# The Atacama Large Millimetre Array

**Receiver Optics Design** 

**Electromagnetic Analysis** 



**C Y Tham and S Withington** Cavendish Laboratory University of Cambridge, UK

September 4, 2001

# CONTENTS

|   | Abstra                                                                                           | ct                                                                                                                                                                                                                                                                                             | 1                                                                                                          |
|---|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| 1 | Introduction                                                                                     |                                                                                                                                                                                                                                                                                                |                                                                                                            |
| 2 | Band 1                                                                                           |                                                                                                                                                                                                                                                                                                |                                                                                                            |
|   | <b>2.1</b><br>2.1.1<br>2.1.2<br>2.1.3                                                            | Quasi-Optics Analysis<br>Gaussian Beam Parameters<br>Truncation Loss at Filters<br>Truncation Loss at Cryostat Window                                                                                                                                                                          | 4<br>4<br>7                                                                                                |
| 3 | Band 2                                                                                           | 2                                                                                                                                                                                                                                                                                              |                                                                                                            |
|   | <b>3.1</b><br>3.1.1<br>3.1.2<br>3.1.3                                                            | Quasi-Optics Analysis<br>Gaussian Beam Parameters<br>Truncation Loss at Filters<br>Truncation Loss at Cryostat Window                                                                                                                                                                          | 11<br>11<br>14                                                                                             |
| 4 | Band 3                                                                                           | l                                                                                                                                                                                                                                                                                              |                                                                                                            |
|   | <b>4.1</b><br>4.1.1<br>4.1.2<br>4.1.3<br>4.1.4<br><b>4.2</b><br>4.2.1<br>4.2.2<br>4.2.3<br>4.2.4 | Quasi-Optics AnalysisGaussian Beam ParametersTruncation Loss at FiltersTruncation Loss at MirrorsTruncation Loss at Cryostat WindowPhysical Optics AnalysisBeam Profile at Cassegrain FocusBeam Profile at Subreflector & Edge TaperFar Field Radiation PatternBeam & Cross-Polar Efficiencies | 18<br>18<br>21<br>23<br>28<br>30<br>30<br>32                                                               |
| 5 | Band 4                                                                                           | l                                                                                                                                                                                                                                                                                              |                                                                                                            |
|   | <b>5.1</b><br>5.1.1<br>5.1.2<br>5.1.3<br>5.1.4<br><b>5.2</b><br>5.2.1<br>5.2.2<br>5.2.3<br>5.2.4 | Quasi-Optics AnalysisGaussian Beam ParametersTruncation Loss at FiltersTruncation Loss at MirrorsTruncation Loss at Cryostat WindowPhysical Optics AnalysisBeam Profile at Cassegrain FocusBeam Profile at Subreflector & Edge TaperFar Field Radiation PatternBeam & Cross-Polar Efficiencies | <ul> <li>33</li> <li>33</li> <li>36</li> <li>38</li> <li>41</li> <li>43</li> <li>44</li> <li>45</li> </ul> |
| 6 | Band 5                                                                                           | 5                                                                                                                                                                                                                                                                                              |                                                                                                            |

| 6.1   | Quasi-Optics Analysis              |    |
|-------|------------------------------------|----|
| 6.1.1 | Gaussian Beam Parameters           | 46 |
| 6.1.3 | Truncation Loss at Mirrors         | 46 |
| 6.1.4 | Truncation Loss at Cryostat Window | 48 |
|       |                                    |    |

:

| Physical Optics Analysis                  |                                                                                                                                                                             |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Beam Profile at Cassegrain Focus          | 52                                                                                                                                                                          |
| Beam Profile at Subreflector & Edge Taper | 54                                                                                                                                                                          |
| Far Field Radiation Pattern               | 54                                                                                                                                                                          |
| Beam & Cross-Polar Efficiencies           | 56                                                                                                                                                                          |
|                                           | Physical Optics Analysis<br>Beam Profile at Cassegrain Focus<br>Beam Profile at Subreflector & Edge Taper<br>Far Field Radiation Pattern<br>Beam & Cross-Polar Efficiencies |

# 7 Band 6

----

| 7.1   | Quasi-Optics Analysis                     |    |
|-------|-------------------------------------------|----|
| 7.1.1 | Gaussian Beam Parameters                  | 57 |
| 7.1.2 | Truncation Loss at Mirrors                | 57 |
| 7.1.3 | Truncation Loss at Cryostat Window        | 59 |
| 7.2   | Physical Optics Analysis                  |    |
| 7.2.1 | Beam Profile at Cassegrain Focus          | 62 |
| 7.2.2 | Beam Profile at Subreflector & Edge Taper | 64 |
| 7.2.3 | Far Field Radiation Pattern               | 65 |
| 7.2.4 | Beam & Cross-Polar Efficiencies           | 66 |

# 8 Band 7

| 8.1   | Quasi-Optics Analysis                     |    |
|-------|-------------------------------------------|----|
| 8.1.1 | Gaussian Beam Parameters                  | 67 |
| 8.1.2 | Truncation Loss at Mirrors                | 67 |
| 8.1.3 | Truncation Loss at Cryostat Window        | 69 |
| 8.2   | Physical Optics Analysis                  |    |
| 8.2.1 | Beam Profile at Cassegrain Focus          | 73 |
| 8.2.2 | Beam Profile at Subreflector & Edge Taper | 73 |
| 8.2.3 | Far Field Radiation Pattern               | 73 |
| 8.2.4 | Beam & Cross-Polar Efficiencies           | 73 |

# 9 Band 8

| 9.1                            | Quasi-Optics Analysis                                                                                        |                |
|--------------------------------|--------------------------------------------------------------------------------------------------------------|----------------|
| 9.1.1                          | Gaussian Beam Parameters                                                                                     | 74             |
| 9.1.2                          | Truncation Loss at Mirrors                                                                                   | 74             |
| 9.1.3                          | Truncation Loss at Cryostat Window                                                                           | 76             |
| 0.2                            | Physical Onting Analysis                                                                                     |                |
| 9.2                            | Physical Optics Analysis                                                                                     |                |
| 9.2<br>9.2.1                   | Beam Profile at Cassegrain Focus                                                                             | 80             |
| 9.2<br>9.2.1<br>9.2.2          | Beam Profile at Cassegrain Focus<br>Beam Profile at Subreflector & Edge Taper                                | 80<br>80       |
| 9.2<br>9.2.1<br>9.2.2<br>9.2.3 | Beam Profile at Cassegrain Focus<br>Beam Profile at Subreflector & Edge Taper<br>Far Field Radiation Pattern | 80<br>80<br>80 |

# 10 Band 9

| 10.1                            | Quasi-Optics Analysis                                                                                            |          |
|---------------------------------|------------------------------------------------------------------------------------------------------------------|----------|
| 10.1.1                          | Gaussian Beam Parameters                                                                                         | 81       |
| 10.1.2                          | Truncation Loss at Mirrors                                                                                       | 81       |
| 10.1.3                          | Truncation Loss at Cryostat Window                                                                               | 83       |
|                                 |                                                                                                                  |          |
|                                 |                                                                                                                  |          |
| 10.2                            | Physical Optics Analysis                                                                                         |          |
| <b>10.2</b><br>10.2.1           | <b>Physical Optics Analysis</b><br>Beam Profile at Cassegrain Focus                                              | 86       |
| <b>10.2</b><br>10.2.1<br>10.2.2 | <b>Physical Optics Analysis</b><br>Beam Profile at Cassegrain Focus<br>Beam Profile at Subreflector & Edge Taper | 86<br>88 |

# 11 Band 10

| 11.1                                 | Quasi-Optics Analysis                                                                                                                           |                      |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 11.1.1                               | Gaussian Beam Parameters                                                                                                                        | 91                   |
| 11.1.2                               | Truncation Loss at Mirrors                                                                                                                      | 91                   |
| 11.1.3                               | Truncation Loss at Cryostat Window                                                                                                              | 93                   |
| 11.2                                 | Physical Ontics Analysis                                                                                                                        |                      |
|                                      | i nysteur o pues i marysts                                                                                                                      |                      |
| 11.2.1                               | Beam Profile at Cassegrain Focus                                                                                                                | 96                   |
| 11.2.1<br>11.2.2                     | Beam Profile at Cassegrain Focus<br>Beam Profile at Subreflector & Edge Taper                                                                   | 96<br>97             |
| 11.2.1<br>11.2.2<br>11.2.3           | Beam Profile at Cassegrain Focus<br>Beam Profile at Subreflector & Edge Taper<br>Far Field Radiation Pattern                                    | 96<br>97<br>97       |
| 11.2.1<br>11.2.2<br>11.2.3<br>11.2.4 | Beam Profile at Cassegrain Focus<br>Beam Profile at Subreflector & Edge Taper<br>Far Field Radiation Pattern<br>Beam & Cross-Polar Efficiencies | 96<br>97<br>97<br>97 |

### References

90

#### ABSTRACT:

This document reports the electromagnetic analysis of the receiver optics design for the Atacama Large Millimetre Array (ALMA) project. The optics design of the receivers covering the 10 frequency bands ranging from 31.3 GHz to 950 GHz is detailed in ALMA Memo 362, "ALMA Receiver Optics Design" [1]. Analysis was carried out using quasi-optics method and a physical optics software. The quasi-optics analysis results are Gaussian beam parameters, truncation loss at filter, mirrors and cryostat window and beam profiles at filter, mirrors and cryostat windows. Physical optics analysis results are the field distribution at the Cassegrain focus, field distribution at the secondary reflector giving the edge tapers, the radiation pattern in the far field, and main beam and cross-polar efficiencies. Both x- and y-polarised beams are given. The far field radiation patterns are also obtained as 3-D plots of the co- and cross-polar fields.

# 1 INTRODUCTION

The 10 frequency bands of the telescope array are shown in Table I below.

| Band | Lowest Frequency<br>[GHz] | Mid-Band Frequency<br>[GHz] | Highest Frequency<br>[GHz] |
|------|---------------------------|-----------------------------|----------------------------|
| 1    | 31.3                      | 38                          | 45                         |
| 2    | 67                        | 78                          | 90                         |
| 3    | 89 (84 <sup>†</sup> )     | 100                         | 116                        |
| 4    | 125                       | 144                         | 163                        |
| 5    | 163                       | 187                         | 211                        |
| 6    | 211                       | 243                         | 275                        |
| 7    | 275                       | 323                         | 370                        |
| 8    | 385                       | 442                         | 500                        |
| 9    | 602                       | 661                         | 720                        |
| 10   | 787                       | 868                         | 950                        |

TABLE I Receiver frequency bands.

<sup>†</sup> Extension of band 3 down to 84 GHz is being considered.

Quasi-optics analysis [2] is carried out using thin lens approximation for the focusing elements.

Physical optics modelling is carried out on GRASP8 version 8.1.5 from TICRA Engineering Consultants of the Netherlands. The input is that of a source field with Gaussian distribution\*. The analysis using a corrugated horn feed will be provided in a subsequent revision of this document.

For the physical optics modelling, the beam axis is targeted at the vertex of the hyperboloidal secondary reflector surface. Parameters and dimensions used for the simulations are given in [1]. Definitions for the symbols used are shown in Fig.1. The optical configuration for the antenna is shown in Fig. 2 while the data are given in Table II. The layout of the cryostat showing positions of the band cartridges is shown in Fig. 3.

\* **Important note**: The PO results presented are obtained with ideal Gaussian feeds instead of corrugated horns. It is expected that there will be some different when results obtained using corrugated horn feeds are available later. However comparison of the field at the Cassagrain focus between the PO simulation using Gaussian feed and quasioptics computation using corrugated horn are given.

1



Figure 1. Definition of symbols used. Focusing elements are represented by lenses. Only one element is present in Bands 1-4.



Figure 2. Optical Configuration of Antenna.

| Symbol           | Description                                 | Data    |
|------------------|---------------------------------------------|---------|
| D                | Primary Aperture                            | 12.0 m  |
| f                | Focal Length of Primary                     | 4.8 m   |
| ·                | f/D or Primary                              | 0.40    |
| d                | Secondary Aperture                          | 0.75 m  |
|                  | Final f/D                                   | 8.00    |
| е                | Secondary Eccentricity                      | 1.10526 |
| $\theta_{\rm p}$ | Primary Angle of Illumination               | 128.02° |
| $\theta_{s}^{P}$ | Secondary Angle of Illumination             | 7.16°   |
| 2c               | Distance Between Primary and Secondary Foci | 6.177 m |
| v                | Primary Vertex Hole Clear Aperture          | 0.75 m  |

 TABLE II

 Antenna Optical Configuration Data.



Fig. 3 Layout of band cartridges in cryostat.

# 2 BAND 1

.

# 2.1 Quasi-Optics Analysis

#### 2.1.1 Gaussian Beam Parameters

| Quasi-optics Gaussian beam parameters for Band 1. |              |                         |                       |                       |  |
|---------------------------------------------------|--------------|-------------------------|-----------------------|-----------------------|--|
| Frequency [GHz] $\lambda$ [mm]                    |              | <b>31.1</b><br>9.578034 | <b>38</b><br>7.889275 | <b>45</b><br>6.662055 |  |
| Horn diameter                                     | 29.9         |                         |                       |                       |  |
| Horn axial length                                 | 180.52       |                         |                       |                       |  |
| Horn slant length                                 | 181.138      |                         |                       |                       |  |
| Horn waist, $w_0$                                 |              | 9.488                   | 9.427                 | 9.353                 |  |
| Horn waist offset, $\Delta z(w_0)$                |              | -4.94843                | -7.20044              | -9.93861              |  |
| Waist at horn aperture, $w_{ha}$                  |              | 9.620                   | 9.620                 | 9.620                 |  |
| $d_1$                                             | 193.0        |                         |                       |                       |  |
| $R_{s1}$                                          |              | 202.353                 | 206.456               | 211.323               |  |
| $f_1$                                             | 188.0        |                         |                       |                       |  |
| R <sub>i1</sub>                                   |              | 2650.497                | 2103.010              | 1703.425              |  |
| Waist at lens, $w_{L1}$                           | (dia. = 186) | 64.311                  | 54.157                | 46.955                |  |
| $Z_{w(Cass.)}$                                    | 170.0        | 550.181                 | 495.728               | 462.331               |  |
| W <sub>Cass</sub> .                               |              | 57.248                  | 47.345                | 40.079                |  |
| $d_{\text{lens-subrefl}}$                         |              | 6359.86                 | 6359.86               | 6359.86               |  |
| W <sub>subrefl</sub>                              | (dia. = 750) | 314.650                 | 314.621               | 314.603               |  |
| R <sub>subrefl</sub>                              | 6000.00      | 6008.580                | 6000.005              | 5994.823              |  |
| Edge Taper (dB)                                   | 12.00        | 12.34                   | 12.34                 | 12.34                 |  |
| $\Delta_{ m refocus}$                             |              | +8.88                   |                       | +5.26                 |  |
| W <sub>subrefl</sub>                              |              | 314.185                 |                       | 314.879               |  |
| R <sub>subrefl</sub>                              |              | 6000.005                |                       | 5999.997              |  |
| Edge Taper (dB)                                   |              | 12.37                   |                       | 12.32                 |  |

 TABLE III(a)

 Quasi-optics Gaussian beam parameters for Band 1

Calculations based on thin lens approximation. All dimensions in mm.

#### 2.1.2 Truncation Loss at Filters

The beam profiles at the filter are shown in Figures 4(a), (b) and (c). Truncation loss of the beam for a range of filter diameters are given in Tables III(b) - III(g).





Figure 4. Beam profile at various distances from horn aperture; (a) 31.3 GHz, (b) 38 GHz and (c) 45 GHz.

TABLE III(b) Truncated beam power at filter for Band 1 low limit frequency 31.3 GHz.

| Truncation     |       |       | z from h | orn aperti | ure (mm.) |       |       |
|----------------|-------|-------|----------|------------|-----------|-------|-------|
| diameter (mm.) | 5     | 10    | 15       | 20         | 25        | 30    | 35    |
| 100            | 1 000 | 1 000 | 1 000    | 1 000      | 1 000     | 0 000 | 0 000 |
| 90             | 1.000 | 1.000 | 1.000    | 1.000      | 0.999     | 0.999 | 0.999 |
| 80             | 1.000 | 1.000 | 1.000    | 1.000      | 0.999     | 0.998 | 0.997 |
| 78             | 1.000 | 1.000 | 1.000    | 0.999      | 0.999     | 0.998 | 0.997 |
| 70             | 1.000 | 1.000 | 1.000    | 0.999      | 0.998     | 0.997 | 0.994 |
| 60             | 1.000 | 1.000 | 0.999    | 0.998      | 0.996     | 0.993 | 0.988 |
| 50             | 1.000 | 0.999 | 0.998    | 0.994      | 0.989     | 0.982 | 0.972 |
| 40             | 0.999 | 0.996 | 0.990    | 0.980      | 0.966     | 0.949 | 0.925 |

 TABLE III(c)

 Beam truncation loss in dB at filter for Band 1 low limit frequency 31.3 GHz.

| Truncation     |        |        | z from he | orn apertu | ıre (mm.) |        |        |
|----------------|--------|--------|-----------|------------|-----------|--------|--------|
| diameter (mm.) | 5      | 10     | 15        | 20         | 25        | 30     | 35     |
| 100            | -0.000 | -0.000 | -0.004    | -0.001     | -0.001    | -0.003 | -0.004 |
| 90             | -0.000 | -0.000 | -0.004    | -0.001     | -0.002    | -0.003 | -0.007 |
| 80             | -0.000 | -0.000 | -0.001    | -0.002     | -0.004    | -0.007 | -0.011 |
| 78             | -0.000 | -0.000 | -0.001    | -0.002     | -0.005    | -0.009 | -0.013 |
| 70             | -0.000 | -0.000 | -0.002    | -0.004     | -0.008    | -0.014 | -0.024 |
| 60             | -0.000 | -0.001 | -0.004    | -0.009     | -0.018    | -0.033 | -0.051 |
| 50             | -0.000 | -0.003 | -0.011    | -0.026     | -0.049    | -0.080 | -0.121 |
| 40             | -0.003 | -0.016 | -0.044    | -0.088     | -0.148    | -0.229 | -0.339 |

| Truncation     |       | z from horn aperture (mm.) |       |       |       |       |       |  |  |  |
|----------------|-------|----------------------------|-------|-------|-------|-------|-------|--|--|--|
| diameter (mm.) | 5     | 10                         | 15    | 20    | 25    | 30    | 35    |  |  |  |
| 100            | 1.000 | 1.000                      | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 |  |  |  |
| 90             | 1.000 | 1.000                      | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 |  |  |  |
| 80             | 1.000 | 1.000                      | 1.000 | 1.000 | 0.999 | 0.999 | 0.999 |  |  |  |
| 78             | 1.000 | 1.000                      | 1.000 | 1.000 | 0.999 | 0.999 | 0.998 |  |  |  |
| 70             | 1.000 | 1.000                      | 1.000 | 1.000 | 0.999 | 0.998 | 0.997 |  |  |  |
| 60             | 1.000 | 1.000                      | 1.000 | 0.999 | 0.998 | 0.996 | 0.993 |  |  |  |
| 50             | 1.000 | 1.000                      | 0.999 | 0.996 | 0.993 | 0.988 | 0.982 |  |  |  |
| 40             | 1.000 | 0.998                      | 0.993 | 0.986 | 0.977 | 0.965 | 0.951 |  |  |  |

TABLE III(d) Truncated beam power at filter for Band 1 mid frequency 38 GHz.

 TABLE III(e)

 Beam truncation loss in dB at filter for Band 1 mid frequency 38 GHz.

| Truncation     |        |        | z from he | orn apertu | ıre (mm.) |        |        |
|----------------|--------|--------|-----------|------------|-----------|--------|--------|
| diameter (mm.) | 5      | 10     | 15        | 20         | 25        | 30     | 35     |
| 100            | 0.000  | 0.000  | 0.000     | 0.000      | 0.001     | 0.001  | 0.002  |
| 90             | -0.000 | -0.000 | -0.000    | -0.000     | -0.001    | -0.001 | -0.002 |
| 80             | -0.000 | -0.000 | -0.000    | -0.001     | -0.001    | -0.001 | -0.007 |
| 78             | -0.000 | -0.000 | -0.001    | -0.001     | -0.003    | -0.003 | -0.008 |
| 70             | -0.000 | -0.000 | -0.001    | -0.002     | -0.004    | -0.004 | -0.014 |
| 60             | -0.000 | -0.001 | -0.002    | -0.005     | -0.010    | -0.010 | -0.030 |
| 50             | -0.000 | -0.002 | -0.006    | -0.015     | -0.030    | -0.030 | -0.080 |
| 40             | -0.002 | -0.010 | -0.029    | -0.060     | -0.103    | -0.103 | -0.220 |

 TABLE III(f)

 Truncated beam power at filter for Band 1 high limit frequency 45 GHz.

| 20 25     | 30                                                                                                                                                            | 35                                                                             |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
|           |                                                                                                                                                               |                                                                                |
| 000 1.000 | 0 1.000                                                                                                                                                       | 1.000                                                                          |
| 000 1.000 | 0 1.000                                                                                                                                                       | 0.999                                                                          |
| 000 1.000 | 0 0.999                                                                                                                                                       | 0.999                                                                          |
| 000 1.000 | 0.999                                                                                                                                                         | 0.999                                                                          |
| 000 0.999 | 9 0.999                                                                                                                                                       | 0.998                                                                          |
| 999 0.999 | 9 0.997                                                                                                                                                       | 0.996                                                                          |
| 998 0.996 | 6 0.992                                                                                                                                                       | 0.988                                                                          |
| 991 0.983 | 3 0.974                                                                                                                                                       | 0.963                                                                          |
|           | 000         1.000           000         1.000           000         0.999           999         0.999           998         0.999           991         0.983 | 0001.0000.9990001.0000.9990000.9990.9999990.9990.9979980.9960.9929910.9830.974 |

| Truncation     |        |        | z from he | orn apertu | ıre (mm.) |        |        |
|----------------|--------|--------|-----------|------------|-----------|--------|--------|
| diameter (mm.) | 5      | 10     | 15        | 20         | 25        | 30     | 35     |
| 100            | -0.000 | -0.000 | -0.000    | -0.000     | -0.001    | -0.001 | -0.001 |
| 90             | -0.000 | -0.000 | -0.000    | -0.000     | -0.001    | -0.001 | -0.002 |
| 80             | -0.000 | -0.000 | -0.000    | -0.001     | -0.001    | -0.003 | -0.004 |
| 78             | -0.000 | -0.000 | -0.000    | -0.001     | -0.002    | -0.003 | -0.005 |
| 70             | -0.000 | -0.000 | -0.001    | -0.001     | -0.003    | -0.005 | -0.008 |
| 60             | -0.000 | -0.000 | -0.001    | -0.003     | -0.006    | -0.011 | -0.020 |
| 50             | -0.000 | -0.001 | -0.004    | -0.010     | -0.019    | -0.034 | -0.051 |
| 40             | -0.001 | -0.007 | -0.020    | -0.041     | -0.072    | -0.014 | -0.163 |

 TABLE III(g)

 Beam truncation loss in dB at filter for Band 1 high limit frequency 45 GHz.

#### 2.1.3 Truncation Loss at Cryostat Window

The beam profiles at the cryostat window are shown in Figures 4(d), (e) and (f). Truncation loss of the beam for a range of window diameters is given in Table III(h) - III(m).



Figure 4. Beam profile at various distances from mirror 2; (d) 31.3 GHz, (e) 38 GHz and (f) 45 GHz.

TABLE III(h) Truncated beam power at cryostat window for Band 1 low limit frequency 31.3 GHz.

| Truncation        | on z from horn aperture (mm.) |       |       |       |       |       |       |       |  |
|-------------------|-------------------------------|-------|-------|-------|-------|-------|-------|-------|--|
| diameter<br>(mm.) | 170                           | 180   | 190   | 193   | 200   | 210   | 220   | 230   |  |
| 300               | 0.997                         | 0.997 | 0.997 | 0.996 | 0.996 | 0.994 | 0.992 | 0.991 |  |
| 280               | 0.997                         | 0.996 | 0.995 | 0.994 | 0.993 | 0.991 | 0.990 | 0.988 |  |
| 260               | 0.996                         | 0.994 | 0.992 | 0.992 | 0.990 | 0.988 | 0.987 | 0.986 |  |
| 240               | 0.993                         | 0.991 | 0.989 | 0.988 | 0.987 | 0.986 | 0.985 | 0.983 |  |
| 220               | 0.989                         | 0.987 | 0.986 | 0.985 | 0.984 | 0.983 | 0.981 | 0.977 |  |
| 200               | 0.986                         | 0.984 | 0.982 | 0.982 | 0.980 | 0.976 | 0.970 | 0.963 |  |
| 186               | 0.983                         | 0.981 | 0.978 | 0.976 | 0.973 | 0.965 | 0.956 | 0.944 |  |
| 180               | 0.981                         | 0.979 | 0.974 | 0.973 | 0.968 | 0.959 | 0.947 | 0.933 |  |
| 160               | 0.972                         | 0.964 | 0.953 | 0.949 | 0.938 | 0.921 | 0.902 | 0.880 |  |
| 140               | 0.945                         | 0.927 | 0.905 | 0.898 | 0.881 | 0.855 | 0.827 | 0.798 |  |
| 120               | 0.882                         | 0.852 | 0.819 | 0.809 | 0.786 | 0.752 | 0.718 | 0.685 |  |

 TABLE III(i)

 Beam truncation loss in dB at cryostat window for Band 1 low limit frequency 31.3 GHz.

| Truncation        | z from horn aperture (mm.) |        |        |        |        |        |        |        |  |  |
|-------------------|----------------------------|--------|--------|--------|--------|--------|--------|--------|--|--|
| diameter<br>(mm.) | 170                        | 180    | 190    | 193    | 200    | 210    | 220    | 230    |  |  |
| 300               | -0.011                     | -0.012 | -0.015 | -0.016 | -0.019 | -0.026 | -0.034 | -0.041 |  |  |
| 280               | -0.013                     | -0.016 | -0.022 | -0.024 | -0.030 | -0.038 | -0.046 | -0.052 |  |  |
| 260               | -0.018                     | -0.025 | -0.034 | -0.037 | -0.043 | -0.051 | -0.056 | -0.061 |  |  |
| 240               | -0.030                     | -0.040 | -0.049 | -0.051 | -0.056 | -0.062 | -0.067 | -0.073 |  |  |
| 220               | -0.046                     | -0.055 | -0.062 | -0.064 | -0.068 | -0.075 | -0.085 | -0.100 |  |  |
| 200               | -0.063                     | -0.070 | -0.078 | -0.081 | -0.089 | -0.106 | -0.130 | -0.164 |  |  |
| 186               | -0.075                     | -0.084 | -0.099 | -0.104 | -0.121 | -0.153 | -0.196 | -0.250 |  |  |
| 180               | -0.081                     | -0.094 | -0.113 | -0.121 | -0.143 | -0.184 | -0.237 | -0.302 |  |  |
| 160               | -0.124                     | -0.160 | -0.210 | -0.228 | -0.276 | -0.356 | -0.450 | -0.556 |  |  |
| 140               | -0.248                     | -0.331 | -0.433 | -0.467 | -0.551 | -0.683 | -0.827 | -0.980 |  |  |
| 120               | -0.545                     | -0.698 | -0.866 | -0.919 | -1.047 | -1.238 | -1.436 | -1.640 |  |  |

,

 TABLE III(j)

 Truncated beam power at cryostat window for Band 1 mid frequency 38 GHz.

| Truncation        | z from horn aperture (mm.) |       |       |       |       |       |       |       |  |
|-------------------|----------------------------|-------|-------|-------|-------|-------|-------|-------|--|
| diameter<br>(mm.) | 170                        | 180   | 190   | 193   | 200   | 210   | 220   | 230   |  |
| 300               | 0.999                      | 0.998 | 0.998 | 0.998 | 0.997 | 0.997 | 0.997 | 0.996 |  |
| 280               | 0.998                      | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 | 0.996 | 0.995 |  |
| 260               | 0.997                      | 0.997 | 0.997 | 0.997 | 0.996 | 0.995 | 0.994 | 0.992 |  |
| 240               | 0.997                      | 0.997 | 0.996 | 0.995 | 0.994 | 0.992 | 0.990 | 0.988 |  |
| 220               | 0.996                      | 0.994 | 0.992 | 0.992 | 0.990 | 0.988 | 0.986 | 0.984 |  |
| 200               | 0.993                      | 0.990 | 0.988 | 0.987 | 0.985 | 0.984 | 0.982 | 0.980 |  |
| 186               | 0.989                      | 0.986 | 0.984 | 0.984 | 0.982 | 0.980 | 0.978 | 0.975 |  |
| 180               | 0.987                      | 0.985 | 0.983 | 0.982 | 0.981 | 0.978 | 0.976 | 0.972 |  |
| 160               | 0.981                      | 0.979 | 0.976 | 0.975 | 0.972 | 0.967 | 0.959 | 0.950 |  |
| 140               | 0.972                      | 0.967 | 0.959 | 0.956 | 0.949 | 0.935 | 0.920 | 0.902 |  |
| 120               | 0.947                      | 0.932 | 0.913 | 0.907 | 0.892 | 0.868 | 0.843 | 0.816 |  |

 TABLE III(k)

 Beam truncation loss in dB at cryostat window for Band 1 mid frequency 38 GHz.

| Truncation        | z from horn aperture (mm.) |        |        |        |        |        |        |        |  |  |
|-------------------|----------------------------|--------|--------|--------|--------|--------|--------|--------|--|--|
| diameter<br>(mm.) | 170                        | 180    | 190    | 193    | 200    | 210    | 220    | 230    |  |  |
| 300               | -0.006                     | -0.008 | -0.010 | -0.011 | -0.011 | -0.012 | -0.013 | -0.015 |  |  |
| 280               | -0.009                     | -0.011 | -0.012 | -0.012 | -0.013 | -0.014 | -0.018 | -0.023 |  |  |
| 260               | -0.012                     | -0.012 | -0.014 | -0.014 | -0.016 | -0.021 | -0.028 | -0.036 |  |  |
| 240               | -0.013                     | -0.015 | -0.019 | -0.021 | -0.026 | -0.035 | -0.044 | -0.052 |  |  |
| 220               | -0.018                     | -0.024 | -0.033 | -0.036 | -0.043 | -0.053 | -0.061 | -0.068 |  |  |
| 200               | -0.032                     | -0.043 | -0.054 | -0.057 | -0.064 | -0.072 | -0.079 | -0.087 |  |  |
| 186               | -0.047                     | -0.059 | -0.070 | -0.072 | -0.078 | -0.086 | -0.096 | -0.110 |  |  |
| 180               | -0.055                     | -0.067 | -0.076 | -0.079 | -0.085 | -0.095 | -0.107 | -0.125 |  |  |
| 160               | -0.083                     | -0.093 | -0.106 | -0.111 | -0.123 | -0.148 | -0.181 | -0.224 |  |  |
| 140               | -0.123                     | -0.147 | -0.182 | -0.195 | -0.230 | -0.290 | -0.363 | -0.448 |  |  |
| 120               | -0.238                     | -0.307 | -0.394 | -0.423 | -0.496 | -0.613 | -0.742 | -0.881 |  |  |

