
Atacama ALMA-SW-0016
" t

Large Revision: 2.0

Millimeter
Array 2001-09-26

ALMA Common Software
Architecture

ALMA Common Software

GChiozzi, B.Gustafsson, B.Jeram
ESO

Keywords:

Author Signature: Date:

Approved by: Signature:

Institute: Date:

Released by: Signature:

Institute: Date:

ALMA ALMA Common Software Architecture

Change Record

REVISION DATE I AUTHOR SECTIONS/PAGES AFFECTED
REMARKS

1.0/Prep.1 1999-11-20 G.Chiozzi All
First revision for working group internal review
This first issue (Issue 1.0) of this document, called at the time ALMA
Common Software Feature List, has been written before the ALMA
Common Software Technical Requirements document[RD01_ and has
been used as an initial input for it.

1.0/Prep.2 2000-01-15 G.Chiozzi All
Updated after group internal review

1.1/Prep.1 2000-05-31 G.Chiozzi All
Updated after discussions with NRAO and meetings with G.Chiozzi,
G.Raffi, and B.Glendenning.
Document renamed from "ALMA Common Software Feature List" to
"Architectural Discussion on ALMA Common Software Framework.
Comparison with ESO Common Software moved in appendix.
"Devices" renamed "Distributed objects" in order to keep them distinct
from Control System devices.

1.1/Prep.2 2000-06-10 G.Chiozzi All
Document renamed ALMA Common Software Architecture and converted
into Architectural description.
Updated after official release of ALMA Common Software Technical
Requirements. Explicit definition of requirements has been removed
assuming the ALMA Common Software Technical Requirements
document[RD01] as an applicable document.
Added traceability matrix with requirements document

2.0/Prep.1 2001-04-11 G.Chiozzi et al. All
Updated including all comment to issue 1.1/Prep.2 and results of Kitt Peak
test and the feedback from the first experiences in the usage of the ACS
0.0 prototype.
Applied ALMA Documentation template.

2.0/Prep.2 2001-09-10 G.Chiozzi et al. All
Updated taking into account document's review.

2.0 2001-09-26 G.Chiozzi Headers and footers
Assigned document number and released officially

Revision: 2.0

r,

Page 2

ALMA ALMA Common Software Architecture

Table of Contents

1 Introduction... 4

1.1 Scope 4

1.2 O verview 4
1.3 Reference Architecture .. 5
1.4 Reference Documents......... 5
1.5 G lossary 7

2 ACS Basic Architecture ... 8

2.1 Overview 8
2.2 Deployment 11

3 ACS Packages .. 13

3.1 Development tools........................13
3.2 CORBA M iddleware ... 14
3.3 ACE 14
3.4 Device Drivers 14
3.5 Distributed O bject ... 14
3.6 Data Channel23
3.7 E rror System 25
3.8 Logging System 28
3.9 Tim e System 30
3.10 Astronomical Libraries31
3.11 Management and Access Control 31
3.12 Archiving System 35
3.13 Command System 37
3.14 Alarm System 39
3.15 Sampling .. .41
3.16 User Interface Libraries and Tools..................... 43
3.17 Scripting support 44
3.18 ACS Application Framework 45
3.19 FITS Libraries 46

4 Attributes 47

4.1 Security47
4.2 Safety 47
4.3 R eliability .. 47
4.4 Perform ance .. 48

5 Life cycle aspects .. 48

5.1 Design requirements ... 48

6 Requirements Traceability Matrix .. 50

Revision: 2.0 Page 3

ALMA ALMA Common Software Architecture

1 Introduction

1.1 Scope

This document proposes an architecture for the ALMA Common Software (ACS), taking
as applicable the requirements specified in the ALMA Common Software Technical
Requirements document[RD011.

This list of requirements is discussed in order to identify a possible architecture for a
common software implementation able to satisfy the given requirements. This revision of
the document takes into account the experience collected with the ACS V.0.0 prototype
and the Kitt Peak 2000 test[RD2 11.

This document provides a complete picture of the desired ACS functionality for the entire
development phase, but individual concepts and features will be developed incrementally
over a number of releases, according to the Software Life Cycle described in [RD 17]. For
each release, a detailed plan will be developed, identifying the components to be added or
revised. Development priorities will be discussed with the community of users during the
planning phase of each release.

The current Architecture describes Common Software to be used mainly for writing
control software. There will be most probably other need for data flow software, pipeline
or proposal preparation that we do not understand yet, because not enough work has been
done in that areas. We will then have to extend this document to cover also that needs in
future versions.

1.2 Overview

ACS is located in between the ALMA application software and other basic commercial
or shared software on top of the operating systems and provides a generalized common
interface between applications and the hardware in order to facilitate the implementation
and the integration in the system of new hardware and software components.

ACS provides basic software services common to the various applications (like antenna
control, correlator software, data pipelining)[RD01 - 3.1.1. Scope] and consists of
software developed specifically for ACS and as well of OS builds and commercial device
drivers. All code specifically developed for ACS is under the GNU General Public
License (GPL). Commercial and off the shelf packages are subject to their specific
license agreement.

ACS is designed to offer a clear path for the implementation of applications, with the
goal of obtaining implicit conformity to design standards and maintainable
software[RD01 - 3.1.2. Design]. The use of ACS software is mandatory in all
applications, except when the requested functionality is not provided by ACS [RDO01 -
3.1.3. Use]. Motivated exceptions (for example based on reuse considerations) have to be
discussed and approved on a case by case basis.

The main users of ACS will be the developers of ALMA applications. The generic tools
and GUIs provided by ACS to access logs, Configuration Database, active objects and
other components of the system will be also used by operators and maintenance staff to
perform routine maintenance operations[RD0 - 3.2.1. Users].

This document identifies the main packages that will be part of ACS and their high level
interrelations. For each package, a section in this document respectively discusses the
requirements to clarify them and presents an architectural concept.

Revision: 2.0 Page 4

ALMA Common Software Architecture

Requirements are traced back to the ALMA Common Software Technical Requirements
documentlRD01] whenever they are referenced in the document and a Requirements
Traceability Matrix provides a summary. Also requirements on ACS expressed in the
TICS Design Concept document[RD26 are summarized in a Requirements Traceability
Matrix.

The concept illustrated here is based on the use of CORBA and takes into account
knowledge of various control software projects based on CORBA in the astronomical and
High Energy Physics communities, like SOFIA[RD10], GTC-SpainRD __11, ESRF-
Grenoble[RD031, ANKA-Kalsruhe[RDO4] etc. It has been an initial and explicit decision
of the ALMA project to use CORBA technology and at the same time to share software
rather than to re-invent it. It is up to documents like this to provide elements to confirm
the initial choice of CORBA as adequate. It is up to a later comparison among existing
systems to find the right way for ALMA, which we assume in any way will imply a
number of specific additional developments.

The reasons for using CORBA are in short: Object Orientation, support for distributed
systems, platform independence, it is a communication standard, it provides a variety of
services.

1.3 Reference Architecture

A reference layout for the system shall be provided by a planned Design Concept
document[RD01 - 2.3. Reference Architecture]. The Architecture of the Test
Interferometer is described in the TICS Design Concept document[RD26].

For the purposes of this document a distributed architecture based on computers at the
individual antennas and a number of central computers, connected by an high speed
backbone[RD01 - 10.4.3. LAN] [RDO1 - 10.4.4. Backbone] [RD01 - 10.5.11. LAN], is
assumedfRD02].

At both the antenna and the central control building there will be not only Ethernet LAN
connectivity but also a Field-bus[RD01 - 10.4.5 Field-bus] (the AMB) [RD01 - 10.5.12.
Field-bus] connected to various intelligent devices. The fact that the Antenna controller
and all or part of these Devices is on Field-bus or LANs shall not make any difference in
terms of the architecture proposed here.

1.4 Reference Documents

The reference documents contain background information required to fully understand
the structure of this document, the terminology used, the software environment in which
ALMA shall be integrated and the interface characteristics to the external systems.

The following documents are referenced in this document.

[RD01] ALMA Common Software Technical Requirements, ALMA-TRE-ESO-
XXXXX-XXXX, G.Raffi, B.Glendenning, Issue 1.0, 2000-06-05

[RD02] ALMA Construction Project Book, Version 5.00, 2001-08-01
(http://www.mma.nrao. edu/projectbk/construction/)

[RD03] TANGO - an object oriented control system based on CORBA - J.M.Chaize
et al., ICALEPCS'99 Conference, Trieste, IT, 1999
(http://www.elettra.trieste.it/ICALEPCS99/proceedings/papers/wa2iO .pdf)

Revision: 2.0

ALMA

Page 5

4

ALMA ALMA Common Software Architecture

[RD04] Implementing Distributed Controlled Objects with CORBA -
M.Plesko, PCs and Particle Accelerator Control Workshop, DESY, Hamburg, 1996
(See http://kgb.iis.si/KGB/articles.htm for this and other related papers).

[RD05] SOSH Conventions for Control - F.Di Majo C.Watson, Software Sharing
(SOSH) for Accelerators & Physics Detectors (http://www.jlab.org/sosh/)

[RD06] Java Home Page - (http://java.sun.com/)

[RD07] Real-time CORBA with TAO (the ACE ORB) -
(http://www.cs.wustl.edu/schmidt/TAO.html)

[RDO8] ObjectStore home page - (http://www.odi.com/objectstore/)

[RD09] MySQL home page - (http://www.mysql.com)

[RD10] SOFIA home page - (http://sofia.arc.nasa.gov/)

[RD11] GTC home page - (http://www.gtc.iac.es/)

[RD12] ALMA Monitor and Control Bus, Interface Specification, ALMA Computing
Memo #7, M.Brooks, L.D'Addario, Rev.B 2001-02-05

[RD13] National Instruments LabVIEW - (http://www.ni.com/labview/)

[RD14] CORBA Telecom Log Service -
(http://www.omg.org/technology/documents/formal/telecom log service.htm)

[RD15] omniORB Home Page - (http://www.uk.research.att.com/omniORB/)

[RD16] IBM VisualAge - (http://www-4.ibm.com/software/ad/)

[RD17] ALMA SE Practices - Software Development Process Methodology and
Tools, G.Chiozzi, R.Karban, P.Sivera -
(http://www.mma.nrao.edu/development/computing/docs/joint/draft/SE-SwDev.pdf)

[RD18] eXtensible Markup Language Home Page - (http://www.w3.org/XML/)

[RD19] Orbacus Home Page - (http://www.ooc.com/ob/)

[RD20] IBM DB2 Home Page - (http://www-4.ibm.com/software/data/db2/)

[RD21] ALMA ACS and AMS Kitt Peak 2000 Test , G.Chiozzi et al.

(http://www.mma.nrao.edu/development/computing/docs/joint/notes/2000-12-KP.pdf)

[RD22] Design and Initial Implementation of Diagnostic and Error Reporting
System of SMA, SMA Technical Memo 132, Q.Zhang.

