
AIPS++ NOTE 164: Layering of Tables and Math Operations in AIPS++

M.A. Holdaway 13 January 1993

I think some simple rules for the layout of astronomical methods
should be defined for AIPS++. I will begin by describing what SDE
does, paying attention to why SDE is written that way, and then
extrapolate to AIPS++.

The Contexts

Consider the AIPS++ TelescopeModel (TM), consisting of several
TelescopeComponents (TC). For the time being, we will only consider a
single TC, the ReceptorGains. How should the methods be layered in
this case?

Consider simple operations on Images such as adding one image to
another. What will the layers of code look like?

SDE's Solution

In SDE, the code to solve the ReceptorGains would be layered like this:

Astronomical Structures
The top level code has very simple arguments largely due to
the fact that the data are contained in structures which are
essentially passed by name (pointer). The very top level of
code performs other astronomical level function calls and/or
converts the data structures into arrays and passes them to
the next lower level of code.

There are two reasons why the top level of code mainly converts
from structures to arrays:
* In SDE, the arrays in the data structures can be accessed
by an index, but not directly by an array, making it clumsy
to deal with. However, the index can be converted into an
array by passing a dummy array with that index down to the
next deeper level of code.

* It is conceptually elegant to split up the different levels
of thinking about the problem into different levels of code:
one level deals with the data structure, the next level deals
with the lower level details.

The first reason is not applicable to AIPS++.

At this level, the data have astronomical meaning.

Data Arrays
The middle level subroutine takes the data in the arrays and
creates matrices which will be the victims of pure mathematical
operations. For example, if the solution interval consists
of several data intergration times, and some data is not present,
we need to further average the data and accumulate the weights
considering the missing data and then pass the arrays containing
the cleaned up data to the next lower level.

At this level, the numbers still have physical meaning.

Mathematical
The bottom level code is pure mathematics. This level will be made
up of linear matrix methods, nonlinear solvers, maximum entropy
engines and the like.

There is no physical meaning to the numbers at this level, no units
or "measures" are applicable here.

The arguments passed into top level routines are very simple, usually
consisting of just a few astronomical data structires. This makes the
high level routines easy to use without knowing much about them. The
next lower level routine is passed scalar and array arguments, and
usually requires a somewhat deeper understanding of what is going on
in order to succesfully use the sunroutine. The interface to the
lowest level may be simple or complex, depending upon the operations
and structures which are involved.

In image processing, SDE has three levels of code: Image level. Array
level, and Pixel level. The Image level is concerned with
astronomical concepts such as coordinates and pixel units, the Array
level is concerned with array conformance, and the pixel level
operations do the actual work, treating N dimensional arrays as if
they were vectors and performing the mathematical operations pixel by
pixel.

AIPS++ Solution

The situation in AIPS++ is a bit different than in SDE for two reasons:
* because C++ is more powerful than the Fortran with a C DataBase
used in SDE, some division between layers may not be required in
AIPS++.

* because AIPS++ is more ambitious than SDE, and because it will be
a production environment, we require a higher level than SDE's top.

The SDE and AIPS++ layer structure for the ReceptorGains compare like this

SDE AIPS++

Organizational (TM)

Astro Struct \
> Astronomical (TC. solve ())

Data Array /

Pure Math Pure Math (Nonlinear Gain Solver)

The organizational level represents going through the TelescopeModel
to perform the solve. This allows the TM to record its own history
and the order in which the TelescopeComponents have been solved.

The interfaces to the top level methods are based on astronomical
objects and are therefore quite simple. At the bottom level, one will
usually be passing arrays and scalars to the mathematical methods. In
the particular case of the ReceptorGains, control parameters and
matrices of complex and floating point numbers need to be passed in,
and a vector of complex numbers needs to be passed out. It is
possible to create a special purpose object to encapsulate the inputs
and outputs, but the utility of this is unclear. One doesn't have to
turn everything into an object.

One could argue for a four level scheme in AIPS++ in which a
distinction was made between the astronomical structures level and the
data array level; actually, one would pass TableVectors to the data
array level code. This may clarify the logic of the code and force a
common structure upon developers, and would insulate the functional
astronomical code from the organizational database code (remember.
Tables might not be with us forever). On the other hand, separating
out the middle level astronomical code from the database code would result
in many more methods in each astronomical class as well as more
complicated interfaces to these middle level methods. It is unclear
if a three or four layer approach is best, but this should be
decided pretty soon.

The SDE and AIPS++ layer structure for Image operations compare like this:

SDE AIPS++

Image Image

Data Array \
> Array

Pixel /

An AIPS++ Image has an array. The Image level image processing code
will be very similar to SDE's. However, SDE's Array and Pixel level
routines can be combined into a single level of code, as in
ArrayMath. This is possible because of the use of templating and the
because iterating through an array pointer is kosher in C++, but is
seen as ugly in Fortran.