•

 TABLE III(l)

 Truncated beam power at cryostat window for Band 1 high limit frequency 45 GHz.

| Truncation        | z from horn aperture (mm.) |       |       |       |       |       |       |       |  |
|-------------------|----------------------------|-------|-------|-------|-------|-------|-------|-------|--|
| diameter<br>(mm.) | 170                        | 180   | 190   | 193   | 200   | 210   | 220   | 230   |  |
| 300               | 0.999                      | 0.999 | 0.999 | 0.999 | 0.999 | 0.998 | 0.998 | 0.997 |  |
| 280               | 0.999                      | 0.999 | 0.998 | 0.998 | 0.998 | 0.997 | 0.997 | 0.997 |  |
| 260               | 0.999                      | 0.998 | 0.998 | 0.998 | 0.997 | 0.997 | 0.997 | 0.996 |  |
| 240               | 0.998                      | 0.997 | 0.997 | 0.997 | 0.997 | 0.996 | 0.996 | 0.995 |  |
| 220               | 0.997                      | 0.997 | 0.996 | 0.996 | 0.996 | 0.995 | 0.993 | 0.991 |  |
| 200               | 0.996                      | 0.996 | 0.994 | 0.994 | 0.993 | 0.990 | 0.988 | 0.986 |  |
| 186               | 0.995                      | 0.994 | 0.991 | 0.990 | 0.989 | 0.986 | 0.984 | 0.982 |  |
| 180               | 0.994                      | 0.992 | 0.989 | 0.989 | 0.987 | 0.984 | 0.982 | 0.980 |  |
| 160               | 0.988                      | 0.985 | 0.982 | 0.981 | 0.979 | 0.977 | 0.974 | 0.971 |  |
| 140               | 0.979                      | 0.976 | 0.973 | 0.972 | 0.969 | 0.965 | 0.958 | 0.950 |  |
| 120               | 0.967                      | 0.961 | 0.953 | 0.951 | 0.943 | 0.931 | 0.916 | 0.899 |  |

 TABLE III(m)

 Beam truncation loss in dB at cryostat window for Band 1 high limit frequency 45 GHz.

| Truncation        | z from horn aperture (mm.) |        |        |        |        |        |        |        |  |  |
|-------------------|----------------------------|--------|--------|--------|--------|--------|--------|--------|--|--|
| diameter<br>(mm.) | 170                        | 180    | 190    | 193    | 200    | 210    | 220    | 230    |  |  |
| 300               | -0.004                     | -0.004 | -0.005 | -0.005 | -0.006 | -0.008 | -0.010 | -0.011 |  |  |
| 280               | -0.004                     | -0.005 | -0.007 | -0.007 | -0.009 | -0.011 | -0.012 | -0.013 |  |  |
| 260               | -0.006                     | -0.008 | -0.010 | -0.011 | -0.012 | -0.013 | -0.014 | -0.016 |  |  |
| 240               | -0.009                     | -0.012 | -0.013 | -0.013 | -0.014 | -0.016 | -0.019 | -0.024 |  |  |
| 220               | -0.013                     | -0.014 | -0.016 | -0.016 | -0.019 | -0.024 | -0.031 | -0.040 |  |  |
| 200               | -0.016                     | -0.019 | -0.024 | -0.027 | -0.033 | -0.043 | -0.053 | -0.063 |  |  |
| 186               | -0.021                     | -0.028 | -0.038 | -0.042 | -0.050 | -0.061 | -0.072 | -0.081 |  |  |
| 180               | -0.025                     | -0.034 | -0.046 | -0.050 | -0.058 | -0.070 | -0.080 | -0.089 |  |  |
| 160               | -0.051                     | -0.065 | -0.078 | -0.082 | -0.090 | -0.101 | -0.112 | -0.127 |  |  |
| 140               | -0.090                     | -0.105 | -0.119 | -0.123 | -0.135 | -0.156 | -0.185 | -0.221 |  |  |
| 120               | -0.147                     | -0.173 | -0.208 | -0.220 | -0.253 | -0.311 | -0.380 | -0.461 |  |  |

## 3 BAND 2

#### 3.1 Quasi-Optics Analysis

#### 3.1.1 Gaussian Beam Parameters

| Quasi-optic                        | s Gaussian beam p | arameters for E       | Sand 2.               |                       |
|------------------------------------|-------------------|-----------------------|-----------------------|-----------------------|
| Frequency [GHz]<br>λ [mm]          |                   | <b>67</b><br>4.474514 | <b>78</b><br>3.843493 | <b>90</b><br>3.331027 |
| Horn diameter                      | 15.0              |                       |                       |                       |
| Horn axial length                  | 90.26             |                       |                       |                       |
| Horn slant length                  | 90.571            |                       |                       |                       |
| Horn waist, $w_0$                  |                   | 4.749                 | 4.723                 | 4.690                 |
| Horn waist offset, $\Delta z(w_0)$ |                   | -2.85972              | -3.83282              | -5.03230              |
| Waist at horn aperture, wha        |                   | 4.826                 | 4.826                 | 4.826                 |
| $d_1$                              | 88.0              |                       |                       |                       |
| $R_{s1}$                           |                   | 93.620                | 95.453                | 97.659                |
| $f_1$                              | 88.0              |                       |                       |                       |
| $R_{i1}$                           |                   | 1465.849              | 1127.043              | 889.718               |
| Waist at lens, $w_{L1}$            | (dia. = 88.3)     | 27.658                | 24.252                | 21.548                |
| Z <sub>w(Cass.)</sub>              | 70.0              | 173.502               | 173.502               | 173.502               |
| W <sub>Cass</sub> .                |                   | 25.970                | 22.307                | 19.333                |
| $d_{\text{lens-subrefl}}$          |                   | 6145.80               | 6145.80               | 6145.80               |
| Wsubrefl                           | (dia. = 750)      | 328.571               | 328.302               | 328.113               |
| R <sub>subrefl</sub>               | 6000.00           | 6009.842              | 6000.000              | 5993.105              |
| Edge Taper (dB)                    | 12.00             | 11.31                 | 11.33                 | 11.35                 |
| $\Delta_{ m refocus}$              |                   | +9.90                 |                       | +6.92                 |
| Wsubrefl                           |                   | 328.030               |                       | 328.492               |
| R <sub>subrefl</sub>               |                   | 6000.005              |                       | 6000.001              |
| Edge Taper (dB)                    |                   | 11.35                 |                       | 11.35                 |
|                                    |                   |                       |                       |                       |

 TABLE IV(a)

 Quasi-optics Gaussian beam parameters for Band 2.

Calculations based on thin lens approximation. All dimensions in mm.

### 3.1.2 Truncation Loss at Filters

The beam profiles at the filter are shown in Figures 5(a), (b) and (c). Truncation loss of the beam for a range of filter diameters are given in Tables IV(b) - IV(g).





Figure 5. Beam profile at various distances from horn aperture; (a) 67 GHz, (b) 78 GHz and (c) 90 GHz.

 TABLE IV(b)

 Truncated beam power at filter for Band 2 low limit frequency 67 GHz.

| Truncation     | z from horn aperture (mm.) |       |       |       |       |       |       |  |
|----------------|----------------------------|-------|-------|-------|-------|-------|-------|--|
| diameter (mm.) | 2.5                        | 5     | 7.5   | 10    | 12.5  | 15    | 17.5  |  |
| 50             | 1 000                      | 1 000 | 1 000 | 1 000 | 1 000 | 1 000 | 0 999 |  |
| 45             | 1.000                      | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 |  |
| 43             | 1.000                      | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 | 0.998 |  |
| 40             | 1.000                      | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 | 0.998 |  |
| 35             | 1.000                      | 1.000 | 1.000 | 0.999 | 0.999 | 0.997 | 0.996 |  |
| 30             | 1.000                      | 1.000 | 0.999 | 0.998 | 0.996 | 0.994 | 0.990 |  |
| 25             | 1.000                      | 0.999 | 0.998 | 0.995 | 0.991 | 0.984 | 0.977 |  |
| 20             | 1.000                      | 0.997 | 0.991 | 0.983 | 0.970 | 0.956 | 0.934 |  |
| 15             | 0.992                      | 0.977 | 0.955 | 0.929 | 0.900 | 0.864 | 0.834 |  |

 TABLE IV(c)

 Beam truncation loss in dB at filter for Band 2 low limit frequency 67 GHz.

| Truncation     | z from horn aperture (mm.) |        |        |        |        |        |        |  |  |  |  |
|----------------|----------------------------|--------|--------|--------|--------|--------|--------|--|--|--|--|
| diameter (mm.) | 2.5                        | 5      | 7.5    | 10     | 12.5   | 15     | 17.5   |  |  |  |  |
| 50             | -0.000                     | -0.000 | -0.000 | -0.001 | -0.001 | -0.002 | -0.003 |  |  |  |  |
| 45             | -0.000                     | -0.000 | -0.000 | -0.001 | -0.002 | -0.004 | -0.005 |  |  |  |  |
| 43             | -0.000                     | -0.000 | -0.000 | -0.002 | -0.002 | -0.004 | -0.007 |  |  |  |  |
| 40             | -0.000                     | -0.000 | -0.001 | -0.002 | -0.003 | -0.006 | -0.010 |  |  |  |  |
| 35             | -0.000                     | -0.000 | -0.001 | -0.003 | -0.006 | -0.012 | -0.018 |  |  |  |  |
| 30             | -0.000                     | -0.001 | -0.003 | -0.008 | -0.015 | -0.025 | -0.045 |  |  |  |  |
| 25             | -0.000                     | -0.003 | -0.009 | -0.021 | -0.040 | -0.071 | -0.101 |  |  |  |  |
| 20             | -0.002                     | -0.014 | -0.038 | -0.076 | -0.134 | -0.195 | -0.294 |  |  |  |  |
| 15             | -0.034                     | -0.103 | -0.198 | -0.320 | -0.456 | -0.634 | -0.786 |  |  |  |  |

| Truncation     | z from horn aperture (mm.) |       |       |       |       |       |       |  |  |
|----------------|----------------------------|-------|-------|-------|-------|-------|-------|--|--|
| diameter (mm.) | 2.5                        | 5     | 7.5   | 10    | 12.5  | 15    | 17.5  |  |  |
| 50             | 1.000                      | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |  |  |
| 45             | 1.000                      | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 |  |  |
| 43             | 1.000                      | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 |  |  |
| 40             | 1.000                      | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 |  |  |
| 35             | 1.000                      | 1.000 | 1.000 | 1.000 | 0.999 | 0.998 | 0.997 |  |  |
| 30             | 1.000                      | 1.000 | 1.000 | 0.999 | 0.998 | 0.996 | 0.994 |  |  |
| 25             | 1.000                      | 1.000 | 0.999 | 0.997 | 0.993 | 0.989 | 0.983 |  |  |
| 20             | 1.000                      | 0.998 | 0.994 | 0.987 | 0.978 | 0.966 | 0.953 |  |  |
| 15             | 0.994                      | 0.981 | 0.963 | 0.942 | 0.918 | 0.890 | 0.858 |  |  |

 TABLE IV(d)

 Truncated beam power at filter for Band 2 mid frequency 78 GHz.

 TABLE IV(e)

 Beam truncation loss in dB at filter for Band 2 mid frequency 78 GHz.

| Truncation     |        |        | z from | horn apert | ure (mm.) |        |        |
|----------------|--------|--------|--------|------------|-----------|--------|--------|
| diameter (mm.) | 2.5    | 5      | 7.5    | 10         | 12.5      | 15     | 17.5   |
|                |        |        |        |            |           |        |        |
| 50             | -0.000 | -0.000 | -0.000 | -0.000     | -0.001    | -0.001 | -0.002 |
| 45             | -0.000 | -0.000 | -0.000 | -0.001     | -0.001    | -0.002 | -0.004 |
| 43             | -0.000 | -0.000 | -0.000 | -0.001     | -0.001    | -0.002 | -0.004 |
| 40             | -0.000 | -0.000 | -0.000 | -0.001     | -0.002    | -0.004 | -0.006 |
| 35             | -0.000 | -0.000 | -0.001 | -0.002     | -0.004    | -0.007 | -0.013 |
| 30             | -0.000 | -0.001 | -0.002 | -0.005     | -0.010    | -0.018 | -0.027 |
| 25             | -0.000 | -0.002 | -0.006 | -0.015     | -0.029    | -0.046 | -0.076 |
| 20             | -0.001 | -0.009 | -0.027 | -0.057     | -0.097    | -0.150 | -0.208 |
| 15             | -0.027 | -0.084 | -0.163 | -0.262     | -0.371    | -0.506 | -0.666 |

 TABLE IV(f)

 Truncated beam power at filter for Band 2 high limit frequency 90 GHz.

| Truncation     |       |       | z from | horn apert | ure (mm.) |       |       |
|----------------|-------|-------|--------|------------|-----------|-------|-------|
| diameter (mm.) | 2.5   | 5     | 7.5    | 10         | 12.5      | 15    | 17.5  |
|                |       |       |        |            |           |       |       |
| 50             | 1.000 | 1.000 | 1.000  | 1.000      | 1.000     | 1.000 | 1.000 |
| 45             | 1.000 | 1.000 | 1.000  | 1.000      | 1.000     | 1.000 | 0.999 |
| 43             | 1.000 | 1.000 | 1.000  | 1.000      | 1.000     | 1.000 | 0.999 |
| 40             | 1.000 | 1.000 | 1.000  | 1.000      | 1.000     | 0.999 | 0.999 |
| 35             | 1.000 | 1.000 | 1.000  | 1.000      | 0.999     | 0.999 | 0.998 |
| 30             | 1.000 | 1.000 | 1.000  | 0.999      | 0.999     | 0.997 | 0.995 |
| 25             | 1.000 | 1.000 | 0.999  | 0.998      | 0.996     | 0.992 | 0.988 |
| 20             | 1.000 | 0.998 | 0.995  | 0.991      | 0.983     | 0.974 | 0.963 |
| 15             | 0.995 | 0.984 | 0.969  | 0.951      | 0.930     | 0.909 | 0.882 |

 TABLE IV(g)

 Beam truncation loss in dB at filter for Band 2 high limit frequency 90 GHz.

| Truncation     |        |        |        |        |        |        |        |
|----------------|--------|--------|--------|--------|--------|--------|--------|
| diameter (mm.) | 2.5    | 5      | 7.5    | 10     | 12.5   | 15     | 17.5   |
| 50             | -0.000 | -0.000 | -0.000 | -0.000 | -0.001 | -0.001 | -0.001 |
| 45             | -0.000 | -0.000 | -0.000 | -0.000 | -0.001 | -0.001 | -0.002 |
| 43             | -0.000 | -0.000 | -0.000 | -0.000 | -0.001 | -0.002 | -0.003 |
| 40             | -0.000 | -0.000 | -0.000 | -0.001 | -0.001 | -0.002 | -0.004 |
| 35             | -0.000 | -0.000 | -0.001 | -0.001 | -0.003 | -0.005 | -0.008 |
| 30             | -0.000 | -0.000 | -0.001 | -0.003 | -0.006 | -0.011 | -0.020 |
| 25             | -0.000 | -0.001 | -0.004 | -0.010 | -0.019 | -0.034 | -0.051 |
| 20             | -0.001 | -0.007 | -0.020 | -0.041 | -0.073 | -0.015 | -0.164 |
| 15             | -0.022 | -0.070 | -0.135 | -0.216 | -0.317 | -0.415 | -0.543 |
|                |        |        |        |        |        |        |        |

#### 3.1.3 Truncation Loss at Cryostat Window

The beam profiles at the cryostat window are shown in Figures 5(d), (e) and (f). Truncation loss of the beam for a range of window diameters is given in Table IV(h) - IV(m).



Figure 5. Beam profile at various distances from mirror 2; (d) 67 GHz, (e) 78 GHz and (f) 90 GHz.

 TABLE IV(h)

 Truncated beam power at cryostat window for Band 2 low limit frequency 67 GHz.

| Truncation        |       |       |       | z from he | orn apertu | ıre (mm.) |       |       |       |
|-------------------|-------|-------|-------|-----------|------------|-----------|-------|-------|-------|
| diameter<br>(mm.) | 50    | 60    | 70    | 80        | 88         | 90        | 100   | 110   | 120   |
| 150               | 1.000 | 0.999 | 0.999 | 0.998     | 0.997      | 0.997     | 0.997 | 0.995 | 0.991 |
| 140               | 1.000 | 0.999 | 0.999 | 0.998     | 0.997      | 0.997     | 0.995 | 0.992 | 0.989 |
| 130               | 0.999 | 0.999 | 0.998 | 0.997     | 0.997      | 0.996     | 0.993 | 0.989 | 0.986 |
| 120               | 0.999 | 0.999 | 0.997 | 0.997     | 0.994      | 0.994     | 0.989 | 0.986 | 0.984 |
| 110               | 0.999 | 0.998 | 0.997 | 0.995     | 0.991      | 0.990     | 0.986 | 0.983 | 0.979 |
| 100               | 0.999 | 0.997 | 0.995 | 0.990     | 0.986      | 0.986     | 0.982 | 0.977 | 0.967 |
| 90                | 0.997 | 0.996 | 0.991 | 0.985     | 0.982      | 0.981     | 0.975 | 0.962 | 0.941 |
| 88.3              | 0.997 | 0.996 | 0.990 | 0.984     | 0.981      | 0.980     | 0.973 | 0.958 | 0.935 |
| 80                | 0.996 | 0.992 | 0.985 | 0.980     | 0.974      | 0.972     | 0.956 | 0.929 | 0.893 |
| 70                | 0.994 | 0.985 | 0.978 | 0.968     | 0.952      | 0.947     | 0.912 | 0.867 | 0.815 |
| 60                | 0.985 | 0.975 | 0.962 | 0.933     | 0.897      | 0.887     | 0.830 | 0.768 | 0.705 |

 TABLE IV(i)

 Beam truncation loss in dB at cryostat window for Band 2 low limit frequency 67 GHz.

| Truncation        | z from horn aperture (mm.) |        |        |        |        |        |        |        |        |  |  |
|-------------------|----------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--|--|
| diameter<br>(mm.) | 50                         | 60     | 70     | 80     | 88     | 90     | 100    | 110    | 120    |  |  |
| 150               | -0.002                     | -0.003 | -0.004 | -0.008 | -0.011 | -0.011 | -0.014 | -0.023 | -0.037 |  |  |
| 140               | -0.002                     | -0.004 | -0.006 | -0.011 | -0.012 | -0.013 | -0.020 | -0.035 | -0.049 |  |  |
| 130               | -0.003                     | -0.004 | -0.009 | -0.012 | -0.015 | -0.017 | -0.031 | -0.048 | -0.060 |  |  |
| 120               | -0.004                     | -0.006 | -0.012 | -0.015 | -0.024 | -0.028 | -0.047 | -0.061 | -0.072 |  |  |
| 110               | -0.005                     | -0.010 | -0.013 | -0.024 | -0.041 | -0.045 | -0.062 | -0.074 | -0.093 |  |  |
| 100               | -0.006                     | -0.013 | -0.020 | -0.042 | -0.060 | -0.063 | -0.078 | -0.100 | -0.146 |  |  |
| 90                | -0.012                     | -0.017 | -0.038 | -0.064 | -0.079 | -0.082 | -0.110 | -0.167 | -0.265 |  |  |
| 88.3              | -0.012                     | -0.018 | -0.042 | -0.068 | -0.083 | -0.087 | -0.119 | -0.185 | -0.294 |  |  |
| 80                | -0.016                     | -0.033 | -0.065 | -0.088 | -0.113 | -0.122 | -0.196 | -0.320 | -0.493 |  |  |
| 70                | -0.027                     | -0.066 | -0.096 | -0.140 | -0.213 | -0.237 | -0.400 | -0.621 | -0.888 |  |  |
| 60                | -0.066                     | -0.108 | -0.167 | -0.301 | -0.470 | -0.520 | -0.810 | -1.148 | -1.516 |  |  |

 TABLE IV(j)

 Truncated beam power at cryostat window for Band 2 mid frequency 78 GHz.

| Truncation z from horn aperture (mm.) |       |       |       |       |       |            |       |       |       |  |  |
|---------------------------------------|-------|-------|-------|-------|-------|------------|-------|-------|-------|--|--|
| diameter<br>(mm.)                     | 50    | 60    | 70    | 80    | 88    | <b>9</b> 0 | 100   | 110   | 120   |  |  |
| 150                                   | 1.000 | 1.000 | 0.999 | 0.999 | 0.999 | 0.998      | 0.997 | 0.997 | 0.996 |  |  |
| 140                                   | 1.000 | 1.000 | 0.999 | 0.999 | 0.998 | 0.998      | 0.997 | 0.996 | 0.994 |  |  |
| 130                                   | 1.000 | 0.999 | 0.999 | 0.998 | 0.997 | 0.997      | 0.997 | 0.995 | 0.991 |  |  |
| 120                                   | 1.000 | 0.999 | 0.999 | 0.997 | 0.997 | 0.997      | 0.995 | 0.991 | 0.987 |  |  |
| 110                                   | 0.999 | 0.999 | 0.998 | 0.997 | 0.996 | 0.995      | 0.991 | 0.987 | 0.984 |  |  |
| 100                                   | 0.999 | 0.998 | 0.997 | 0.996 | 0.992 | 0.991      | 0.986 | 0.983 | 0.979 |  |  |
| 90                                    | 0.999 | 0.997 | 0.996 | 0.992 | 0.987 | 0.986      | 0.981 | 0.977 | 0.969 |  |  |
| 88.3                                  | 0.999 | 0.997 | 0.995 | 0.991 | 0.986 | 0.985      | 0.980 | 0.975 | 0.967 |  |  |
| 80                                    | 0.997 | 0.996 | 0.992 | 0.985 | 0.981 | 0.980      | 0.974 | 0.963 | 0.945 |  |  |
| 70                                    | 0.996 | 0.992 | 0.984 | 0.977 | 0.971 | 0.969      | 0.954 | 0.929 | 0.895 |  |  |
| 60                                    | 0.992 | 0.982 | 0.973 | 0.961 | 0.945 | 0.939      | 0.904 | 0.858 | 0.807 |  |  |

 TABLE IV(k)

 Beam truncation loss in dB at cryostat window for Band 2 mid frequency 78 GHz.

| Truncation                                  | z from horn aperture (mm.)                                         |                                                                    |                                                                    |                                                                    |                                                                    |                                                                    |                                                                    |                                                                    |                                                                    |  |
|---------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--|
| diameter<br>(mm.)                           | 50                                                                 | 60                                                                 | 70                                                                 | 80                                                                 | 88                                                                 | 90                                                                 | 100                                                                | 110                                                                | 120                                                                |  |
| 150<br>140<br>130                           | -0.001<br>-0.001<br>-0.002                                         | -0.002<br>-0.002<br>-0.003                                         | -0.003<br>-0.004<br>-0.005                                         | -0.004<br>-0.005<br>-0.008                                         | -0.006<br>-0.009<br>-0.012                                         | -0.007<br>-0.010<br>-0.012                                         | -0.011<br>-0.012<br>-0.015                                         | -0.012<br>-0.015<br>-0.024                                         | -0.016<br>-0.025<br>-0.039                                         |  |
| 120<br>110<br>100<br>90<br>88.3<br>80<br>70 | -0.002<br>-0.003<br>-0.005<br>-0.006<br>-0.006<br>-0.011<br>-0.018 | -0.004<br>-0.005<br>-0.008<br>-0.013<br>-0.014<br>-0.017<br>-0.034 | -0.006<br>-0.010<br>-0.014<br>-0.018<br>-0.020<br>-0.036<br>-0.071 | -0.012<br>-0.014<br>-0.019<br>-0.037<br>-0.041<br>-0.066<br>-0.101 | -0.013<br>-0.018<br>-0.033<br>-0.057<br>-0.062<br>-0.085<br>-0.127 | -0.014<br>-0.021<br>-0.037<br>-0.062<br>-0.067<br>-0.090<br>-0.136 | -0.022<br>-0.038<br>-0.059<br>-0.082<br>-0.086<br>-0.115<br>-0.205 | -0.039<br>-0.057<br>-0.076<br>-0.101<br>-0.108<br>-0.162<br>-0.319 | -0.055<br>-0.071<br>-0.091<br>-0.135<br>-0.147<br>-0.243<br>-0.481 |  |
| 60                                          | -0.033                                                             | -0.079                                                             | -0.119                                                             | -0.171                                                             | -0.248                                                             | -0.273                                                             | -0.440                                                             | -0.664                                                             | -0.931                                                             |  |

 TABLE IV(l)

 Truncated beam power at cryostat window for Band 2 high limit frequency 90 GHz.

| Truncation z from horn aperture (mm.) |       |       |       |       |       |       |       |       |       |  |  |
|---------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|
| diameter<br>(mm.)                     | 50    | 60    | 70    | 80    | 88    | 90    | 100   | 110   | 120   |  |  |
| 150                                   | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 | 0.999 | 0.999 | 0.998 | 0.997 |  |  |
| 140                                   | 1.000 | 1.000 | 0.999 | 0.999 | 0.999 | 0.999 | 0.998 | 0.997 | 0.997 |  |  |
| 130                                   | 1.000 | 1.000 | 0.999 | 0.999 | 0.998 | 0.998 | 0.997 | 0.997 | 0.996 |  |  |
| 120                                   | 1.000 | 0.999 | 0.999 | 0.999 | 0.998 | 0.997 | 0.997 | 0.996 | 0.993 |  |  |
| 110                                   | 1.000 | 0.999 | 0.999 | 0.998 | 0.997 | 0.997 | 0.996 | 0.993 | 0.989 |  |  |
| 100                                   | 0.999 | 0.999 | 0.998 | 0.997 | 0.996 | 0.996 | 0.993 | 0.988 | 0.984 |  |  |
| 90                                    | 0.999 | 0.998 | 0.997 | 0.996 | 0.993 | 0.992 | 0.987 | 0.982 | 0.978 |  |  |
| 88.3                                  | 0.999 | 0.998 | 0.997 | 0.995 | 0.992 | 0.991 | 0.986 | 0.981 | 0.977 |  |  |
| 80                                    | 0.999 | 0.997 | 0.996 | 0.992 | 0.987 | 0.985 | 0.980 | 0.974 | 0.967 |  |  |
| 70                                    | 0.997 | 0.995 | 0.991 | 0.993 | 0.977 | 0.976 | 0.969 | 0.959 | 0.941 |  |  |
| 60                                    | 0.995 | 0.990 | 0.980 | 0.971 | 0.963 | 0.961 | 0.944 | 0.917 | 0.882 |  |  |

 TABLE IV(m)

 Beam truncation loss in dB at cryostat window for Band 2 high limit frequency 90 GHz.

| Truncation        | z from horn aperture (mm.) |        |        |        |        |        |        |        |        |  |  |
|-------------------|----------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--|--|
| diameter<br>(mm.) | 50                         | 60     | 70     | 80     | 88     | 90     | 100    | 110    | 120    |  |  |
| 150               | -0.001                     | -0.001 | -0.002 | -0.003 | -0.004 | -0.004 | -0.006 | -0.010 | -0.012 |  |  |
| 140               | -0.001                     | -0.001 | -0.002 | -0.004 | -0.005 | -0.005 | -0.009 | -0.012 | -0.014 |  |  |
| 130               | -0.001                     | -0.002 | -0.003 | -0.005 | -0.007 | -0.008 | -0.012 | -0.014 | -0.018 |  |  |
| 120               | -0.001                     | -0.002 | -0.004 | -0.006 | -0.010 | -0.011 | -0.014 | -0.018 | -0.030 |  |  |
| 110               | -0.002                     | -0.004 | -0.005 | -0.010 | -0.014 | -0.014 | -0.018 | -0.031 | -0.049 |  |  |
| 100               | -0.002                     | -0.005 | -0.009 | -0.014 | -0.017 | -0.018 | -0.032 | -0.053 | -0.072 |  |  |
| 90                | -0.004                     | -0.007 | -0.014 | -0.019 | -0.030 | -0.034 | -0.058 | -0.080 | -0.098 |  |  |
| 88.3              | -0.005                     | -0.008 | -0.015 | -0.020 | -0.034 | -0.038 | -0.063 | -0.084 | -0.103 |  |  |
| 80                | -0.006                     | -0.014 | -0.019 | -0.036 | -0.059 | -0.065 | -0.090 | -0.112 | -0.144 |  |  |
| 70                | -0.012                     | -0.020 | -0.039 | -0.074 | -0.099 | -0.104 | -0.135 | -0.183 | -0.263 |  |  |
| 60                | -0.022                     | -0.044 | -0.088 | -0.127 | -0.162 | -0.173 | -0.251 | -0.376 | -0.547 |  |  |

# 4 BAND 3

# 4.1 Quasi-Optics Analysis

#### 4.1.1 Gaussian Beam Parameters

| Qua:                               | si-optics Gaussian | beam paramete         | ers for Band 3.       |                        |                        |
|------------------------------------|--------------------|-----------------------|-----------------------|------------------------|------------------------|
| Frequency [GHz]<br>λ [mm]          |                    | <b>84</b><br>3.568958 | <b>89</b><br>3.368455 | <b>100</b><br>2.997925 | <b>116</b><br>2.584418 |
| Horn diameter                      | 24.0               |                       |                       |                        |                        |
| Horn axial length                  | 140.0              |                       |                       |                        |                        |
| Horn slant length                  | 140.513            |                       |                       |                        |                        |
| Horn waist, $w_0$                  |                    | 7.234                 | 7.180                 | 7.056                  | 6.863                  |
| Horn waist offset, $\Delta z(w_0)$ |                    | -17.2063              | -19.0300              | -23.2001               | -29.5328               |
| Waist at horn aperture, wha        |                    | 7.722                 | 7.722                 | 7.722                  | 7.722                  |
| $d_1$                              | 152.70             |                       |                       |                        |                        |
| $R_{\rm s1}$                       | 190.745            | 182.394               | 185.192               | 191.373                | 200.218                |
| $f_1$                              | 149.08             |                       |                       |                        |                        |
| R <sub>i1</sub>                    | 682.553            | 816.220               | 764.522               | 674.578                | 583.682                |
| Waist at mirror 1, $w_{M1}$        | (dia. = 163)       | 27.646                | 26.631                | 24.814                 | 22.897                 |
| $d_2$                              | 170.00             |                       |                       |                        |                        |
| Waist at mirror 2, $w_{M2}$        | (dia. = 115)       | 22.976                | 21.811                | 19.678                 | 17.340                 |
| Z <sub>w</sub> (Cass.)             | 303.85             | 330.211               | 327.282               | 322.307                | 317.431                |
| W <sub>Cass</sub> .                |                    | 21.333                | 20.140                | 17.932                 | 15.465                 |
| $d_{\sf mirror-subrefl}$           |                    | 6303.32               | 6303.32               | 6303.32                | 6303.32                |
| W <sub>subrefl</sub>               | (dia. = 750)       | 318.795               | 318.795               | 318.795                | 318.795                |
| R <sub>subrefl</sub>               | 6000.00            | 5999.977              | 5999.984              | 5999.997               | 6000.009               |
| Edge Taper (dB)                    | 12.00              | 12.02                 | 12.02                 | 12.02                  | 12.02                  |

 TABLE V(a)

 Quasi-optics Gaussian beam parameters for Band 3

All dimensions in mm.