[RD23] The Adaptive Communication Environment (ACE) home page -
(http://www.cs.wustl.edu/~schmidt/ACE.html)

[RD24] Python language home page - (http://www.python.org/)

[RD25] Home Page for the Official Tcl/Tk Contributed Sources Archive -
(http://www.neosoft.com/tcl/)

[RD26] Test Interferometer Control Software Design Concept, B.Glendenning et al.,
DRAFT 2001-02-15

Revision: 2.0 Page 6

ALMA Common Software Architecture

[RD27] Advanced CORBA Programming with C++, M.Henning S.Vinoski, Addison-
Wesley, 1999

[RD28] ALMA Software Glossary
(http://www.alma.nrao.edu/development/computing/docs/j oint/draft/Glossary.htm)

[RD29] AMI/ACS Report, R. Lemke, G. Chiozzi 2001-03-20
(http://www.eso.org./-gchiozzi/A1lmaAcs/examples/amitest/AmiReport.pdf)

[RD30] ALMA Memo #298, Timing and Synchronization, L. D'Addario, 2000-03-09
(http://www.alma.nrao.edu/memos/html-memos/alma298/memo298.pdf)

[RD31] GNU General Public License (GPL) (http://www.fsf.org/copyleft/gpl.html)

1.5 Glossary

An extended list of glossary definitions, abbreviations and acronyms is part of the main
ALMA Software Glossary [RD28], available online at the following URL:
http://www.mma.nrao.edu/development/computing/docs/j oint/draft/Glossary.htm.

The following list of abbreviations and acronyms is aimed to help the reader in recalling
the extended meaning of the most important short expressions used in this document:

ABM Antenna Bus Master
ADAPTIVE Communication Environment

ACE
(http://www.cs.wustl .edu/lschmidt/ACE.html)

ACS ALMA Common Software
ACU Antenna Control Unit

Astronomical Information Processing System
AlPS++

(http://aips2.nrao.edu/docs/aips++ .html)
ALMA Atacama Large Millimeter Array (http://www.eso.org/projects/alma/)
AMB ALMA Monitor and Control Bus
ANKA Synchrotron Radiation Source ANKA (http://www.fzk.de/anka)
API Application Programmatic Interface
CAN Controller Area Network
CORBA Common Object Request Broker Architecture
COTS Commercial Off The Shelf
CPU Central Processing Unit
ESO European Southern Observatory (http://www.eso.org)
FITS Flexible Image Transport Format
GUI Graphical User Interface
GTC Gran Telescopio CANARIAS (http://www.gtc.iac.es/)
HW Hardware
IDL CORBA Interface Definition Language
IIOP Internet Inter-ORB Protocol
ISO International Standardization Organisation
JDBC Java Database Connectivity
LAN Local Area Network
LCU Local Control Unit
M&C Monitor and Control
N/A Not Applicable
NRAO National Radio Astronomy Observatory (http://www.nrao.edu/)
OMG Object Management Group (http://www.omg.org/)

Revision: 2.0

ALMA

Page 7

ALMA Common Software Architecture

ORB Object Request Broker
OSI Open Systems Interconnection
OVRO Owens Valley Radio Observatory (http://www.ovro.caltech.edu/)
RDBMS Relational Data Base Management System
RPC Remote Procedure Call
SLA Subprogram Library A (Positional Astronomy Library)
SW Software
TAO The ACE ORB (http://www.cs.wustl.edu/~schmidt/TAO.html)
TBC To Be Confirmed
TBD To Be Defined
TCL Tool Command Language (http://www.scriptics.com/resource/)
TCL
(CORBA) CORBA Trader Constraint Language
TICS ALMA Test Interferometer Control Software
TPOINT Telescope Pointing Analysis System
UML Unified Modeling Language
URI Uniform Resource Identifier (http://www.w3.org/Addressing/)
URL Uniform Resource Locator (http://www.w3.org/Addressing/)
UTC Universal Time Coordinated
VME Versa Module Eurocard
VLT Very Large Telescope
WS Workstation

XML eXtensible Markup Language (http://www.w3.org/XML/)

2 ACS .Basic Achitecture

2.1 Overview

The ALMA Common Software (ACS) is located in between the ALMA application
software (Applications) and other basic commercial or shared software on top of the
operating systems. In particular, ACS is based on CORBA (CORBA Middleware), which
provides the whole infrastructure for the exchange of messages between distributed
objects. Whenever possible, ACS features will be provided using off the shelf
components and ACS itself will provide the packaging and the glue between these
components.

The ACS is also based on an Object Oriented architecture [RDI01 - 13.1.1 Distributed
Objects and commands].

The following UML Package Diagram shows the main packages in which ACS has been
subdivided.

Revision: 2.0

ALMA

Page 8

ALMA Common Software Architecture

Applic ations

4 - i-level APIs and
tools

3- Services

2 - Core components

1 - Base tools

UF Ibraries Scripti AC Aplicatton T f baies .more to come...

M anagement and Archi.ng Command Alarm System Sampling
Access Control System Sy stem

Distrib-ed Data channel Error System Logging Syster Time System Astro libraries
Object

Devbropmer4
tools

CORBA Middleware S ACE DeviceDriers

Figure 2.1: ACS Packages

Each package provides a basic set of services and tools that shall be used by all ALMA

applications.

Packages have been grouped in layers. Packages are allowed to use services provided by
other packages on the lower layers and on the same layer, but not on higher layers.

A brief description of the layers and the packages if provided hereafter, while the next

chapter will contain a detailed description of the feature included in the packages.

1 - Base Tools

The bottom layer contains base tools that are distributed as part of ACS to provide a
uniform development and run time environment on top of the operating system for all
higher layers and applications. These are essentially off-the-shelf components and ACS
itself just provides packaging and installation and distribution support. This ensure that
all installations of ACS (development and run-time) will have the same basic set of tools
with versions kept under configuration control.

Three main packages have been identified in this layer:

* Development tools
Software development tools (compilers, configuration controls tools, languages,
debuggers, documentation tools).

* CORBA Middleware
Packaging of off-the-shelf CORBA implementations (ORB and services) to
cover the languages and operating systems supported by ACS.

* ACE
Distribution of the Adaptive Communication Environment[RD23].

2 - Core components

Revision: 2.0

ALMA

Page 9

ALMA Common Software Architecture

This second layer provides essential components that are necessary for the development
of any application

* Distributed Object
Base interfaces and classes for Distributed Object, Properties and Characteristics
are implemented in this package.

* Data Channel
The Data Channel provides a generic mechanism to asynchronously pass
information between data publishers and data subscribers, in a many-to-many
relation scheme.

* Time System
Time and synchronization services.

* Error System
API for handling and logging run-time errors, tools for defining error conditions,
tools for browsing and analyzing run-time errors.

* Logging System
API for logging of data, actions and events. Transport of logs from the producer
to the central archive. Tools for browsing logs.

* Astronomical libraries
Libraries for astronomical calculations.

3 - Services

The third layer implements services that are not strictly necessary for the development of
prototypes and test applications or that are meant to allow optimization of the
performances of the system:

* Management and access control
Design patterns, protocols and high level services for Distributed Object's life-
cycle management.

* Archiving System
API and services for archiving monitoring data and events from the run time
system. Tools to browse, monitor and administer the flow of data toward the
archive.

* Command System
Tools for the definition of commands, API for run-time command syntax
checking, API and tools for dynamic command invocation.

* Alarm System
API and tools for configuration of hierarchical alarm conditions, API for
requesting notification of alarms at the application level, tools for displaying and
handling the list of active alanns.

* Sampling
Low level engine and high level tools for fast data sampling (virtual
oscilloscope).

4 - API and High-level tools

Revision: 2.0

ALMA

Page 10

ALMA Common Software Architecture

The fourth and last layer provides high level APIs and tools. More will be added in the
future. The main goals for this packages is to offer a clear path for the implementation of
applications, with the goal of obtaining implicit conformity to design standards and
maintainable softwarerRD01 - 3.1.2. Design].

* UIF Libraries
Development tools and widget libraries for User Interface development.

* Scripting
Scripting language and access libraries for the integration with ACS core
components.

* ACS Application Framework
Implementation of design patterns and to allow the development of standard
applications.

* FITS libraries
Support for the handling of FITS files is just an example of other high-level
components that will be integrated and/or distributed as part of ACS.

2.2 Deployment

The choice of CORBA for the implementation of Distributed Objects and of all services
that are part of the previously described packages makes it possible to have every
software operation available in a transparent way both locally and at the Control center in
San Pedro. This applies also to all data, logs and alarms[RDOI - 12.1.6 Location]. The
choice for the LAN and access optimization mechanisms, described in the following
sections, will ensure that no significant degradation in performances will take place
[RD01 - 3.2.4. Local and central operation].

In principle, this same mechanism allows a reliable remote access from the US and
Europe, although with reduced performance. It is anyway necessary that applications are
designed in order to prevent unauthorized access and undesired side effects on the
performance of the control system [RD01 - 3.2.5. Remote access]. ACS provides the
basic building blocks for the implementation of these mechanisms.

All components in the lower ACS layers will be available for developing code both for
the Linux[RDOI - 10.5.4 OS] and the VxWorks[RDO1 - 10.5.3 RTOS] platforms. The
usage of ACE allows writing portable code that can migrate from Linux to VxWorks and
vice versa according to development and run-time needs.

Higher-level components will be often available only for Linux, since they are not needed
on the real-time platform.

Some development tools can be required to run on Windows platforms (like Visual Age
for Java rRD16).

The usage of platform independent UIF tools allows executing user interfaces on multiple
platforms, including Windows.

Using CORBA, all objects publishing an IDL interface will be available to any
environment, host and programming language where a CORBA implementation is
available. In particular it will be possible to write client applications for Distributed
Objects in any CORBA-aware platfonn. ACS explicitly supports C++, Java, C and

Revision: 2.0

ALMA

Page 11

ALMA Common Software Architecture

Python (selected by TICS with preference to TCL) [RD01 - 10.3.3. Compiled Languages]
[RD01 - 10.5.6. Scripting language].

On the other hand, most servant-side ACS libraries will be developed first in C++, with
the assumption that servants for Distributed Objects will run typically on VxWorks and
that servants have anyway higher performance requirement than clients. It is possible to
implement servants in other languages or for other platforms, but this requires a complete
servant side implementation of the ACS basic IDL interfaces for the Distributed Object -
Property - Characteristic pattern. This can be handled at application level or, better, a
specific extension of ACS to provide support for servants in specific languages other than
C++ can be requested when the need for it will be clearer.

The ACS installation procedures will allow selecting the installation platform and will
allow selecting between development and run time installations. For a development
installation, all development tools will be installed, including compilers and debuggers,
while a run-time installation will be much lighter and include only the libraries and
components needed at run-time.

Per each package, it will be specified at design time what components will be available
on each platform and for run-time and development installations.

We foresee 6 different types of deployment nodes (connections in the diagram show the
foreseen communication paths among node types, for example a Remote User Station is
allowed to communicate only with a Linux run-time workstation):

Sun/Linux VxWorks cross
development workstation

VxWorks real-time
computer

Linux run-time workstation -

Remote user station

Windows Development User

Station$
Linux Development

workstation

Figure 2.2. A CS Deployment

* Linux Development workstation
Linux is the main development and run-time platform.
This installation includes all ACS components necessary for development and at run-
time.

