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1    Introduction & Background 

ALPS has been important to U.K. radio-synthesis astronomy for many years, 
and although major software systems have been developed locally (e.g. 
OLAF at Jodrell Bank) which are particularly well suited to local instru¬ 
ments such as MERLIN, it became clear that the primary reduction package 
in the long term should be AIPS, with vital local tasks incorporated. There 
were several reasons for this: 

• Most image analysis is already carried-out in AIPS, even if the images 
have been formed in another system. 

• Insufficient local manpower to maintain local systems as well as develop¬ 
ing new applications; a plan to develop "OLAF 2" was abandoned for 
this reason. 

• AIPS is a global standard, which many astronomers are familiar with. If 
MERLIN data is to be exported for analysis, adequate software must 
be available at the remote users institution. 

• Most new software developments for synthesis imaging first appear in 
AIPS. 

1This document has been prepared after consultation with members of the Jodrell 
Bank, U.K. and European VLBI user community. I am particularly grateful to Roger 
Noble, Paddy Leahy, Martin Shepherd, Michael Garrett, Peter Wilkinson and Walter Alef 
for useful discussions and/or contributions. 



However, AIPS is by no means ideal, particularly for interferometer data 
with comparatively few baselines, and there is little for the single-dish ob¬ 
server. Thus the AIPS-}--\- project is seen as a golden opportunity to achieve 
the best of all worlds. 

Whilst the initial contribution to the project comes solely from Jodrell 
Bank, there is increasing interest from other parts of the U.K. commu¬ 
nity, including MRAO (Cambridge) and the JCMT millimetre-wave tele¬ 
scope (Hawaii). At present, manpower constraints preclude full participation 
for these groups; however, the STARLINK radio astronomy special interest 
group hope to provide an additional 1.5-2 man-years of effort in the sec¬ 
ond half of 1992, if funding permits. In addition, Jodrell is member of the 
European VLBI Network (EVN), and is committed to providing software 
support for the analysis of EVN data. 

Consequently, our user requirements emphasise, first and foremost, con¬ 
straints imposed by the radio instruments available to the U.K./EVN com¬ 
munity. Thus we have to consider not only MERLIN and the Lovell Tele¬ 
scope (as well as other consortium instruments), but also VLBI (and the 
European VLBI network in particular), MRAO and the JCMT. By catering 
for a variety of instruments from the beginning, we believe AIPS+-I- will 
have the generality required to adapt to new systems far into the future. 

Many issues (such as the user interface) are not considered in great depth. 
This is not because we regard them as unimportant; rather we are aware 
of the extensive consideration given by others (such as the NRA0 group), 
and believe only a little more has to be added. This document should 
perhaps be seen as a supplement to the more extensive user requirements 
produced by NRAO (or maybe those requirements should be considered to 
be "inherited"). We assume that AIPS+-f will have all the functionality of 
AIPS++, and we suggest ways in which this can be improved. 

2    Instrumental Constraints 

Here, we indicate generalities which are required to support the data we 
expect. 

2.1    Single Dish 

Single dish data are likely to fall into one of three categories: 



Spectral line - Series of spectra, not necessarily of equal numbers of chan¬ 
nels. 

Pulsar - Series of Pulsar profiles - essentially series of time series. 

Imagining Collections of spot measurements with position, not necessarily 
regularly spaced. 

No assumptions should be made on the basis of a particular kind of 
telescope or instrumental geometry, for example, the SCUBA multi-beam 
array detector on the JCMT will not rotate, and will therefore generate a 
rotating image. Whilst this is likely to be corrected prior to data export, such 
data processing problems should be borne in mind when the data system is 
designed. 

In some cases, particularly Pulsar data, there may be a requirement in 
future to support data which take the form of bit fields 

2.2    Interferometer arrays 

Our interferometer arrays are generally inhomogeneous in many ways, such 
as antenna size, receiver temperatures, polarisation characteristics. AIPS+-I- 
should not merely be able to cope with data from such systems, it must ex¬ 
ploit it's characteristics whenever possible. For example, it should be possi¬ 
ble to take full advantage of the case where a very large telescope is part of 
an array of smaller telescopes, and this will particularly affect calibration. 

New observing modes will generate data that can no longer be thought 
of as streams of the same basic block generated at regular intervals. Visi¬ 
bilities from different baselines, frequencies and polarisations may occur at 
different times, and the number of any of these present may vary during an 
observation, thus, for example, assuming that a fixed number of baselines 
will be present throughout an observation will be wasteful of storage space 
if a maximum fixed number has to be assumed for the whole observation. 