#### 4.1.2 Truncation Loss at Filters

The beam profiles at the filter are shown in Figures 6(a), (b), (c) and (d). Truncation loss of the beam for a range of filter diameters are given in Tables V(b) - V(i).





Figure 6. Beam profile at various distances from horn aperture; (a) 84 GHz, (b) 89 GHz, (c) 100 GHz and (d) 116 GHz.

| TABLE V(b)                                                                    |
|-------------------------------------------------------------------------------|
| Truncated beam power at filter for Band 3 extended low limit frequency 84 GHz |

| Truncation        | z from horn aperture (mm.) |       |       |       |       |       |       |       |  |  |
|-------------------|----------------------------|-------|-------|-------|-------|-------|-------|-------|--|--|
| diameter<br>(mm.) | 2.5                        | 5     | 7.5   | 10    | 12.5  | 15    | 17.5  | 20    |  |  |
| 50                | 1.000                      | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |  |  |
| 45                | 1.000                      | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 |  |  |
| 40                | 1.000                      | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 | 0.998 |  |  |
| 35                | 1.000                      | 1.000 | 1.000 | 0.999 | 0.999 | 0.998 | 0.997 | 0.996 |  |  |
| 30                | 1.000                      | 1.000 | 0.999 | 0.998 | 0.996 | 0.994 | 0.992 | 0.988 |  |  |
| 25                | 0.999                      | 0.997 | 0.994 | 0.990 | 0.985 | 0.979 | 0.972 | 0.965 |  |  |

TABLE V(c)

Beam truncation loss in dB at filter for Band 3 extended low limit frequency 84 GHz.

| Truncation        | z from horn aperture (mm.) |        |        |        |        |        |        |        |  |  |
|-------------------|----------------------------|--------|--------|--------|--------|--------|--------|--------|--|--|
| diameter<br>(mm.) | 2.5                        | 5      | 7.5    | 10     | 12.5   | 15     | 17.5   | 20     |  |  |
| 50                | -0.000                     | -0.000 | -0.000 | -0.000 | -0.000 | -0.001 | -0.001 | -0.002 |  |  |
| 45                | -0.000                     | -0.000 | -0.000 | -0.000 | -0.001 | -0.001 | -0.002 | -0.003 |  |  |
| 40                | -0.000                     | -0.000 | -0.000 | -0.001 | -0.002 | -0.003 | -0.004 | -0.007 |  |  |
| 35                | -0.000                     | -0.000 | -0.001 | -0.002 | -0.004 | -0.007 | -0.012 | -0.018 |  |  |
| 30                | -0.000                     | -0.001 | -0.004 | -0.009 | -0.015 | -0.025 | -0.037 | -0.050 |  |  |
| 25                | -0.003                     | -0.012 | -0.025 | -0.043 | -0.066 | -0.093 | -0.123 | -0.155 |  |  |

TABLE V(d) Truncated beam power at filter for Band 3 low limit frequency 89 GHz.

| Truncation        | z from horn aperture (mm.) |       |       |       |       |       |       |       |  |  |
|-------------------|----------------------------|-------|-------|-------|-------|-------|-------|-------|--|--|
| diameter<br>(mm.) | 2.5                        | 5     | 7.5   | 10    | 12.5  | 15    | 17.5  | 20    |  |  |
| 50                | 1.000                      | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |  |  |
| 45                | 1.000                      | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 |  |  |
| 40                | 1.000                      | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 | 0.999 |  |  |
| 35                | 1.000                      | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 | 0.998 | 0.997 |  |  |
| 30                | 1.000                      | 1.000 | 0.999 | 0.998 | 0.997 | 0.995 | 0.993 | 0.990 |  |  |
| 25                | 0.999                      | 0.998 | 0.995 | 0.991 | 0.986 | 0.980 | 0.974 | 0.967 |  |  |

 TABLE V(e)

 Beam truncation loss in dB at filter for Band 3 low limit frequency 89 GHz.

| Truncation        |        | z from horn aperture (mm.) |        |        |        |        |        |        |  |  |  |
|-------------------|--------|----------------------------|--------|--------|--------|--------|--------|--------|--|--|--|
| diameter<br>(mm.) | 2.5    | 5                          | 7.5    | 10     | 12.5   | 15     | 17.5   | 20     |  |  |  |
| 50                | 0.000  | 0.000                      | 0.000  | 0.000  | 0.000  | 0.001  | 0.001  | 0.001  |  |  |  |
| 50                | -0.000 | -0.000                     | -0.000 | -0.000 | -0.000 | -0.001 | -0.001 | -0.001 |  |  |  |
| 45                | -0.000 | -0.000                     | -0.000 | -0.000 | -0.001 | -0.001 | -0.002 | -0.003 |  |  |  |
| 40                | -0.000 | -0.000                     | -0.000 | -0.001 | -0.001 | -0.002 | -0.004 | -0.006 |  |  |  |
| 35                | -0.000 | -0.000                     | -0.001 | -0.002 | -0.004 | -0.006 | -0.010 | -0.015 |  |  |  |
| 30                | -0.000 | -0.001                     | -0.003 | -0.008 | -0.014 | -0.022 | -0.032 | -0.045 |  |  |  |
| 25                | -0.003 | -0.011                     | -0.023 | -0.040 | -0.061 | -0.086 | -0.113 | -0.145 |  |  |  |

 TABLE V(f)

 Truncated beam power at filter for Band 3 mid frequency 100 GHz.

| Fruncation        | z from horn aperture (mm.) |       |       |       |       |       |       |       |  |  |
|-------------------|----------------------------|-------|-------|-------|-------|-------|-------|-------|--|--|
| diameter<br>(mm.) | 2.5                        | 5     | 7.5   | 10    | 12.5  | 15    | 17.5  | 20    |  |  |
| 50                | 1.000                      | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |  |  |
| 45                | 1.000                      | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |  |  |
| 40                | 1.000                      | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 |  |  |
| 35                | 1.000                      | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 | 0.998 | 0.997 |  |  |
| 30                | 1.000                      | 1.000 | 0.999 | 0.999 | 0.998 | 0.996 | 0.994 | 0.992 |  |  |
| 25                | 0.999                      | 0.998 | 0.995 | 0.992 | 0.988 | 0.983 | 0.978 | 0.971 |  |  |

 TABLE V(g)

 Beam truncation loss in dB at filter for Band 3 mid frequency 100 GHz.

| Fruncation        | z from horn aperture (mm.) |        |        |        |        |        |        |        |  |  |
|-------------------|----------------------------|--------|--------|--------|--------|--------|--------|--------|--|--|
| diameter<br>(mm.) | 2.5                        | 5      | 7.5    | 10     | 12.5   | 15     | 17.5   | 20     |  |  |
| 50                | -0.000                     | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.001 | -0.001 |  |  |
| 45                | -0.000                     | -0.000 | -0.000 | -0.000 | -0.000 | -0.001 | -0.001 | -0.002 |  |  |
| 40                | -0.000                     | -0.000 | -0.000 | -0.000 | -0.001 | -0.002 | -0.003 | -0.004 |  |  |
| 35                | -0.000                     | -0.000 | -0.001 | -0.001 | -0.003 | -0.005 | -0.008 | -0.012 |  |  |
| 30                | -0.000                     | -0.001 | -0.003 | -0.006 | -0.011 | -0.017 | -0.026 | -0.037 |  |  |
| 25                | -0.002                     | -0.009 | -0.020 | -0.034 | -0.052 | -0.074 | -0.099 | -0.126 |  |  |

TABLE V(h)

Truncated beam power at filter for Band 3 high limit frequency 116 GHz.

| Truncation        | z from horn aperture (mm.) |       |       |       |       |       |       |       |  |  |
|-------------------|----------------------------|-------|-------|-------|-------|-------|-------|-------|--|--|
| diameter<br>(mm.) | 2.5                        | 5     | 7.5   | 10    | 12.5  | 15    | 17.5  | 20    |  |  |
| 50                | 1 000                      | 1 000 | 1 000 | 1 000 | 1 000 | 1 000 | 1 000 | 1 000 |  |  |
| 30<br>45          | 1.000                      | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |  |  |
| 40                | 1.000                      | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 |  |  |
| 35                | 1.000                      | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 | 0.998 |  |  |
| 30                | 1.000                      | 1.000 | 1.000 | 0.999 | 0.998 | 0.997 | 0.996 | 0.994 |  |  |
| 25                | 1.000                      | 0.998 | 0.996 | 0.994 | 0.990 | 0.986 | 0.981 | 0.976 |  |  |
|                   |                            |       |       |       |       |       |       |       |  |  |

 TABLE V(i)

 Beam truncation loss in dB at filter for Band 3 high limit frequency 116 GHz.

| Truncation        |        |        | Z      | from horn | aperture ( | ( <b>mm.</b> ) |        |        |
|-------------------|--------|--------|--------|-----------|------------|----------------|--------|--------|
| diameter<br>(mm.) | 2.5    | 5      | 7.5    | 10        | 12.5       | 15             | 17.5   | 20     |
| 50                | -0.000 | -0 000 | -0 000 | -0.000    | -0.000     | -0.000         | -0.000 | -0.001 |
| 45                | -0.000 | -0.000 | -0.000 | -0.000    | -0.000     | -0.001         | -0.001 | -0.001 |
| 40                | -0.000 | -0.000 | -0.000 | -0.000    | -0.001     | -0.001         | -0.002 | -0.003 |
| 35                | -0.000 | -0.000 | -0.000 | -0.001    | -0.002     | -0.003         | -0.005 | -0.008 |
| 30                | -0.000 | -0.001 | -0.002 | -0.004    | -0.008     | -0.013         | -0.019 | -0.028 |
| 25                | -0.002 | -0.007 | -0.016 | -0.028    | -0.043     | -0.061         | -0.082 | -0.106 |
|                   |        |        |        |           |            |                |        |        |

#### 4.1.3 Truncation Loss at Mirrors

The beam profiles at mirror 1 and mirror 2 are shown in Figures 6(e), (f), (g) and (h). Truncation loss of the beam for a range of mirror diameters is given in Table V(j) and V(k).



Figure 6. Beam profile at mirror 1 and mirror 2; (e) 84 GHz, (f) 89 GHz, (g) 100 GHz and (h) 116 GHz.

| Frequency | <b>84 GHz</b> |        | 89 (  | GHz    | 100   | GHz    | 116   | GHz    |
|-----------|---------------|--------|-------|--------|-------|--------|-------|--------|
| Diameter  | Power         | Loss   | Power | Loss   | Power | Loss   | Power | Loss   |
| 180       | 0.999         | -0.005 | 0.999 | -0.004 | 0.999 | -0.003 | 1.000 | -0.002 |
| 170       | 0.999         | -0.006 | 0.999 | -0.005 | 0.999 | -0.003 | 0.999 | -0.002 |
| 163       | 0.999         | -0.006 | 0.999 | -0.006 | 0.999 | -0.004 | 0.999 | -0.003 |
| 160       | 0.998         | -0.007 | 0.999 | -0.006 | 0.999 | -0.005 | 0.999 | -0.003 |
| 150       | 0.998         | -0.010 | 0.998 | -0.008 | 0.999 | -0.006 | 0.999 | -0.003 |
| 140       | 0.997         | -0.015 | 0.997 | -0.011 | 0.998 | -0.007 | 0.999 | -0.005 |
| 130       | 0.995         | -0.020 | 0.996 | -0.017 | 0.998 | -0.010 | 0.998 | -0.007 |

 $TABLE \ V(j) \\ Truncated beam power and loss at mirror 1 \ for Band 3.$ 

Diameter in mm., loss in dB.

| Frequency | 84 GHz |        | 89 (  | 89 GHz |       | 100 GHz |       | 116 GHz |  |
|-----------|--------|--------|-------|--------|-------|---------|-------|---------|--|
| Diameter  | Power  | Loss   | Power | Loss   | Power | Loss    | Power | Loss    |  |
| 150       | 0.999  | -0.005 | 0.999 | -0.004 | 0.999 | -0.003  | 1.000 | -0.002  |  |
| 140       | 0.998  | -0.007 | 0.999 | -0.005 | 0.999 | -0.004  | 0.999 | -0.002  |  |
| 130       | 0.998  | -0.010 | 0.998 | -0.008 | 0.999 | -0.004  | 0.999 | -0.004  |  |
| 120       | 0.997  | -0.011 | 0.998 | -0.011 | 0.998 | -0.007  | 0.999 | -0.004  |  |
| 115       | 0.997  | -0.012 | 0.997 | -0.011 | 0.998 | -0.009  | 0.999 | -0.004  |  |
| 110       | 0.997  | -0.014 | 0.997 | -0.012 | 0.998 | -0.010  | 0.999 | -0.005  |  |
| 100       | 0.994  | -0.024 | 0.996 | -0.017 | 0.997 | -0.012  | 0.998 | -0.00   |  |
| 90        | 0.990  | -0.043 | 0.992 | -0.033 | 0.996 | -0.018  | 0.997 | -0.013  |  |

TABLE V(k)Truncated beam power and loss at mirror 2 for Band 3.

Diameter in mm., loss in dB.

#### 4.1.4 Truncation Loss at Cryostat Window

The beam profiles at the cryostat window are shown in Figures 6(i), (j), (k) and (l). Truncation loss of the beam for a range of window diameters is given in Table V(l) - V(s).





Figure 6. Beam profile at various distances from mirror 2; (i) 84 GHz, (j) 89 GHz, (k) 100 GHz and (l) 116 GHz.

 TABLE V(l)

 Truncated beam power at cryostat window for Band 3 extended low limit frequency 84 GHz.

| Distance from       | Window diameter (mm.) |       |       |       |       |       |       |       |       |  |
|---------------------|-----------------------|-------|-------|-------|-------|-------|-------|-------|-------|--|
| mirror 2 (mm.)      | 160                   | 140   | 120   | 100   | 80    | 60    | 56    | 40    | 30    |  |
| 90                  | 0.999                 | 0.999 | 0 998 | 0 996 | 0 991 | 0 977 | 0.962 | 0 789 | 0 570 |  |
| 100                 | 0.999                 | 0.999 | 0.998 | 0.996 | 0.991 | 0.978 | 0.963 | 0.791 | 0.572 |  |
| 110                 | 0.999                 | 0.999 | 0.998 | 0.996 | 0.992 | 0.979 | 0.964 | 0.793 | 0.574 |  |
| 120                 | 0.999                 | 0.999 | 0.998 | 0.996 | 0.992 | 0.979 | 0.965 | 0.795 | 0.576 |  |
| 130                 | 0.999                 | 0.999 | 0.998 | 0.996 | 0.992 | 0.980 | 0.966 | 0.796 | 0.577 |  |
| 133.85 <sup>†</sup> | 0.999                 | 0.999 | 0.998 | 0.996 | 0.992 | 0.980 | 0.966 | 0.797 | 0.578 |  |
| 140                 | 0.999                 | 0.999 | 0.998 | 0.996 | 0.992 | 0.980 | 0.966 | 0.797 | 0.578 |  |
| 150                 | 0.999                 | 0.999 | 0.998 | 0.996 | 0.992 | 0.980 | 0.966 | 0.798 | 0.579 |  |
| 160                 | 0.999                 | 0.999 | 0.998 | 0.996 | 0.992 | 0.980 | 0.966 | 0.799 | 0.580 |  |
| 170                 | 0.999                 | 0.999 | 0.998 | 0.996 | 0.991 | 0.980 | 0.966 | 0.799 | 0.581 |  |
| 180                 | 0.999                 | 0.999 | 0.998 | 0.996 | 0.991 | 0.979 | 0.966 | 0.800 | 0.581 |  |

 TABLE V(m)

 Beam truncation loss in dB at cryostat window for Band 3 extended low limit frequency 84 GHz.

| Distance from       | Window diameter (mm.) |        |        |        |        |        |        |        |        |  |
|---------------------|-----------------------|--------|--------|--------|--------|--------|--------|--------|--------|--|
| mirror 2 (mm.)      | 160                   | 140    | 120    | 100    | 80     | 60     | 56     | 40     | 30     |  |
|                     | 0.002                 | 0.000  | 0.000  | 0.017  | 0.020  | 0.101  | 0.167  | 1.007  | 0.140  |  |
| 90                  | -0.003                | -0.006 | -0.009 | -0.017 | -0.039 | -0.101 | -0.16/ | -1.027 | -2.440 |  |
| 100                 | -0.003                | -0.006 | -0.009 | -0.017 | -0.038 | -0.097 | -0.162 | -1.016 | -2.425 |  |
| 110                 | -0.003                | -0.006 | -0.009 | -0.016 | -0.037 | -0.093 | -0.157 | -1.006 | -2.411 |  |
| 120                 | -0.003                | -0.006 | -0.009 | -0.016 | -0.036 | -0.091 | -0.154 | -0.997 | -2.399 |  |
| 130                 | -0.003                | -0.006 | -0.009 | -0.016 | -0.036 | -0.089 | -0.151 | -0.989 | -2.388 |  |
| 133.85 <sup>†</sup> | -0.003                | -0.006 | -0.009 | -0.016 | -0.036 | -0.088 | -0.150 | -0.987 | -2.384 |  |
| 140                 | -0.003                | -0.006 | -0.009 | -0.016 | -0.036 | -0.088 | -0.149 | -0.983 | -2.379 |  |
| 150                 | -0.003                | -0.006 | -0.009 | -0.016 | -0.036 | -0.088 | -0.149 | -0.978 | -2.371 |  |
| 160                 | -0.003                | -0.006 | -0.009 | -0.015 | -0.037 | -0.088 | -0.149 | -0.975 | -2.364 |  |
| 170                 | -0.003                | -0.006 | -0.009 | -0.015 | -0.038 | -0.089 | -0.150 | -0.972 | -2.359 |  |
| 180                 | -0.003                | -0.006 | -0.009 | -0.016 | -0.039 | -0.092 | -0.152 | -0.971 | -2.356 |  |

TABLE V(n) Truncated beam power at cryostat window for Band 3 low limit frequency 89 GHz.

| Distance from      | Window diameter (mm.) |       |       |       |       |       |       |       |       |  |  |
|--------------------|-----------------------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|
| mirror 2 (mm.)     | 160                   | 140   | 120   | 100   | 80    | 60    | 56    | 40    | 30    |  |  |
| 90                 | 0.999                 | 0.999 | 0.998 | 0.997 | 0.992 | 0 984 | 0 975 | 0.829 | 0.614 |  |  |
| 100                | 0.999                 | 0.999 | 0.998 | 0.997 | 0.992 | 0.985 | 0.976 | 0.831 | 0.616 |  |  |
| 110                | 0.999                 | 0.999 | 0.998 | 0.997 | 0.992 | 0.986 | 0.977 | 0.833 | 0.618 |  |  |
| 120                | 0.999                 | 0.999 | 0.998 | 0.997 | 0.992 | 0.986 | 0.978 | 0.834 | 0.620 |  |  |
| 130                | 0.999                 | 0.999 | 0.998 | 0.997 | 0.992 | 0.987 | 0.978 | 0.836 | 0.622 |  |  |
| $133.85^{\dagger}$ | 0.999                 | 0.999 | 0.998 | 0.997 | 0.992 | 0.987 | 0.978 | 0.836 | 0.622 |  |  |
| 140                | 0.999                 | 0.999 | 0.998 | 0.997 | 0.992 | 0.987 | 0.978 | 0.837 | 0.623 |  |  |
| 150                | 0.999                 | 0.999 | 0.998 | 0.997 | 0.992 | 0.987 | 0.978 | 0.838 | 0.624 |  |  |
| 160                | 0.999                 | 0.999 | 0.998 | 0.997 | 0.992 | 0.986 | 0.978 | 0.838 | 0.625 |  |  |
| 170                | 0.999                 | 0.999 | 0.998 | 0.997 | 0.992 | 0.986 | 0.978 | 0.838 | 0.625 |  |  |
| 180                | 0.999                 | 0.999 | 0.998 | 0.997 | 0.992 | 0.986 | 0.977 | 0.838 | 0.626 |  |  |

TABLE V(o) Beam truncation loss in dB at cryostat window for Band 3 low limit frequency 89 GHz.

| Distance from                                          | Window diameter (mm.)                                    |                                                          |                                                          |                                                          |                                                                    |                                                          |                                                          |                                                                    |                                                      |  |
|--------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|--|
| mirror 2 (mm.)                                         | 160                                                      | 140                                                      | 120                                                      | 100                                                      | 80                                                                 | 60                                                       | 56                                                       | 40                                                                 | 30                                                   |  |
|                                                        | 0.002                                                    | 0.004                                                    | 0.000                                                    | 0.010                                                    | 0.026                                                              |                                                          | 0.110                                                    | 0.015                                                              | • • • • •                                            |  |
| 90                                                     | -0.003                                                   | -0.004                                                   | -0.009                                                   | -0.012                                                   | -0.036                                                             | -0.068                                                   | -0.110                                                   | -0.815                                                             | -2.116                                               |  |
| 100                                                    | -0.003                                                   | -0.004                                                   | -0.009                                                   | -0.012                                                   | -0.035                                                             | -0.064                                                   | -0.106                                                   | -0.804                                                             | -2.101                                               |  |
| 110                                                    | -0.003                                                   | -0.004                                                   | -0.008                                                   | -0.011                                                   | -0.034                                                             | -0.062                                                   | -0.102                                                   | -0.794                                                             | -2.087                                               |  |
| 120                                                    | -0.003                                                   | -0.004                                                   | -0.008                                                   | -0.011                                                   | -0.034                                                             | -0.060                                                   | -0.099                                                   | -0.786                                                             | -2.075                                               |  |
| 130                                                    | -0.003                                                   | -0.004                                                   | -0.008                                                   | -0.011                                                   | -0.034                                                             | -0.058                                                   | -0.097                                                   | -0.779                                                             | -2.065                                               |  |
| 133.85 <sup>†</sup>                                    | -0.003                                                   | -0.004                                                   | -0.008                                                   | -0.011                                                   | -0.034                                                             | -0.058                                                   | -0.096                                                   | -0.777                                                             | -2.061                                               |  |
| 140                                                    | -0.003                                                   | -0.004                                                   | -0.008                                                   | -0.011                                                   | -0.034                                                             | -0.058                                                   | -0.096                                                   | -0.774                                                             | -2.056                                               |  |
| 150                                                    | -0.003                                                   | -0.004                                                   | -0.008                                                   | -0.011                                                   | -0.034                                                             | -0.058                                                   | -0.096                                                   | -0.770                                                             | -2.049                                               |  |
| 160                                                    | -0.003                                                   | -0.004                                                   | -0.008                                                   | -0.011                                                   | -0.034                                                             | -0.059                                                   | -0.096                                                   | -0.767                                                             | -2.043                                               |  |
| 170                                                    | -0.003                                                   | -0.004                                                   | -0.008                                                   | -0.011                                                   | -0.034                                                             | -0.061                                                   | -0.098                                                   | -0.766                                                             | -2.040                                               |  |
| 180                                                    | -0.003                                                   | -0.004                                                   | -0.008                                                   | -0.011                                                   | -0.035                                                             | -0.063                                                   | -0.100                                                   | -0.766                                                             | -2.037                                               |  |
| 133.85 <sup>†</sup><br>140<br>150<br>160<br>170<br>180 | -0.003<br>-0.003<br>-0.003<br>-0.003<br>-0.003<br>-0.003 | -0.004<br>-0.004<br>-0.004<br>-0.004<br>-0.004<br>-0.004 | -0.008<br>-0.008<br>-0.008<br>-0.008<br>-0.008<br>-0.008 | -0.011<br>-0.011<br>-0.011<br>-0.011<br>-0.011<br>-0.011 | -0.034<br>-0.034<br>-0.034<br>-0.034<br>-0.034<br>-0.034<br>-0.035 | -0.058<br>-0.058<br>-0.058<br>-0.059<br>-0.061<br>-0.063 | -0.097<br>-0.096<br>-0.096<br>-0.096<br>-0.098<br>-0.100 | -0.779<br>-0.777<br>-0.774<br>-0.770<br>-0.767<br>-0.766<br>-0.766 | -2.0<br>-2.0<br>-2.0<br>-2.0<br>-2.0<br>-2.0<br>-2.0 |  |

TABLE V(p)Truncated beam power at cryostat window for Band 3 mid frequency 100 GHz.

| Distance from      | Window diameter (mm.) |       |       |       |       |       |       |       |       |  |
|--------------------|-----------------------|-------|-------|-------|-------|-------|-------|-------|-------|--|
| mirror 2 (mm.)     | 160                   | 140   | 120   | 100   | 80    | 60    | 56    | 40    | 30    |  |
| 90                 | 1.000                 | 0.999 | 0.999 | 0.998 | 0.995 | 0.990 | 0.988 | 0.897 | 0.704 |  |
| 100                | 1.000                 | 0.999 | 0.999 | 0.998 | 0.995 | 0.991 | 0.998 | 0.900 | 0.707 |  |
| 110                | 1.000                 | 0.999 | 0.999 | 0.998 | 0.995 | 0.991 | 0.989 | 0.901 | 0.709 |  |
| 120                | 1.000                 | 0.999 | 0.999 | 0.998 | 0.995 | 0.991 | 0.990 | 0.903 | 0.711 |  |
| 130                | 1.000                 | 0.999 | 0.999 | 0.998 | 0.995 | 0.991 | 0.990 | 0.904 | 0.712 |  |
| $133.85^{\dagger}$ | 1.000                 | 0.999 | 0.999 | 0.998 | 0.995 | 0.991 | 0.990 | 0.904 | 0.713 |  |
| 140                | 1.000                 | 0.999 | 0.999 | 0.998 | 0.995 | 0.991 | 0.990 | 0.905 | 0.713 |  |
| 150                | 1.000                 | 0.999 | 0.999 | 0.998 | 0.995 | 0.991 | 0.990 | 0.905 | 0.714 |  |
| 160                | 1.000                 | 0.999 | 0.999 | 0.998 | 0.995 | 0.991 | 0.989 | 0.905 | 0.715 |  |
| 170                | 1.000                 | 0.999 | 0.999 | 0.998 | 0.995 | 0.991 | 0.989 | 0.905 | 0.715 |  |
| 180                | 1.000                 | 0.999 | 0.999 | 0.998 | 0.995 | 0.990 | 0.988 | 0.905 | 0.715 |  |

 TABLE V(q)

 Beam truncation loss in dB at cryostat window for Band 3 mid frequency 100 GHz.

| Distance from       | Window diameter (mm.) |        |        |        |        |        |        |        |        |  |
|---------------------|-----------------------|--------|--------|--------|--------|--------|--------|--------|--------|--|
| mirror 2 (mm.)      | 160                   | 140    | 120    | 100    | 80     | 60     | 56     | 40     | 30     |  |
|                     |                       |        |        |        |        |        |        |        |        |  |
| 90                  | -0.002                | -0.003 | -0.005 | -0.009 | -0.023 | -0.044 | -0.054 | -0.470 | -1.524 |  |
| 100                 | -0.002                | -0.003 | -0.005 | -0.009 | -0.023 | -0.041 | -0.050 | -0.460 | -1.509 |  |
| 110                 | -0.002                | -0.003 | -0.005 | -0.009 | -0.022 | -0.039 | -0.048 | -0.451 | -1.495 |  |
| 120                 | -0.002                | -0.003 | -0.005 | -0.009 | -0.022 | -0.038 | -0.046 | -0.444 | -1.484 |  |
| 130                 | -0.002                | -0.003 | -0.005 | -0.009 | -0.021 | -0.037 | -0.045 | -0.439 | -1.475 |  |
| 133.85 <sup>†</sup> | -0.002                | -0.003 | -0.005 | -0.009 | -0.021 | -0.037 | -0.045 | -0.437 | -1.472 |  |
| 140                 | -0.002                | -0.003 | -0.005 | -0.009 | -0.021 | -0.037 | -0.045 | -0.435 | -1.467 |  |
| 150                 | -0.002                | -0.003 | -0.005 | -0.009 | -0.021 | -0.038 | -0.045 | -0.433 | -1.462 |  |
| 160                 | -0.002                | -0.003 | -0.005 | -0.009 | -0.021 | -0.039 | -0.047 | -0.432 | -1.458 |  |
| 170                 | -0.002                | -0.003 | -0.005 | -0.009 | -0.021 | -0.041 | -0.049 | -0.433 | -1.456 |  |
| 180                 | -0.002                | -0.003 | -0.005 | -0.009 | -0.022 | -0.044 | -0.052 | -0.436 | -1.457 |  |
|                     |                       |        |        |        |        |        |        |        |        |  |

 $TABLE \ V(r)$  Truncated beam power at cryostat window for Band 3 high limit frequency 116 GHz.

| Distance from       | Window diameter (mm.) |       |       |       |       |       |       |       |       |  |
|---------------------|-----------------------|-------|-------|-------|-------|-------|-------|-------|-------|--|
| mirror 2 (mm.)      | 160                   | 140   | 120   | 100   | 80    | 60    | 56    | 40    | 30    |  |
|                     |                       |       |       | ····· |       |       |       |       |       |  |
| 90                  | 1.000                 | 1.000 | 0.999 | 0.998 | 0.998 | 0.991 | 0.990 | 0.957 | 0.812 |  |
| 100                 | 1.000                 | 1.000 | 0.999 | 0.999 | 0.998 | 0.991 | 0.991 | 0.959 | 0.815 |  |
| 110                 | 1.000                 | 1.000 | 0.999 | 0.999 | 0.998 | 0.992 | 0.991 | 0.960 | 0.817 |  |
| 120                 | 1.000                 | 1.000 | 0.999 | 0.999 | 0.998 | 0.992 | 0.992 | 0.961 | 0.819 |  |
| 130                 | 1.000                 | 1.000 | 0.999 | 0.999 | 0.998 | 0.992 | 0.992 | 0.962 | 0.821 |  |
| 133.85 <sup>†</sup> | 1.000                 | 1.000 | 0.999 | 0.999 | 0.998 | 0.992 | 0.992 | 0.962 | 0.821 |  |
| 140                 | 1.000                 | 1.000 | 0.999 | 0.999 | 0.998 | 0.992 | 0.992 | 0.963 | 0.822 |  |
| 150                 | 1.000                 | 1.000 | 0.999 | 0.999 | 0.998 | 0.992 | 0.991 | 0.963 | 0.822 |  |
| 160                 | 1.000                 | 1.000 | 0.999 | 0.999 | 0.998 | 0.992 | 0.991 | 0.962 | 0.822 |  |
| 170                 | 1.000                 | 1.000 | 0.999 | 0.999 | 0.998 | 0.991 | 0.991 | 0.961 | 0.822 |  |
| 180                 | 1.000                 | 1.000 | 0.999 | 0.999 | 0.998 | 0.991 | 0.990 | 0.960 | 0.821 |  |

 TABLE V(s)

 Beam truncation loss in dB at cryostat window for Band 3 high limit frequency 116 GHz.

| Distance from      | Window diameter (mm.) |        |        |        |        |        |        |        |        |  |
|--------------------|-----------------------|--------|--------|--------|--------|--------|--------|--------|--------|--|
| mirror 2 (mm.)     | 160                   | 140    | 120    | 100    | 80     | 60     | 56     | 40     | 30     |  |
|                    |                       |        |        |        |        |        |        | ,      |        |  |
| 90                 | -0.002                | -0.002 | -0.003 | -0.007 | -0.010 | -0.039 | -0.042 | -0.192 | -0.905 |  |
| 100                | -0.001                | -0.002 | -0.003 | -0.006 | -0.010 | -0.037 | -0.040 | -0.183 | -0.890 |  |
| 110                | -0.001                | -0.002 | -0.003 | -0.006 | -0.010 | -0.036 | -0.038 | -0.176 | -0.877 |  |
| 120                | -0.001                | -0.002 | -0.003 | -0.006 | -0.009 | -0.035 | -0.037 | -0.171 | -0.867 |  |
| 130                | -0.001                | -0.002 | -0.003 | -0.006 | -0.009 | -0.035 | -0.036 | -0.168 | -0.859 |  |
| $133.85^{\dagger}$ | -0.001                | -0.002 | -0.003 | -0.006 | -0.009 | -0.035 | -0.036 | -0.167 | -0.856 |  |
| 140                | -0.001                | -0.002 | -0.003 | -0.006 | -0.009 | -0.035 | -0.037 | -0.166 | -0.853 |  |
| 150                | -0.001                | -0.002 | -0.003 | -0.006 | -0.009 | -0.035 | -0.037 | -0.166 | -0.850 |  |
| 160                | -0.001                | -0.002 | -0.003 | -0.006 | -0.009 | -0.036 | -0.039 | -0.168 | -0.849 |  |
| 170                | -0.001                | -0.002 | -0.003 | -0.006 | -0.010 | -0.037 | -0.040 | -0.171 | -0.851 |  |
| 180                | -0.001                | -0.002 | -0.003 | -0.006 | -0.010 | -0.039 | -0.043 | -0.176 | -0.855 |  |
|                    |                       |        |        |        |        |        |        |        |        |  |

#### 4.2 Physical Optics Analysis

#### 4.2.1 Beam Profile at Cassegrain Focus

Figures 6(m) - 4(p) show the beam profile at the Cassegrain focus with comparison of results obtained by both quasi-optics and physical optics.