Revision: 2.0

ALMA

Page 12

ALMA Common Software Architecture

* Windows Development User Station
This is the console where a software developer is working to develop UIF applications
using Windows-based tools.
Development of user interfaces is generally more efficient on Windows systems and
development tools are more reliable and stable with respect to Linux.
An ACS Windows Development installation will allow installing UIF development tools
and UIF libraries for development, including CORBA ORB and services.
We assume that an ACS developer will have a Windows desktop used for UIF
development and as a terminal to connect to a Linux Development Workstation. This
does not exclude user having access only to Linux workstations but limit their capability
of developing UIF applications.

* VxWorks real-time computer
VxWorks computers are used only as run time platforms and a cross-development
computer is necessary to develop code.
ACS will deploy on VxWorks only run time libraries, which are downloaded from a file
server at boot time or when needed.

* Sun/Linux VxWorks cross development workstation
The VxWorks cross development environment is installed on a UNIX (Sun or Linux)
workstation. This includes all development tools and ACS components. Typically the
same development workstation should be used for Linux and VxWorks development.

* Linux run-time workstation
When disk space is an issue for small run-time only boxes, it will be possible to deploy
on ACS runtime libraries and components. The main limitation of this configuration is
that it offers very poor debugging capabilities in case of problems, with respect to a full
development installation

* Remote user station
A very light ACS installation will be provided for users that need only to access remotely
other ALMA subsystems using only UIF applications. This will allow installing only UIF
run time libraries and applications (including CORBA ORB and services) on Linux (or
Windows) operating system.

3 ACS Packages

This chapter contains one section per each ACS package, describing the features
provided and its high level architecture.

The packages are described, looking at the package diagram in Chapter 2, starting from
the lower layer and from left to right.

For some packages, just a brief description is given. In particular this applies to packages
that are just the integration of off the shelf components.

3.1 Development tools

Packaging of tools necessary for the whole life cycle of software developed with ACS.
This includes for example compilers, configuration controls tools, languages, debuggers,
documentation tools. The complete list will be defined at each release. ACS will assume
a specific set of supported Operating Systems and versions.

Revision: 2.0

ALMA

Page 13

ALMA Common Software Architecture

3.2 CORBA Middleware

Packaging of off-the-shelf CORBA implementations (ORB and services) to cover the
languages and operating systems supported by ACS.

This includes also all CORBA Services used by ACS.

3.3 ACE

Distribution of the Adaptive Communication Enviromnent[RD23]. This C++ class library
provides support for cross-platform portability.

3.4 Device Drivers

3.4.1 Device drivers for all standard boards (motor control, analog, digital, serial...) and network
protocols (serial communication, CAN bus[RD01 - 10.5.12 Field-bus],...) are provided as
part of the ACS delivery, if they are not already part of the operating system, although
development of device drivers is not direct responsibility of ACS. They will be typically
provided as part of M&C software development and integrated into the ACS releases[RDO1 -
12.2.1 Hardware Interfaces]. This integration must be taken into account both in the design of
ACS and of Device Drivers.

3.4.2 A communication library working over CAN is already existing as part of the M&C
work[RD 12] and has been harmonized with these concepts. For every CAN device there
must be one or more Objects on the CAN bus master CPU, which are the abstract Distributed
Object(s) corresponding to the physical CAN device.

3.4.3 Low level access to the CAN bus nodes will be completely hidden to the general user
(engineering applications can directly access the CAN nodes).

3.5 Distributed Object

The requirement document [RD01] specifies as a basic design requirement the adoption
of an Object Oriented architecture based on distributed objects [RDO 1 - 13.1.1
Distributed Objects and commands]. This concept is the basis of the architecture and all
services provided by ACS are designed around Distributed Objects.

3.5.1 The ALMA system (and the control system in particular) is described using a 3 tier naming
for the logical model [RD031 [RD04] rRD05]:

* Distributed Object

* Property

* Characteristic

3.5.1.1 Distributed Object - Instances of classes identified at design level in the ALMA system,
with which other components of the system interact, are implemented as Distributed Objects.
In particular, at control system level, Distributed Object is the base class used for the
representation of any physical (a temperature sensor, a motor) or logical device in the control
system.

Revision: 2.0

ALMA

Page 14

ALMA Common Software Architecture

3.5.1.2 Property -Each Distributed Object has O..n Properties that are monitored and controlled, for
example status, position, velocity and electric current.

3.5.1.2.1 Properties can be read-only or read/write. If a read/write property cannot read its
value back (for example it is associated to a write only physical device), it caches the
last written value and returns this upon read request. This implementation is
mandatory and must be documented in the property documentation.

3.5.1.2.2 Properties can represent values using a limited set of basic data types:

* Long for integers

* Double for floating point numbers

* String for strings.

* Boolean for TRUE/FALSE conditions

* Bitfield to handle patterns of bits, typically from hardware
devices

* Complex for handling complex numbers

* Enum for enumerations like states.

* Sequence<scalar> of one of the previously defined scalar types.
A Sequence<scalar> is a set of properties of a given scalar type,
i.e. each item in the sequence is a complete property of the given
scalar type. It is implemented as an IDL Sequence of the scalar
property type. For example a Sequence<Long> allows
manipulating a group of properties of type Long. Each item in
the list can be assigned to a Long property object and
manipulated (reading characteristics and value) independently
from the others.

* Array<scalar> of one of the previously defined scalar types. An
Array<scalar> is a property type that contains as value a fixed
length array of values handled by the corresponding scalar type.
For example, an Array<Long> is a property type with a unique
set of characteristics that apply to an array of integers. It is a
unique property and its value is an array of values. With respect
to Sequence<scalar>, Array<scalar> is much more efficient for
transporting big tables of data.

* Structures built with properties of the other basic types. Since
structures introduce a significant increase of complexity in the
handling libraries, they will be implemented last and only if a
clear need arises.

3.5.1.2.3 The selection of a limited set of type is motivated by the need of avoiding
implementing the same code for many different types and conversion problems
between similar types (like short, int and long). Also, nowadays saving a couple of
bytes using a short instead of a long usually does not pay:

Revision: 2.0

ALMA

Page 15

ALMA Common Software Architecture

* it introduces performance problems (CPUs now always
works with longs and every operation on a short requires
a conversion to long)

* it introduces alignment problems in memory and when
transferring structures from different platform

3.5.1.3 Characteristic - Static data associated with a Distributed Object or with a Property, including
meta-data such as name, description, version and dimensions, and other data such as units,
range or resolution. Each Distributed Object or each Property has O..n Characteristics.
An initial list of Characteristics for Distributed Objects and Properties will be agreed at
design time. For the time being we have identified the following candidates (more details
will be given in the design documentation):

* Distributed Objects and Properties: Name, Description, Version
and URI of extended documentation, where the last is optional
and would point to documentation generated automatically from
the source code.

* Read-only and Read/Write Properties: default values, range,
units, format, resolution

3.5.1.4 The following diagram shows an architectural class diagram for the Distributed Object (DO
class) - Property - Characteristic pattern

Revision: 2.0

ALMA

Page 16

ALMA Common Software Architecture

Figure 3.1: Distributed Object - Property - Characteristic class diagram

* A NamedComponent base class groups methods and attributes common to both
Property and DO. In particular, both have a common set of Characteristics and
provide the related access methods.

* A DO can reference other DOs, to build a hierarchical structure

* Properties are always contained into a DO. This means that a DO can contain 0
or many Property instances, while a property is always contained in one and
only on DO. The Property class provides a method to retrieve the reference to
the DO that contains it.

* From the base Property class, subclasses for each read only and read/write types
are derived. This is represented in the diagram by the ROProperty<type> and
RWProperty<type> parametrized classes. From an architectural point of view,
RWProperty<type> classes are subclasses of the corresponding
ROProperty<type>.

* The lower part of the diagram (white class boxes) shows how applications will
inherit from the base classes provided by ACS. The example shows classes used
for the implementation of the control system.

Revision: 2.0

ALMA

At a exnr-k cr

__ __ __ _ __

1
D a

Page 17

ALMA Common Software Architecture

* This diagram is sufficient and correct at architecture level. At design level, it will
probably be more convenient to introduce some intermediate class levels to
improve the modularity of the code. It is also under discussion if the
RWProperty<type> classes are better implemented as subclasses of
ROProperty<type> or parallel to it in the hierarchy. These intermediate classes
will be in any case hidden to the users, making the actual structure between the
Property class and the implementation ov RO and RW properties an
implementation detail.

3.5.1.5 The Distributed Objects -Properties - Characteristics 3 tier logical model is very well
established in the community of Control Systems for Physics Experiments (RD03] [RD04]
[RD05J, where the name Device is used to identify what we call here Distributed Object.
We prefer to adopt the more generic name, as specified in [RD01 - 13.1.1 Distributed
Objects and Commands], because the usage of the ACS is not limited to the realm of the
Control System, as in the case of the mentioned references. It provides instead generic
services for the development of the whole ALMA software. Proper Device classes will be
implemented by the Control System development team based on Distributed Objects.

3.5.2 The architecture of the system will be based on CORBA. There are various CORBA-based
implementations of the 3 tier logical model that can be reused.

3.5.2.1 A Distributed Object will be a CORBA object

3.5.2.2 A Property will be CORBA object. A class hierarchy with Property class as root implements
the basic read-only and read/write versions for the predefined types. This hierarchy provides
standard IDL interfaces that shall be used by all clients to access Properties. On the
implementation (servant) side, specific subclasses will provide polymorphic access to specific
implementations like 'logical', 'simulated', 'CAN', 'RS232', 'Digital IO' and so on.

3.5.2.3 Public interfaces to Distributed Objects and Properties will be defined as CORBA IDL.

3.5.2.4 Characteristics of Distributed Objects and Properties can be accessed through access
methods (as shown in figure) and through a generic value =
getcharacteristic by_name(name) type of interface at run time. The interface of properties is
defined by their IDL and the IDL is the same independently from the implementation
(logical, CAN...). But specific implementations will have also specific characteristics. For
example a CANLong property has a CANID characteristic. This means that from the
property's IDL there is no way to retrieve the CANID using CORBA calls. We provide then a
generic interface that can be used to retrieve any characteristic just querying by name. This
allows accessing specific Characteristics, like the CAN ID for properties related to CAN
monitor points that are not defined in the generic property IDL but are instead
implementation specific.

3.5.3 The configuration parameters for all Distributed Objects, i.e. the initial values for Properties
control values and all Characteristics for Properties, are persistently stored in the
Configuration Database [RD01 - 4.2.1. Configuration Database].

3.5.3.1 When a Distributed Objects is instantiated, it configures itself according to the configuration
stored in the Configuration Database[RDO1 - 3.3.2. Serialization].

