> ntestfft(narray); 
ntestfft.cxfft(narray,1); 
cout «l,fft'd complex array Xn"; 
cout « narray «"\n"; 

ntestfft.cxfft(narray,-!); 

cout «"reverse fft'd complex array \n"; 

cout « narray ^'Xn"; 
Matrix<float> farray(4,4); farray=0.0; 
farray(l,l) = 1.0; 
farray(2,2) = 1.0; 
farray(3,3) = 1.0; 
cout «"initial 2 d real test array\n"; 
cout «f array« endl; cout .flush () ; 
FFTServer<float, Complex> ftestfft(farray); 
ftestfft.fft(farray,1); 
ftestfft.unpack(farray); 
ftestfft.expand(farray); 

// create 1 d complex vector 

// put a signal in the middle 
// show initial vector 
// initialize an FFTServer 
// transform to UV domain 
// show complex UV vector 
// go back to image domain 
//  with scaling 
// show final result is 
//  same as initial vector 

// create 4x4 complex matrix 

// put in some point sources 

// show initial matrix 
// initialize an FFTServer 
// transform to UV domain 
// show complex UV grid 
//  note that Nyquist data 
//  are in first row 
// go back to image domain 
//  with scaling 
// show final result is 
//  same as initial matrix 

// create a 4 x 4 real matrix 
// put in some point sources 

// show initial matrix 

cout «"fft'd complex Hermetian array after 
cout « farray «"\n"; 

ftestfft.shrink(farray); 

// create an FFTServer 
// do real to complex fft 
// get Nyquist data 
// put Nyquist data in last 
//  two rows 

expansion \n"; 
// show expanded Hermetian 
//  UV grid - compare with 
//  full complex one above 
// put Nyquist data back in 
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ftestfft.pack(farray); 

ftestfft.fft(farray,-1); 

cout «"reverse fft'd array \n"; 

/  Nyquist array 
/ pack, since fft method 
/  expects a packed array 
/ do complex to real fft 
/  with scaling 
/ show final result is same 
/  as initial matrix 

cout « farray «"\n"; 
y  catch (AipsError x) { 

cout « "Caught exception at line " « x.thrownLineO 
« " from file " « x.thrownFileQ « endl; 

cout « "Message is: " « x.getMesgO « endl; 
} end.try; 

} 

Running this program produces 

initial vector 
[(0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (0, 0), (0, 0), (0, 0)] 
FFTd vector 
[(1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0)] 
reverse FFTd vector 
[(0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (0, 0), (0, 0), (0, 0)] 

initial 2 d complex test array 
Axis Lengths: [4, 4]  (NB: Matrix in Row/Column order) 
[(0, 0), (0, 0), (0, 0), (0, 0) 
(0, 0), (1, 0), (0, 0), (0, 0) 
(0, 0), (0, 0), (1, 0), (0, 0) 
(0, 0), (0, 0), (0, 0), (1, 0)] 

fft'd complex array 
Axis Lengths: [4, 4]  (NB: Matrix in Row/Column order) 
[(3, 0), (1, 0), (-1, 0), (1, 0) 
(1, 0), (-1, 0), (1, 0), (3, 0) 
(-1, 0), (1, 0), (3, 0), (1, 0) 
(1, 0), (3, 0), (1, 0), (-1, 0)] 

reverse fft'd complex array 
Axis Lengths: [4, 4]  (NB: Matrix in Row/Column order) 
[(0, 0), (0, 0), (0, 0), (0, 0) 
(0, 0), (1, 0), (0, 0), (0, 0) 
(0, 0), (0, 0), (1, 0), (0, 0) 
(0, 0), (0, 0), (0, 0), (1, 0)] 

initial 2 d real test array 
Axis Lengths: [4, 4]  (NB: Matrix in Row/Column order) 
[0, 0, 0, 0 
0, 1, 0, 0 
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0, 0,  1, 0 
0, 0, 0,  1] 

fft'd complex Hermetian array after expansion 
Axis Lengths: [6, 4]  (NB: Matrix in Row/Column order) 
[-1. 1, 3, 1 
0, 0, 0, -0 
1, 3, 1, -1 
0, 0, 0, 0 
3, 1, -1, 1 
0, -0, 0, 0] 

reverse fft'd array 
Axis Lengths: [4, 4]  (NB: Matrix in Row/Column order) 
[0, 0, 0, 0 
0, 1, 0, 0 
0, 0, 1, 0 
0, 0, 0, 1] 