Figure 6(m). Beam profile at Cassegrain focus for Band 3 mid frequency 100 GHz.



Figure 6(n). Beam profile of co-polar field at Cassegrain focus, Band 3 mid frequency 100 GHz; x-polarised source solid line, y-polarised source dotted line.







Figure 6(p). Beam profile at Cassegrain focus Band 3 mid frequency 100 GHz., y-polarised source;  $\phi = 0^{\circ}$  co-polar field solid line,  $\phi = 90^{\circ}$  co-polar field dotted line,  $\phi = 90^{\circ}$  X-polar field dash line.



Figure 6(q). Beam profile at subreflector Band 3 mid frequency 100 GHz.;  $\phi = 0^{\circ}$  solid line,  $\phi = 90^{\circ}$  dash line.

The edge tapers at the subreflector corresponding to the four positions where  $\phi = 0^{\circ}$  and  $90^{\circ}$  are -11.9, -11, -11.5 and -11.4 respectively.

#### 4.2.3 Far Field Radiation Pattern



Figure 6(r). Antenna far field radiation pattern for Band 3 mid frequency 100 GHz.; x-polarised source solid line, y-polarised source dash line.



Figure 6(s). 3-D plot of antenna co-polar field radiation pattern.



Figure 6(t). 3-D plot of antenna cross-polar field radiation pattern.

#### 4.2.4 Beam & Cross-Polar Efficiencies

The beam efficiencies are shown in Table V(t) below.

Level below **Co-polar Cross-polar** (%) peak (dB) (%) 3.0 48.18 0.02 6.0 70.27 0.04 9.0 80.21 0.07 12.0 84.65 0.09 15.0 86.59 0.10 18.0 87.44 0.11 21.0 87.81 0.11 24.0 87.99 0.12 27.0 88.99 0.12 30.0 89.24 0.13 33.0 89.67 0.13 36.0 90.09 0.13 39.0 90.49 0.13 42.0 90.78 0.14 45.0 90.99 0.14 91.11 48.0 0.14 51.0 91.17 0.14 91.20 54.0 0.14 57.0 91.22 0.14 60.0 91.23 0.14

 TABLE V(t)

 Beam efficiencies for Band 3 mid frequency 100 GHz defined by contours of the co-polarisation field.
# 5 BAND 4

#### 5.1 Quasi-Optics Analysis

#### 5.1.1 Gaussian Beam Parameters

| Quasi-optics                       | s Gaussian beam p | arameters for I        | Sand 4.                |                        |
|------------------------------------|-------------------|------------------------|------------------------|------------------------|
| Frequency [GHz] $\lambda$ [mm]     |                   | <b>125</b><br>2.398340 | <b>144</b><br>2.081892 | <b>163</b><br>1.839218 |
| Horn diameter                      | 24.0              |                        |                        |                        |
| Horn axial length                  | 140.0             |                        |                        |                        |
| Horn slant length                  | 140.513           |                        |                        |                        |
| Horn waist, $w_0$                  |                   | 6.749                  | 6.503                  | 6.252                  |
| Horn waist offset, $\Delta z(w_0)$ |                   | -33.1695               | -40.8641               | -48.3996               |
| Waist at horn aperture, $w_{ha}$   |                   | 7.722                  | 7.722                  | 7.722                  |
| $d_1$                              | 152.70            |                        |                        |                        |
| $R_{s1}$                           | 214.06            | 205.026                | 214.601                | 223.269                |
| $f_1$                              | 149.08            |                        |                        |                        |
| $R_{i1}$                           | 491.13            | 546.338                | 488.280                | 448.650                |
| Waist at mirror 1, $w_{M1}$        | (dia. = 124)      | 22.081                 | 20.770                 | 19.841                 |
| $d_2$                              | 160.00            |                        |                        |                        |
| Waist at mirror 2, $w_{M2}$        | (dia. = 86)       | 16.565                 | 14.868                 | 13.610                 |
| $Z_{w(Cass.)}$                     | 303.85            | 315.470                | 312.469                | 310.453                |
| W <sub>Cass.</sub>                 |                   | 14.354                 | 12.463                 | 11.012                 |
| $d_{ m mirror-subrefl}$            |                   | 6303.31                | 6303.30                | 6303.30                |
| W <sub>subrefl</sub>               | (dia. = 750)      | 318.795                | 318.794                | 318.794                |
| R <sub>subrefl</sub>               | 6000.00           | 6000.003               | 6000.001               | 6000.006               |
| Edge Taper (dB)                    | 12.00             | 12.02                  | 12.02                  | 12.02                  |

 TABLE VI(a)

 Quasi-optics Gaussian beam parameters for Band 4.

All dimensions in mm.

#### 5.1.2 Truncation Loss at Filters

The beam profiles at the filter are shown in Figures 7(a), (b) and (c). Truncation loss of the beam for a range of filter diameters are given in Tables VI(b) - VI(g).





Figure 7. Beam profile at various distances from horn aperture; (a) 125 GHz, (b) 144 GHz and (c) 163 GHz.

 TABLE VI(b)

 Truncated beam power at filter for Band 4 low limit frequency 125 GHz.

| Truncation        |       | z from horn aperture (mm.) |       |       |       |       |       |       |  |  |  |  |
|-------------------|-------|----------------------------|-------|-------|-------|-------|-------|-------|--|--|--|--|
| diameter<br>(mm.) | 2.5   | 5                          | 7.5   | 10    | 12.5  | 15    | 17.5  | 20    |  |  |  |  |
| 60                | 1.000 | 1.000                      | 1 000 | 1 000 | 1 000 | 1.000 | 1 000 | 1 000 |  |  |  |  |
| 55                | 1.000 | 1.000                      | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |  |  |  |  |
| 50                | 1.000 | 1.000                      | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |  |  |  |  |
| 45                | 1.000 | 1.000                      | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |  |  |  |  |
| 40                | 1.000 | 1.000                      | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 |  |  |  |  |
| 35                | 1.000 | 1.000                      | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 | 0.998 |  |  |  |  |
| 30                | 1.000 | 1.000                      | 1.000 | 0.999 | 0.998 | 0.997 | 0.996 | 0.995 |  |  |  |  |
| 25                | 1.000 | 0.999                      | 0.997 | 0.994 | 0.991 | 0.987 | 0.983 | 0.978 |  |  |  |  |

TABLE VI(c)

Beam truncation loss in dB at filter for Band 4 low limit frequency 125 GHz.

| Truncation        |        |        | Z      | from horn | aperture ( | ( <b>mm.</b> ) |        |        |
|-------------------|--------|--------|--------|-----------|------------|----------------|--------|--------|
| diameter<br>(mm.) | 2.5    | 5      | 7.5    | 10        | 12.5       | 15             | 17.5   | 20     |
| 60                | -0.000 | -0.000 | -0.000 | -0.000    | -0.000     | -0.000         | -0.000 | -0.000 |
| 55                | -0.000 | -0.000 | -0.000 | -0.000    | -0.000     | -0.000         | -0.000 | -0.000 |
| 50                | -0.000 | -0.000 | -0.000 | -0.000    | -0.000     | -0.000         | -0.000 | -0.001 |
| 45                | -0.000 | -0.000 | -0.000 | -0.000    | -0.000     | -0.000         | -0.001 | -0.001 |
| 40                | -0.000 | -0.000 | -0.000 | -0.000    | -0.001     | -0.001         | -0.002 | -0.002 |
| 35                | -0.000 | -0.000 | -0.000 | -0.001    | -0.002     | -0.003         | -0.004 | -0.007 |
| 30                | -0.000 | -0.001 | -0.002 | -0.004    | -0.007     | -0.011         | -0.017 | -0.024 |
| 25                | -0.002 | -0.006 | -0.014 | -0.025    | -0.039     | -0.055         | -0.075 | -0.096 |
|                   |        |        |        |           |            |                |        |        |

 TABLE VI(d)

 Truncated beam power at filter for Band 4 mid frequency 144 GHz.

| Truncation        | z from horn aperture (mm.) |       |       |       |       |       |       |       |  |  |  |
|-------------------|----------------------------|-------|-------|-------|-------|-------|-------|-------|--|--|--|
| diameter<br>(mm.) | 2.5                        | 5     | 7.5   | 10    | 12.5  | 15    | 17.5  | 20    |  |  |  |
| 60                | 1.000                      | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |  |  |  |
| 55                | 1.000                      | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |  |  |  |
| 50                | 1.000                      | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |  |  |  |
| 45                | 1.000                      | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |  |  |  |
| 40                | 1.000                      | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |  |  |  |
| 35                | 1.000                      | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 |  |  |  |
| 30                | 1.000                      | 1.000 | 1.000 | 0.999 | 0.999 | 0.998 | 0.997 | 0.996 |  |  |  |
| 25                | 1.000                      | 0.999 | 0.997 | 0.995 | 0.993 | 0.989 | 0.986 | 0.981 |  |  |  |

 TABLE VI(e)

 Beam truncation loss in dB at filter for Band 4 mid frequency 144 GHz.

| Truncation        | z from horn aperture (mm.) |        |        |        |        |        |        |        |  |  |  |
|-------------------|----------------------------|--------|--------|--------|--------|--------|--------|--------|--|--|--|
| diameter<br>(mm.) | 2.5                        | 5      | 7.5    | 10     | 12.5   | 15     | 17.5   | 20     |  |  |  |
| 60                | -0.000                     | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |  |  |  |
| 55                | -0.000                     | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |  |  |  |
| 50                | -0.000                     | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |  |  |  |
| 45                | -0.000                     | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.001 |  |  |  |
| 40                | -0.000                     | -0.000 | -0.000 | -0.000 | -0.000 | -0.001 | -0.001 | -0.002 |  |  |  |
| 35                | -0.000                     | -0.000 | -0.000 | -0.001 | -0.001 | -0.002 | -0.003 | -0.005 |  |  |  |
| 30                | -0.000                     | -0.000 | -0.001 | -0.003 | -0.005 | -0.008 | -0.013 | -0.018 |  |  |  |
| 25                | -0.001                     | -0.005 | -0.012 | -0.021 | -0.032 | -0.046 | -0.063 | -0.082 |  |  |  |

 TABLE VI(f)

 Truncated beam power at filter for Band 4 high limit frequency 163 GHz.

| Truncation        | z from horn aperture (mm.) |       |       |       |       |       |       |       |  |  |
|-------------------|----------------------------|-------|-------|-------|-------|-------|-------|-------|--|--|
| diameter<br>(mm.) | 2.5                        | 5     | 7.5   | 10    | 12.5  | 15    | 17.5  | 20    |  |  |
| 60                | 1.000                      | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |  |  |
| 55                | 1.000                      | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |  |  |
| 50                | 1.000                      | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |  |  |
| 45                | 1.000                      | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |  |  |
| 40                | 1.000                      | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |  |  |
| 35                | 1.000                      | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 |  |  |
| 30                | 1.000                      | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 | 0.998 | 0.997 |  |  |
| 25                | 1.000                      | 0.999 | 0.998 | 0.996 | 0.994 | 0.991 | 0.988 | 0.984 |  |  |

 TABLE VI(g)

 Beam truncation loss in dB at filter for Band 4 high limit frequency 163 GHz.

| Truncation        | <b>`runcation</b> z from horn aperture (mm.) |        |        |        |        |        |        |        |  |  |  |  |  |
|-------------------|----------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--|--|--|--|--|
| diameter<br>(mm.) | 2.5                                          | 5      | 7.5    | 10     | 12.5   | 15     | 17.5   | 20     |  |  |  |  |  |
| 60                | -0.000                                       | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |  |  |  |  |  |
| 55                | -0.000                                       | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |  |  |  |  |  |
| 50                | -0.000                                       | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |  |  |  |  |  |
| 45                | -0.000                                       | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |  |  |  |  |  |
| 40                | -0.000                                       | -0.000 | -0.000 | -0.000 | -0.000 | 0.000  | -0.001 | -0.001 |  |  |  |  |  |
| 35                | -0.000                                       | -0.000 | -0.000 | -0.000 | -0.001 | -0.001 | -0.002 | -0.004 |  |  |  |  |  |
| 30                | -0.000                                       | -0.000 | -0.001 | -0.002 | -0.004 | -0.006 | -0.010 | -0.015 |  |  |  |  |  |
| 25                | -0.001                                       | -0.004 | -0.010 | -0.018 | -0.028 | -0.040 | -0.054 | -0.017 |  |  |  |  |  |

# 5.1.3 Truncation Loss at Mirrors

The beam profiles at mirror 1 and mirror 2 are shown in Figures 7(d), (e) and (f). Truncation loss of the beam for a range of mirror diameters is given in Table VI(h) and VI(i).





Figure 7. Beam profile at mirror 1 and mirror 2; (d) 125 GHz, (e) 144 GHz and (f) 163 GHz.

 TABLE VI(h)

 Truncated beam power and loss at mirror 1 for Band 4.

| Frequency | 125 GHz |        | 144   | GHz    | 163 GHz |        |  |
|-----------|---------|--------|-------|--------|---------|--------|--|
| Diameter  | Power   | Loss   | Power | Loss   | Power   | Loss   |  |
| 160       | 0.999   | -0.002 | 1.000 | -0.002 | 1.000   | -0.001 |  |
| 150       | 0.999   | -0.003 | 1.000 | -0.002 | 1.000   | -0.001 |  |
| 140       | 0.999   | -0.004 | 0.999 | -0.003 | 1.000   | -0.002 |  |
| 130       | 0.999   | -0.005 | 0.999 | -0.004 | 0.999   | -0.002 |  |
| 124       | 0.998   | -0.007 | 0.999 | -0.004 | 0.999   | -0.003 |  |
| 120       | 0.998   | -0.008 | 0.999 | -0.005 | 0.999   | -0.004 |  |
| 110       | 0.997   | -0.012 | 0.998 | -0.008 | 0.999   | -0.005 |  |
| 100       | 0.996   | -0.019 | 0.997 | -0.013 | 0.998   | -0.009 |  |

 TABLE VI(i)

 Truncated beam power and loss at mirror 2 for Band 4.

| Frequency | 125   | GHz    | 144   | GHz    | 163 GHz |        |  |
|-----------|-------|--------|-------|--------|---------|--------|--|
| Diameter  | Power | Loss   | Power | Loss   | Power   | Loss   |  |
| 140       | 1.000 | -0.002 | 1.000 | -0.001 | 1.000   | -0.001 |  |
| 130       | 0.999 | -0.002 | 1.000 | -0.002 | 1.000   | -0.001 |  |
| 120       | 0.999 | -0.004 | 1.000 | -0.002 | 1.000   | -0.002 |  |
| 110       | 0.999 | -0.005 | 0.999 | -0.003 | 1.000   | -0.002 |  |
| 100       | 0.999 | -0.006 | 0.999 | -0.005 | 0.999   | -0.003 |  |
| 90        | 0.997 | -0.012 | 0.999 | -0.006 | 0.999   | -0.005 |  |
| 86        | 0.997 | -0.013 | 0.998 | -0.008 | 0.999   | -0.005 |  |
| 80        | 0.996 | -0.016 | 0.997 | -0.012 | 0.999   | -0.006 |  |
| 70        | 0.994 | -0.027 | 0.996 | -0.018 | 0.997   | -0.014 |  |

Diameter in mm., loss in dB.

# 5.1.4 Truncation Loss at Cryostat Window

The beam profiles at the cryostat window are shown in Figures 7(g), (h) and (i). Truncation loss of the beam for a range of window diameters is given in Table VI(j) - VI(o).







| TABLE VI(j)                                                                    |
|--------------------------------------------------------------------------------|
| runcated beam power at cryostat window for Band 4 low limit frequency 125 GHz. |

| Distance from  |       |       |       |         |       |       |       |       |
|----------------|-------|-------|-------|---------|-------|-------|-------|-------|
| mirror 2 (mm.) | 140   | 120   | 100   | 80      | 60    | 56    | 40    | 30    |
|                |       |       |       | <u></u> |       |       |       |       |
| 100            | 1.000 | 0.999 | 0.999 | 0.998   | 0.993 | 0.991 | 0.974 | 0.859 |
| 110            | 1.000 | 0.999 | 0.999 | 0.998   | 0.993 | 0.991 | 0.975 | 0.862 |
| 120            | 1.000 | 0.999 | 0.999 | 0.998   | 0.993 | 0.992 | 0.977 | 0.865 |
| 130            | 1.000 | 0.999 | 0.999 | 0.998   | 0.993 | 0.992 | 0.978 | 0.867 |
| 140            | 1.000 | 0.999 | 0.999 | 0.998   | 0.993 | 0.992 | 0.978 | 0.868 |
| $143.85^{++}$  | 1.000 | 0.999 | 0.999 | 0.998   | 0.993 | 0.992 | 0.979 | 0.869 |
| 150            | 1.000 | 0.999 | 0.999 | 0.998   | 0.993 | 0.992 | 0.979 | 0.869 |
| 160            | 1.000 | 0.999 | 0.999 | 0.998   | 0.993 | 0.992 | 0.979 | 0.870 |
| 170            | 1.000 | 0.999 | 0.999 | 0.998   | 0.993 | 0.992 | 0.978 | 0.869 |
| 180            | 1.000 | 0.999 | 0.999 | 0.998   | 0.993 | 0.991 | 0.977 | 0.869 |
| 190            | 1.000 | 0.999 | 0.999 | 0.998   | 0.993 | 0.991 | 0.976 | 0.867 |
|                |       |       |       |         |       |       |       |       |

 TABLE VI(k)

 Beam truncation loss in dB at cryostat window for Band 4 low limit frequency 125 GHz.

| Distance from      |        |        | Wi     | <b>m.</b> ) |        |        |        |        |
|--------------------|--------|--------|--------|-------------|--------|--------|--------|--------|
| mirror 2 (mm.)     | 140    | 120    | 100    | 80          | 60     | 56     | 40     | 30     |
|                    |        |        |        |             |        |        |        |        |
| 100                | -0.002 | -0.003 | -0.004 | -0.009      | -0.032 | -0.039 | -0.116 | -0.658 |
| 110                | -0.002 | -0.003 | -0.004 | -0.009      | -0.031 | -0.037 | -0.108 | -0.643 |
| 120                | -0.002 | -0.003 | -0.004 | -0.009      | -0.030 | -0.036 | -0.102 | -0.630 |
| 130                | -0.002 | -0.003 | -0.004 | -0.009      | -0.029 | -0.035 | -0.097 | -0.621 |
| 140                | -0.002 | -0.003 | -0.004 | -0.009      | -0.029 | -0.035 | -0.094 | -0.613 |
| $143.85^{\dagger}$ | -0.002 | -0.003 | -0.004 | -0.009      | -0.029 | -0.035 | -0.094 | -0.611 |
| 150                | -0.002 | -0.003 | -0.004 | -0.009      | -0.029 | -0.035 | -0.094 | -0.609 |
| 160                | -0.002 | -0.003 | -0.004 | -0.009      | -0.029 | -0.035 | -0.094 | -0.607 |
| 170                | -0.002 | -0.003 | -0.004 | -0.009      | -0.029 | -0.036 | -0.097 | -0.608 |
| 180                | -0.002 | -0.003 | -0.004 | -0.009      | -0.030 | -0.037 | -0.101 | -0.611 |
| 190                | -0.002 | -0.003 | -0.004 | -0.009      | -0.031 | -0.039 | -0.107 | -0.618 |

 TABLE VI(l)

 Truncated beam power at cryostat window for Band 4 mid frequency 144 GHz.

| Distance from       |          |       | Wi    |       |       |       |       |       |
|---------------------|----------|-------|-------|-------|-------|-------|-------|-------|
| mirror 2 (mm.)      | 140      | 120   | 100   | 80    | 60    | 56    | 40    | 30    |
|                     | <u> </u> |       |       |       |       |       |       |       |
| 100                 | 1.000    | 1.000 | 0.999 | 0.998 | 0.997 | 0.995 | 0.987 | 0.930 |
| 110                 | 1.000    | 1.000 | 0.999 | 0.998 | 0.997 | 0.995 | 0.989 | 0.933 |
| 120                 | 1.000    | 1.000 | 0.999 | 0.998 | 0.997 | 0.995 | 0.990 | 0.935 |
| 130                 | 1.000    | 1.000 | 0.999 | 0.999 | 0.997 | 0.995 | 0.990 | 0.937 |
| 140                 | 1.000    | 1.000 | 0.999 | 0.999 | 0.997 | 0.995 | 0.991 | 0.938 |
| 143.85 <sup>†</sup> | 1.000    | 1.000 | 0.999 | 0.999 | 0.997 | 0.995 | 0.991 | 0.939 |
| 150                 | 1.000    | 1.000 | 0.999 | 0.999 | 0.997 | 0.995 | 0.991 | 0.939 |
| 160                 | 1.000    | 1.000 | 0.999 | 0.999 | 0.997 | 0.995 | 0.990 | 0.939 |
| 170                 | 1.000    | 1.000 | 0.999 | 0.999 | 0.997 | 0.995 | 0.990 | 0.938 |
| 180                 | 1.000    | 1.000 | 0.999 | 0.999 | 0.997 | 0.995 | 0.989 | 0.937 |
| 190                 | 1.000    | 1.000 | 0.999 | 0.999 | 0.997 | 0.995 | 0.987 | 0.935 |

 TABLE VI(m)

 Beam truncation loss in dB at cryostat window for Band 4 mid frequency 144 GHz.

| Distance from      | Window diameter (mm.) |        |        |        |        |        |        |        |  |  |
|--------------------|-----------------------|--------|--------|--------|--------|--------|--------|--------|--|--|
| mirror 2 (mm.)     | 140                   | 120    | 100    | 80     | 60     | 56     | 40     | 30     |  |  |
| 100                |                       |        |        |        |        |        |        |        |  |  |
| 100                | -0.001                | -0.002 | -0.003 | -0.007 | -0.015 | -0.023 | -0.056 | -0.316 |  |  |
| 110                | -0.001                | -0.002 | -0.003 | -0.007 | -0.014 | -0.022 | -0.050 | -0.301 |  |  |
| 120                | -0.001                | -0.002 | -0.003 | -0.007 | -0.014 | -0.021 | -0.045 | -0.290 |  |  |
| 130                | -0.001                | -0.002 | -0.003 | -0.006 | -0.013 | -0.021 | -0.042 | -0.281 |  |  |
| 140                | -0.001                | -0.002 | -0.003 | -0.006 | -0.013 | -0.020 | -0.040 | -0.267 |  |  |
| $143.85^{\dagger}$ | -0.001                | -0.002 | -0.003 | -0.006 | -0.013 | -0.020 | -0.040 | -0.275 |  |  |
| 150                | -0.001                | -0.002 | -0.003 | -0.006 | -0.013 | -0.020 | -0.040 | -0.273 |  |  |
| 160                | -0.001                | -0.002 | -0.003 | -0.006 | -0.013 | -0.020 | -0.042 | -0.274 |  |  |
| 170                | -0.001                | -0.002 | -0.003 | -0.006 | -0.013 | -0.021 | -0.045 | -0.278 |  |  |
| 180                | -0.001                | -0.002 | -0.003 | -0.006 | -0.014 | -0.021 | -0.050 | -0.284 |  |  |
| 190                | -0.001                | -0.002 | -0.003 | -0.006 | -0.014 | -0.022 | -0.056 | -0.294 |  |  |

| TABLE VI(n)                                                                      |
|----------------------------------------------------------------------------------|
| Truncated beam power at cryostat window for Band 4 high limit frequency 163 GHz. |

| Distance from      |       |       | Wi    |       |       |       |       |       |
|--------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| mirror 2 (mm.)     | 140   | 120   | 100   | 80    | 60    | 56    | 40    | 30    |
|                    |       |       |       |       |       |       |       |       |
| 100                | 1.000 | 1.000 | 1.000 | 0.999 | 0.998 | 0.997 | 0.989 | 0.967 |
| 110                | 1.000 | 1.000 | 1.000 | 0.999 | 0.998 | 0.998 | 0.990 | 0.970 |
| 120                | 1.000 | 1.000 | 1.000 | 0.999 | 0.998 | 0.998 | 0.991 | 0.972 |
| 130                | 1.000 | 1.000 | 1.000 | 0.999 | 0.998 | 0.998 | 0.991 | 0.974 |
| 140                | 1.000 | 1.000 | 1.000 | 0.999 | 0.998 | 0.998 | 0.992 | 0.974 |
| $143.85^{\dagger}$ | 1.000 | 1.000 | 1.000 | 0.999 | 0.998 | 0.998 | 0.992 | 0.975 |
| 150                | 1.000 | 1.000 | 1.000 | 0.999 | 0.998 | 0.998 | 0.992 | 0.975 |
| 160                | 1.000 | 1.000 | 1.000 | 0.999 | 0.998 | 0.998 | 0.991 | 0.974 |
| 170                | 1.000 | 1.000 | 1.000 | 0.999 | 0.998 | 0.998 | 0.991 | 0.973 |
| 180                | 1.000 | 1.000 | 1.000 | 0.999 | 0.998 | 0.998 | 0.990 | 0.971 |
| 190                | 1.000 | 1.000 | 1.000 | 0.999 | 0.998 | 0.997 | 0.989 | 0.968 |

 TABLE VI(o)

 Beam truncation loss in dB at cryostat window for Band 4 high limit frequency 163 GHz.

| Distance from       | m Window diameter (mm.) |        |        |        |        |        |        |        |  |
|---------------------|-------------------------|--------|--------|--------|--------|--------|--------|--------|--|
| mirror 2 (mm.)      | 140                     | 120    | 100    | 80     | 60     | 56     | 40     | 30     |  |
| 100                 | 0.001                   | 0.001  | 0.000  | 0.004  | 0.010  | 0.011  | 0.040  | 0.1.47 |  |
| 100                 | -0.001                  | -0.001 | -0.002 | -0.004 | -0.010 | -0.011 | -0.048 | -0.14/ |  |
| 110                 | -0.001                  | -0.001 | -0.002 | -0.004 | -0.009 | -0.011 | -0.043 | -0.134 |  |
| 120                 | -0.001                  | -0.001 | -0.002 | -0.004 | -0.009 | -0.010 | -0.040 | -0.124 |  |
| 130                 | -0.001                  | -0.001 | -0.002 | -0.003 | -0.009 | -0.010 | -0.037 | -0.116 |  |
| 140                 | -0.001                  | -0.001 | -0.002 | -0.003 | -0.009 | -0.010 | -0.036 | -0.112 |  |
| 143.85 <sup>†</sup> | -0.001                  | -0.001 | -0.002 | -0.003 | -0.009 | -0.010 | -0.036 | -0.112 |  |
| 150                 | -0.001                  | -0.001 | -0.002 | -0.003 | -0.009 | -0.010 | -0.037 | -0.111 |  |
| 160                 | -0.001                  | -0.001 | -0.002 | -0.003 | -0.009 | -0.010 | -0.038 | -0.114 |  |
| 170                 | -0.001                  | -0.001 | -0.002 | -0.004 | -0.009 | -0.010 | -0.040 | -0.119 |  |
| 180                 | -0.001                  | -0.001 | -0.002 | -0.004 | -0.009 | -0.011 | -0.044 | -0.128 |  |
| 190                 | -0.001                  | -0.001 | -0.002 | -0.004 | -0.010 | -0.011 | -0.049 | -0.139 |  |

<sup>+</sup> Cassegrain focus.

# 5.2 Physical Optics Analysis

# 5.2.1 Beam Profile at Cassegrain Focus

Figures 7(j) - (m) show the beam profile at the Cassegrain focus with comparison of results obtained by both quasi-optics and physical optics.



Figure 7(j). Beam profile at Cassegrain focus for Band 4 mid frequency 144 GHz.



Figure 7(k). Beam profile of co-polar field at Cassegrain focus, Band 4 mid frequency 144 GHz; x-polarised source solid line, y-polarised source dotted line.



Figure 7(1). Beam profile at Cassegrain focus Band 4 mid frequency 144 GHz., x-polarised source;  $\phi = 0^{\circ}$  co-polar field solid line,  $\phi = 90^{\circ}$  co-polar field dotted line,  $\phi = 90^{\circ}$  X-polar field dash line.



Figure 7(m). Beam profile at Cassegrain focus Band 4 mid frequency 144 GHz., y-polarised source;  $\phi = 0^{\circ}$  co-polar field solid line,  $\phi = 90^{\circ}$  co-polar field dotted line,  $\phi = 90^{\circ}$  X-polar field dash line.

#### 5.2.2 Beam Profile at Subreflector & Edge Taper



Figure 7(n). Beam profile at subreflector Band 4 mid frequency 144 GHz.;  $\phi = 0^{\circ}$  solid line,  $\phi = 90^{\circ}$  dash line.

The edge tapers at the subreflector corresponding to the four positions where  $\phi = 0^{\circ}$  and  $90^{\circ}$  are -11.8, -11.2, -11.5 and -11.5 respectively.



Figure 7(o). Antenna far field radiation pattern for Band 4 mid frequency 144 GHz.; x-polarised source solid line, y-polarised source dash line.



Figure 7(p). 3-D plot of antenna co-polar field radiation pattern.



Figure 7(q). 3-D plot of antenna cross-polar field radiation pattern.

# 5.2.4 Beam & Cross-Polar Efficiencies

.