Revision: 2.0

ALMA

Page 18

ALMA ALMA Common Software Architecture

3.5.3.2 The implementation of the Configuration Database is hidden in a Configuration Database
Access API to allow switching among alternative implementations[RD01 - 4.2.2 Database
Design]. The reference implementation will be based on an RDBMS. IBM DB2{RD20 is the
platform that will be tested for TICS development instead of mySQL[RD01 - 10.5.5
Configuration DB].

3.5.3.3 All DOs (or, more precisely, all NamedComponents) in the same process space will have
access to a global reference to the Configuration Database they will use at instantiation time
to retrieve their configuration information. At a higher level, the Activator responsible for the
DOs (see Management and Access Control package) will provide an interface to set the
reference to the configuration database used. In this way it is also easy to switch between
different databases at startup time.

Named Component

'name(On activation, passes
4 description() referenc e to the

version() Configuration Database

4URI()
4 get interface()

force reload
4 get characteristicby_name()

i nd_cha racteristic()
ActivatorQ (from Management and Access Cc

*activate DO()
"deactivate DO()

Engineer 4
disconnect()

(from Use Case View) "shutdown()

3 configuration database for DOs

Relational Database
(DB 2)

Figure 3.2: Configuration Database

3.5.3.4 An approach that satisfies the TICS' requirements of cold, warm or hot boot is:

* The system configuration comes from a reference configuration
database.

* An application listens to the monitor stream and creates a snapshot
configuration database that contains current monitor values.

* When a computer reboots, the reference DB and the snapshot DB are
merged according to if it is a cold, warm, or hot boot. To configure the
degree, to which defaults are overridden, another DB can keep a list of
values that are overridden from the snapshot.

Revision: 2.0 Page 19

ALMA Common Software Architecture

* To allow for user modified values during testing and tuning; a third DB
with user preferences is kept.

* The scenario to boot a configuration is to merge the snapshot with the
user preferences, and then this is merged with the reference DB
according to the type of boot requested. The final configuration database
is then passed to the Activator responsible for the DOs (see Management
and Access Control package).

* A database administration tool allows also generating copies of parts of
the database to be used for testing or when disconnected from the central
systems, like when doing maintenance on a single disconnected antenna.

3.5.3.5 We define Characteristics as statically defined in the Configuration Database. This means
that is possible to change their value only by changing the configuration database and
reloading just the corresponding Distributed Objects[RDO1 - 14.1.9 Dynamic configuration].
This means that they cannot be used for, e.g., calibrations that change at run time. With this
definition, calibration values that change at run time should be implemented as Properties, not
as Characteristics. "Static" calibration values, for example measured by an engineer that are
not supposed to change for months can be Characteristics. Characteristics can change with
time or can change with the context. We will have to verify if some more dynamic
mechanism is necessary. This can be done transparently at a later time extending the Property
class with methods to change the value of characteristics but will not be considered in the first
design to avoid increasing the complexity of the system. This point will be reviewed after the
TICS development.

3.5.4 Distributed Objects may have a state. Specific distributed objects can have additional sub-
states. [RDO1 - 13.1.2 Standard Methods] [RD01 - 14.1.13 States]. A standard state machine
and standard state transition commands will be defined at a later stage, based on the TICS
experience.

3.5.5 Means will be provided to have serializable Distributed Objects for creating a persistent
image of the system. CORBA defines a persistency service, but few ORBs implement it. A
persistent object oriented database can be used, like ObjectStore[RD08]. Another possibility
would be to use XML to serialize objects [RD01 - 10.5.10 XML]. Other possibilities have to
be investigated. The usage of a persistency service, of an object oriented database or of other
solutions would be hidden inside the implementation of the Distributed Object sub-classes.
[RD01 - 3.3.2. Serialization].

3.5.6 The Serialization mechanism will also be used to support migration of Distributed Objects
from one application/sub-system to another one in different phases of their lifetime RDD01 -
3.3.3. Migration. Inheritance will be used to add this capability for serializable DOs when
needed.

3.5.7 JavaBeans wrap CORBA objects on the client side. Standard Rapid Application
Development (RAD) tools like IBM VisualAge[RD 16] are used to handle them. Given the
IDL interface of a DO, a code generator produces automatically the corresponding JavaBean.
In this way the developer has libraries that provide him direct support for ACS concepts like
DO/Property/Characteristic, Monitors, Data Channel and so on.

3.5.8 ORB independence and interoperability [RD01 - 10.4.2 ORB Independence] is ensured
basing the Distributed Object implementation on CORBA Inter-ORB Protocol (IIOP) and

Revision: 2.0

ALMA

Page 20

ALMA Common Software Architecture

Portable Object Adapter (POA) and not allowing the use of any ORB-specific feature.
Interoperability between ORBs has been demonstrated on the Kitt Peak Test with
TAO[RD071 and OrbacusRD_19] [RD01 - 10.5.8 CORBA ORB]. The selection of the final
ORBs needed for ACS is not part of this Architecture document. The current baseline
includes TAO[RD07] for C/C++, ORBACUS[RD 19] for Java and omniORBjRD_15l for
Python bindings.

3.5.9 ACS provides support for simulation[RD01 - 3.3.4. Simulation] at property level. All
properties that access hardware can be switched in simulation by setting TRUE a simulation
characteristic in the configuration database. After this, they behave like "logical properties".
This provides basic simulation capabilities

3.5.10 If an application wants to provide a more sophisticated level of simulation (for example
simulating interrelations between the values of properties), a specific simulated device should
be implemented in parallel to the real device. Switching from the real to the simulated device
is handled in the configuration of the Manager (see Management and Access Control
section), telling it to start a different implementation of the same device's CORBA interface.

3.5.11 Direct Value Retrieval

3.5.11.1 The Property classes provide get() and, in case of writeable Properties, set() methods that
can be used to directly access the value of the property from clients [RDO 1 - 4.1.1 Direct
value retrieval]. Both synchronous and asynchronous get() and set() methods are provided.

3.5.11.2 Value setting is done using set() property methods. These methods can be called by
applications or by specifically designed GUIs. CORBA Dynamic Invocation Interface allows
to write generic applications and GUIs (like the Object Explorer) that are capable of resolving
dynamically at run time the structure of Distributed Objects and call set() methods to set the
value of Properties [RD01 - 3.2.3. Value setting].

3.5.11.3 Inheritance will be used to implement property types accessing specific hardware devices,
like CAN, RS232, GPIB. CAN properties will always directly access the hardware on the
CAN bus at direct value retrieval and not use cached values.

3.5.12 Value Retrieval by Event

3.5.12.1 The Distributed Object will provide a method to create a monitor object for a Property, able
to trigger events on Property change or periodically. A callback will be connected to the event
and will be called by the monitor object when the specified event occurs[RD01 - 13.1.4.
Events]. Triggered events are delivered directly to the registered object via the callback
mechanism in a point-to-point fashion. The value retrieval by event is then very well suited
for providing timely feedback to control applications, as described also in the TICS design
document.

3.5.12.2 Events can be generated on any change of value[RD01 -4.1.3 Rate]. Other conditions, for
example any write, value increase/decrease, value less or greater than setpoint could also be
included at a later stage.

3.5.12.3 Timed or periodic events can be generated as follows:

* Periodic, at a specific interval rate [RDO1 - 4.1.3 Rate]

Revision: 2.0

ALMA

Page 21

ALMA Common Software Architecture

* Periodic, at a specific interval rate, synchronized with an absolute array time

[RD01 - 4.1.5 Values at given time]. This also allows periodic events aligned
with the monitoring rate. For example, a 1-second rate generates events on the 1-
second mark, 5-second rate on the 5-second mark and so on.

Destroy event

E ve nt C lie n t v e t

0..ntype
Monitor

Reque t event
"destroyO

Tirnerrequest Timesuspend()
- .esume() > Server

Readp perty set time trigger0:time

\s eejgYet time triggero:time e e
S /set value triggerO :dela

get value trigger0:.delta "
i on ..n time trigger

Property Property chang of value
(tcrn Distri .ted Object)

"DOname0

Figure 3.3: Value Retrieval by Event: ACS Monitors

3.5.12.4 All events will be time stamped with the time the value has been acquired (as opposed to the
time of delivery of the event). Timers will warranty the time of acquisition of the value and
not the time of delivery, that depends on the network characteristics.

3.5.12.5 The monitor class provides methods to suspend, resume and destroy the monitor itself

3.5.12.6 CAN-Properties will have to implement notification on change also for CAN monitor points
although CAN monitor points do not provide a specific support via HW or in the drivers. This
can/should be done via polling. If there are clients registered on events on change, an ACS
monitor is used to poll and to generate events in case of change of the value of the monitor
point. The poll rate is defined by the characteristic change frequency. The polling frequency
determines the time resolution of the event-on-change.

3.5.12.7 For performance optimization, the final implementation will not leave to the single
Distributed Object Properties the responsibility of managing timers, but a local centralized
manager will take care of that, transparently to client applications. More details will be given
in the ACS design.

Revision: 2.0

ALMA

Page 22

ALMA Common Software Architecture

3.5.12.8 A particular case is a Distributed Object State Machine. A State Machine class is a
Distributed Object and the current state is represented by a State Property. This State Property
can fire events whenever the state changes to allow external objects to monitor it.

3.6 Data Channel

3.6.1 The Data Channel provides a generic mechanism to asynchronously pass information
between data publishers and data subscribers, in a many-to-many relation scheme.

3.6.2 With the Data Channel:

* the data producer publishes its data pushing it on the channel, completely
unaware of clients getting access to the data, i.e. the data producer decides how
and when data is going to be published

* data consumers subscribe to data sets on the channel without establishing any
direct communication with the data producers.

3.6.3 The Data Channel is the basic mechanism for Indirect Value Retrieval [RD01 - 4.1.2 Indirect
value retrieval] providing mirroring of data on other computers than where the data are
produced. This makes it possible to randomly access data without interfering with the control
process [RDO1 - 3.2.2 Value retrieval] and without knowing if the data is directly available on
the client's machine or if it is a mirrored copy[RD01 - 4.1.4 Transparency].

3.6.4 The CORBA Notification Service provides the infrastructure for the Data Channel
implementation:

Revision: 2.0

ALMA

Page 23

ALMA Common Software Architecture

pull data

push data

data

Figure 3.4: Data Channel

3.6.4.1 An ACS API provides a simplified client and server API to connect to the
Notification Service and to create/open/close Data Channels. This does not hinder
direct access to the CORBA Notification Service to access features not implemented
by the API.

3.6.4.2 CORBA TCL (Trader Constraint Language) query language is used to allow filtering
of messages from clients

3.6.4.3 Notification Service servers can be federated to guarantee system redundancy and to
provide higher reliability. Federated Notification Service servers allow:

* Load balancing. Clients access can be split among different servers

* Security. Just specific servers, with a reduced set of published data
(defined using filtering), can be allowed access from remote sites. This
can be used to allow remote monitoring of ALMA from Europe and USA
without exposing to the Internet confidential data.

3.6.4.4 The data channel shall also support the transport of scientific data. The perfonnance
of the data channel for transport of bulk data needs to be tested to verify if the
requirements for scientific data movements are fulfilled.