Interferometer data involving few baselines, such as from MERLIN or 
VLBI, are likely to benefit from a number of operations which are not gen¬ 
erally applied to VLA or similar data: 

• Calibration of data from tables of system temperature and gain v. ele¬ 
vation, and generation of such tables from raw data. 

• Flagging of data on the basis of observing session logs. 



• 

Model-fitting (with errors) to visibility data, rather than images. 

Self-calibration using a model derived from fitting to visibilities. 

• Calibration and self-calibration with constraints from crossing-points in 
the uv-plane. 

• Fringe fitting by baseline, rather than globally. 

• Simultaneous processing of "associated" data sets, such as different (e.g. 
by calibration, integration time, fringe-fitting etc.)   versions of the 
same observation, so that the best can be selected later. 

2.3    Combining Data 

Much useful work has already been done in combining data from different 
instruments, such as MERLIN, with VLA or VLBI data. This is likely to 
become more commonplace (particularly if the users in the consortium col¬ 
laborate as much as the software groups!), and must be made easier. AIPS 
has already acted as an enabling tool for this, but improvements are neces¬ 
sary, such as the ability to transform between different weighting schemes, 
and "regrid" spectral data for combination where bandwidths and number 
of channels differ. 

3    Data Display and Editing 

So far as systems with a few baselines (such as MERLIN and VLBI arrays) 
are concerned, AIPS has traditionally been weak in displaying and editing 
data in the most useful way, i.e. baseline by baseline. This functionality, 
available in the CalTech and OLAF systems, is essential. It is also likely to 
be useful to display and edit data using a variety of "viewing strategies", 
such as taking arbitrary linear (e.g. radial) or circular cuts through the data 
(gridded or ungridded) on the uv plane. In all cases, it should be possible 
to superimpose model data, and also subtract or divide by model data, in 
order to see residual errors more clearly. Some of this is possible in AIPS, 
but should be made more straightforward to use. 

As volumes of data increase, automated techniques for bad data rejection 
will become important. Some simple statistical techniques already exist, but 
these often fail to match capabilities of the human eye, and more sophisti¬ 
cated techniques are required, possibly based on neural networks. 



Data display and editing should be seen as generic tools, applicable to 
single dish data as well as interferometer visibilities. To this end, some 
degree of data visualisation should perhaps be seen as an integral, or at 
least closely coupled part of the database system. In particular, as well 
as graphical data display and editing, it should be possible to view the 
numbers themselves, extract them for other processing, and modify them in 
the database. The means of doing this is closely tied to the user interface, 
suffice it to say here that some sort of query language would be one way of 
achieving this. 

4    Image Formation 

The title of this section might be construed as covering simply the act of 
transforming edited, calibrated data and deconvolving the images. However, 
we wish to emphasise that the process should be viewed as a whole, and 
whilst data editing, for example, is discussed separately (because it is a 
generic operation, applicable beyond interferometry), it must be possible 
to integrate (self-)calibration, data inspection/editing, transformation and 
deconvolution more closely than is possible in AIPS. 

This is what has been achieved in the OLAF system, which has proved 
particularly valuable for MERLIN and VLBI data. The OLAF MAP pro¬ 
gram essentially incorporates self-calibration in between major cycles of an 
MX-like transformation and deconvolution. At each step it is possible to 
view the current residual image and set windows (as in MX), and, together 
with the OLAF plot program, the visibility data may be displayed (together 
with the current clean-component model, or with the latter subtracted) and 
edited. This sort of thing is, in theory, possible in AIPS, but it is difficult 
and tedious. 

AIPS++ should combine the best of both worlds; instead of a large, 
monolithic task like OLAF MAP, it should be possible to easily "mix-and- 
match" self-calibration, transformation, and deconvolution tools, for exam¬ 
ple, using CLEAN to deconvolve in the early stages, and Maximum Entropy 
later on when CLEAN would begin to break-down. This also demonstrates 
the need to make self-calibration use a generic model, which may be CLEAN- 
components, an image, or a gaussian model. 



5    Error Handling 

Astronomical data analysis is often neglectful of error analysis and propaga¬ 
tion. In radio-interferometric synthesis, the nature of the problem is poorly 
understood, and consequently is usually ignored. Whilst this strategy has 
not proved disastrous, there is an increasingly strong desire to quantify the 
"fidelity" of synthesised images, and the use and propagation of reliable 
error estimates is vital in advanced image analysis such as the determina¬ 
tion of optical depths, rotation measures and other polarisation parameters, 
and in spectral fitting. Less obviously, the wildly inaccurate error estimates 
sometimes obtained in gaussian fitting and similar tasks are due at least in 
part to the fact that the real errors in images are functions of both inten¬ 
sity and intensity gradient, and not simply quantifiable as a constant error 
applicable to each pixel. 