The beam efficiencies are shown in Table VI(p) below.

| Co-polar<br>(%) | Cross-polar<br>(%)                                                                                                                                                                                         |  |  |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 47.98           | 0.01                                                                                                                                                                                                       |  |  |
| 70.15           | 0.02                                                                                                                                                                                                       |  |  |
| 80.21           | 0.03                                                                                                                                                                                                       |  |  |
| 84.68           | 0.04                                                                                                                                                                                                       |  |  |
| 86.68           | 0.05                                                                                                                                                                                                       |  |  |
| 87.56           | 0.06                                                                                                                                                                                                       |  |  |
| 87.94           | 0.06                                                                                                                                                                                                       |  |  |
| 88.21           | 0.06                                                                                                                                                                                                       |  |  |
| 89.22           | 0.06                                                                                                                                                                                                       |  |  |
| 89.51           | 0.07                                                                                                                                                                                                       |  |  |
| 89.89           | 0.07                                                                                                                                                                                                       |  |  |
| 90.29           | 0.07                                                                                                                                                                                                       |  |  |
| 90.69           | 0.07                                                                                                                                                                                                       |  |  |
| 91.03           | 0.07                                                                                                                                                                                                       |  |  |
| 91.27           | 0.07                                                                                                                                                                                                       |  |  |
| 91.42           | 0.07                                                                                                                                                                                                       |  |  |
| 91.51           | 0.07                                                                                                                                                                                                       |  |  |
| 91.57           | 0.07                                                                                                                                                                                                       |  |  |
| 91.61           | 0.07                                                                                                                                                                                                       |  |  |
| 91.64           | 0.07                                                                                                                                                                                                       |  |  |
|                 | <b>Co-polar</b><br>(%)<br>47.98<br>70.15<br>80.21<br>84.68<br>86.68<br>87.56<br>87.94<br>88.21<br>89.22<br>89.51<br>89.89<br>90.29<br>90.69<br>91.03<br>91.27<br>91.42<br>91.51<br>91.57<br>91.61<br>91.64 |  |  |

 TABLE VI(p)

 Beam efficiencies for Band 4 mid frequency 144 GHz defined by contours of the co-polarisation field.

# 6 BAND 5

# 6.1 Quasi-Optics Analysis

## 6.1.1 Gaussian Beam Parameters

| Frequency [GHz]                    |              | 163      | 187      | 211      |
|------------------------------------|--------------|----------|----------|----------|
| λ[mm]                              |              | 1.839218 | 1.603168 | 1.420817 |
| Horn diameter                      | 9.0          |          |          |          |
| Horn axial length                  | 60.0         |          |          |          |
| Horn slant length                  | 60.169       |          |          |          |
| Horn waist, $w_0$                  |              | 2.817    | 2.793    | 2.767    |
| Horn waist offset, $\Delta z(w_0)$ |              | -3.22678 | -4.17615 | -5.21796 |
| Waist at horn aperture, $w_{ha}$   |              | 2.896    | 2.896    | 2.896    |
| $d_1$                              | 60.05        |          |          |          |
| $R_{\rm s1}$                       | 67.778       | 66.181   | 67.867   | 69.661   |
| $f_1$                              | 32.756       |          |          |          |
| $R_{\rm il}$                       | 63.394       | 64.857   | 63.315   | 61.829   |
| Waist at mirror 1, $w_{M1}$        | (dia. = 70)  | 13.449   | 12.061   | 11.020   |
| $Z_{wl}$                           |              | 62.1191  | 60.3381  | 58.7160  |
| <i>w</i> <sub>1</sub>              |              | 2.763    | 2.615    | 2.473    |
| $d_2$                              | 140.00       |          |          |          |
| $R_{s2}$                           | 81.821       | 80.065   | 81.917   | 83.533   |
| $f_2$                              | 67.192       |          |          |          |
| $R_{i2}$                           | 375.817      | 417.921  | 373.803  | 343.476  |
| Waist at mirror 2, $w_{M2}$        | (dia. = 88)  | 16.731   | 15.763   | 15.070   |
| Z <sub>w(Cass.)</sub>              | 229.84       | 236.924  | 235.187  | 234.007  |
| W <sub>Cass</sub> .                |              | 11.011   | 9.599    | 8.508    |
| d <sub>mirror-subrefl</sub>        |              | 6229.75  | 6229.75  | 6229.75  |
| Wsubrefl                           | (dia. = 750) | 318.832  | 318.832  | 318.832  |
| R <sub>subrefl</sub>               | 6000.00      | 5999.981 | 6000.001 | 6000.015 |
| Edge Taper (dB)                    | 12.00        | 12.02    | 12.02    | 12.02    |

 TABLE VII(a)

 Quasi-optics Gaussian beam parameters for Band 5.

All dimensions in mm.

#### 6.1.2 Truncation Loss at Mirrors

The beam profiles at mirror 1 and mirror 2 are shown in Figures 8(a), (b) and (c). Truncation loss of the beam for a range of mirror diameters is given in Table VII(b) and VII(c).



Figure 8. Beam profile at mirror 1 and mirror 2; (a) 163 GHz, (b) 187 GHz and (c) 211 GHz.

| Frequency | 163 GHz |        | 187   | GHz    | 211 GHz |        |  |
|-----------|---------|--------|-------|--------|---------|--------|--|
| Diameter  | Power   | Loss   | Power | Loss   | Power   | Loss   |  |
| 100       | 0.999   | -0.004 | 1.000 | -0.002 | 1.000   | -0.001 |  |
| 90        | 0.999   | -0.004 | 0.999 | -0.003 | 1.000   | -0.002 |  |
| 88        | 0.999   | -0.005 |       |        | 1.000   | -0.002 |  |
| 80        | 0.998   | -0.007 | 0.999 | -0.005 | 0.999   | -0.003 |  |
| 70        | 0.997   | -0.013 | 0.998 | -0.008 | 0.999   | -0.005 |  |
| 60        | 0.995   | -0.020 | 0.997 | -0.015 | 0.998   | -0.011 |  |
| 50        | 0.987   | -0.058 | 0.993 | -0.031 | 0.995   | -0.020 |  |
| 40        | 0.971   | -0.126 | 0.975 | -0.098 | 0.985   | -0.066 |  |
| 30        | 0.910   | -0.410 | 0.941 | -0.265 | 0.954   | -0.206 |  |

TABLE VII(b) Truncated beam power and loss at mirror 1 for Band 5.

 TABLE VII(c)

 Truncated beam power and loss at mirror 2 for Band 5.

| Frequency | 163 GHz |        | 187   | GHz    | 211 GHz |        |  |
|-----------|---------|--------|-------|--------|---------|--------|--|
| Diameter  | Power   | Loss   | Power | Loss   | Power   | Loss   |  |
| 100       | 0.999   | -0.005 | 0.999 | -0.004 | 0.999   | -0.002 |  |
| 90        | 0.998   | -0.009 | 0.999 | -0.005 | 0.999   | -0.004 |  |
| 88        | 0.998   | -0.010 | 0.999 | -0.006 | 0.999   | -0.004 |  |
| 80        | 0.997   | -0.014 | 0.998 | -0.010 | 0.998   | -0.007 |  |
| 70        | 0.993   | -0.031 | 0.996 | -0.019 | 0.997   | -0.015 |  |
| 60        | 0.986   | -0.063 | 0.989 | -0.047 | 0.993   | -0.031 |  |
| 50        | 0.966   | -0.152 | 0.975 | -0.109 | 0.980   | -0.089 |  |
| 40        | 0.911   | -0.403 | 0.931 | -0.308 | 0.946   | -0.240 |  |
| 30        | 0.801   | -0.962 | 0.823 | -0.847 | 0.842   | -0.745 |  |

# 6.1.3 Truncation Loss at Cryostat Window

The beam profiles at the cryostat window are shown in Figures 8(d), (e) and (f). Truncation loss of the beam for a range of window diameters is given in Table VII(d) - VII(i).





Figure 8. Beam profile at various distances from mirror 2; (d) 163 GHz, (e) 187 GHz and (f) 211 GHz.

 TABLE VII(d)

 Truncated beam power at cryostat window for Band 5 low limit frequency 163 GHz.

| Distance from Window diameter (mm.) |       |       |       |       |       |       |       |       |
|-------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| mirror 2 (mm.)                      | 100   | 90    | 80    | 70    | 60    | 50    | 40    | 30    |
| 250.00                              | 1 000 | 0.000 | 0.000 |       | 0.000 |       | 0.001 | 0.054 |
| 250.00                              | 1.000 | 0.999 | 0.999 | 0.998 | 0.998 | 0.996 | 0.991 | 0.974 |
| 240.00                              | 1.000 | 0.999 | 0.999 | 0.998 | 0.998 | 0.996 | 0.992 | 0.975 |
| $229.84^{\dagger}$                  | 1.000 | 0.999 | 0.999 | 0.998 | 0.998 | 0.996 | 0.992 | 0.975 |
| 220.00                              | 1.000 | 0.999 | 0.999 | 0.998 | 0.998 | 0.996 | 0.992 | 0.974 |
| 210.00                              | 1.000 | 0.999 | 0.999 | 0.998 | 0.998 | 0.995 | 0.991 | 0.973 |
| 200.00                              | 1.000 | 0.999 | 0.999 | 0.998 | 0.998 | 0.995 | 0.990 | 0.971 |
| 190.00                              | 1.000 | 0.999 | 0.999 | 0.998 | 0.998 | 0.995 | 0.990 | 0.968 |
| 180.00                              | 1.000 | 0.999 | 0.999 | 0.998 | 0.998 | 0.995 | 0.988 | 0.964 |
| 170.00                              | 1.000 | 0.999 | 0.999 | 0.998 | 0.998 | 0.994 | 0.987 | 0.960 |
| 160.00                              | 1.000 | 0.999 | 0.999 | 0.998 | 0.997 | 0.994 | 0.985 | 0.955 |
| 150.00                              | 1.000 | 0.999 | 0.999 | 0.998 | 0.997 | 0.993 | 0.983 | 0.950 |
| 140.00                              | 0.999 | 0.999 | 0.999 | 0.998 | 0.997 | 0.992 | 0.980 | 0.944 |

 TABLE VII(e)

 Beam truncation loss in dB at cryostat window for Band 5 low limit frequency 163 GHz.

| Distance from    | Window diameter (mm.) |        |        |        |        |        |        |        |  |  |
|------------------|-----------------------|--------|--------|--------|--------|--------|--------|--------|--|--|
| mirror 2 (mm.)   | 100                   | 90     | 80     | 70     | 60     | 50     | 40     | 30     |  |  |
|                  |                       |        |        |        |        |        |        |        |  |  |
| 250.00           | -0.002                | -0.003 | -0.003 | -0.007 | -0.009 | -0.019 | -0.039 | -0.115 |  |  |
| 240.00           | -0.002                | -0.003 | -0.003 | -0.007 | -0.009 | -0.019 | -0.037 | -0.112 |  |  |
| $229.84^\dagger$ | -0.002                | -0.003 | -0.003 | -0.007 | -0.009 | -0.019 | -0.036 | -0.112 |  |  |
| 220.00           | -0.002                | -0.003 | -0.003 | -0.007 | -0.009 | -0.019 | -0.037 | -0.115 |  |  |
| 210.00           | -0.002                | -0.003 | -0.004 | -0.007 | -0.009 | -0.020 | -0.039 | -0.121 |  |  |
| 200.00           | -0.002                | -0.003 | -0.004 | -0.007 | -0.009 | -0.021 | -0.024 | -0.130 |  |  |
| 190.00           | -0.002                | -0.003 | -0.004 | -0.007 | -0.010 | -0.022 | -0.046 | -0.142 |  |  |
| 180.00           | -0.002                | -0.003 | -0.004 | -0.008 | -0.010 | -0.024 | -0.051 | -0.158 |  |  |
| 170.00           | -0.002                | -0.003 | -0.004 | -0.008 | -0.011 | -0.025 | -0.058 | -0.176 |  |  |
| 160.00           | -0.002                | -0.003 | -0.004 | -0.008 | -0.011 | -0.028 | -0.066 | -0.198 |  |  |
| 150.00           | -0.002                | -0.004 | -0.004 | -0.009 | -0.012 | -0.030 | -0.075 | -0.223 |  |  |
| 140.00           | -0.002                | -0.004 | -0.005 | -0.009 | -0.014 | -0.034 | -0.086 | -0.251 |  |  |
|                  |                       |        |        |        |        |        |        |        |  |  |

 TABLE VII(f)

 Truncated beam power at cryostat window for Band 5 mid frequency 187 GHz.

| Distance from    | Window diameter (mm.) |       |       |       |       |       |       |       |  |  |
|------------------|-----------------------|-------|-------|-------|-------|-------|-------|-------|--|--|
| mirror 2 (mm.)   | 100                   | 90    | 80    | 70    | 60    | 50    | 40    | 30    |  |  |
|                  |                       |       |       |       |       |       |       |       |  |  |
| 250.00           | 1.000                 | 1.000 | 0.999 | 0.999 | 0.998 | 0.998 | 0.993 | 0.989 |  |  |
| 240.00           | 1.000                 | 1.000 | 0.999 | 0.999 | 0.998 | 0.998 | 0.993 | 0.990 |  |  |
| $229.84^\dagger$ | 1.000                 | 1.000 | 0.999 | 0.999 | 0.998 | 0.998 | 0.993 | 0.990 |  |  |
| 220.00           | 1.000                 | 1.000 | 0.999 | 0.999 | 0.998 | 0.998 | 0.993 | 0.989 |  |  |
| 210.00           | 1.000                 | 1.000 | 0.999 | 0.999 | 0.998 | 0.998 | 0.993 | 0.989 |  |  |
| 200.00           | 1.000                 | 1.000 | 0.999 | 0.999 | 0.998 | 0.998 | 0.993 | 0.987 |  |  |
| 190.00           | 1.000                 | 1.000 | 0.999 | 0.999 | 0.998 | 0.998 | 0.992 | 0.984 |  |  |
| 180.00           | 1.000                 | 1.000 | 0.999 | 0.999 | 0.998 | 0.997 | 0.991 | 0.981 |  |  |
| 170.00           | 1.000                 | 1.000 | 0.999 | 0.999 | 0.998 | 0.997 | 0.990 | 0.978 |  |  |
| 160.00           | 1.000                 | 1.000 | 0.999 | 0.999 | 0.998 | 0.997 | 0.989 | 0.973 |  |  |
| 150.00           | 1.000                 | 1.000 | 0.999 | 0.999 | 0.998 | 0.996 | 0.988 | 0.968 |  |  |
| 140.00           | 1.000                 | 1.000 | 0.999 | 0.999 | 0.998 | 0.996 | 0.986 | 0.963 |  |  |

| Distance from    | Window diameter (mm.) |        |        |        |        |        |        |        |  |  |  |
|------------------|-----------------------|--------|--------|--------|--------|--------|--------|--------|--|--|--|
| mirror 2 (mm.)   | 100                   | 90     | 80     | 70     | 60     | 50     | 40     | 30     |  |  |  |
|                  |                       |        |        |        |        |        |        |        |  |  |  |
| 250.00           | -0.001                | -0.002 | -0.003 | -0.003 | -0.007 | -0.009 | -0.030 | -0.049 |  |  |  |
| 240.00           | -0.001                | -0.002 | -0.003 | -0.003 | -0.007 | -0.009 | -0.029 | -0.045 |  |  |  |
| $229.84^\dagger$ | -0.001                | -0.002 | -0.003 | -0.003 | -0.007 | -0.009 | -0.029 | -0.044 |  |  |  |
| 220.00           | -0.001                | -0.002 | -0.003 | -0.003 | -0.007 | -0.009 | -0.030 | -0.046 |  |  |  |
| 210.00           | -0.001                | -0.002 | -0.003 | -0.004 | -0.007 | -0.010 | -0.031 | -0.050 |  |  |  |
| 200.00           | -0.001                | -0.002 | -0.003 | -0.004 | -0.008 | -0.010 | -0.033 | -0.058 |  |  |  |
| 190.00           | -0.001                | -0.002 | -0.003 | -0.004 | -0.008 | -0.011 | -0.035 | -0.068 |  |  |  |
| 180.00           | -0.002                | -0.002 | -0.003 | -0.004 | -0.008 | -0.011 | -0.039 | -0.082 |  |  |  |
| 170.00           | -0.002                | -0.002 | -0.003 | -0.004 | -0.009 | -0.013 | -0.043 | -0.098 |  |  |  |
| 160.00           | -0.002                | -0.002 | -0.003 | -0.004 | -0.009 | -0.014 | -0.048 | -0.117 |  |  |  |
| 150.00           | -0.002                | -0.002 | -0.004 | -0.004 | -0.010 | -0.016 | -0.054 | -0.140 |  |  |  |
| 140.00           | -0.002                | -0.002 | -0.004 | -0.005 | -0.011 | -0.018 | -0.061 | -0.165 |  |  |  |

 TABLE VII(g)

 Beam truncation loss in dB at cryostat window for Band 5 mid frequency 187 GHz.

TABLE VII(h) Truncated beam power at cryostat window for Band 5 high limit frequency 211 GHz.

| Distance from       | Window diameter (mm.) |       |       |       |       |       |       |       |  |  |
|---------------------|-----------------------|-------|-------|-------|-------|-------|-------|-------|--|--|
| mirror 2 (mm.)      | 100                   | 90    | 80    | 70    | 60    | 50    | 40    | 30    |  |  |
| 250.00              | 1 0 0 0               |       |       |       |       |       |       |       |  |  |
| 250.00              | 1.000                 | 1.000 | 1.000 | 0.999 | 0.999 | 0.998 | 0.996 | 0.991 |  |  |
| 240.00              | 1.000                 | 1.000 | 1.000 | 0.999 | 0.999 | 0.998 | 0.996 | 0.991 |  |  |
| 229.84 <sup>†</sup> | 1.000                 | 1.000 | 1.000 | 0.999 | 0.999 | 0.998 | 0.997 | 0.992 |  |  |
| 220.00              | 1.000                 | 1.000 | 1.000 | 0.999 | 0.999 | 0.998 | 0.996 | 0.991 |  |  |
| 210.00              | 1.000                 | 1.000 | 1.000 | 0.999 | 0.999 | 0.998 | 0.996 | 0.991 |  |  |
| 200.00              | 1.000                 | 1.000 | 1.000 | 0.999 | 0.999 | 0.998 | 0.996 | 0.989 |  |  |
| 190.00              | 1.000                 | 1.000 | 1.000 | 0.999 | 0.999 | 0.998 | 0.996 | 0.988 |  |  |
| 180.00              | 1.000                 | 1.000 | 1.000 | 0.999 | 0.999 | 0.998 | 0.995 | 0.985 |  |  |
| 170.00              | 1.000                 | 1.000 | 1.000 | 0.999 | 0.999 | 0.997 | 0.995 | 0.982 |  |  |
| 160.00              | 1.000                 | 1.000 | 1.000 | 0.999 | 0.999 | 0.997 | 0.994 | 0.979 |  |  |
| 150.00              | 1.000                 | 1.000 | 1.000 | 0.999 | 0.999 | 0.997 | 0.993 | 0.975 |  |  |
| 140.00              | 1.000                 | 1.000 | 1.000 | 0.999 | 0.999 | 0.997 | 0.992 | 0.970 |  |  |

 TABLE VII(i)

 Beam truncation loss in dB at cryostat window for Band 5 high limit frequency 211 GHz.

| Distance from    | om Window diameter (mm.) |        |        |        |        |        |        |        |  |  |  |
|------------------|--------------------------|--------|--------|--------|--------|--------|--------|--------|--|--|--|
| mirror 2 (mm.)   | 100                      | 90     | 80     | 70     | 60     | 50     | 40     | 30     |  |  |  |
|                  |                          |        |        |        |        |        |        |        |  |  |  |
| 250.00           | -0.001                   | -0.001 | -0.002 | -0.003 | -0.004 | -0.009 | -0.016 | -0.041 |  |  |  |
| 240.00           | -0.001                   | -0.001 | -0.002 | -0.003 | -0.004 | -0.009 | -0.015 | -0.038 |  |  |  |
| $229.84^\dagger$ | -0.001                   | -0.001 | -0.002 | -0.003 | -0.004 | -0.009 | -0.015 | -0.036 |  |  |  |
| 220.00           | -0.001                   | -0.001 | -0.002 | -0.003 | -0.004 | -0.009 | -0.016 | -0.038 |  |  |  |
| 210.00           | -0.001                   | -0.001 | -0.002 | -0.003 | -0.004 | -0.009 | -0.016 | -0.041 |  |  |  |
| 200.00           | -0.001                   | -0.001 | -0.002 | -0.003 | -0.004 | -0.009 | -0.017 | -0.047 |  |  |  |
| 190.00           | -0.001                   | -0.001 | -0.002 | -0.003 | -0.004 | -0.010 | -0.019 | -0.055 |  |  |  |
| 180.00           | -0.001                   | -0.001 | -0.002 | -0.003 | -0.004 | -0.010 | -0.021 | -0.065 |  |  |  |
| 170.00           | -0.001                   | -0.001 | -0.002 | -0.003 | -0.005 | -0.011 | -0.023 | -0.078 |  |  |  |
| 160.00           | -0.001                   | -0.002 | -0.002 | -0.004 | -0.005 | -0.012 | -0.027 | -0.093 |  |  |  |
| 150.00           | -0.001                   | -0.002 | -0.002 | -0.004 | -0.005 | -0.013 | -0.030 | -0.112 |  |  |  |
| 140.00           | -0.001                   | -0.002 | -0.002 | -0.004 | -0.006 | -0.015 | -0.035 | -0.132 |  |  |  |
|                  |                          |        |        |        |        |        |        |        |  |  |  |

# 6.2 Physical Optics Analysis

# 6.2.1 Beam Profile at Cassegrain Focus

Figures 8(g) - (j) show the beam profile at the Cassegrain with comparison of results obtained by both quasi-optics and physical optics.



Figure 8(g). Beam profile at Cassegrain focus for Band 5 mid frequency 187 GHz.



Figure 8(h). Beam profile of co-polar field at Cassegrain focus, Band 5 mid frequency 187 GHz; x-polarised source solid line, y-polarised source dotted line.



Figure 8(i). Beam profile at Cassegrain focus Band 5 mid frequency 187 GHz., x-polarised source;  $\phi = 0^{\circ}$  co-polar field solid line,  $\phi = 90^{\circ}$  co-polar field dotted line,  $\phi = 90^{\circ}$  X-polar field dash line.



Figure 8(j). Beam profile at Cassegrain focus Band 5 mid frequency 187 GHz., y-polarised source;  $\phi = 0^{\circ}$  co-polar field solid line,  $\phi = 90^{\circ}$  co-polar field dotted line,  $\phi = 90^{\circ}$  X-polar field dash line.



Figure 8(k). Beam profile at subreflector Band 5 mid frequency 187 GHz.;  $\phi = 0^{\circ}$  solid line,  $\phi = 90^{\circ}$  dash line.

The edge tapers at the subreflector corresponding to the four positions where  $\phi = 0^{\circ}$  and  $90^{\circ}$  are -11.6, -11, -11.3 and -11.3 respectively.

#### 6.2.3 Far Field Radiation Pattern



Figure 8(1). Antenna far field radiation pattern for Band 5 mid frequency 187 GHz.; x-polarised source solid line, y-polarised source dash line.



Figure 8(m). 3-D plot of antenna co-polar field radiation pattern.



Figure 8(n). 3-D plot of antenna cross-polar field radiation pattern.

#### 6.2.4 Beam & Cross-Polar Efficiencies

The beam efficiencies are shown in Table VII(j) below.

Level below **Co-polar Cross-polar** peak (dB) (%) (%) 3.0 46.24 0.00 6.0 67.98 0.01 9.0 78.01 0.02 12.0 82.60 0.03 15.0 84.74 0.03 18.0 85.80 0.03 21.0 86.51 0.04 24.0 88.45 0.04 27.0 88.80 0.04 30.0 88.92 0.04 33.0 89.48 0.04 36.0 89.83 0.04 39.0 90.18 0.04 42.0 90.51 0.04 45.0 90.76 0.04 90.90 48.0 0.04 51.0 90.97 0.04 54.0 91.03 0.04 57.0 91.09 0.04 60.0 91.12 0.04

TABLE VII(j) Beam efficiencies for Band 5 mid frequency 187 GHz defined by contours of the co-polarisation field.

# 7 BAND 6

# 7.1 Quasi-Optics Analysis

## 7.1.1 Gaussian Beam Parameters

| Quasi-optics                       | TABLE VIII(a)         Quasi-optics Gaussian beam parameters for Band 6. |                        |                        |                        |  |  |  |  |  |  |  |  |
|------------------------------------|-------------------------------------------------------------------------|------------------------|------------------------|------------------------|--|--|--|--|--|--|--|--|
| Frequency [GHz] $\lambda$ [mm]     |                                                                         | <b>211</b><br>1.420817 | <b>243</b><br>1.233714 | <b>275</b><br>1.090154 |  |  |  |  |  |  |  |  |
| Horn diameter                      | 7.0                                                                     |                        |                        |                        |  |  |  |  |  |  |  |  |
| Horn axial length                  | 50.0                                                                    |                        |                        |                        |  |  |  |  |  |  |  |  |
| Horn slant length                  | 50.122                                                                  |                        |                        |                        |  |  |  |  |  |  |  |  |
| Horn waist, $w_0$                  |                                                                         | 2.198                  | 2.181                  | 2.162                  |  |  |  |  |  |  |  |  |
| Horn waist offset, $\Delta z(w_0)$ |                                                                         | -2.39022               | -3.12161               | -3.92921               |  |  |  |  |  |  |  |  |
| Waist at horn aperture, $w_{ha}$   |                                                                         | 2.252                  | 2.252                  | 2.252                  |  |  |  |  |  |  |  |  |
| $d_1$                              | 59.89                                                                   |                        |                        |                        |  |  |  |  |  |  |  |  |
| $R_{s1}$                           | 65.277                                                                  | 64.112                 | 65.340                 | 66.663                 |  |  |  |  |  |  |  |  |
| $f_1$                              | 34.44                                                                   |                        |                        |                        |  |  |  |  |  |  |  |  |
| $R_{i1}$                           | 72.905                                                                  | 74.414                 | 72.825                 | 71.249                 |  |  |  |  |  |  |  |  |
| Waist at mirror 1, $w_{M1}$        | (dia. = 64)                                                             | 13.003                 | 11.553                 | 10.468                 |  |  |  |  |  |  |  |  |
| $\mathbf{Z}_{w1}$                  |                                                                         | 71.5777                | 69.6292                | 67.7980                |  |  |  |  |  |  |  |  |
| <i>w</i> <sub>1</sub>              |                                                                         | 2.539                  | 2.420                  | 2.304                  |  |  |  |  |  |  |  |  |
| $d_2$                              | 140.00                                                                  |                        |                        |                        |  |  |  |  |  |  |  |  |
| $R_{s2}$                           | 73.421                                                                  | 71.389                 | 73.533                 | 75.443                 |  |  |  |  |  |  |  |  |
| $f_2$                              | 58.397                                                                  |                        |                        |                        |  |  |  |  |  |  |  |  |
| R <sub>i2</sub>                    | 275.39                                                                  | 320.874                | 283.696                | 258.458                |  |  |  |  |  |  |  |  |
| Waist at mirror 2, $w_{M2}$        | (dia. = 70)                                                             | 12.452                 | 11.671                 | 11.116                 |  |  |  |  |  |  |  |  |
| Z <sub>w(Cass.)</sub>              | 166.86                                                                  | 171.035                | 169.986                | 169.281                |  |  |  |  |  |  |  |  |
| W <sub>Cass</sub> .                |                                                                         | 8.509                  | 7.389                  | 6.530                  |  |  |  |  |  |  |  |  |
| $d_{mirror-subrefl}$               |                                                                         | 6166.76                | 6166.76                | 6166.76                |  |  |  |  |  |  |  |  |
| Wsubrefl                           | (dia. = 750)                                                            | 318.796                | 318.796                | 318.796                |  |  |  |  |  |  |  |  |
| R <sub>subrefl</sub>               | 6000.00                                                                 | 5999.999               | 5999.997               | 5999.996               |  |  |  |  |  |  |  |  |
| Edge Taper (dB)                    | 12.00                                                                   | 12.02                  | 12.02                  | 12.02                  |  |  |  |  |  |  |  |  |

All dimensions in mm.

#### 7.1.2 Truncation Loss at Mirrors

The beam profiles at mirror 1 and mirror 2 are shown in Figures 9(a), (b) and (c). Truncation loss of the beam for a range of mirror diameters is given in Table VIII(b) and VIII(c).



Figure 9. Beam profile at mirror 1 and mirror 2; (a) 211 GHz, (b) 243 GHz and (c) 275 GHz.

| Frequency | ency 211 GH |        | 243   | 275 GHz |       |        |
|-----------|-------------|--------|-------|---------|-------|--------|
| Diameter  | Power       | Loss   | Power | Loss    | Power | Loss   |
| 80        | 0.999       | -0.006 |       |         | 0.999 | -0.003 |
| 70        | 0.997       | -0.012 | 0.998 | -0.007  | 0.999 | -0.005 |
| 64        | 0.997       | -0.013 | 0.998 | -0.011  | 0.999 | -0.006 |
| 60        | 0.996       | -0.017 | 0.997 | -0.013  | 0.998 | -0.009 |
| 50        | 0.989       | -0.048 | 0.994 | -0.024  | 0.996 | -0.016 |
| 40        | 0.977       | -0.101 | 0.982 | -0.078  | 0.988 | -0.050 |
| 30        | 0.923       | -0.347 | 0.953 | -0.207  | 0.965 | -0.157 |
| 20        | 0.679       | -1.680 | 0.771 | -1.129  | 0.837 | -0.773 |

TABLE VIII(b) Truncated beam power and loss at mirror 1 for Band 6.

| Frequency | 211 GHz |        | 243   | GHz    | 275 GHz |        |  |
|-----------|---------|--------|-------|--------|---------|--------|--|
| Diameter  | Power   | Loss   | Power | Loss   | Power   | Loss   |  |
| 80        | 0.999   | -0.004 | 0.999 | -0.003 | 1.000   | -0.002 |  |
| 70        | 0.998   | -0.008 | 0.999 | -0.004 | 0.999   | -0.003 |  |
| 60        | 0.997   | -0.014 | 0.998 | -0.010 | 0.999   | -0.006 |  |
| 50        | 0.991   | -0.039 | 0.994 | -0.024 | 0.996   | -0.017 |  |
| 40        | 0.976   | -0.107 | 0.982 | -0.078 | 0.986   | -0.060 |  |
| 30        | 0.914   | -0.391 | 0.934 | -0.297 | 0.949   | -0.226 |  |
| 20        | 0.747   | -1.270 | 0.775 | -1.107 | 0.794   | -1.003 |  |

 TABLE VIII(c)

 Truncated beam power and loss at mirror 2 for Band 6.

#### 7.1.3 Truncation Loss at Cryostat Window

The beam profiles at the cryostat window are shown in Figures 9(d), (e) and (f). Truncation loss of the beam for a range of window diameters is given in Table VIII(d) – VIII(i).