Revision: 2.0

ALMA

Page 24

ALMA Common Software Architecture

3.6.5 The Data Channel is a process separated both from publisher and subscriber. It also optimizes
data transfer by implementing caching to reduce network traffic.

3.6.6 Applications can create specific Data Channels to publish-subscribe to application specific
data. ACS itself uses the Data Channel to provide basic services like logging and archiving.

3.6.7 Comparison between Data Channel, Direct Values Retrieval and Data Retrieval by Event:

3.6.7.1 The 3 data access mechanism provided by ACS have different characteristics and are
meant to be used in different situation.

* With the Data Channel, data subscriber and data publisher are
completely de-coupled.

* With Direct Value Retrieval, the client needs the reference to the servant
object to call get() methods that directly return the requested value

* With Value Retrieval by Event, the client establishes a callback-based
direct cormnunication with the servant that asynchronously delivers data
to the client in a point-to-point communication scheme.

3.6.7.2 The Data Channel pattern is convenient when:

* the client is interested in receiving events of a certain type (for instance
event logs, monitor point values or alarm events) and handling them
regardless of their source. Since the potential number of sources is very
large, it becomes very inefficient if the client must establish a connection
to each potential source. In this case a Data Channel is necessary as the
mediator between publishers and subscribers. Publishers push data in the
channel while the channel efficiently multicasts events to all subscribers
that are interested in receiving them.

* many clients (in particular remote clients) are interested in the same data.
With a point-to-point communication, the data producer would have to
deliver data to each of many clients, with a potentially heavy impact on
servant performances. With the Data Channel pattern, the servant pushes
the data only once on the channel that will efficiently multicast the
events to the interested clients allowing to keep constant the load on the
servant.

3.6.7.3 Direct Value Retrieval and Value Retrieval by Event are convenient when the client
needs to be in control of the rate by which it receives data from the servant (asking
directly for the values, when required, or establishing monitors with a specific data rate or
triggering condition.

3.7 Error System

The Error System provides the basic mechanism for applications to handle internal errors
and to propagate from server to client information related to the failure of a request. An
error can be notified to the final user and appear in a GUI window if an action initiated by
the user fails (for example a command activated from a GUI fails).

Revision: 2.0

ALMA

Page 25

ALMA Common Software Architecture

3.7.1 The basic error reporting mechanism is to throw an exception.

3.7.2 Errors can be propagated through the call chain as exceptions and through objects over the
network to be reported to the action requester. [RD01 - 6.3.6 Scope]

3.7.3 The lowest level of the call chain where the error occurs will add an entry in the error stack.
When the error stack is propagated back through the call chain any level can add entries to the
stack to provide a trace of the error. [RD01 - 6.3.2 Tracing]. Not all levels need to add an
entry in the stack, but only the ones that provide useful information.

3.7.4 At any level it is possible to:

3.7.4.1 Fully recover the error. The error stack is destroyed and no trace remains in the
system.

3.7.4.2 Propagate the error to the higher level, adding local details to the stack trace
(including object and line of code where the error occurred). The higher level has the
responsibility of handling the error condition

3.7.4.3 Close the error, logging the whole stack in the Logging System. The error could not
be recovered at the higher level responsible for handling it and it goes in the log of
anomalous conditions for operator notification and later analysis. This typically
happens for unrecoverable errors or when an error has to be recorded for
maintenance/debugging purposes. This option is used also to log errors that have
been recovered but that we want to record in the log system, for example to perform
statistical analysis on the occurrence of certain recoverable anomalous conditions.

Revision: 2.0

ALMA

Page 26

ALMA Common Software Architecture

XML file E rrorC onfi gurationFile
-......... (from Logging System)

Figure 3.5: Error System

3.7.5 An errorStack class has to be implemented for handling the addition of error information
while it is passed from one application layer to the higher one or from a server to its client.
The errorStack class contains zero or more ACSErrors. The errorStack class will also have a
method to check the stack for a specific error

3.7.6 Errors are propagated via exceptions containing an errorStack. Exceptions would probably be
CORBA exceptions, which are propagated through the network in a transparent way. RD01 -
6.3.1 Definition]

3.7.7 A specific base class for exceptions must be developed. It has to provide support for error
stacks, help handling and definition of exceptions.

3.7.8 User interface tools allow navigating through the error logs and through the levels of the error
stack [RD01 - 6.3.4 Presentation]. The logging display GUI is used to browse errors and a
specific Error display tools is used to browse the error stack corresponding to a single error.

3.7.9 Error conditions are predefined in error configuration files that provide help description of the
error and of the recovery procedures to be taken[RD01 - 6.3.5 Configuration]. Error

Revision: 2.0

ALMA

Page 27

ALMA Common Software Architecture

configuration files are based on XML. Help handling is implemented as links to XML help
pages.

3.7.10 Errors have a severity attribute[RD01 - 6.3.3 Severity]

3.7.11 It is important to take into account that exceptions can skip several layers in the call tree if
there is no adequate catch clause. In this case the error stack will not have a complete trace of
the call stack.

3.8 Logging System

Logging is a general mechanism used to store any kind of status and diagnostic
information in an archive, so that it is possible to retrieve and analyze it at a later time.

3.8.1 ACS Logging System is based on CORBA Telecom Log Service[RD14] and on the ACS
Data Channel architecture

3.8.2 Applications can log information at run time according to specific formats in order to
record[RDO1 - 6.2.1 Logging]:

* The execution of actions

* The status of the system

* Anomalous conditions

3.8.3 Logging includes for example:

* Device commands - reception and execution of commands from devices [RDO1 -
14.1.1 Logging of commands]

* Debugging - Optional debugging messages, like notification of entering/leaving
specific code sections.

* Unrecoverable programmatic errors

* Alarms - change of status in alarm points

* Miscellaneous log messages. Applications can log events regarded as important
to archive, for example receivers changing frequency, antennas set to new targets
etc.

3.8.4 Each log consists of an XML string with timestamp[RDO1 - 6.2.1 Logging], infonnation on
the object sending the log and its location in the system, a formatted log message.

3.8.5 The logging system is centralized so that eventually the logs are archived in a central log.

3.8.6 Log clients can subscribe to the Log Data Channel. The permanent Log Archive RD01 -
6.2.2 Persistencyl (an RDBMS) is essentially such a client.

Revision: 2.0

ALMA

Page 28

ALMA Common Software Architecture

3.8.7 Logs can be cached locally on the machine where they are generated and transmitted to the
central log on demand or when the local buffer reaches a predetermined size. High priority
logs are not cached but are transmitted to the central log immediately. The main purpose of
caching is to reduce network traffic.

producer for logs
logger

calls ACS_ L G0 to send lc

client for logs logMangerP roxi

SACS _LOG ()> -ursLsubscribe to logs

rs e hogs send logs to e ntral server

send logs

Data Channel

store in archive

browse logs
log Monitor Archive

Figure 3.6: Logging System

3.8.8 Applications log data using the API provided by ACS. This API provides methods for
logging information of the different kinds specified above.

3.8.9 The log API allows for filtering, so that log entries with low priority do not get logged. The
filter can for example be set to log or not log debug messages. The filter level can be set
through a command.

3.8.10 The API for error logging must be done such as to prevent message flooding. It shall handle
repeated error messages - possibly a mechanism to not report the same error more than once,
unless reset.

3.8.11 A user interface (logMonitor) allows to monitor the logs while they are produced, in quasi-
real-time, and to browse the historical database offline. It provides filtering and sorting
capabilities [RD01 - 6.2.3 Filtering]. It is useful to filter logs by inclusion and exclusion and
logical combinations based on:

* time

* process that generated the log

Revision: 2.0

ALMA

Page 29

ALMA Common Software Architecture

* name of item logged

* all things from a device node down to the leaves

* type of item logged

3.8.12 The logMonitor will be implemented as a Java application and it will use standard beans
based on JDBC (Java Database Connectivity) for accessing the long term relational database
and standard XML parsers to access the short term logs.

3.8.13 If the Logging System crashes or cannot keep up with log requests, subsystem performance
should not be affected but the log system should record that logs have been lost. The log
system will run with lower priority than the control system.

3.8.14 The logging system is NOT meant to allow "re-run" observing sequences from log messages,
but to allow analyzing a posteriori the exact behavior of the system. Since the system will
never be the same twice it will never be possible to execute twice exactly the same set of
actions. The task of making observing sequences reproducible must be assigned to the higher
level observation scheduler and the logging system has to be used to understand what
eventually did not go as planned in the observing sequence and to fix the identified problems.

3.8.15 Debugging logs are always present in code. Multi-level output of debugging logs can be
switched on/offby setting the priority for log filtering. No compile time debugging flags are
necessary, except when strict real time concerns apply.

3.9 Time System

3.9.1 ALMA will have a distributed HW pulse, interval is 48 ms, that the hardware will
synchronize to[RD01 - 8.1.3. Distributed timing] [RD30]. Also devices on the CAN bus will
be connected to the time bus to allow synchronization. ACS will provide the possibility to
send time-tagged commands to allow synchronous actions.

3.9.2 All time data in ACS (APIs, timestamps....) will be based on the array time [RD01 - 8.1.1.
Standard]

3.9.3 The Time System provides basic service for time handling. It includes:

3.9.3.1 Abstract API to access time information in ISO format [RDO1 - 8.1.2. API] and to
perform time conversion, arithmetic and formatting [RD01 - 5.3.1. Time conversion]
to/from various time systems (UTC, TAI...).

3.9.3.2 An abstract API for synchronization between applications based on array time and on
the 48 ms HW pulse.

3.9.3.3 Timer classes to trigger events based on time [RD01 - 8.1.4 Services]:

3.9.3.3.1 Applications can create instances of the timer class and register
callbacks to be executed when the timer event is triggered

Revision: 2.0

ALMA

Page 30

ALMA Common Software Architecture

3.9.3.3.2 Timers can be periodic (retriggerable) or oneshot events

3.9.3.3.3 Timers can be configured to trigger events:

* at a specific array time. For periodic timers the time of the first
event is specified together with the frequency for the following
events).

* after a given number of 48ms pulses (plus an optional offset to
allow phasing). For periodic timers the number of pulses
between to events defines the event repetition rate.

3.9.4 ISO format only will be used "internally". At User Interface level, more formats might be
required. We will start providing only ISO format and allow users to request more formats via
the Change Request SPR mechanism.

3.9.5 The API is the same for all platforms, but provides higher time resolution and performances
on the platforms that have specific HW support (48 ms event distributed by hardware..)
[RD01 - 8.1.5 Resolution]

3.10 Astronomical Libraries

The common software provides and integrates also class libraries for astronomical
calculation routines (SLA, TPOINT, AIPS++)[RD01 - 5.3.3 Astrometrv].

They are off-the-shelf packages only integrated and distributed within ACS.

3.11 Management and Access Control

3.11.1 The Management and Access Control package implements design patterns and high level
services to manage the life cycle of distributed objects[RD01 - 5.1.2. Procedures]:

* Instantiation and de-instantiation of Distributed Objects.
Instances of Distributed Objects are created when needed or when
requested and destroyed when not needed any more.