In addition, if AIPS-I-+ is to be used in in other radio-astronomical 
applications where error handling is slightly more rigorous, the ability to 
associate errors with measured quantities is essential. Thus if a baseline is 
to be fitted to a single dish spectrum, it should be possible to make use of 
errors if they are available. 

Support for error handling should be available in all statistical analysis 
and display tasks, for example: 

• Plotting error bars on spectra and profiles; 

• Automatic warning if contour levels are below noise; 

• Error-based blanking in display of results; 

• Properly formatted errors when data are extracted for tabulation. 

Ideally errors should be propagated right through the system from the 
errors or weights on the original raw data. Maximum-entropy algorithms 
can certainly assign pixel errors on this basis; this cannot yet be done for 
CLEAN. For this reason and because visibility weights will not include all 
important systematic errors, we also need tools for generating errors based 
on statistical analysis of images and on "error models" (e.g. assumed Poisson 
errors for photon-count images). 



6 User Interfaces 

A key feature of the user interfaces should be that they have a similar relation 
to AIPS+-I- as the various shells have to Unix; essentially, you can choose 
the one you want, and all will have some basic functionality (such as the 
ability to start tasks), whilst others may have more sophisticated features, 
such as an interpreter which recognises AIPS++ data structures. 

The adoption of this sort of model should also ensure that users have 
full access to normal operating system commands. 

6.1    Tasks as Tools 

The interface should allow tasks to be combined together (at the command- 
line, in a command procedure or graphically) to build a new task. We are 
aware that others are thinking along similar lines, and generally agree with 
this "toolkit" approach. It would be useful if all tasks (as in AIPS termi¬ 
nology) could be used as subroutine-like operations from a user command 
shell. This, together with the ability to select and manipulate data from 
a command-shell (using something like a structured query language) would 
allow users to perform any operation in their data without resorting to "real 
programming". 

This should be borne in mind in the design of the data system; efficient 
means of passing data objects will be essential, and something like the pipe 
facility in Unix shells seems desirable, although this should be capable of 
passing complex data structures, and perhaps, in general, true objects, in¬ 
corporating methods associated with data structures. Such piping should 
also be possible between tasks running on separate systems in a network, as 
well as on a single system. Distributed processing will be discussed further 
later. Any really useful data piping system should have "tee-joints"; i.e. it 
should be possible to tap the dataflow for examination at any "joint in the 
plumbing", so long as the data are in a meaningful state (e.g. a Fourier 
transform has completed). 

7 Hardware and Software Environment 

7.1    Operating Systems 

It is clear that Unix-like standards will dominate for the forseeable future, 
and whilst it might be argued that this will stifle development of operating 



systems, and lead to reliance on a particular software model, the evidence is 
to the contrary. New operating systems are already available which, on the 
surface, look like Unix, and often comply with standards such as P0SIX.1, 
but "under the hood", these may be very different beasts, in some cases, 
well suited to new hardware environments. Mach is an example which will 
form the basis of one mainstream POSIX-compliant system, 0SF-1. Chorus 
and Amoeba are more radical examples. Thus the Unix-like standards will 
enable us to tap a rich, developing field in operating systems technology, in 
much the same way as C-f-f- (and hence C) does for other software. 

The most difficult area may be in selection of appropriate standards, 
since not all P0SIX committees have produced a standard yet. The X/Open 
XPG3 should also be considered, since it is well established, and seems to 
encompass as least as much as POSIX. However, this is a detail which should 
be left for consideration by the design group. 

7.2    Hardware and Performance Considerations 

Given the timescale for development of AIPS-I—1-, it is not unreasonable to 
suggest that the least powerful machine it should ever be require to run on 
is a SPARCstation IPX/SPARC 2. Even this might be too conservative, 
given that more powerful machines are already available at similar cost (or 
even less). This baseline, equivalent to 15-20 times the performance of a 
VAX-11/780, would rule-out most, if not all, existing VAX systems. This 
is not to say that AIPS++ might not run on these; we have argued that 
Unix-like standards should be adopted as a software environment, and it 
seems likely that these will be available on VAXes. 