# Figure 9. Beam profile at various distances from mirror2; (d) 211 GHz, (e) 243 GHz and (f) 275 GHz. TABLE VIII(d)

| <b>Distance from</b> | Distance from Window diameter (mm.) |       |       |       |       |       |       |  |  |  |
|----------------------|-------------------------------------|-------|-------|-------|-------|-------|-------|--|--|--|
| mirror 2 (mm.)       | 80                                  | 70    | 60    | 50    | 40    | 30    | 20    |  |  |  |
| 150.00               | 1.000                               | 0.999 | 0.999 | 0.998 | 0.996 | 0.991 | 0.926 |  |  |  |
| 160.00               | 1.000                               | 0.999 | 0.999 | 0.998 | 0.996 | 0.992 | 0.928 |  |  |  |
| $166.86^{\dagger}$   | 1.000                               | 0.999 | 0.999 | 0.998 | 0.996 | 0.992 | 0.929 |  |  |  |
| 170.00               | 1.000                               | 0.999 | 0.999 | 0.998 | 0.997 | 0.992 | 0.929 |  |  |  |
| 180.00               | 1.000                               | 0.999 | 0.999 | 0.998 | 0.996 | 0.991 | 0.929 |  |  |  |
| 190.00               | 1.000                               | 0.999 | 0.999 | 0.998 | 0.996 | 0.990 | 0.927 |  |  |  |
| 200.00               | 1.000                               | 0.999 | 0.999 | 0.998 | 0.996 | 0.989 | 0.924 |  |  |  |
| 210.00               | 1.000                               | 0.999 | 0.999 | 0.998 | 0.996 | 0.987 | 0.919 |  |  |  |
| 220.00               | 1.000                               | 0.999 | 0.999 | 0.998 | 0.996 | 0.985 | 0.913 |  |  |  |
| 230.00               | 1.000                               | 0.999 | 0.999 | 0.997 | 0.995 | 0.987 | 0.905 |  |  |  |
| 240.00               | 1.000                               | 0.999 | 0.999 | 0.997 | 0.994 | 0.978 | 0.897 |  |  |  |

Truncated beam power at cryostat window for Band 6 low limit frequency 211 GHz.

<sup>†</sup> Cassegrain focus.

 TABLE VIII(e)

 Beam truncation loss in dB at cryostat window for Band 6 low limit frequency 211 GHz.

| Distance from      | om Window diameter (mm.) |        |        |        |        |        |        |  |  |  |
|--------------------|--------------------------|--------|--------|--------|--------|--------|--------|--|--|--|
| mirror 2 (mm.)     | 80                       | 70     | 60     | 50     | 40     | 30     | 20     |  |  |  |
| 150.00             | 0.002                    | 0.003  | 0.004  | 0.000  | 0.016  | 0.040  | 0.224  |  |  |  |
| 160.00             | -0.002                   | -0.003 | -0.004 | -0.009 | -0.010 | -0.040 | -0.334 |  |  |  |
| $166.86^{\dagger}$ | -0.002                   | -0.003 | -0.004 | -0.009 | -0.015 | -0.036 | -0.319 |  |  |  |
| 170.00             | -0.002                   | -0.003 | -0.004 | -0.009 | -0.015 | -0.037 | -0.318 |  |  |  |
| 180.00             | -0.002                   | -0.003 | -0.004 | -0.009 | -0.015 | -0.038 | -0.320 |  |  |  |
| 190.00             | -0.002                   | -0.003 | -0.004 | -0.009 | -0.016 | -0.042 | -0.329 |  |  |  |
| 200.00             | -0.002                   | -0.003 | -0.004 | -0.009 | -0.017 | -0.049 | -0.345 |  |  |  |
| 210.00             | -0.002                   | -0.003 | -0.004 | -0.010 | -0.018 | -0.057 | -0.367 |  |  |  |
| 220.00             | -0.002                   | -0.003 | -0.004 | -0.010 | -0.020 | -0.068 | -0.396 |  |  |  |
| 230.00             | -0.002                   | -0.003 | -0.004 | -0.011 | -0.022 | -0.081 | -0.432 |  |  |  |
| 240.00             | -0.002                   | -0.003 | -0.005 | -0.012 | -0.024 | -0.096 | -0.474 |  |  |  |

| Distance from       |       | Window diameter (mm.) |       |       |       |       |       |  |  |  |
|---------------------|-------|-----------------------|-------|-------|-------|-------|-------|--|--|--|
| mirror 2 (mm.)      | 80    | 70                    | 60    | 50    | 40    | 30    | 20    |  |  |  |
| 150.00              | 1.000 | 1 000                 | 0 999 | 0 999 | 0 998 | 0.992 | 0 971 |  |  |  |
| 160.00              | 1.000 | 1.000                 | 0.999 | 0.999 | 0.998 | 0.993 | 0.973 |  |  |  |
| 166.86 <sup>†</sup> | 1.000 | 1.000                 | 0.999 | 0.999 | 0.998 | 0.993 | 0.973 |  |  |  |
| 170.00              | 1.000 | 1.000                 | 0.999 | 0.999 | 0.998 | 0.993 | 0.973 |  |  |  |
| 180.00              | 1.000 | 1.000                 | 0.999 | 0.999 | 0.998 | 0.993 | 0.972 |  |  |  |
| 190.00              | 1.000 | 1.000                 | 0.999 | 0.999 | 0.998 | 0.992 | 0.970 |  |  |  |
| 200.00              | 1.000 | 1.000                 | 0.999 | 0.999 | 0.998 | 0.991 | 0.966 |  |  |  |
| 210.00              | 1.000 | 1.000                 | 0.999 | 0.999 | 0.997 | 0.990 | 0.960 |  |  |  |
| 220.00              | 1.000 | 1.000                 | 0.999 | 0.999 | 0.997 | 0.989 | 0.953 |  |  |  |
| 230.00              | 1.000 | 1.000                 | 0.999 | 0.999 | 0.997 | 0.987 | 0.944 |  |  |  |
| 240.00              | 1.000 | 1.000                 | 0.999 | 0.999 | 0.996 | 0.985 | 0.934 |  |  |  |

TABLE VIII(f) Truncated beam power at cryostat window for Band 6 mid frequency 243 GHz.

 TABLE VIII(g)

 Beam truncation loss in dB at cryostat window for Band 6 mid frequency 243 GHz.

| Distance from       | n Window diameter (mm.) |        |        |        |        |        |        |  |  |  |
|---------------------|-------------------------|--------|--------|--------|--------|--------|--------|--|--|--|
| mirror 2 (mm.)      | 80                      | 70     | 60     | 50     | 40     | 30     | 20     |  |  |  |
| 150.00              | 0.001                   | 0.002  | 0.003  | 0.005  | 0.000  | 0.024  | 0.120  |  |  |  |
| 160.00              | -0.001                  | -0.002 | -0.003 | -0.005 | -0.009 | -0.034 | -0.130 |  |  |  |
| 166.86 <sup>†</sup> | -0.001                  | -0.002 | -0.003 | -0.005 | -0.009 | -0.032 | -0.117 |  |  |  |
| 170.00              | -0.001                  | -0.002 | -0.003 | -0.005 | -0.009 | -0.032 | -0.117 |  |  |  |
| 180.00              | -0.001                  | -0.002 | -0.003 | -0.005 | -0.009 | -0.033 | -0.127 |  |  |  |
| 190.00              | -0.001                  | -0.002 | -0.003 | -0.005 | -0.009 | -0.035 | -0.133 |  |  |  |
| 200.00              | -0.001                  | -0.002 | -0.003 | -0.005 | -0.010 | -0.038 | -0.151 |  |  |  |
| 210.00              | -0.001                  | -0.002 | -0.003 | -0.005 | -0.011 | -0.043 | -0.176 |  |  |  |
| 220.00              | -0.001                  | -0.002 | -0.003 | -0.005 | -0.012 | -0.049 | -0.209 |  |  |  |
| 230.00              | -0.001                  | -0.002 | -0.004 | -0.006 | -0.014 | -0.057 | -0.248 |  |  |  |
| 240.00              | -0.001                  | -0.002 | -0.004 | -0.006 | -0.016 | -0.066 | -0.294 |  |  |  |

| Distance from      | Window diameter (mm.) |       |         |       |       |       |       |  |  |  |
|--------------------|-----------------------|-------|---------|-------|-------|-------|-------|--|--|--|
| mirror 2 (mm.)     | 80                    | 70    | 60      | 50    | 40    | 30    | 20    |  |  |  |
| 150.00             | 1.000                 | 1.000 | . 1.000 | 0.999 | 0.998 | 0.996 | 0.987 |  |  |  |
| 160.00             | 1.000                 | 1.000 | 1.000   | 0.999 | 0.998 | 0.996 | 0.988 |  |  |  |
| $166.86^{\dagger}$ | 1.000                 | 1.000 | 1.000   | 0.999 | 0.998 | 0.996 | 0.989 |  |  |  |
| 170.00             | 1.000                 | 1.000 | 1.000   | 0.999 | 0.998 | 0.996 | 0.989 |  |  |  |
| 180.00             | 1.000                 | 1.000 | 1.000   | 0.999 | 0.998 | 0.996 | 0.988 |  |  |  |
| 190.00             | 1.000                 | 1.000 | 1.000   | 0.999 | 0.998 | 0.996 | 0.985 |  |  |  |
| 200.00             | 1.000                 | 1.000 | 1.000   | 0.999 | 0.998 | 0.995 | 0.981 |  |  |  |
| 210.00             | 1.000                 | 1.000 | 1.000   | 0.999 | 0.998 | 0.995 | 0.975 |  |  |  |
| 220.00             | 1.000                 | 1.000 | 1.000   | 0.999 | 0.998 | 0.994 | 0.968 |  |  |  |
| 230.00             | 1.000                 | 1.000 | 1.000   | 0.999 | 0.997 | 0.993 | 0.960 |  |  |  |
| 240.00             | 1.000                 | 1.000 | 0.999   | 0.999 | 0.997 | 0.991 | 0.950 |  |  |  |

 TABLE VIII(h)

 Truncated beam power at cryostat window for Band 6 high limit frequency 275 GHz.

#### TABLE VIII(i)

Beam truncation loss in dB at cryostat window for Band 6 high limit frequency 275 GHz.

| Distance from       | Window diameter (mm.) |        |        |        |        |        |        |  |  |  |
|---------------------|-----------------------|--------|--------|--------|--------|--------|--------|--|--|--|
| mirror 2 (mm.)      | 80                    | 70     | 60     | 50     | 40     | 30     | 20     |  |  |  |
| 150.00              | 0.001                 | 0.001  | 0.002  | 0.002  | 0.000  | 0.010  | 0.050  |  |  |  |
| 150.00              | -0.001                | -0.001 | -0.002 | -0.003 | -0.008 | -0.019 | -0.059 |  |  |  |
| 166.86 <sup>†</sup> | 0.001                 | -0.001 | -0.002 | 0.003  | 0.008  | -0.018 | -0.030 |  |  |  |
| 170.00              | -0.001                | -0.001 | -0.002 | -0.003 | -0.008 | -0.018 | -0.049 |  |  |  |
| 180.00              | -0.001                | -0.001 | -0.002 | -0.003 | -0.008 | -0.010 | -0.042 |  |  |  |
| 190.00              | -0.001                | -0.001 | -0.002 | -0.003 | -0.008 | -0.019 | -0.065 |  |  |  |
| 200.00              | -0.001                | -0.001 | -0.002 | -0.004 | -0.009 | -0.021 | -0.083 |  |  |  |
| 210.00              | -0.001                | -0.001 | -0.002 | -0.004 | -0.009 | -0.024 | -0.108 |  |  |  |
| 220.00              | -0.001                | -0.001 | -0.002 | -0.004 | -0.010 | -0.027 | -0.139 |  |  |  |
| 230.00              | -0.001                | -0.001 | -0.002 | -0.004 | -0.011 | -0.032 | -0.177 |  |  |  |
| 240.00              | -0.001                | -0.001 | -0.002 | -0.005 | -0.012 | -0.038 | -0.221 |  |  |  |
|                     |                       |        |        |        |        |        |        |  |  |  |

<sup>†</sup> Cassegrain focus.

# 7.2 Physical Optics Analysis

# 7.2.1 Beam Profile at Cassegrain Focus

Figures 9(g) - (j) show the beam profile at the Cassegrain with comparison of results obtained by both quasi-optics and physical optics.



Figure 9(g). Beam profile at Cassegrain focus for Band 6 mid frequency 243 GHz.



Figure 9(h). Beam profile of co-polar field at Cassegrain focus, Band 6 mid frequency 243 GHz; x-polarised source solid line, y-polarised source dotted line.



Figure 9(i). Beam profile at Cassegrain focus Band 6 mid frequency 243 GHz., x-polarised source;  $\phi = 0^{\circ}$  co-polar field solid line,  $\phi = 90^{\circ}$  co-polar field dotted line,  $\phi = 90^{\circ}$  X-polar field dash line.



Figure 9(j). Beam profile at Cassegrain focus Band 6 mid frequency 243 GHz., y-polarised source;  $\phi = 0^{\circ}$  co-polar field solid line,  $\phi = 90^{\circ}$  co-polar field dotted line,  $\phi = 90^{\circ}$  X-polar field dash line.

# 7.2.2 Beam Profile at Subreflector & Edge Taper



Figure 9(k). Beam profile at subreflector Band 6 mid frequency 243 GHz.;  $\phi = 0^{\circ}$  solid line,  $\phi = 90^{\circ}$  dash line.

The edge tapers at the subreflector corresponding to the four positions where  $\phi = 0^{\circ}$  and  $90^{\circ}$  are -10.9, -10.5, -10.7 and -10.7 respectively.



Figure 9(1). Antenna far field radiation pattern for Band 6 mid frequency 243 GHz.; x-polarised source solid line, y-polarised source dash line.



Figure 9(m). 3-D plot of antenna co-polar field radiation pattern.



Figure 9(n). 3-D plot of antenna cross-polar field radiation pattern.

# 7.2.4 Beam & Cross-Polar Efficiencies

The beam efficiencies are shown in Table VIII(j) below.

| Level below<br>peak (dB) | Co-polar<br>(%) | Cross-polar<br>(%) |
|--------------------------|-----------------|--------------------|
| 3.0                      | 42.76           | 0.00               |
| 6.0                      | 63.45           | 0.01               |
| 9.0                      | 73.38           | 0.02               |
| 12.0                     | 78.35           | 0.03               |
| 15.0                     | 81.16           | 0.03               |
| 18.0                     | 83.87           | 0.04               |
| 21.0                     | 86.50           | 0.04               |
| 24.0                     | 87.19           | 0.04               |
| 27.0                     | 87.46           | 0.04               |
| 30.0                     | 88.09           | 0.04               |
| 33.0                     | 88.51           | 0.04               |
| 36.0                     | 88.76           | 0.04               |
| 39.0                     | 89.19           | 0.04               |
| 42.0                     | 89.54           | 0.04               |
| 45.0                     | 89.84           | 0.04               |
| 48.0                     | 90.01           | 0.04               |
| 51.0                     | 90.09           | 0.04               |
| 54.0                     | 90.14           | 0.04               |
| 57.0                     | 90.21           | 0.04               |
| 60.0                     | 90.26           | 0.04               |

TABLE VIII(j) Beam efficiencies for Band 6 mid frequency 243 GHz defined by contours of the co-polarisation field.

# 8 BAND 7

# 8.1 Quasi-Optics Analysis

#### 8.1.1 Gaussian Beam Parameters

| TABLE IX(a)         Quasi-optics Gaussian beam parameters for Band 7. |              |                        |                        |                        |  |  |  |  |  |
|-----------------------------------------------------------------------|--------------|------------------------|------------------------|------------------------|--|--|--|--|--|
| Frequency [GHz]<br>λ [mm]                                             |              | <b>275</b><br>1.090154 | <b>323</b><br>0.928150 | <b>370</b><br>0.810250 |  |  |  |  |  |
| Horn diameter                                                         | 6.0          |                        |                        |                        |  |  |  |  |  |
| Horn axial length                                                     | 43.0         |                        |                        |                        |  |  |  |  |  |
| Horn slant length                                                     | 43.105       |                        |                        |                        |  |  |  |  |  |
| Horn waist, $w_0$                                                     |              | 1.873                  | 1.853                  | 1.830                  |  |  |  |  |  |
| Horn waist offset, $\Delta z(w_0)$                                    |              | -2.51955               | -3.40042               | -4.35476               |  |  |  |  |  |
| Waist at horn aperture, w <sub>ha</sub>                               |              | 1.930                  | 1.930                  | 1.930                  |  |  |  |  |  |
| $d_1$                                                                 | 38.0         |                        |                        |                        |  |  |  |  |  |
| $R_{s1}$                                                              | 44.54        | 43.043                 | 44.662                 | 46.339                 |  |  |  |  |  |
| $f_1$                                                                 | 25.537       |                        |                        |                        |  |  |  |  |  |
| $R_{i1}$                                                              | 59.85        | 62.789                 | 59.637                 | 56.887                 |  |  |  |  |  |
| Waist at mirror 1, $w_{M1}$                                           | (dia. = 35)  | 7.736                  | 6.857                  | 6.242                  |  |  |  |  |  |
| $\mathbf{z}_{w1}$                                                     |              | 55.4413                | 52.2922                | 49.8238                |  |  |  |  |  |
| <i>w</i> <sub>1</sub>                                                 |              | 2.646                  | 2.406                  | 2.200                  |  |  |  |  |  |
| $d_2$                                                                 | 155.00       |                        |                        |                        |  |  |  |  |  |
| $R_{s2}$                                                              | 106.26       | 103.650                | 106.447                | 108.522                |  |  |  |  |  |
| $f_2$                                                                 | 76.188       |                        |                        |                        |  |  |  |  |  |
| $R_{i2}$                                                              | 269.20       | 287.554                | 268.019                | 255.707                |  |  |  |  |  |
| Waist at mirror 2, $w_{M2}$                                           | (dia. = 70)  | 13.320                 | 12.838                 | 12.527                 |  |  |  |  |  |
| Z <sub>w</sub> (Cass.)                                                | 216.00       | 218.454                | 217.759                | 217.323                |  |  |  |  |  |
| W <sub>Cass</sub> .                                                   |              | 6.529                  | 5.559                  | 4.853                  |  |  |  |  |  |
| d <sub>mirror-subrefl</sub>                                           |              | 6215.94                | 6215.94                | 6215.94                |  |  |  |  |  |
| Wsubrefl                                                              | (dia. = 750) | 318.801                | 318.801                | 318.801                |  |  |  |  |  |
| R <sub>subrefl</sub>                                                  | 6000.00      | 6000.003               | 6000.005               | 6000.008               |  |  |  |  |  |
| Edge Taper (dB)                                                       | 12.00        | 12.02                  | 12.02                  | 12.02                  |  |  |  |  |  |

All dimensions in mm.

# 8.1.2 Truncation Loss at Mirrors

The beam profiles at mirror 1 and mirror 2 are shown in Figures 10(a), (b) and (c). Truncation loss of the beam for a range of mirror diameters is given in Table IX(b) and IX(c).



Figure 10. Beam profile at mirror 1 and mirror 2; (a) 275 GHz, (b) 323 GHz and (c) 370 GHz.

| Frequency | 275   | GHz    | 323   | GHz    | 370   | GHz    |
|-----------|-------|--------|-------|--------|-------|--------|
| Diameter  | Power | Loss   | Power | Loss   | Power | Loss   |
| 60        | 0.999 | -0.003 | 1.000 | -0.002 | 1.000 | -0.001 |
| 55        | 0.999 | -0.004 | 1.000 | -0.002 | 1.000 | -0.001 |
| 50        | 0.999 | -0.005 | 0.999 | -0.003 | 0.999 | -0.002 |
| 45        | 0.998 | -0.008 | 0.999 | -0.005 | 0.999 | -0.003 |
| 40        | 0.997 | -0.014 | 0.998 | -0.007 | 0.999 | -0.005 |
| 35        | 0.996 | -0.019 | 0.997 | -0.015 | 0.998 | -0.008 |
| 30        | 0.989 | -0.046 | 0.995 | -0.023 | 0.996 | -0.018 |
| 25        | 0.976 | -0.106 | 0.985 | -0.064 | 0.992 | -0.036 |
| 20        | 0.950 | -0.224 | 0.963 | -0.165 | 0.972 | -0.121 |

TABLE IX(b)Truncated beam power and loss at mirror 1 for Band 7.
| Frequency | 275   | GHz    | 323   | GHz    | 370 GHz |        |  |
|-----------|-------|--------|-------|--------|---------|--------|--|
| Diameter  | Power | Loss   | Power | Loss   | Power   | Loss   |  |
| 90        | 1.000 | -0.001 | 1.000 | -0.001 | 1.000   | -0.001 |  |
| 85        | 1.000 | -0.002 | 1.000 | -0.001 | 1.000   | -0.001 |  |
| 80        | 0.999 | -0.003 | 1.000 | -0.002 | 1.000   | -0.001 |  |
| 75        | 0.999 | -0.004 | 0.999 | -0.002 | 1.000   | -0.002 |  |
| 70        | 0.999 | -0.006 | 0.999 | -0.004 | 0.999   | -0.002 |  |
| 65        | 0.998 | -0.008 | 0.999 | -0.005 | 0.999   | -0.003 |  |
| 60        | 0.997 | -0.013 | 0.998 | -0.008 | 0.999   | -0.006 |  |
| 55        | 0.995 | -0.022 | 0.997 | -0.014 | 0.998   | -0.010 |  |

 TABLE IX(c)

 Truncated beam power and loss at mirror 2 for Band 7.

# 8.1.3 Truncation Loss at Cryostat Window

The beam profiles at the cryostat window are shown in Figures 10(d), (e) and (f). Truncation loss of the beam for a range of window diameters is given in Table IX(d) - IX(i).





Figure 10. Beam profile at various distances from mirror 2; (d) 275 GHz, (e) 323 GHz and (f) 370 GHz.

 TABLE IX(d)

 Truncated beam power at cryostat window for Band 7 low limit frequency 275 GHz.

| Distance from   | Window diameter (mm.) |       |       |       |       |       |       |       |       |  |  |
|-----------------|-----------------------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|
| mirror 2 (mm.)  | 60                    | 55    | 50    | 45    | 40    | 36    | 30    | 25    | 20    |  |  |
| 160             | 1 000                 | 0 999 | 0 999 | 0 999 | 0 998 | 0 997 | 0.995 | 0 987 | 0.975 |  |  |
| 170             | 1.000                 | 0.999 | 0.999 | 0.999 | 0.998 | 0.998 | 0.995 | 0.989 | 0.981 |  |  |
| 180             | 1.000                 | 0.999 | 0.999 | 0.999 | 0.998 | 0.998 | 0.996 | 0.990 | 0.985 |  |  |
| 190             | 1.000                 | 0.999 | 0.999 | 0.999 | 0.998 | 0.998 | 0.996 | 0.991 | 0.988 |  |  |
| 200             | 1.000                 | 0.999 | 0.999 | 0.999 | 0.998 | 0.998 | 0.996 | 0.992 | 0.989 |  |  |
| 210             | 1.000                 | 0.999 | 0.999 | 0.999 | 0.998 | 0.998 | 0.996 | 0.992 | 0.989 |  |  |
| $216^{\dagger}$ | 1.000                 | 0.999 | 0.999 | 0.999 | 0.998 | 0.998 | 0.996 | 0.992 | 0.989 |  |  |
| 220             | 1.000                 | 0.999 | 0.999 | 0.999 | 0.998 | 0.998 | 0.996 | 0.991 | 0.987 |  |  |
| 230             | 1.000                 | 0.999 | 0.999 | 0.999 | 0.998 | 0.998 | 0.995 | 0.990 | 0.984 |  |  |
| 240             | 1.000                 | 0.999 | 0.999 | 0.999 | 0.998 | 0.998 | 0.995 | 0.988 | 0.979 |  |  |
| 250             | 1.000                 | 0.999 | 0.999 | 0.999 | 0.998 | 0.997 | 0.994 | 0.986 | 0.973 |  |  |
| 260             | 1.000                 | 0.999 | 0.999 | 0.999 | 0.997 | 0.997 | 0.993 | 0.983 | 0.965 |  |  |

| TABLE IX(e)                                                                           |
|---------------------------------------------------------------------------------------|
| Beam truncation loss in dB at cryostat window for Band 7 low limit frequency 275 GHz. |

| Distance from   |        |        |        | Windov | v diamete | er (mm.) |        |        |         |
|-----------------|--------|--------|--------|--------|-----------|----------|--------|--------|---------|
| mirror 2 (mm.)  | 60     | 55     | 50     | 45     | 40        | 36       | 30     | 25     | 20      |
|                 |        |        |        |        |           |          |        |        | · · · · |
| 160             | -0.002 | -0.003 | -0.004 | -0.005 | -0.009    | -0.012   | -0.024 | -0.059 | -0.110  |
| 170             | -0.002 | -0.003 | -0.004 | -0.005 | -0.009    | -0.010   | -0.021 | -0.049 | -0.085  |
| 180             | -0.002 | -0.003 | -0.004 | -0.004 | -0.008    | -0.009   | -0.019 | -0.042 | -0.067  |
| 190             | -0.002 | -0.003 | -0.003 | -0.004 | -0.008    | -0.009   | -0.018 | -0.038 | -0.055  |
| 200             | -0.002 | -0.003 | -0.003 | -0.004 | -0.008    | -0.009   | -0.018 | -0.036 | -0.049  |
| 210             | -0.002 | -0.003 | -0.003 | -0.004 | -0.008    | -0.009   | -0.018 | -0.036 | -0.050  |
| $216^{\dagger}$ | -0.002 | -0.003 | -0.003 | -0.004 | -0.008    | -0.009   | -0.018 | -0.035 | -0.049  |
| 220             | -0.002 | -0.003 | -0.003 | -0.004 | -0.008    | -0.009   | -0.019 | -0.039 | -0.058  |
| 230             | -0.002 | -0.003 | -0.004 | -0.005 | -0.008    | -0.010   | -0.021 | -0.044 | -0.072  |
| 240             | -0.002 | -0.003 | -0.004 | -0.005 | -0.009    | -0.011   | -0.023 | -0.052 | -0.093  |
| 250             | -0.002 | -0.003 | -0.004 | -0.005 | -0.010    | -0.012   | -0.027 | -0.063 | -0.121  |
| 260             | -0.002 | -0.003 | -0.004 | -0.006 | -0.011    | -0.014   | -0.032 | -0.077 | -0.155  |
|                 |        |        |        |        |           |          |        |        |         |

 TABLE IX(f)

 Truncated beam power at cryostat window for Band 7 mid frequency 323 GHz.

| Distance from   |       | Window diameter (mm.) |       |       |       |       |       |       |       |  |
|-----------------|-------|-----------------------|-------|-------|-------|-------|-------|-------|-------|--|
| mirror 2 (mm.)  | 60    | 55                    | 50    | 45    | 40    | 36    | 30    | 25    | 20    |  |
|                 |       |                       |       |       |       |       |       |       |       |  |
| 160             | 1.000 | 1.000                 | 0.999 | 0.999 | 0.999 | 0.998 | 0.996 | 0.990 | 0.974 |  |
| 170             | 1.000 | 1.000                 | 0.999 | 0.999 | 0.999 | 0.998 | 0.997 | 0.992 | 0.980 |  |
| 180             | 1.000 | 1.000                 | 1.000 | 0.999 | 0.999 | 0.998 | 0.997 | 0.993 | 0.984 |  |
| 190             | 1.000 | 1.000                 | 1.000 | 0.999 | 0.999 | 0.998 | 0.998 | 0.994 | 0.988 |  |
| 200             | 1.000 | 1.000                 | 1.000 | 0.999 | 0.999 | 0.999 | 0.998 | 0.995 | 0.990 |  |
| 210             | 1.000 | 1.000                 | 1.000 | 0.999 | 0.999 | 0.999 | 0.998 | 0.995 | 0.991 |  |
| $216^{\dagger}$ | 1.000 | 1.000                 | 1.000 | 0.999 | 0.999 | 0.999 | 0.998 | 0.995 | 0.992 |  |
| 220             | 1.000 | 1.000                 | 1.000 | 0.999 | 0.999 | 0.999 | 0.998 | 0.995 | 0.992 |  |
| 230             | 1.000 | 1.000                 | 1.000 | 0.999 | 0.999 | 0.999 | 0.998 | 0.995 | 0.991 |  |
| 240             | 1.000 | 1.000                 | 1.000 | 0.999 | 0.999 | 0.999 | 0.998 | 0.995 | 0.989 |  |
| 250             | 1.000 | 1.000                 | 1.000 | 0.999 | 0.999 | 0.998 | 0.997 | 0.994 | 0.985 |  |
| 260             | 1.000 | 1.000                 | 1.000 | 0.999 | 0.999 | 0.998 | 0.997 | 0.993 | 0.981 |  |

 TABLE IX(g)

 Beam truncation loss in dB at cryostat window for Band 7 mid frequency 323 GHz.

| Distance from   |        |        |        | Windov | v diamete | er (mm.) |        |        |        |
|-----------------|--------|--------|--------|--------|-----------|----------|--------|--------|--------|
| mirror 2 (mm.)  | 60     | 55     | 50     | 45     | 40        | 36       | 30     | 25     | 20     |
|                 |        |        |        |        |           |          |        |        |        |
| 160             | -0.001 | -0.002 | -0.002 | -0.004 | -0.005    | -0.009   | -0.017 | -0.042 | -0.115 |
| 170             | -0.001 | -0.002 | -0.002 | -0.004 | -0.005    | -0.008   | -0.014 | -0.035 | -0.089 |
| 180             | -0.001 | -0.002 | -0.002 | -0.004 | -0.004    | -0.007   | -0.012 | -0.029 | -0.068 |
| 190             | -0.001 | -0.002 | -0.002 | -0.003 | -0.004    | -0.007   | -0.010 | -0.025 | -0.053 |
| 200             | -0.001 | -0.002 | -0.002 | -0.003 | -0.004    | -0.006   | -0.009 | -0.022 | -0.043 |
| 210             | -0.001 | -0.002 | -0.002 | -0.003 | -0.004    | -0.006   | -0.009 | -0.020 | -0.037 |
| $216^{\dagger}$ | -0.001 | -0.002 | -0.002 | -0.003 | -0.004    | -0.006   | -0.009 | -0.020 | -0.036 |
| 220             | -0.001 | -0.002 | -0.002 | -0.003 | -0.004    | -0.006   | -0.009 | -0.020 | -0.037 |
| 230             | -0.001 | -0.002 | -0.002 | -0.003 | -0.004    | -0.006   | -0.009 | -0.021 | -0.041 |
| 240             | -0.001 | -0.002 | -0.002 | -0.003 | -0.004    | -0.006   | -0.010 | -0.023 | -0.050 |
| 250             | -0.001 | -0.002 | -0.002 | -0.003 | -0.004    | -0.007   | -0.011 | -0.026 | -0.064 |
| 260             | -0.001 | -0.002 | -0.002 | -0.004 | -0.004    | -0.007   | -0.013 | -0.031 | -0.082 |
|                 |        |        |        |        |           |          |        |        |        |

 TABLE IX(h)

 Truncated beam power at cryostat window for Band 7 high limit frequency 370 GHz.

| Distance from   | Window diameter (mm.) |       |       |       |       |       |       |       |       |  |
|-----------------|-----------------------|-------|-------|-------|-------|-------|-------|-------|-------|--|
| mirror 2 (mm.)  | 60                    | 55    | 50    | 45    | 40    | 36    | 30    | 25    | 20    |  |
|                 |                       |       |       |       |       |       |       |       |       |  |
| 160             | 1.000                 | 1.000 | 1.000 | 0.999 | 0.999 | 0.999 | 0.997 | 0.995 | 0.982 |  |
| 170             | 1.000                 | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 | 0.997 | 0.996 | 0.986 |  |
| 180             | 1.000                 | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 | 0.998 | 0.997 | 0.989 |  |
| 190             | 1.000                 | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 | 0.998 | 0.997 | 0.991 |  |
| 200             | 1.000                 | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 | 0.998 | 0.998 | 0.992 |  |
| 210             | 1.000                 | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 | 0.998 | 0.998 | 0.993 |  |
| $216^{\dagger}$ | 1.000                 | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 | 0.998 | 0.998 | 0.993 |  |
| 220             | 1.000                 | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 | 0.998 | 0.998 | 0.993 |  |
| 230             | 1.000                 | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 | 0.998 | 0.998 | 0.992 |  |
| 240             | 1.000                 | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 | 0.998 | 0.997 | 0.991 |  |
| 250             | 1.000                 | 1.000 | 0.999 | 1.000 | 0.999 | 0.999 | 0.998 | 0.997 | 0.990 |  |
| 260             | 1.000                 | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 | 0.998 | 0.996 | 0.987 |  |

 TABLE IX(i)

 Beam truncation loss in dB at cryostat window for Band 7 high limit frequency 370 GHz.

| Distance from   |        |        |        | Windov | v diamete | er (mm.) |        |        |        |
|-----------------|--------|--------|--------|--------|-----------|----------|--------|--------|--------|
| mirror 2 (mm.)  | 60     | 55     | 50     | 45     | 40        | 36       | 30     | 25     | 20     |
|                 |        |        |        | ·····  |           |          |        |        |        |
| 160             | -0.001 | -0.001 | -0.002 | -0.002 | -0.004    | -0.005   | -0.013 | -0.023 | -0.081 |
| 170             | -0.001 | -0.001 | -0.002 | -0.002 | -0.004    | -0.005   | -0.011 | -0.018 | -0.063 |
| 180             | -0.001 | -0.001 | -0.002 | -0.002 | -0.003    | -0.004   | -0.010 | -0.014 | -0.050 |
| 190             | -0.001 | -0.001 | -0.002 | -0.002 | -0.003    | -0.004   | -0.009 | -0.012 | -0.040 |
| 200             | -0.001 | -0.001 | -0.002 | -0.002 | -0.003    | -0.004   | -0.008 | -0.010 | -0.034 |
| 210             | -0.001 | -0.001 | -0.001 | -0.002 | -0.003    | -0.003   | -0.008 | -0.010 | -0.031 |
| $216^{\dagger}$ | -0.001 | -0.001 | -0.001 | -0.002 | -0.003    | -0.003   | -0.008 | -0.009 | -0.030 |
| 220             | -0.001 | -0.001 | -0.001 | -0.002 | -0.003    | -0.003   | -0.008 | -0.009 | -0.030 |
| 230             | -0.001 | -0.001 | -0.001 | -0.002 | -0.003    | -0.003   | -0.008 | -0.010 | -0.033 |
| 240             | -0.001 | -0.001 | -0.001 | -0.002 | -0.003    | -0.004   | -0.008 | -0.011 | -0.038 |
| 250             | -0.001 | -0.001 | -0.002 | -0.002 | -0.003    | -0.004   | -0.009 | -0.013 | -0.046 |
| 260             | -0.001 | -0.001 | -0.002 | -0.002 | -0.003    | -0.004   | -0.010 | -0.017 | -0.057 |

# 8.2 Physical Optics Analysis [\*This section pending design revision.]

# 8.2.1 Beam Profile at Cassegrain Focus

Figures 10(g) - (j) show the beam profile at the Cassegrain with comparison of results obtained by both quasi-optics and physical optics.