* System startup and shutdown.
At system startup all needed Distributed Objects are created and
initialized in the proper order.

* Location of Distributed Objects in the system.
A client does not need to know where a Distributed Object resides and
objects can be relocated when necessary, for example to recover from
failure, for testing purposes or for load balancing.

* Access granting.
A client can gain access to a desired Distributed Object, provided that its
access rights are adequate

* Version control.
If a newer version of a Distributed Object is available, or if its
configuration data changes, it must be possible to upgrade or reconfigure

Revision: 2.0

ALMA

Page 31

ALMA Common Software Architecture

the service without interfering with its clients.
Different versions of the same Distributed Object can be loaded or
relocated for testing purposes without requiring changes in clients.

* Administration control.
Administrative users must have an overview and control over the current
state of the system, including existing services and clients, and must have
the possibility of manually manage services.

3.11.2 Distributed Objects will be registered in the CORBA Naming Service. In the first
implementation Properties will not be registered in the naming service, but will be accessed
retrieving their CORBA reference from the Distributed Object that contains them. This
scheme will be reviewed after the TICS development.

3.11.3 Access to the CORBA Naming Service and Distributed Object's life cycle is handled by a
Management and Access Control Interface. A Manager is the communication entry point for
clients: it provides access to the CORBA Naming Service (with added security) and delegates
to Activators the task to manage the life cycle (code loading, creation and destruction) of
DOs, based on the request of services from the clients.

Figure 3.7: Management and Access Control architecture

3.11.4 The basic entities managed by the Management and Access Control interface (MACI) are
CORBA Objects (COBs) .

3.11.4.1 To the management system, the COB is an entity with a lifecycle that has to be managed.
COBs can be instantiated in three different ways:

* regular COBs are instantiated on demand when they are first
requested, and released when they are no longer needed.

Revision: 2.0

ALMA

Page 32

ALMA Common Software Architecture

* startup COBs are instantiated when the system is brought
online. They cannot be shut down, unless the entire system is
shut down.

* immortal COBs are instantiated when they are needed for the
first time, but cannot be shut down afterwards. They are similar
to startup COBS, but being activated only when needed they
allow shortening the time required starting the system.

3.11.4.2 A COB implements the functionality that allows the interaction between the MACI
infrastructure and an underlying object. The underlying object can be a Distributed Object or
other type of objects, for example CORBA services, which have to be managed by MACI.

3.11.4.3 Every COB has a unique designation. Well-formed COB designations are COB URLs or
CURLs. A CURL is a hierarchical name implemented as a string of arbitrary length that
consists of static prefix curl:, domain identifier and the COB name. An example of a CURL
might be curl : //alma/antennal /mount, representing the mount COB for ALMA
antenna number 1. MACI provides name resolution that from a well-formed COB
designation generates the COB reference that can be returned to the client

3.11.5 Manager is the central point of interaction between the COBs and the clients
requesting their services.

3.11.5.1 Manager has the following functionality:

* It is the communication entry point. A client requesting a COB service
can do so by querying the Manager. Security is tied to this functionality
by requiring every client to pass the authorization protocol and
subsequently tag every request to the manager with a security token
generated by the manager upon successful authentication. Manager can
serve as a broker for objects that were activated outside of MACI (non-
COBs). It provides a mechanism for binding and resolving references to
such objects.

* It performs as a name service, resolving CURLs into object references. If
a CURL is passed that is outside the current Manager's domain, the
Manager forwards the request to the Manager closest to the destination
domain to resolve.

* It delegates the COB life cycle management to the Activator object and
therefore creates no COBs directly. However, it does maintain a list of all
available Activators.

* The Manager uses the configuration database to retrieve relevant
configuration for individual COBs in the domain, as well as locations of
other Managers.

3.11.5.2 Manager is the only interaction that clients have with MACI. Thus, neither COB
implementers nor GUI client developers need concern themselves with aspects of MACI
other than the Manager.

Revision: 2.0

ALMA

Page 33

ALMA Common Software Architecture

3.11.5.3 Manager implementation is based on CORBA Naming Service and all references to COBs
are available to clients not aware of MACI functionality through the CORBA Naming
Service. A CURL-to-Naming Context mapping allows a one to one correspondence between
COBs retrieved using MACI services or from the Naming Service.

3.11.6 Every client of a COB service that is not itself a COB may implement an interface called
Client.

* The Client interface allows the client to act as a secure party in the
communication with the COBs, to receive general-purpose string
messages from the MACI components and to be notified when any
change happens to the COBs that the client utilizes.

* Each Client logs in to the MACI system before any other requests are
made, and in turn it obtains a security token, which it must use in every
subsequent request to the MACI.

* The log in and other requests are issued to the Manager, which serves as
a portal to other services.

3.11.7 An Activator serves as an agent of MACI that is installed on every computer in the
control system.

* Every Activator runs in its own process.

* Manager sends the Activator the request to construct a specific
COB by passing it the name, type and the path of executable code of the
COB.

* The Activator loads the executable code and begins executing it. If
the dependant executables are not loaded automatically by the operating
system (as is the case on the VxWorks platform), Activator loads them
prior to executing any code.

* The Activator also deactivates COBs, when so instructed by the
Manager and is able to shutdown by disabling all COBs.

* Activator maintains a list of all COBs it has activated and is able to
return information about individual COB's implementation (like file path
of the loaded code, version and build date).

* Activator provides the COBs it hosts with an interface through which
COBs can perform their MACI-related tasks, such as issuing requests to
the Manager and activating other CORBA objects.

3.11.8 Administrator is a special-purpose client that can monitor the functioning of the
domain that it administers. Monitoring includes obtaining the status of the MACI
components as well as notification about the availability of the COB components.

3.11.9 MACI allows organizing Distributed Objects hierarchically and handling startup and
shutdown dependencies between objects.

Revision: 2.0

ALMA

Page 34

ALMA Common Software Architecture

* Whenever a client needs a CORBA reference for a DO, a request to
Manager is done for the corresponding COB.

* If the object is not already instantiated, the Manager asks the Activator to
create it.

* When an object contains hierarchical references to contained objects, the
dependency is expressed via CORBA references and resolved through
requests to the Manager. In this way, the Manager can automatically
achieve instantiation of not already active nested objects. This guaranties
that all objects are automatically created in the right order and when
needed.

* Some objects are needed immediately at bootstrap. They are directly
specified in a Manager table and the Manager instantiates them as soon
as it is bootstrapped.

* If there is a root top-level object, just putting this object in the Manager
table will trigger a cascade instantiation of all dependent objects.

3.11.10 An Object Explorer User Interface tool is provided to navigate the hierarchy of distributed
objects based on the naming hierarchy. All objects in the system can be reached by navigating
the hierarchy and all object information can be retrieved and edited, including accessibility for
a given user [RD01 - 5.1.3 Browser]. For example, it will be possible to graphically browse
the hierarchy of distributed objects in the system, based on the naming hierarchy, reach every
single distributed object and view/edit all values of properties and characteristics. The Object
Explorer uses the CORBA Interface Repository to retrieve information on the interfaces
provided by the Distributed Objects in the system.

3.11.11 An Administrator Client User Interface tool is provided. The Administrator Client:

* displays the information about CORBA objects on the local network.
This includes COBs, Managers and Activators. Both currently active
COBs and potentially active COBs (i.e. COBs that the Manager is able to
bring online on request) are displayed.

* interacts with the Manager through IDL Administrator interface, by
receiving notifications about other clients and activators in the system
from the Manager.

3.12 Archiving System

3.12.1 The archiving system provides archiving of monitor point values. ACS provides only the data
collection mechanism, but not storing of data. Data are made available from the archiving
data channel.

3.12.2 The value of each property in the control system can be archived. Archiving is
enabled/disabled and configured on per-property basis.

3.12.3 ACS Properties publish their value on the archiving data channel. The parameters for data
publishing are defined in the following Property's Characteristics:

Revision: 2.0

ALMA

Page 35

ALMA Common Software Architecture

ArchivePriority: The priority of the log entry that will carry the information
required for archiving the parameter's value. If the priority exceeds the value specified in
the MaxCachePriority, the archiving data will be transmitted immediately. If it is
below MinCachePriority, the data will be ignored. If it is somewhere in-between, it
will be cached locally until a sufficient amount of log entries is collected for
transmission.

ArchiveMaxlnterval: The maximum amount of time allowed passing between two
consecutive submissions to the channel. If the time exceeds the value specified here, the
entry should be submitted even though the value of the parameter has not changed
sufficiently.

ArchiveMinlnterval : The minimum amount of time allowed passing between two
consecutive submissions to the log. If the time is smaller than the value specified here,
the value is not submitted, even though the value of the parameter has changed.

ArchiveDel ta (same type as parameter): Defines what a change in parameter value is.
If the value changes for less than the amount specified here, no value is submitted.

3.12.4 Clients can subscribe to the Archiving Data Channel using filters to get events when
archiving data is available. ACS provides an API that allows parsing the Notification Channel
messages containing monitor point archiving data.

Relational D atabase

log Monitor
fromNgging System)

store/ret ive data

browse logs-'

roue monitor data

through datachannel monitoaDisplay

/ througi qata channel

producer ofmonitordata producer for logs
(from Logging System)

Figure 3.8: Archiving System architecture

3.12.5 Periodic data collection of properties can be synchronized to the 48 ms hardware tick

3.12.6 Individual properties data are cached locally before they are sent to the central archive

3.12.7 Each property can be uniquely identified by a name, composed of the device followed by the
property name.

Revision: 2.0

ALMA

.

Page 36

ALMA Common Software Architecture

3.12.8 The archiving system supplies a mechanism for retrieving the historical value of any
property, provided that the value has been archived.

3.13 Command System

A command is the basic mechanism for communication from users to Distributed Objects
and between Distributed Objects. A command is actually a DO method.

3.13.1 Commands are sent to Distributed Objects [RD01 - 6.1.2. Commands] using remote method
invocation. It is based on CORBA[RD01 - 10.4.1. CORBA][RD01 - 13.1.1. Distributed
Objects and Commands].

3.13.1.1 CORBA provides full support for inter-process communication.

3.13.1.2 CORBA objects have a public interface defined with the IDL language[RD01 -
10.3.4. IDLi

3.13.1.3 CORBA objects can be remotely accessed by creating stubs and invoking the defined
IDL interface.

3.13.1.4 Any language supported by CORBA can talk to any remote object, independently
from implementation language and architecture. The Object Request Broker (ORB)
does mapping of calls and marshalling.

3.13.1.5 CORBA defines a standard Intemet Inter-ORB Protocol (IIOP) that guarantees
interoperability between any CORBA implementation and vendor based on TCP/IP.
Any implementation must comply with IIOP, but a vendor can choose to additionally
implement high performance transport protocols. For example there are native ATM
implementations. Same-process messages are usually implemented on direct function
calls while same-CPU messages are based on operating system message queues.