However, much of the functionality we require may only be possible with 
the relatively high scalar performance of RISC systems; for example, suppose 
some valuable facility in a command interpreter results in a SPARCstation 
IPX-class machine taking 0.3 seconds to return a prompt. This is probably 
alright, and is likely to improve on future machines; however a Micro VAX 
3000-class machine may take several seconds, which is likely to be unaccept¬ 
able. 

Basic functionality, as discussed in this and other requirements specifica¬ 
tions, should not be constrained by a need to run on obsolescent hardware. If 
the additional functionality can be made optional, so that it works if the ap¬ 
propriate hardware is available, then this is satisfactory, and this philosophy 
may be more widely applicable to applications, such as 3-D visualisation, 
which may require special purpose hardware. 
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At the other extreme, AIPS++ must be able to take advantage of many 
forms of parallelism for the highest performance. By comparison with most 
major astronomical software systems, AIPS has been quite successful in 
exploiting the mini-supercomputer systems, such as Alliant and Convex, 
which appeared during the mid-1980's. This was largely due to the fact that 
they ran Unix, (hence supporting our earlier arguments for the operating 
system environment), and also to the way almost all the performance-critical 
code is encapsulated in the AIPS Q-routines. This limited the amount 
of work required to take advantage of new vector and parallel hardware. 
However, the original array-processor paradigm is limited to some extent by 
the memory model assumed in AIPS, and this must be addressed. 

The highest performance machines may be massively parallel SIMD or 
MIMD machines with distributed memories. It is not yet clear whether 
distributed memory systems will be made to look like a large global memory 
in the long term, but AIPS++ should be designed with these problems 
in mind. This might go hand-in-hand with considerations for networked 
systems proposed next. 

7.3    Networked Systems 

Clusters of Unix workstations linked via ethernet are already common. In¬ 
ternet Protocal (IP) seems likely to dominate the software connection for 
some time, although the impact of OSI standards should be considered. 

Over the next few years, most significant hardware changes are likely 
to be transparent to the software, taking the form of performance im¬ 
provements with fibre-optic (FDDI) links replacing ethernet, and High- 
Performance Parallel Interface (HIPPI) links will make it possible to couple 
computers intimately enough to distribute an application in a way analogous 
to the distribution of functions in AIPS among a basic host (such as a VAX) 
and array and display processors. The difference which AIPS-I—\- should be 
able to exploit is that each component may be a fully functional computer 
in it's own right, differentiated only by an ability to perform a particular 
operation (such as array operations or 3-D display) particularly well. 

AIPS++ should be able to make better use of networks than AIPS does 
in a number of ways: 

Data serving - AIPS file serving relies on NFS (Sun's Network File Sys¬ 
tem) for accessing remote files over a network. This can be quite detri¬ 
mental to performance, and, although remote access will be limited by 



the hardware interconnection, it should be possible to do better, par- 
ticulary if the problem of slow NFS-writes can be circumvented (de¬ 
ferred writes are possible with some NFS servers). An asynchronous 
data server system, making greater use of file-server intelligence within 
the AIPS4-+ database system is likely to be desirable to make best use 
of networks, and could also take advantage of multi-processor systems, 
with truly asynchronous I/O. 

Intelligent display servers - AIPS remote-display capabilities rely on the 
client system for most computation associated with display. AIPS-f-+ 
should be able to run display applications entirely on the server where 
possible. This would be particulary useful in the of widely-separated 
systems (such as the case when using a remote supercomputer). Of 
course, this does not preclude the use of X-Windows; a display server 
might, itself, consist of separate, networked systems, if appropriate. 

Distributed Processing - AlPS-f-f should be capable of distributed ei¬ 
ther by running different tasks on different machines (and piping them 
together, if necessary), or by distributing different parts of a single 
task. In both cases, it might be useful to make the selection at run 
time, with the ability to set defaults in system-wide and personal ini¬ 
tialisation files 

8    Miscellaneous General Requirements 

History and Session Logs - It is essential that a user may be able to 
determine what has happened to a dataset, and support should be 
available to import history information from "previous incarnations'', 
such as on-line observing-system logs. 

Archives - AIPS-j—[■ should be able to support data archives comprised 
of many raw and/or processed datasets, with a standard means of 
transporting such archives. There should be support for searching for, 
and retrieving a desired dataset. 

Electronic Publication - Given the kind of archive facility described above 
and the hypertext documentation system described by others (e.g. the 
NRAO group), a useful long term goal would be to go beyond the ob¬ 
jective of "publication-quality" output; there is clearly a mismatch 
between what can be produced at the end of an astronomical project, 
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and what can be published. FITS has done a great deal to assist the 
transportation of astronomical data; AIPS++ could do the same for 
astronomical information. 
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