Figure 10(g). Beam profile at Cassegrain focus for Band 7 mid frequency 323 GHz.

8.2.2 Beam Profile at Subreflector & Edge Taper

8.2.3 Far Field Radiation Pattern

8.2.4 Beam & Cross-Polar Efficiencies

# 9 BAND 8

# 9.1 Quasi-Optics Analysis

# 9.1.1 Gaussian Beam Parameters

| Frequency [GHz]                    |              | 385      | 442      | 500      |
|------------------------------------|--------------|----------|----------|----------|
| $\lambda$ [mm]                     |              | 0.778682 | 0.678263 | 0.599585 |
| Horn diameter                      | 8 69         |          |          |          |
| Horn axial length                  | 35.29        |          |          |          |
| Horn slant length                  | 35 556       |          |          |          |
| Horn waist, $w_0$                  | 55.550       | 2.092    | 1.959    | 1.833    |
| Horn waist offset. $\Delta z(w_0)$ |              | -15.6576 | -18.1020 | -20.2774 |
| Waist at horn aperture, $w_{ha}$   |              | 2.796    | 2.796    | 2.796    |
| $d_1$                              | 90.0         |          | ,0       |          |
| $R_{s1}$                           | 110.88       | 108.606  | 111.025  | 113.087  |
| $f_1$                              | 41.79        |          |          |          |
| $R_{i1}$                           | 67.07        | 67.927   | 67.014   | 66.285   |
| Waist at mirror 1, $w_{M1}$        | (dia. = 62)  | 12.694   | 12.074   | 11.628   |
| Z <sub>wl</sub>                    |              | 67.1937  | 66.3607  | 65.7097  |
| w <sub>1</sub>                     |              | 1.319    | 1.192    | 1.083    |
| $d_2$                              | 125.00       |          |          |          |
| $R_{s2}$                           | 59.32        | 58.659   | 59.379   | 59.928   |
| $f_2$                              | 46.65        |          |          |          |
| R <sub>i2</sub>                    | 218.5        | 227.866  | 217.615  | 210.550  |
| Waist at mirror 2, $w_{M2}$        | (dia. = 55)  | 10.941   | 10.684   | 10.503   |
| Z <sub>w(Cass.)</sub>              | 186.00       | 186.378  | 186.084  | 185.883  |
| W <sub>Cass</sub> .                |              | 4.669    | 4.067    | 3.595    |
| $d_{ m mirror-subrefl}$            |              | 6185.11  | 6185.11  | 6185.11  |
| Wsubrefl                           | (dia. = 750) | 318.516  | 318.516  | 318.516  |
| R <sub>subrefl</sub>               | 6000.00      | 6000.021 | 6000.004 | 5999.992 |
| Edge Taper (dB)                    | 12.00        | 12.02    | 12.04    | 12.04    |
|                                    |              |          |          |          |

 TABLE X(a)

 Quasi-optics Gaussian beam parameters for Band 8.

All dimensions in mm.

### 9.1.2 Truncation Loss at Mirrors

The beam profiles at mirror 1 and mirror 2 are shown in Figures 11(a), (b) and (c). Truncation loss of the beam for a range of mirror diameters is given in Table X(b) and X(c).



Figure 11. Beam profile at mirror 1 and mirror 2; (a) 385 GHz, (b) 442 GHz and (c) 500 GHz.

| Frequency | 385 GHz |        | 442   | GHz    | 500 GHz |        |  |
|-----------|---------|--------|-------|--------|---------|--------|--|
| Diameter  | Power   | Loss   | Power | Loss   | Power   | Loss   |  |
| 80        | 0.999   | -0.004 | 0.999 | -0.002 | 1.000   | -0.001 |  |
| 75        | 0.999   | -0.004 | 0.999 | -0.003 | 0.999   | -0.002 |  |
| 70        | 0.999   | -0.006 | 0.999 | -0.004 | 0.999   | -0.003 |  |
| 65        | 0.998   | -0.010 | 0.999 | -0.006 | 0.999   | -0.004 |  |
| 62        | 0.997   | -0.012 | 0.998 | -0.008 | 0.999   | -0.006 |  |
| 60        | 0.997   | -0.014 | 0.998 | -0.009 | 0.998   | -0.007 |  |
| 55        | 0.995   | -0.021 | 0.996 | -0.016 | 0.998   | -0.010 |  |
| 50        | 0.991   | -0.038 | 0.994 | -0.025 | 0.996   | -0.019 |  |
| 45        | 0.995   | -0.067 | 0.990 | -0.045 | 0.992   | -0.033 |  |
| 40        | 0.974   | -0.113 | 0.980 | -0.088 | 0.986   | -0.063 |  |

 TABLE X(b)

 Truncated beam power and loss at mirror 1 for Band 8.

TABLE X(c)Truncated beam power and loss at mirror 2 for Band 8.

| Frequency | 385         | GHz    | 442   | GHz    | 500 GHz |        |  |
|-----------|-------------|--------|-------|--------|---------|--------|--|
| Diameter  | meter Power |        | Power | Loss   | Power   | Loss   |  |
| 80        | 1.000       | -0.001 | 1.000 | -0.000 | 1.000   | -0.000 |  |
| 75        | 1.000       | -0.001 | 1.000 | -0.001 | 1.000   | -0.000 |  |
| 70        | 1.000       | -0.001 | 1.000 | -0.001 | 1.000   | -0.001 |  |
| 65        | 1.000       | -0.002 | 1.000 | -0.001 | 1.000   | -0.001 |  |
| 62        | 0.999       | -0.003 | 1.000 | -0.002 | 1.000   | -0.001 |  |
| 60        | 0.999       | -0.003 | 1.000 | -0.002 | 1.000   | -0.001 |  |
| 55        | 0.999       | -0.005 | 0.999 | -0.003 | 0.999   | -0.002 |  |
| 50        | 0.998       | -0.009 | 0.999 | -0.006 | 0.999   | -0.004 |  |
| 45        | 0.996       | -0.017 | 0.997 | -0.012 | 0.998   | -0.009 |  |
| 40        | 0.992       | -0.036 | 0.994 | -0.026 | 0.996   | -0.019 |  |

# 9.1.3 Truncation Loss at Cryostat Window

The beam profiles at the cryostat window are shown in Figures 11(d), (e) and (f). Truncation loss of the beam for a range of window diameters is given in Table X(d) - X(i).





Figure 11. Beam profile at various distances from mirror 2; (d) 385 GHz, (e) 442 GHz and (f) 500 GHz.

 TABLE X(d)

 Truncated beam power at cryostat window for Band 8 low limit frequency 385 GHz.

| Distance from   |       |       |       | Windov | v diamete | er (mm.) |       |       |       |
|-----------------|-------|-------|-------|--------|-----------|----------|-------|-------|-------|
| mirror 2 (mm.)  | 50    | 45    | 40    | 35     | 30        | 28       | 25    | 20    | 15    |
| 120             | 1 000 | 0 999 | 0 999 | 0 999  | 0 997     | 0.996    | 0 994 | 0.980 | 0.937 |
| 130             | 1.000 | 1.000 | 0.999 | 0.999  | 0.997     | 0.997    | 0.995 | 0.984 | 0.952 |
| 140             | 1.000 | 1.000 | 0.999 | 0.999  | 0.998     | 0.997    | 0.996 | 0.988 | 0.965 |
| 150             | 1.000 | 1.000 | 0.999 | 0.999  | 0.998     | 0.998    | 0.997 | 0.990 | 0.975 |
| 160             | 1.000 | 1.000 | 0.999 | 0.999  | 0.998     | 0.998    | 0.998 | 0.992 | 0.983 |
| 170             | 1.000 | 1.000 | 0.999 | 0.999  | 0.998     | 0.998    | 0.998 | 0.993 | 0.988 |
| 180             | 1.000 | 1.000 | 0.999 | 0.999  | 0.998     | 0.998    | 0.998 | 0.994 | 0.990 |
| $186^{\dagger}$ | 1.000 | 1.000 | 0.999 | 0.999  | 0.998     | 0.998    | 0.998 | 0.994 | 0.991 |
| 190             | 1.000 | 1.000 | 0.999 | 0.999  | 0.998     | 0.998    | 0.998 | 0.994 | 0.991 |
| 200             | 1.000 | 1.000 | 0.999 | 0.999  | 0.998     | 0.998    | 0.998 | 0.994 | 0.988 |
| 210             | 1.000 | 1.000 | 0.999 | 0.999  | 0.998     | 0.998    | 0.998 | 0.993 | 0.983 |
| 220             | 1.000 | 1.000 | 0.999 | 0.999  | 0.998     | 0.998    | 0.997 | 0.991 | 0.976 |

 TABLE X(e)

 Beam truncation loss in dB at cryostat window for Band 8 low limit frequency 385 GHz.

| Distance from   |        |        |        | Windov | v diamete | er (mm.) |        |        |        |
|-----------------|--------|--------|--------|--------|-----------|----------|--------|--------|--------|
| mirror 2 (mm.)  | 50     | 45     | 40     | 35     | 30        | 28       | 25     | 20     | 15     |
|                 |        |        |        |        |           |          |        |        |        |
| 120             | -0.002 | -0.002 | -0.004 | -0.006 | -0.013    | -0.019   | -0.027 | -0.088 | -0.281 |
| 130             | -0.002 | -0.002 | -0.003 | -0.005 | -0.011    | -0.015   | -0.021 | -0.068 | -0.212 |
| 140             | -0.001 | -0.002 | -0.003 | -0.005 | -0.009    | -0.013   | -0.016 | -0.053 | -0.155 |
| 150             | -0.001 | -0.002 | -0.003 | -0.004 | -0.008    | -0.011   | -0.013 | -0.042 | -0.109 |
| 160             | -0.001 | -0.002 | -0.003 | -0.004 | -0.007    | -0.009   | -0.011 | -0.034 | -0.076 |
| 170             | -0.001 | -0.002 | -0.003 | -0.003 | -0.007    | -0.009   | -0.010 | -0.029 | -0.053 |
| 180             | -0.001 | -0.002 | -0.002 | -0.003 | -0.006    | -0.008   | -0.009 | -0.026 | -0.042 |
| $186^{\dagger}$ | -0.001 | -0.002 | -0.002 | -0.003 | -0.006    | -0.008   | -0.009 | -0.026 | -0.040 |
| 190             | -0.001 | -0.002 | -0.002 | -0.003 | -0.006    | -0.008   | -0.009 | -0.026 | -0.041 |
| 200             | -0.001 | -0.002 | -0.002 | -0.003 | -0.006    | -0.009   | -0.009 | -0.028 | -0.052 |
| 210             | -0.001 | -0.002 | -0.003 | -0.004 | -0.007    | -0.009   | -0.011 | -0.033 | -0.073 |
| 220             | -0.001 | -0.002 | -0.003 | -0.004 | -0.008    | -0.010   | -0.013 | -0.039 | -0.106 |
|                 |        |        |        |        |           |          |        |        |        |

 TABLE X(f)

 Truncated beam power at cryostat window for Band 8 mid frequency 442 GHz.

| Distance from   |       |       |       | Windov | v diamete | er (mm.) |       |       |       |
|-----------------|-------|-------|-------|--------|-----------|----------|-------|-------|-------|
| mirror 2 (mm.)  | 50    | 45    | 40    | 35     | 30        | 28       | 25    | 20    | 15    |
|                 |       |       |       |        | mar       |          |       |       |       |
| 120             | 1.000 | 1.000 | 0.999 | 0.999  | 0.998     | 0.998    | 0.995 | 0.988 | 0.951 |
| 130             | 1.000 | 1.000 | 0.999 | 0.999  | 0.999     | 0.998    | 0.996 | 0.991 | 0.963 |
| 140             | 1.000 | 1.000 | 1.000 | 0.999  | 0.999     | 0.998    | 0.997 | 0.994 | 0.973 |
| 150             | 1.000 | 1.000 | 1.000 | 0.999  | 0.999     | 0.999    | 0.998 | 0.995 | 0.980 |
| 160             | 1.000 | 1.000 | 1.000 | 0.999  | 0.999     | 0.999    | 0.998 | 0.996 | 0.986 |
| 170             | 1.000 | 1.000 | 1.000 | 0.999  | 0.999     | 0.999    | 0.998 | 0.997 | 0.990 |
| 180             | 1.000 | 1.000 | 1.000 | 0.999  | 0.999     | 0.999    | 0.998 | 0.997 | 0.991 |
| $186^{\dagger}$ | 1.000 | 1.000 | 1.000 | 0.999  | 0.999     | 0.999    | 0.998 | 0.997 | 0.992 |
| 190             | 1.000 | 1.000 | 1.000 | 0.999  | 0.999     | 0.999    | 0.998 | 0.997 | 0.991 |
| 200             | 1.000 | 1.000 | 1.000 | 0.999  | 0.999     | 0.999    | 0.998 | 0.997 | 0.990 |
| 210             | 1.000 | 1.000 | 1.000 | 0.999  | 0.999     | 0.999    | 0.998 | 0.997 | 0.985 |
| 220             | 1.000 | 1.000 | 1.000 | 0.999  | 0.999     | 0.999    | 0.998 | 0.996 | 0.981 |

 TABLE X(g)

 Beam truncation loss in dB at cryostat window for Band 8 mid frequency 442 GHz.

| Distance from   |        |        |        | Windov | v diamete | er (mm.) |        |        |        |
|-----------------|--------|--------|--------|--------|-----------|----------|--------|--------|--------|
| mirror 2 (mm.)  | 50     | 45     | 40     | 35     | 30        | 28       | 25     | 20     | 15     |
|                 |        |        |        |        |           |          |        |        |        |
| 120             | -0.001 | -0.001 | -0.003 | -0.004 | -0.008    | -0.011   | -0.021 | -0.052 | -0.220 |
| 130             | -0.001 | -0.001 | -0.002 | -0.004 | -0.006    | -0.008   | -0.016 | -0.038 | -0.165 |
| 140             | -0.001 | -0.001 | -0.002 | -0.003 | -0.005    | -0.007   | -0.013 | -0.028 | -0.121 |
| 150             | -0.001 | -0.001 | -0.002 | -0.003 | -0.004    | -0.006   | -0.011 | -0.021 | -0.086 |
| 160             | -0.001 | -0.001 | -0.002 | -0.003 | -0.004    | -0.005   | -0.009 | -0.016 | -0.062 |
| 170             | -0.001 | -0.001 | -0.002 | -0.002 | -0.004    | -0.004   | -0.008 | -0.013 | -0.045 |
| 180             | -0.001 | -0.001 | -0.002 | -0.002 | -0.003    | -0.004   | -0.008 | -0.012 | -0.037 |
| $186^{\dagger}$ | -0.001 | -0.001 | -0.002 | -0.002 | -0.003    | -0.004   | -0.008 | -0.012 | -0.036 |
| 190             | -0.001 | -0.001 | -0.002 | -0.002 | -0.003    | -0.004   | -0.008 | -0.012 | -0.037 |
| 200             | -0.001 | -0.001 | -0.002 | -0.002 | -0.004    | -0.004   | -0.008 | -0.013 | -0.045 |
| 210             | -0.001 | -0.001 | -0.002 | -0.003 | -0.004    | -0.005   | -0.009 | -0.015 | -0.060 |
| 220             | -0.001 | -0.001 | -0.002 | -0.003 | -0.004    | -0.005   | -0.010 | -0.019 | -0.084 |

 TABLE X(h)

 Truncated beam power at cryostat window for Band 8 high limit frequency 500 GHz.

| Distance from Window diameter (mm.) |       |       |       |       |       |       |          |       |       |
|-------------------------------------|-------|-------|-------|-------|-------|-------|----------|-------|-------|
| mirror 2 (mm.)                      | 50    | 45    | 40    | 35    | 30    | 28    | 25       | 20    | 15    |
|                                     |       |       |       |       |       |       | <u> </u> |       |       |
| 120                                 | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 | 0.998 | 0.997    | 0.991 | 0.964 |
| 130                                 | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 | 0.999 | 0.998    | 0.993 | 0.973 |
| 140                                 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 | 0.998    | 0.995 | 0.981 |
| 150                                 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 | 0.999    | 0.997 | 0.986 |
| 160                                 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 | 0.999    | 0.997 | 0.990 |
| 170                                 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 | 0.999    | 0.998 | 0.992 |
| 180                                 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 | 0.999    | 0.998 | 0.993 |
| $186^{\dagger}$                     | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 | 0.999    | 0.998 | 0.993 |
| 190                                 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 | 0.999    | 0.998 | 0.993 |
| 200                                 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 | 0.999    | 0.998 | 0.992 |
| 210                                 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 | 0.999    | 0.997 | 0.990 |
| 220                                 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 | 0.999    | 0.997 | 0.987 |

 TABLE X(i)

 Beam truncation loss in dB at cryostat window for Band 8 high limit frequency 500 GHz.

| Distance from   |        |        |        | Window | v diamete | er (mm.) |        |        |        |
|-----------------|--------|--------|--------|--------|-----------|----------|--------|--------|--------|
| mirror 2 (mm.)  | 50     | 45     | 40     | 35     | 30        | 28       | 25     | 20     | 15     |
|                 |        |        |        |        |           |          |        |        |        |
| 120             | -0.001 | -0.001 | -0.002 | -0.003 | -0.006    | -0.008   | -0.012 | -0.040 | -0.160 |
| 130             | -0.001 | -0.001 | -0.001 | -0.002 | -0.005    | -0.006   | -0.009 | -0.028 | -0.117 |
| 140             | -0.001 | -0.001 | -0.001 | -0.002 | -0.004    | -0.005   | -0.007 | -0.020 | -0.085 |
| 150             | -0.001 | -0.001 | -0.001 | -0.002 | -0.004    | -0.004   | -0.006 | -0.015 | -0.061 |
| 160             | -0.001 | -0.001 | -0.001 | -0.002 | -0.003    | -0.004   | -0.005 | -0.012 | -0.045 |
| 170             | -0.001 | -0.001 | -0.001 | -0.002 | -0.003    | -0.004   | -0.004 | -0.010 | -0.035 |
| 180             | -0.001 | -0.001 | -0.001 | -0.002 | -0.003    | -0.003   | -0.004 | -0.009 | -0.030 |
| $186^{\dagger}$ | -0.001 | -0.001 | -0.001 | -0.002 | -0.003    | -0.003   | -0.004 | -0.009 | -0.029 |
| 190             | -0.001 | -0.001 | -0.001 | -0.002 | -0.003    | -0.003   | -0.004 | -0.009 | -0.029 |
| 200             | -0.001 | -0.001 | -0.001 | -0.002 | -0.003    | -0.004   | -0.004 | -0.010 | -0.034 |
| 210             | -0.001 | -0.001 | -0.001 | -0.002 | -0.003    | -0.004   | -0.005 | -0.012 | -0.043 |
| 220             | -0.001 | -0.001 | -0.001 | -0.002 | -0.003    | -0.004   | -0.006 | -0.015 | -0.058 |
|                 |        |        |        |        |           |          |        |        |        |

# 9.2 Physical Optics Analysis [\*This section pending design revision.]

### 9.2.1 Beam Profile at Cassegrain Focus

Figures 11(g) - (j) show the beam profile at the Cassegrain with comparison of results obtained by both quasi-optics and physical optics.

Figure 11(g). Beam profile at Cassegrain focus for Band 8 mid frequency 442 GHz.

9.2.2 Beam Profile at Subreflector & Edge Taper

9.2.3 Far Field Radiation Pattern

9.2.4 Beam & Cross-Polar Efficiencies

# 10 BAND 9

# 10.1 Quasi-Optics Analysis

### 10.1.1 Gaussian Beam Parameters

| Quasi-optics                       | s Gaussian beam p | arameters for I        | Sand 9.                |                        |
|------------------------------------|-------------------|------------------------|------------------------|------------------------|
| Frequency [GHz]<br>λ [mm]          |                   | <b>602</b><br>0.497994 | <b>661</b><br>0.453544 | <b>720</b><br>0.416378 |
| Horn diameter                      | 4.22              |                        |                        |                        |
| Horn axial length                  | 12.87             |                        |                        |                        |
| Horn slant length                  | 13.042            |                        |                        |                        |
| Horn waist, $w_0$                  |                   | 1.358                  | 1.358                  | 1.358                  |
| Horn waist offset, $\Delta z(w_0)$ |                   | -5.77716               | -6.38361               | -6.94053               |
| Waist at horn aperture, $w_{ha}$   |                   | 1.013                  | 0.970                  | 0.929                  |
| $d_1$                              | 57.13             |                        |                        |                        |
| $R_{s1}$                           | 64.15             | 63.574                 | 64.183                 | 64.731                 |
| $f_1$                              | 28.43             |                        |                        |                        |
| R <sub>i1</sub>                    | 51.06             | 51.428                 | 51.037                 | 50.695                 |
| Waist at mirror 1, $w_{M1}$        | (dia. = 48)       | 9.892                  | 9.501                  | 9.191                  |
| $Z_{w1}$                           |                   | 51.0740                | 50.6993                | 50.3766                |
| <i>w</i> <sub>1</sub>              |                   | 0.821                  | 0.773                  | 0.729                  |
| $d_2$                              | 82.33             |                        |                        |                        |
| $R_{s2}$                           | 32.13             | 31.835                 | 32.172                 | 32.456                 |
| $f_2$                              | 25.62             |                        |                        |                        |
| $R_{i2}$                           | 126.546           | 131.229                | 125.799                | 121.640                |
| Waist at mirror 2, $w_{M2}$        | (dia. = 35)       | 6.089                  | 5.958                  | 5.857                  |
| Z <sub>w(Cass.)</sub>              | 100.00            | 99.8028                | 99.7058                | 99.6317                |
| W <sub>Cass</sub> .                |                   | 2.980                  | 2.714                  | 2.491                  |
| $d_{ m mirror-subrefl}$            |                   | 6099.27                | 6099.27                | 6099.27                |
| W <sub>subrefl</sub>               | (dia. = 750)      | 319.198                | 319.198                | 319.198                |
| R <sub>subrefl</sub>               | 6000.00           | 5999.990               | 5999.998               | 6000.004               |
| Edge Taper (dB)                    | 12.00             | 11.99                  | 11.99                  | 11.99                  |

 TABLE XI(a)

 Quasi-optics Gaussian beam parameters for Band 9.

All dimensions in mm.

### 10.1.2 Truncation Loss at Mirrors

The beam profiles at mirror 1 and mirror 2 are shown in Figures 12(a), (b) and (c). Truncation loss of the beam for a range of mirror diameters is given in Table XI(b) and XI(c).



Figure 12. Beam profile at mirror 1 and mirror 2; (a) 602 GHz, (b) 661 GHz and (c) 720 GHz.

| Frequency | 602 GHz |        | 661   | GHz    | 720 GHz |        |  |
|-----------|---------|--------|-------|--------|---------|--------|--|
| Diameter  | Power   | Loss   | Power | Loss   | Power   | Loss   |  |
| 60        | 0.999   | -0.004 | 0.999 | -0.004 | 0.999   | -0.003 |  |
| 55        | 0.998   | -0.007 | 0.999 | -0.005 | 0.999   | -0.004 |  |
| 50        | 0.997   | -0.011 | 0.998 | -0.009 | 0.999   | -0.006 |  |
| 48        | 0.997   | -0.013 | 0.998 | -0.011 | 0.998   | -0.008 |  |
| 45        | 0.996   | -0.018 | 0.997 | -0.014 | 0.997   | -0.012 |  |
| 40        | 0.992   | -0.037 | 0.994 | -0.026 | 0.995   | -0.020 |  |
| 35        | 0.985   | -0.067 | 0.987 | -0.056 | 0.990   | -0.044 |  |
| 30        | 0.968   | -0.139 | 0.975 | -0.112 | 0.978   | -0.096 |  |

 TABLE XI(b)

 Truncated beam power and loss at mirror 1 for Band 9.

| Frequency | 602 GHz |        | 661   | GHz    | 720 GHz |        |  |
|-----------|---------|--------|-------|--------|---------|--------|--|
| Diameter  | Power   | Loss   | Power | Loss   | Power   | Loss   |  |
| 50        | 1.000   | -0.001 | 1.000 | -0.000 | 1.000   | -0.000 |  |
| 45        | 1.000   | -0.001 | 1.000 | -0.001 | 1.000   | -0.001 |  |
| 40        | 1.000   | -0.002 | 1.000 | -0.001 | 1.000   | -0.001 |  |
| 35        | 0.999   | -0.003 | 0.999 | -0.002 | 1.000   | -0.002 |  |
| 30        | 0.998   | -0.008 | 0.999 | -0.006 | 0.999   | -0.005 |  |
| 25        | 0.995   | -0.022 | 0.996 | -0.017 | 0.997   | -0.014 |  |
| 20        | 0.983   | -0.076 | 0.985 | -0.064 | 0.988   | -0.054 |  |

 TABLE XI(c)

 Truncated beam power and loss at mirror 2 for Band 9.

### 10.1.3 Truncation Loss at Cryostat Window

The beam profiles at the cryostat window are shown in Figures 12(d), (e) and (f). Truncation loss of the beam for a range of window diameters is given in Table XI(d) - XI(i).



Figure 12. Beam profile at various distances from mirror 2; (d) 602 GHz, (e) 661 GHz and (f) 720 GHz.

# TABLE XI(d) Truncated beam power at cryostat window for Band 9 low limit frequency 602 GHz.

| Distance from Window diameter (mm.) |       |       |       |       |       |       |       |       |  |  |
|-------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|
| mirror 2 (mm.)                      | 50    | 45    | 40    | 35    | 30    | 26    | 20    | 15    |  |  |
|                                     | 1.000 | 1 000 | 1 000 | 1.000 |       |       |       | 0.000 |  |  |
| 50                                  | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 | 0.987 | 0.989 |  |  |
| 60                                  | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.998 | 0.993 |  |  |
| 70                                  | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.998 | 0.995 |  |  |
| 80                                  | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 | 0.997 |  |  |
| 90                                  | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 | 0.997 |  |  |
| $100^{\dagger}$                     | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 | 0.998 |  |  |
| 110                                 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 | 0.997 |  |  |
| 120                                 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 | 0.997 |  |  |
| 130                                 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.998 | 0.995 |  |  |
| 140                                 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.998 | 0.993 |  |  |
| 150                                 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 | 0.997 | 0.988 |  |  |
|                                     |       |       |       |       |       |       |       |       |  |  |

<sup>†</sup> Cassegrain focus.