3.13.1.6 A call to a method of a CORBA Distributed Object, based on its IDL interface, is
what can and has to be mapped into the concept of Commands (the method call
concept is very similar to RPC).

3.13.2 A command has a well-defined syntax and set of call and return parameters. Full context
validation and syntax check of commands is always done when the command is received by
the server application[RD01 - 6.1.4. Validation]. A command can also be checked by the
sender, but this is not mandatory except in the case of generic command-sending GUIs[RDO1
- 6.1.3. Syntax Check]. The syntax check would check that the command is valid and that the
parameters are within the static ranges.

3.13.3 Commnands are synchronous (the caller blocks and waits for a return reply, up to a defined
timeout) [RD01 - 6.1.7. Mode] [RD01 - 6.1.8. Timeoutl. Applications should take care of the
fact that a synchronous call can block the whole application unless it is issued from a
dedicated thread. Replies can be nonnrmal replies or error replies[RD01 -6.1.1. Messages].

3.13.4 CORBA Asynchronous Method Invocation (AMI) [RD29] can be used to implement
asynchronous calls on the client side using synchronous methods on the servant side. AMI is
only supported by few ORBs, for example TAO, but not by Orbacus.

Revision: 2.0

ALMA

Page 37

ALMA Common Software Architecture

3.13.5 Asynchronous command handling using synchronous methods on the servant side can also be
done by starting a separate thread, which sends a synchronous command. This way the main
thread is not blocked.

3.13.6 Using synchronous commands, time-outs and intermediate replies are not handled by ACS,
but must be taken care of by the application. ACS cannot the warranty that requirements
[RD01 - 6.1.6 Command delivery] and [RD01 - 6.1.9 Intermediate replies] are satisfied. This
is let to applications

3.13.7 Commands can be invoked from generic applications, that are able to browse the objects in
the systems, show the available commands with the corresponding syntax, check dynamically
the syntax of commands and send them[RD01 - 6.1.5. Programmatic use].

3.13.8 A server sub-system handling a command continues to operate if the client that has issued the
command disappears, e.g. between a command being initiated and completed. In this case the
server logs a non-critical error, since a client should always wait for replies to initiated
actions, and continues.

3.13.9 Objects publish their interfaces via IDL interfaces. IDL allows use of inheritance to build new
types. IDL allows only defining the pure interface in terms of parameters and types; it does
not allow specifying range checking for the parameters. This checking has to be performed by
the applications. IDL interfaces are registered in the CORBA Interface Repository (IREP)
and made public.

Figure 3.9: Command System architecture

3.13.10 ACS will provide checking functions and tools to implement command syntax checking both
at the sender and receiving side of commands. Checking of commands on the sender side is
for example required for generic tools like a command line tool to send commands from the
shell.

Revision: 2.0

ALMA

Page 38

ALMA Common Software Architecture

3.13.11 Property classes implement a CheckO method, that can be invoked to verify compliance of a
value with what is specified in its Characteristics. Characteristics are used to perform range
and other run-time checks.

3.13.12 A Distributed Object receiving a Command performs range checking and validation of the
whole command syntax by calling transparently a Command Parameter Checking library,
which has to be designed.

3.13.13 CORBA introspection is used to develop generic tools able to analyze at run time the IDL
interfaces of available CORBA objects to provide a list of available "commands" with their
signatures and to execute on the fly commands. Alternatively, XML definitions of the
commands in the Configuration Database can be used, see below.

3.13.14 Commands and their Parameters are defined in the Configuration Database[RD01 - 6.1.5.
Programmatic use] [RD01 - 4.2.1. Configuration Database]. The Configuration Database of a
Distributed Object contains, together with Property definitions, one entry per command. The
description of a commnand parameter has the same syntax as a Property of the same basic
type; i.e. is defined by the same set of Characteristics. In an XML implementation of the
Configuration Database, a COMMAND tag is used to describe commands and PROPERTY
sub-tags to define each parameter in a hierarchical structure. Using the same syntax to
describe Properties and Command Parameters allows a seamless and coherent mapping
between the two types of entities. A good solution to guarantee alignment between
Configuration Database and IDL definitions would be to generate IDL from XML
definitions, but this has to be investigated.

3.13.15 Clients can also call the Command Parameter Checking library prior of invoking a command,
but are not bound to do it. This will be typically done by interactive applications to validate
human user input. The usage of the Command Description in the Configuration Database also
allows to implement client-side context sensitive help and command completion.

3.13.16 In case of crash of the remote application, the client ORB notifies the caller with proper
CORBA exceptions.

3.14 Alarm System

The Alarm System provides a mechanism for notifying asynchronously operators and
registered applications of the occurrence of important anomalous conditions that can
disrupt the observation or be potentially dangerous for the system[RD0 i - 6.4.1
Definition].

What is described below is still mostly TBD and needs prototyping to try out the
concepts.

3.14.1 Properties are able to trigger alarms. The simple alarm is triggered when the value of the
property exceeds or falls below the alarm limits defined for the property. Hysteresis is
provided for the alarm limits.

3.14.2 Clients can be notified on alarms through callbacks. Notification is done when the alarm is set
and when it is cleared.

Revision: 2.0

ALMA

Page 39

ALMA Common Software Architecture

3.14.3 Whenever an alarm is set or cleared, the event is logged in the Logging System RDO 1 -
6.4.6. Alarm logging].

3.14.4 More complex alarms will be based on objects. They will have the following properties

* An enumerated state property with the values: GOOD, WARNING, BAD

* An enumerated occurrence property (FIRST OCCURRENCE, MULTIPLE
OCCURRENCE....)[RD01 - 6.4.4. State]

* A timestamp property describing when the alarm status changed

* A property holding the status of user acknowledge, when required

* A set of description characteristics [RDO1 - 6.4.7. Configuration], including (on top of
the standard ones like description, URL for extended documentation...) a severity [RD01
- 6.4.3. Severity]

* Some alarms just disappear when the alarm condition is cleared, but others require an
explicit acknowledgement from the operator[RD01 - 6.4.2 Behavior]

3.14.5 Hierarchical alarms can be constructed by a client on top of the available alarm system. Such
an implementation would be based on the OVRO hierarchical alarm system [RD22][RDO 1 -
6.4.5. Hierarchy].

3.14.6 It is possible to define actions that have to be started on the occurrence of a given alarm
condition [RD01 - 6.4.8. Binding]. An API is provided for applications, so that they can
request a notification to be sent via a callback of the occurrence of specific alarms.

3.14.7 An alannDisplay GUI provides an operator user interface to the alarms. Using this
application the operator can browse through the currently active alarms, request for detailed
information and help about a specific alarm, acknowledge alarms when this is required.

Revision: 2.0

ALMA

Page 40

ALMA Common Software Architecture

to alarm

change

+attached propt

Figure 3.10: Alarm System architecture

3.15 Sampling

3.15.1 Every Property can be sampled at a specified sustained frequency, up to 200 Hz, limited by
hardware.

3.15.2 A sampling frequency of 1KHz for a limited number of Distributed Object Properties must be
allowed in order to implement a "virtual oscilloscope" whereby, for example, noise sources in
the IF chains can be correlated and identified.

3.15.3 The data channel transports sampling data.

3.15.4 The samples are stored in a data file for later analysis or to be passed to applications like
LabView for analysis of engineering data. Every sample is time-stamped to allow correlating
data from different sources. [RD01 - 4.3.1. Sampling]

3.15.5 The samples can be plotted in near real-time on a user interface on the operator terminal or
any other user station. The plotting application subscribes to the sampling data from the data
channel, which is fed by the sampling manager, and periodically updates the running plot
with the new data [RD01 - 5.1.4 Analysis tool]. The plotting application can also display
sampling data from data files. The plotting application can be:

* A Java application that uses Java plotting widgets and in particular widgets aware of the
Property internal structure to define plotting scales and units.

Revision: 2.0

ALMA

Page 41

ALMA Common Software Architecture

* A COTS application, like LabView[RD 13][RD01 - 10.5.7 Analysis and plotting], with
advanced plotting and analysis capabilities.

3.15.6 Multiple samples can be super-imposed on the same plot with the same time base, even if the
data are received from different distributed objects, possibly on different antennae. Also, it
should be possible to plot samples against one another, an example being VI curves (voltage
vs. current) used in biasing mixer junctions.

3.15.7 Data transport is optimized. The samples are NOT sent one by one to the central control
computer responsible for storing data, but are cached on the local computer and sent in
packets (for example with 1 Hz. Frequency). This is of primary importance to keep network
load under control. [RDO01 - 4.3.1. Sampling]

3.15.8 There will be a sampling engine implemented as a distributed object:

3.15.8.1 It can be activated on any local computer

3.15.8.2 Can be configured to sample one or more Properties at given frequencies.

3.15.8.3 It sends periodically at low frequency packets of data to a sampling server that stores
the data for later analysis or provides them to near-real-time plotting applications.

3.15.8.4 Sampling must not reduce the performance of the control system or the network. The
caching of data will reduce network traffic while assuring that the sampling
processes runs with lower priority than control processes will reduce the impact on
the performance of the control system.

Revision: 2.0

ALMA

Page 42

ALMA Common Software Architecture

am

data

Get property values

time trigger

Figure 3.11: Sampling architecture

3.15.9 XML seems an interesting data format for sampling files. This fonnat allows also easy data
exchange with relational databases. Style sheets based on the eXtensible Style Language
(XSL) can be used to transform XML files in other formats, like simple ACSII blank
delimited tabular files.

3.16 User Interface Libraries and Tools

3.16.1 The Java language[RD06J is the current choice for GUI development, in particular coupled
with the SWING graphical library

3.16.1.1 A rich set of widgets is part of the standard package.

3.16.1.2 Java is highly platform independent [RDO1 - 12.1.1 Portabilitvy]. GUIs are platform
independent and can be developed on any system and run on any other system[RD01
- 12.1.2 Extended Portabilitv].

Revision: 2.0

ALMA

Page 43

ALMA Common Software Architecture

3.16.1.3 Java applications can run inside Web Browsers for the deployment of low
complexity GUIs on remote sites [RD01 - 12.1.2 Extended Portability].

3.16.1.4 Both Java and Web Browsers have good CORBA support. OrbacusFRD 19 is the
ORB currently selected to provide CORBA support in Java.

3.16.2 ACS provides a standard set of tools for the development of user interfaces[RD01 - 12.1.3
Tools]. This includes:

3.16.2.1 Interactive GUI builder. A COTS GUI builder has to be selected. The current choice
is IBM Visual Age[RD16]: it is available on Windows and Linux platforms and is
used by ANKA[RD04] since it provides a very good visual integration of Java
Beans. There is no point in developing a proprietary tool.

3.16.2.2 Standard set of widgets for the implementation of applications with common look
and feel. The adoption of the Distributed Object concept allows reuse of many Java
Beans developed in the particle accelerator community specifically for the
implementation of control systems. In particular the Java Beans developed for
ANKA[RD04] constitute the core palette for ACS.