 TABLE XI(e)

 Beam truncation loss in dB at cryostat window for Band 9 low limit frequency 602 GHz.

| Distance from   |        |        | ndow dia | meter (m | <b>m.</b> ) |        |        |        |
|-----------------|--------|--------|----------|----------|-------------|--------|--------|--------|
| mirror 2 (mm.)  | 50     | 45     | 40       | 35       | 30          | 26     | 20     | 15     |
|                 |        | 0.001  | 0.001    | 0.001    | 0.000       |        |        |        |
| 50              | -0.000 | -0.001 | -0.001   | -0.001   | -0.002      | -0.004 | -0.013 | -0.049 |
| 60              | -0.000 | -0.000 | -0.001   | -0.001   | -0.002      | -0.003 | -0.009 | -0.032 |
| 70              | -0.000 | -0.000 | -0.001   | -0.001   | -0.002      | -0.003 | -0.007 | -0.021 |
| 80              | -0.000 | -0.000 | -0.001   | -0.001   | -0.002      | -0.002 | -0.006 | -0.014 |
| 90              | -0.000 | -0.000 | -0.001   | -0.001   | -0.002      | -0.002 | -0.005 | -0.011 |
| $100^{\dagger}$ | -0.000 | -0.000 | -0.001   | -0.001   | -0.002      | -0.002 | -0.005 | -0.010 |
| 110             | -0.000 | -0.000 | -0.001   | -0.001   | -0.002      | -0.002 | -0.005 | -0.011 |
| 120             | -0.000 | -0.000 | -0.001   | -0.001   | -0.002      | -0.002 | -0.006 | -0.015 |
| 130             | -0.000 | -0.000 | -0.001   | -0.001   | -0.002      | -0.003 | -0.007 | -0.021 |
| 140             | -0.000 | -0.000 | -0.001   | -0.001   | -0.002      | -0.003 | -0.009 | -0.033 |
| 150             | -0.000 | -0.000 | -0.001   | -0.001   | -0.002      | -0.004 | -0.012 | -0.050 |
|                 |        |        |          |          |             |        |        |        |

 TABLE XI(f)

 Truncated beam power at cryostat window for Band 9 mid frequency 661 GHz.

| Distance from   |       |       | Wi    | ndow dia | meter (m | <b>m.</b> ) |       |       |
|-----------------|-------|-------|-------|----------|----------|-------------|-------|-------|
| mirror 2 (mm.)  | 50    | 45    | 40    | 35       | 30       | 26          | 20    | 15    |
| 50              | 1.000 | 1 000 | 1 000 | 1 000    | 1 000    | 0 999       | 0 998 | 0 991 |
| 60              | 1.000 | 1.000 | 1.000 | 1.000    | 1.000    | 0.999       | 0.998 | 0.994 |
| 70              | 1.000 | 1.000 | 1.000 | 1.000    | 1.000    | 1.000       | 0.999 | 0.996 |
| 80              | 1.000 | 1.000 | 1.000 | 1.000    | 1.000    | 1.000       | 0.999 | 0.997 |
| 90              | 1.000 | 1.000 | 1.000 | 1.000    | 1.000    | 1.000       | 0.999 | 0.998 |
| $100^{\dagger}$ | 1.000 | 1.000 | 1.000 | 1.000    | 1.000    | 1.000       | 0.999 | 0.998 |
| 110             | 1.000 | 1.000 | 1.000 | 1.000    | 1.000    | 1.000       | 0.999 | 0.998 |
| 120             | 1.000 | 1.000 | 1.000 | 1.000    | 1.000    | 1.000       | 0.999 | 0.997 |
| 130             | 1.000 | 1.000 | 1.000 | 1.000    | 1.000    | 1.000       | 0.999 | 0.996 |
| 140             | 1.000 | 1.000 | 1.000 | 1.000    | 1.000    | 0.999       | 0.998 | 0.994 |
| 150             | 1.000 | 1.000 | 1.000 | 1.000    | 1.000    | 0.999       | 0.998 | 0.990 |
|                 |       |       |       |          |          |             |       |       |

 TABLE XI(g)

 Beam truncation loss in dB at cryostat window for Band 9 mid frequency 661 GHz.

| Distance from Window diameter (mm.) |        |        |        |        |        |        |        |        |  |  |
|-------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--|--|
| mirror 2 (mm.)                      | 50     | 45     | 40     | 35     | 30     | 26     | 20     | 15     |  |  |
| 50                                  | -0.000 | -0.000 | -0.001 | -0.001 | -0.002 | -0.003 | -0.009 | -0.041 |  |  |
| 60                                  | -0.000 | -0.000 | -0.001 | -0.001 | -0.002 | -0.003 | -0.007 | -0.041 |  |  |
| 70                                  | -0.000 | -0.000 | -0.001 | -0.001 | -0.001 | -0.002 | -0.005 | -0.017 |  |  |
| 80                                  | -0.000 | -0.000 | -0.000 | -0.001 | -0.001 | -0.002 | -0.004 | -0.012 |  |  |
| 90                                  | -0.000 | -0.000 | -0.000 | -0.001 | -0.001 | -0.002 | -0.004 | -0.009 |  |  |
| $100^{\dagger}$                     | -0.000 | -0.000 | -0.000 | -0.001 | -0.001 | -0.002 | -0.003 | -0.009 |  |  |
| 110                                 | -0.000 | -0.000 | -0.000 | -0.001 | -0.001 | -0.002 | -0.004 | -0.010 |  |  |
| 120                                 | -0.000 | -0.000 | -0.000 | -0.001 | -0.001 | -0.002 | -0.004 | -0.012 |  |  |
| 130                                 | -0.000 | -0.000 | -0.000 | -0.001 | -0.001 | -0.002 | -0.005 | -0.018 |  |  |
| 140                                 | -0.000 | -0.000 | -0.001 | -0.001 | -0.001 | -0.002 | -0.007 | -0.027 |  |  |
| 150                                 | -0.000 | -0.000 | -0.001 | -0.001 | -0.002 | -0.003 | -0.010 | -0.042 |  |  |

 TABLE XI(h)

 Truncated beam power at cryostat window for Band 9 high limit frequency 720 GHz.

| Distance from   | Window diameter (mm.) |       |       |       |       |       |       |       |  |  |  |
|-----------------|-----------------------|-------|-------|-------|-------|-------|-------|-------|--|--|--|
| mirror 2 (mm.)  | 50                    | 45    | 40    | 35    | 30    | 26    | 20    | 15    |  |  |  |
| 50              | 1.000                 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.998 | 0.992 |  |  |  |
| 60              | 1.000                 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.995 |  |  |  |
| 70              | 1.000                 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.997 |  |  |  |
| 80              | 1.000                 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.998 |  |  |  |
| 90              | 1.000                 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.998 |  |  |  |
| $100^{\dagger}$ | 1.000                 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.998 |  |  |  |
| 110             | 1.000                 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.998 |  |  |  |
| 120             | 1.000                 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.997 |  |  |  |
| 130             | 1.000                 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.997 |  |  |  |
| 140             | 1.000                 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.995 |  |  |  |
| 150             | 1.000                 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.998 | 0.992 |  |  |  |

 TABLE XI(i)

 Beam truncation loss in dB at cryostat window for Band 9 high limit frequency 720 GHz.

| Distance from   | Window diameter (mm.) |                   |              |        |        |        |        |        |  |  |
|-----------------|-----------------------|-------------------|--------------|--------|--------|--------|--------|--------|--|--|
| mirror 2 (mm.)  | 50                    | 45                | 40           | 35     | 30     | 26     | 20     | 15     |  |  |
|                 |                       | o o na ante o los | - 10 January |        |        |        |        |        |  |  |
| 50              | -0.000                | -0.000            | -0.000       | -0.001 | -0.001 | -0.002 | -0.008 | -0.034 |  |  |
| 60              | -0.000                | -0.000            | -0.000       | -0.001 | -0.001 | -0.002 | -0.006 | -0.022 |  |  |
| 70              | -0.000                | -0.000            | -0.000       | -0.001 | -0.001 | -0.002 | -0.005 | -0.015 |  |  |
| 80              | -0.000                | -0.000            | -0.000       | -0.001 | -0.001 | -0.002 | -0.004 | -0.011 |  |  |
| 90              | -0.000                | -0.000            | -0.000       | -0.001 | -0.001 | -0.001 | -0.003 | -0.009 |  |  |
| $100^{\dagger}$ | -0.000                | -0.000            | -0.000       | -0.001 | -0.001 | -0.001 | -0.003 | -0.008 |  |  |
| 110             | -0.000                | -0.000            | -0.000       | -0.001 | -0.001 | -0.001 | -0.003 | -0.009 |  |  |
| 120             | -0.000                | -0.000            | -0.000       | -0.001 | -0.001 | -0.001 | -0.004 | -0.011 |  |  |
| 130             | -0.000                | -0.000            | -0.000       | -0.001 | -0.001 | -0.002 | -0.005 | -0.015 |  |  |
| 140             | -0.000                | -0.000            | -0.000       | -0.001 | -0.001 | -0.002 | -0.006 | -0.022 |  |  |
| 150             | -0.000                | -0.000            | -0.000       | -0.001 | -0.001 | -0.002 | -0.008 | -0.034 |  |  |
|                 |                       |                   |              |        |        |        |        |        |  |  |

<sup>†</sup> Cassegrain focus.

## 10.2 Physical Optics Analysis

## 10.2.1 Beam Profile at Cassegrain Focus

Figures 12(g) - (j) show the beam profile at the Cassegrain focus with comparison of results obtained by both quasi-optics and physical optics.



Figure 12(g). Beam profile at Cassegrain focus for Band 9 mid frequency 661 GHz.



Figure 12(h). Beam profile of co-polar field at Cassegrain focus, Band 9 mid frequency 661 GHz; x-polarised source solid line, y-polarised source dotted line.



Figure 12(i). Beam profile at Cassegrain focus Band 9 mid frequency 661 GHz., x-polarised source;  $\phi = 0^{\circ}$  co-polar field solid line,  $\phi = 90^{\circ}$  co-polar field dotted line,  $\phi = 90^{\circ}$  X-polar field dash line.



Figure 12(j). Beam profile at Cassegrain focus Band 9 mid frequency 661 GHz., y-polarised source;  $\phi = 0^{\circ}$  co-polar field solid line,  $\phi = 90^{\circ}$  co-polar field dotted line,  $\phi = 90^{\circ}$  X-polar field dash line.

### 10.2.2 Beam Profile at Subreflector & Edge Taper



Figure 12(k). Beam profile at subreflector Band 9 mid frequency 661 GHz.;  $\phi = 0^{\circ}$  solid line,  $\phi = 90^{\circ}$  dash line.

The edge tapers at the subreflector corresponding to the four positions where  $\phi = 0^{\circ}$  and  $90^{\circ}$  are -11.7, -11.4, -11.4 and -11.4 respectively.



Figure 12(l). Antenna far field radiation pattern for Band 9 mid frequency 661 GHz.; x-polarised source solid line, y-polarised source dash line.



Figure 12(m). 3-D plot of antenna co-polar field radiation pattern.



Figure 12(n). 3-D plot of antenna cross-polar field radiation pattern.

# 5.2.4 Beam & Cross-Polar Efficiencies

\_

\_

The beam efficiencies are shown in Table XI(j) below.

| Co-polar<br>(%) | Cross-polar<br>(%)                                                                                                                                                                                  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 40.82           | 0.00                                                                                                                                                                                                |
| 63.90           | 0.01                                                                                                                                                                                                |
| 75.11           | 0.01                                                                                                                                                                                                |
| 80.70           | 0.02                                                                                                                                                                                                |
| 83.91           | 0.02                                                                                                                                                                                                |
| 85.86           | 0.02                                                                                                                                                                                                |
| 87.98           | 0.02                                                                                                                                                                                                |
| 88.89           | 0.02                                                                                                                                                                                                |
| 89.26           | 0.02                                                                                                                                                                                                |
| 89.57           | 0.02                                                                                                                                                                                                |
| 89.98           | 0.02                                                                                                                                                                                                |
| 90.34           | 0.02                                                                                                                                                                                                |
| 90.72           | 0.02                                                                                                                                                                                                |
| 91.06           | 0.02                                                                                                                                                                                                |
| 91.39           | 0.02                                                                                                                                                                                                |
| 91.61           | 0.02                                                                                                                                                                                                |
| 91.72           | 0.02                                                                                                                                                                                                |
| 91.77           | 0.02                                                                                                                                                                                                |
| 91.85           | 0.02                                                                                                                                                                                                |
| 91.93           | 0.02                                                                                                                                                                                                |
|                 | Co-polar<br>(%)<br>40.82<br>63.90<br>75.11<br>80.70<br>83.91<br>85.86<br>87.98<br>88.89<br>89.26<br>89.57<br>89.98<br>90.34<br>90.72<br>91.06<br>91.39<br>91.61<br>91.72<br>91.77<br>91.85<br>91.93 |

TABLE XI(j) Beam efficiencies for Band 9 mid frequency 661 GHz defined by contours of the co-polarisation field.

# 11 BAND 10

### 11.1 Quasi-Optics Analysis

### 11.1.1 Gaussian Beam Parameters

| Quasi-optics Gaussian beam parameters for Band 10. |              |                        |                        |                        |  |  |  |  |  |
|----------------------------------------------------|--------------|------------------------|------------------------|------------------------|--|--|--|--|--|
| Frequency [GHz] $\lambda$ [mm]                     |              | <b>787</b><br>0.380931 | <b>868</b><br>0.345383 | <b>950</b><br>0.315571 |  |  |  |  |  |
| Horn diameter                                      | 8.06         |                        |                        |                        |  |  |  |  |  |
| Horn axial length                                  | 26.77        |                        |                        |                        |  |  |  |  |  |
| Horn slant length                                  | 17.072       |                        |                        |                        |  |  |  |  |  |
| Horn waist, $w_0$                                  |              | 1.138                  | 1.049                  | 0.972                  |  |  |  |  |  |
| Horn waist offset, $\Delta z(w_0)$                 |              | -21.8631               | -22.6380               | -23.2675               |  |  |  |  |  |
| Waist at horn aperture, $W_{ha}$                   |              | 2.593                  | 2.593                  | 2.593                  |  |  |  |  |  |
| $d_1$                                              | 82.0         |                        |                        |                        |  |  |  |  |  |
| $R_{s1}$                                           | 105.379      | 104.959                | 105.597                | 106.108                |  |  |  |  |  |
| $f_1$                                              | 35.31        |                        |                        |                        |  |  |  |  |  |
| R <sub>il</sub>                                    | 53.31        | 53.211                 | 53.049                 | 52.921                 |  |  |  |  |  |
| Waist at mirror 1, $w_{M1}$                        | (dia. = 55)  | 11.130                 | 11.012                 | 10.921                 |  |  |  |  |  |
| Zwi                                                |              | 53.0670                | 52.9261                | 52.8156                |  |  |  |  |  |
| w <sub>1</sub>                                     |              | 0.579                  | 0.529                  | 0.486                  |  |  |  |  |  |
| $d_2$                                              | 100.0        |                        |                        |                        |  |  |  |  |  |
| $\bar{R_{s2}}$                                     | 47.151       | 47.096                 | 47.212                 | 47.302                 |  |  |  |  |  |
| $f_2$                                              | 37.77        |                        |                        |                        |  |  |  |  |  |
| R <sub>i2</sub>                                    | 189.847      | 190.741                | 188.866                | 187.434                |  |  |  |  |  |
| Waist at mirror 2, $w_{M2}$                        | (dia. = 49)  | 9.847                  | 9.797                  | 9.759                  |  |  |  |  |  |
| $Z_{w(Cass.)}$                                     | 181.00       | 180.473                | 180.422                | 180.383                |  |  |  |  |  |
| W <sub>Cass</sub> .                                |              | 2.285                  | 2.071                  | 1.893                  |  |  |  |  |  |
| d <sub>mirror-subrefl</sub>                        |              | 6180.17                | 6180.17                | 6180.17                |  |  |  |  |  |
| W <sub>subrefl</sub>                               | (dia. = 750) | 318.428                | 318.428                | 318.428                |  |  |  |  |  |
| R <sub>subrefl</sub>                               | 6000.00      | 6000.006               | 6000.002               | 5999.999               |  |  |  |  |  |
| Edge Taper (dB)                                    | 12.00        | 12.05                  | 12.05                  | 12.05                  |  |  |  |  |  |
|                                                    |              |                        |                        |                        |  |  |  |  |  |

TABLE XII(a)

All dimensions in mm.

### 11.1.2 Truncation Loss at Mirrors

The beam profiles at mirror 1 and mirror 2 are shown in Figures 13(a), (b) and (c). Truncation loss of the beam for a range of mirror diameters is given in Table XII(b) and XII(c).



Figure 13. Beam profile at mirror 1 and mirror 2; (a) 787 GHz, (b) 868 GHz and (c) 950 GHz.

| Frequency | 787 GHz |        | 868   | GHz    | 950 GHz |        |  |
|-----------|---------|--------|-------|--------|---------|--------|--|
| Diameter  | Power   | Loss   | Power | Loss   | Power   | Loss   |  |
| 70        | 1.000   | -0.001 | 1.000 | -0.001 | 1.000   | -0.000 |  |
| 65        | 1.000   | -0.001 | 1.000 | -0.001 | 1.000   | -0.001 |  |
| 60        | 1.000   | -0.002 | 1.000 | -0.001 | 1.000   | -0.001 |  |
| 55        | 0.999   | -0.003 | 0.999 | -0.003 | 1.000   | -0.002 |  |
| 50        | 0.999   | -0.006 | 0.999 | -0.005 | 0.999   | -0.004 |  |
| 45        | 0.997   | -0.013 | 0.998 | -0.010 | 0.998   | -0.008 |  |
| 40        | 0.994   | -0.028 | 0.995 | -0.022 | 0.996   | -0.018 |  |
| 35        | 0.985   | -0.066 | 0.987 | -0.056 | 0.989   | -0.047 |  |

TABLE XII(b) Truncated beam power and loss at mirror 1 for Band 10.

| Frequency | 787   | GHz    | 868   | GHz    | 950 GHz |        |  |
|-----------|-------|--------|-------|--------|---------|--------|--|
| Diameter  | Power | Loss   | Power | Loss   | Power   | Loss   |  |
| 60        | 1.000 | -0.000 | 1.000 | -0.000 | 1.000   | -0.000 |  |
| 55        | 1.000 | -0.001 | 1.000 | -0.000 | 1.000   | -0.000 |  |
| 50        | 1.000 | -0.001 | 1.000 | -0.001 | 1.000   | -0.001 |  |
| 49        | 1.000 | -0.001 | 1.000 | -0.001 | 1.000   | -0.001 |  |
| 45        | 0.999 | -0.002 | 1.000 | -0.002 | 1.000   | -0.001 |  |
| 40        | 0.999 | -0.006 | 0.999 | -0.004 | 0.999   | -0.003 |  |
| 35        | 0.996 | -0.016 | 0.997 | -0.013 | 0.998   | -0.011 |  |
| 30        | 0.988 | -0.052 | 0.990 | -0.045 | 0.991   | -0.039 |  |

 TABLE XII(c)

 Truncated beam power and loss at mirror 2 for Band 10.

### 11.1.3 Truncation Loss at Cryostat Window

The beam profiles at the cryostat window are shown in Figures 13(d), (e) and (f). Truncation loss of the beam for a range of window diameters is given in Table XII(d) - XII(i).



Figure 13. Beam profile at various distances from mirror 2; (d) 787 GHz, (e) 868 GHz and (f) 950 GHz.

TABLE XII(d) Truncated beam power at cryostat window for Band 10 low limit frequency 787 GHz.

| Distance from   | Window diameter (mm.) |       |       |       |       |       |       |       |  |  |
|-----------------|-----------------------|-------|-------|-------|-------|-------|-------|-------|--|--|
| mirror 2 (mm.)  | 45                    | 40    | 35    | 30    | 25    | 20    | 15    | 10    |  |  |
| 80              | 1.000                 | 1.000 | 1.000 | 0.999 | 0.998 | 0.990 | 0.950 | 0.772 |  |  |
| 90              | 1.000                 | 1.000 | 1.000 | 0.999 | 0.998 | 0.993 | 0.965 | 0.823 |  |  |
| 100             | 1.000                 | 1.000 | 1.000 | 1.000 | 0.999 | 0.996 | 0.977 | 0.868 |  |  |
| 110             | 1.000                 | 1.000 | 1.000 | 1.000 | 0.999 | 0.997 | 0.985 | 0.905 |  |  |
| 120             | 1.000                 | 1.000 | 1.000 | 1.000 | 0.999 | 0.998 | 0.991 | 0.935 |  |  |
| 130             | 1.000                 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.994 | 0.958 |  |  |
| 140             | 1.000                 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.996 | 0.974 |  |  |
| 150             | 1.000                 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.998 | 0.984 |  |  |
| 160             | 1.000                 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.998 | 0.990 |  |  |
| 170             | 1.000                 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 | 0.994 |  |  |
| $181^{\dagger}$ | 1.000                 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.995 |  |  |
| 190             | 1.000                 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 | 0.994 |  |  |
| 200             | 1.000                 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.998 | 0.991 |  |  |

 TABLE XII(e)

 Beam truncation loss in dB at cryostat window for Band 10 low limit frequency 787 GHz.

| Distance from   | Window diameter (mm.) |        |        |        |        |        |        |        |  |  |
|-----------------|-----------------------|--------|--------|--------|--------|--------|--------|--------|--|--|
| mirror 2 (mm.)  | 45                    | 40     | 35     | 30     | 25     | 20     | 15     | 10     |  |  |
|                 |                       | 0.001  | 0.001  | 0.000  | 0.011  | 0.045  |        |        |  |  |
| 80              | -0.000                | -0.001 | -0.001 | -0.003 | -0.011 | -0.045 | -0.224 | -1.124 |  |  |
| 90              | -0.000                | -0.001 | -0.001 | -0.003 | -0.007 | -0.029 | -0.153 | -0.847 |  |  |
| 100             | -0.000                | -0.001 | -0.001 | -0.002 | -0.005 | -0.019 | -0.101 | -0.617 |  |  |
| 110             | -0.000                | -0.000 | -0.001 | -0.002 | -0.004 | -0.013 | -0.065 | -0.433 |  |  |
| 120             | -0.000                | -0.000 | -0.001 | -0.001 | -0.003 | -0.009 | -0.041 | -0.292 |  |  |
| 130             | -0.000                | -0.000 | -0.001 | -0.001 | -0.002 | -0.006 | -0.026 | -0.188 |  |  |
| 140             | -0.000                | -0.000 | -0.001 | -0.001 | -0.002 | -0.004 | -0.016 | -0.116 |  |  |
| 150             | -0.000                | -0.000 | -0.001 | -0.001 | -0.001 | -0.003 | -0.011 | -0.070 |  |  |
| 160             | -0.000                | -0.000 | -0.001 | -0.001 | -0.001 | -0.003 | -0.008 | -0.042 |  |  |
| 170             | -0.000                | -0.000 | -0.001 | -0.001 | -0.001 | -0.002 | -0.006 | -0.028 |  |  |
| $181^{\dagger}$ | -0.000                | -0.000 | -0.001 | -0.001 | -0.001 | -0.002 | -0.006 | -0.023 |  |  |
| 190             | -0.000                | -0.000 | -0.001 | -0.001 | -0.001 | -0.002 | -0.006 | -0.027 |  |  |
| 200             | -0.000                | -0.000 | -0.001 | -0.001 | -0.001 | -0.002 | -0.007 | -0.040 |  |  |

| TABLE XII(f)                                                               |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Truncated beam power at cryostat window for Band 10 mid frequency 868 GHz. |  |  |  |  |  |  |  |  |

| Distance from   | Window diameter (mm.) |       |       |       |       |       |       |       |  |  |  |
|-----------------|-----------------------|-------|-------|-------|-------|-------|-------|-------|--|--|--|
| mirror 2 (mm.)  | 45                    | 40    | 35    | 30    | 25    | 20    | 15    | 10    |  |  |  |
| 80              | 1 000                 | 1 000 | 1 000 | 0 999 | 0 998 | 0 992 | 0 955 | 0 779 |  |  |  |
| 90              | 1.000                 | 1.000 | 1.000 | 1.000 | 0.999 | 0.995 | 0.970 | 0.831 |  |  |  |
| 100             | 1.000                 | 1.000 | 1.000 | 1.000 | 0.999 | 0.996 | 0.981 | 0.877 |  |  |  |
| 110             | 1.000                 | 1.000 | 1.000 | 1.000 | 0.999 | 0.998 | 0.988 | 0.915 |  |  |  |
| 120             | 1.000                 | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 | 0.993 | 0.944 |  |  |  |
| 130             | 1.000                 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.996 | 0.966 |  |  |  |
| 140             | 1.000                 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.997 | 0.980 |  |  |  |
| 150             | 1.000                 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.998 | 0.989 |  |  |  |
| 160             | 1.000                 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.994 |  |  |  |
| 170             | 1.000                 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.996 |  |  |  |
| $181^{\dagger}$ | 1.000                 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.997 |  |  |  |
| 190             | 1.000                 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.996 |  |  |  |
| 200             | 1.000                 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.994 |  |  |  |

 TABLE XII(g)

 Beam truncation loss in dB at cryostat window for Band 10 mid frequency 868 GHz.

| Distance from   | Window diameter (mm.) |        |        |        |        |        |        |        |  |  |
|-----------------|-----------------------|--------|--------|--------|--------|--------|--------|--------|--|--|
| mirror 2 (mm.)  | 45                    | 40     | 35     | 30     | 25     | 20     | 15     | 10     |  |  |
| 80              | -0.000                | -0.001 | -0.001 | -0.003 | -0.009 | -0.037 | -0.200 | -1.087 |  |  |
| 90              | -0.000                | -0.000 | -0.001 | -0.002 | -0.006 | -0.024 | -0.132 | -0.803 |  |  |
| 100             | -0.000                | -0.000 | -0.001 | -0.002 | -0.004 | -0.015 | -0.085 | -0.570 |  |  |
| 110             | -0.000                | -0.000 | -0.001 | -0.001 | -0.003 | -0.010 | -0.052 | -0.386 |  |  |
| 120             | -0.000                | -0.000 | -0.001 | -0.001 | -0.002 | -0.007 | -0.031 | -0.248 |  |  |
| 130             | -0.000                | -0.000 | -0.000 | -0.001 | -0.002 | -0.004 | -0.019 | -0.150 |  |  |
| 140             | -0.000                | -0.000 | -0.000 | -0.001 | -0.001 | -0.003 | -0.011 | -0.086 |  |  |
| 150             | -0.000                | -0.000 | -0.000 | -0.001 | -0.001 | -0.002 | -0.007 | -0.047 |  |  |
| 160             | -0.000                | -0.000 | -0.000 | -0.001 | -0.001 | -0.002 | -0.005 | -0.026 |  |  |
| 170             | -0.000                | -0.000 | -0.000 | -0.001 | -0.001 | -0.002 | -0.004 | -0.016 |  |  |
| $181^{\dagger}$ | -0.000                | -0.000 | -0.000 | -0.001 | -0.001 | -0.002 | -0.003 | -0.013 |  |  |
| 190             | -0.000                | -0.000 | -0.000 | -0.001 | -0.001 | -0.002 | -0.004 | -0.015 |  |  |
| 200             | -0.000                | -0.000 | -0.000 | -0.001 | -0.001 | -0.002 | -0.005 | -0.024 |  |  |

 TABLE XII(h)

 Truncated beam power at cryostat window for Band 10 high limit frequency 950 GHz.

| Distance from   | Window diameter (mm.) |       |       |       |       |       |       |       |  |  |
|-----------------|-----------------------|-------|-------|-------|-------|-------|-------|-------|--|--|
| mirror 2 (mm.)  | 45                    | 40    | 35    | 30    | 25    | 20    | 15    | 10    |  |  |
| 80              | 1.000                 | 1.000 | 1.000 | 1.000 | 0.999 | 0.993 | 0.960 | 0.785 |  |  |
| 90              | 1.000                 | 1.000 | 1.000 | 1.000 | 0.999 | 0.996 | 0.974 | 0.839 |  |  |
| 100             | 1.000                 | 1.000 | 1.000 | 1.000 | 0.999 | 0.997 | 0.983 | 0.885 |  |  |
| 110             | 1.000                 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 | 0.990 | 0.922 |  |  |
| 120             | 1.000                 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.994 | 0.950 |  |  |
| 130             | 1.000                 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.996 | 0.971 |  |  |
| 140             | 1.000                 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.998 | 0.984 |  |  |
| 150             | 1.000                 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.992 |  |  |
| 160             | 1.000                 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.996 |  |  |
| 170             | 1.000                 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.997 |  |  |
| $181^{\dagger}$ | 1.000                 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.998 |  |  |
| 190             | 1.000                 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.998 |  |  |
| 200             | 1.000                 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 | 0.996 |  |  |

TABLE XII(i)

Beam truncation loss in dB at cryostat window for Band 10 mid frequency 950 GHz.

| Distance from   | Window diameter (mm.) |        |        |        |        |        |        |        |
|-----------------|-----------------------|--------|--------|--------|--------|--------|--------|--------|
| mirror 2 (mm.)  | 45                    | 40     | 35     | 30     | 25     | 20     | 15     | 10     |
|                 |                       |        |        |        |        |        |        | ,,     |
| 80              | -0.000                | -0.000 | -0.001 | -0.002 | -0.006 | -0.030 | -0.179 | -1.050 |
| 90              | -0.000                | -0.000 | -0.001 | -0.002 | -0.004 | -0.019 | -0.116 | -0.764 |
| 100             | -0.000                | -0.000 | -0.001 | -0.001 | -0.003 | -0.012 | -0.072 | -0.532 |
| 110             | -0.000                | -0.000 | -0.000 | -0.001 | -0.002 | -0.008 | -0.044 | -0.353 |
| 120             | -0.000                | -0.000 | -0.000 | -0.001 | -0.002 | -0.005 | -0.026 | -0.221 |
| 130             | -0.000                | -0.000 | -0.000 | -0.001 | -0.001 | -0.003 | -0.016 | -0.129 |
| 140             | -0.000                | -0.000 | -0.000 | -0.001 | -0.001 | -0.002 | -0.010 | -0.071 |
| 150             | -0.000                | -0.000 | -0.000 | -0.000 | -0.001 | -0.002 | -0.006 | -0.037 |
| 160             | -0.000                | -0.000 | -0.000 | -0.000 | -0.001 | -0.002 | -0.004 | -0.019 |
| 170             | -0.000                | -0.000 | -0.000 | -0.000 | -0.001 | -0.001 | -0.004 | -0.011 |
| $181^{\dagger}$ | -0.000                | -0.000 | -0.000 | -0.000 | -0.001 | -0.001 | -0.003 | -0.009 |
| 190             | -0.000                | -0.000 | -0.000 | -0.000 | -0.001 | -0.001 | -0.004 | -0.011 |
| 200             | -0.000                | -0.000 | -0.000 | -0.000 | -0.001 | -0.001 | -0.004 | -0.018 |

<sup>†</sup> Cassegrain focus.

### 11.2 Physical Optics Analysis [\*This section pending design revision.]

### 11.2.1 Beam Profile at Cassegrain Focus

Figures 13(g) - (j) show the beam profile at the Cassegrain with comparison of results obtained by both quasi-optics and physical optics.

Figure 13(g). Beam profile at Cassegrain focus for Band 10 mid frequency 868 GHz.

11.2.3 Far Field Radiation Pattern

11.2.4 Beam & Cross-Polar Efficiencies

# REFERENCES

[1] J W Lamb, A Baryshev, M C Carter, L R D'Addario, B N Ellison, W Grammer, B Lazareff, Y Sekimoto, and C Y Tham, "ALMA Receiver Optics Design", ALMA Memo 362, National Radio Astronomy Observatory, Tucson, AZ, Apr. 11, 2001.

[2] Paul F Goldsmith, Quasioptical Systems; Gaussian Beam, Quasioptical Propagation and Applications, IEEE Press, New York, NY.