3.16.2.3 Standard Java class libraries for the integration with the control systems and for the
usage of all services provided by the ACS

3.16.3 All GUIs for generic ACS applications, (Object Explorer, logMonitor...) will be developed
using ACS standard GUI libraries [RD01 - 12.1.5 ACS GUIs].

3.16.4 GUIs do not implement any control logic[RD01 - 12.1.4 Modularity]. They are dummy
applications that simply send commands to Distributed Objects and access Distributed Object
Properties for display and update. Any action performed through a GUI can be also
performed using command line commands, script or simple programs and no GUI is strictly
required to drive the system.

3.16.5 Integration with the Web through the usage of an HTML/XML Browser provides access to
online documentation.

3.16.6 The Web Browser is also used to deploy low complexity GUIs on remote sites without
requiring installation of specific and heavy software packages. (Control GUIs and in any case
complex GUIs are not supposed to run inside a Web Browser but as stand-alone
applications).

3.17 Scripting support

3.17.1 A scripting language is part of ACS [RD01 - 5.2.1 Scripts]

3.17.2 It is used as a glue language between the high level interfaces and the control and data
systems[RD01 - 5.2.1 Scripts]:

3.17.2.1 High level procedures of a coordination nature

Revision: 2.0

ALMA

Page 44

ALMA Common Software Architecture

3.17.2.2 System administration, replacing shell script languages for new developments

3.17.2.3 Rapid prototyping

3.17.2.4 Test applications and procedures

3.17.3 It provides access to the basic features of all Common Software services through[RD01 -
5.2.2.Functionalit]:

3.17.3.1 CORBA invocation of remote objects

3.17.3.2 A package of support classes implemented in the scripting language itself

3.17.4 Python[RD24] and Tcl/Tk[RD251 (with combat as CORBA interface) are the chosen
candidates [RD01 - 10.5.6.Scripting language]. They seem to satisfy all the requirements
listed below

3.17.5 Needed Features:

3.17.5.1 Object Oriented

3.17.5.2 Platform independent.

3.17.5.3 Flow control, variables, and procedures.

3.17.5.4 Plug and play to install scripting language.

3.17.5.5 Connects to CORBA.

3.17.5.6 Easy to use for non-programmers.

3.17.5.7 Rapid Prototyping

3.17.6 Features that would be nice to have are:

3.17.6.1 Similar to programming languages used in the project.

3.17.6.2 GUI development.

3.17.6.3 Embeddable into code for interactive applications.

3.18 ACS Application Framework

3.18.1 The common software has to provide also an application framework that allows an easy
implementation of a standard application (a skeleton application) with all essential

Revision: 2.0

ALMA

Page 45

ALMA Common Software Architecture

features[RD01 - 5.1.1 Framework]. Inheritance and other mechanisms are used to enhance
and extend the basic application according to specific application needs.

3.18.2 The application framework enforces common coding solutions and adherence to predefined
standards. For example, each physical sub-system is controlled by a "server" process that
implements:

3.18.2.1 A minimum number of standard commands with a standard behavior

3.18.2.2 HW level device control

3.18.2.3 Extensions for:

* Specific commands

* Sub-states

3.18.2.4 A standard state machine for the distributed object will be implemented within TICS.
This can later be integrated into the application framework.

3.18.3 The application framework will be implemented as a set of classes that provide:

* Skeleton for standard application, with standard commands and states

* Implementation of typical communication Design Patterns

* Implementation of standard startup/shutdown/configuration procedures

3.18.4 This implementation follows defined protocols for command handling, to guarantee for
example command concurrence and response time. A way to make sure that these
requirements for a server are satisfied is to provide an extensible framework that implements
all these design patterns.

3.18.5 At the higher level the same concepts can be applied to coordination applications and most of
these same patterns go well over the boundaries of the control system.

3.19 FITS Libraries

The common software provides and integrates also class libraries for the handling of
standard file fonnrmats (FITS files) [RD01 - 7.2.1 FITS], mathematical libraries (Fats,
Fitting) [RD01 - 5.3.2 Mathematics], units conversion and handling (based on the AIP++
unit management classes) and other similar high-level support libraries. It is important to
keep in mind that the commnon software will have to go over the boundary of the Control
System in the direction of the data flow and handling.

The FITS Libraries package is just an example of such components.

A list of libraries has to be compiled and standard off-the-shelf libraries should be used
whenever possible, eventually with a small wrap around to make them uniform with the
rest of the system.

Revision: 2.0

ALMA

Page 46

ALMA Common Software Architecture

Libraries and application frameworks developed by other teams (Control System,
Correlator, Data Flow, Archiving...) and recognized as of general use will have to be
added to the Common Software kernel. Input is required in these areas.

Packaging all these libraries, even if off-the-shelf, in the ACS distribution guarantees that
all sites involved in the project have the same version of the packages and that they are
built and installed with the same options.

3.19.1 Astronomical data flow

ACS should provide also support for the transport of bulk data [RD01 - 7.1. Bulk data
transfer], to be used for science data. This is not specified in this issue of the document,
but performance tests on bulk data transfer will be performed with TICS, with a TBD
prototype application. CORBA provides[RD27J design patterns aimed at the transfer of
large amounts of data that should satisfy the requirements expressed in [RDO1 - 7.1.1
Image pipeline].

4 Attributes

4.1 Security

Security requirements, stated in [RD01 - 9.1 Security] are not analyzed in this document,
but there is no indication that they cannot be met with the described architecture. They
will be taken into account for the next major revision, after ACS 1.0.

4.2 Safety

Requirement [RD01 - 9.2.1. Safetvy] does not impose any particular behavior on ACS,
since it states that software based on ACS has no direct responsibility on human and
machine safety.

Software limits will be directly supported in ACS [RD01 - 9.2.2. Software limits].
Applications will handle software limits as alarms on Properties representing the value to
be kept within limit. In a typical case, a value with software and hardware limits will be
handled using a 5-state alarm (normal, high/low SW limit, high/low HW limit). Reaching
a software limit will trigger a callback in the application responsible to handle the limit
condition.

4.3 Reliability

Reliability requirements, stated in [RD01 - 9.3 Reliability] are not explicitly analyzed in
this document, but there is no indication that they cannot be met with the described
architecture. In particular, CORBA itself has been designed having high reliability and
availability as a key requirement. The specific requirements will be taken explicitly into
account for the next major revision, after ACS 1.0.

Revision: 2.0

ALMA

Page 47

ALMA Common Software Architecture

4.4 Performance

The current choices for hardware and software platforms and the architecture for ACS
described in the previous sections should ensure that the required performances could be
achieved.

Basic performance requirements have been verified with ACS 0.0 on the Kitt Peak 12m
antenna.

All performance requirements stated in [RDO1 - 9.4. Performance] will be verified with
ACS 1.0 on a prototype aimed at implementing a realistic system in term of number and
size of objects [RD01 - 3.3.1 Size] and of number of interactions and with the TICS
[RD26] interferometer.

A specific feasibility check of CORBA in relation to astronomical data transfer will have
to be performed with ACS 1.0. but is not discussed in this issue of the document RDO1 -
10.5.9 Data transfer]. Here we want to test the data channel concept.

Another area where feasibility tests are necessary is the use of XML. One example is
retrieval of logs with big logging archives. Also the use of XML for sampling needs to be
verified.

5 Life cycle aspects

ACS is being designed and implemented according to what is specified in [RDO1 - 11.
Life cycle aspects].

ACS uses procedures and standards already defined by the Software Engineering
working group. In particular the software development process is defined by [RD 17].

ACS 0.0 is a first essential prototype and has been used to validate the initial choice of
CORBA and the basic architecture described in this document [RD01 - 11.1.1
Prototypingl.

ACS 1.0 will be used for the implementation of the Test Interferometer Control Software
(TICS) and the features to be developed for ACS 1.0 are driven by the requirements for
the implementation of TICS [RD26].

5.1 Design requirements

Different versions of the system can exist in different places at the same time, with
different Configuration Databases, but it must be possible to synchronize them (for
example, development is done on a control model, with certain test motors, and
installation is done on the telescope, that has different motors) [RD01 - 13.1.5
Configuration].

Differently from what we thought when we have started the investigation on CORBA, we
have verified that code does not always need to be recompiled if new IDL interfaces are
made available or if an IDL interface is changed, for example adding new methods[RD01
- 13.1.6. Modularity]. With TAO and ORBacus even if one changes interfaces, both
client and server still work if they do not use the new features. It is possible to have the
server exporting one version of the interface and the client use another version. If an
interface changes, then re-compilation is necessary (as expected) only for those programs
that use the new feature of the methods that eventually changed signature. This should

Revision: 2.0

ALMA

Page 48

ALMA ALMA Common Software Architecture

work also with other ORBs, since it is due to the existing CORBA IIOP protocol. On the
other hand, this behavior is not explicitly supported and, should the IIOP protocol ever
change, different interfaces might lead to run-time errors.

ACS will be integrated and tested with any software specified in [RD01I - 12.3.1 The
ACS shall be integrated and tested].

5.1.1 Portability and de-coupling from HW/SW platform

ACS shall be designed to be portable across RTOS, Unix and Linux platforms for what
concerns its upper level components [RD01 - 13.1.7 Portability].

The higher level of software in particular (co-ordination and user interface) should be as
much as possible portable and de-coupled from any specific HW and SW platform. This
pushes in the direction of the Java language and of the usage of a portable scripting
language like Python[RD24J and/or Tcl/Tk[RD25]. Java virtual machines and Java ORBs
are available on any platform and for any web browser. At present time there are still
compatibility issues between Java Virtual Machines ("compile once, debug everywhere"
syndrome), particularly on a UI with live content. Most interfaces are not "alive" and do
not expose the incompatibilities, but many ALMA interfaces will have live content. Web
browsers are particularly sensitive to compatibility problems since they usually
incorporate outdated Java Virtual Machines. Experience has shown that it is best to limit
the number of target platforms and that real-world Java programs should run as
independent applications.

Java performance is still a major issue and the language should be used mainly for GUIs
and for high-level coordination applications with no strict performance requirements. For
non-UI work and in particular for server applications, C++ (while not perfect) is the
language of choice: it is fast, efficient, mature, and has ANSI/ISO standards. It is then
suggested to use C++ in performance demanding applications and Java everywhere else
[RD01 - 10.3.3 Compiled languages], with the exception of low level drivers that can be
implemented in plain C language.

Java and C++ interface at the network level through CORBA via IDL interfaces.

Portability among different versions of UNIX and UNIX-like RTOSs is improved by
adopting the ACE libraries[RD23] and the Posix standard [RD01 - 10.3.2 High level
operating system], although at the RTOS level specific real-time features provided by the
operating system (VxWorks for phase 1 [RD01 - 10.5.3 RTOS]) can be used[RD01 -
10.3.1. RTOS].

5.1.2 Small, isolated modules for basic services

Basic services of use outside the Control Software (for example logging and error
system) must be independent from the other packages, so that they can be used also for
data flow and management without requiring installation of control system components.
Also access to control system data must be de-coupled.

CORBA is very well suited for this, since ORBs are available on any platform and also
inside web browsers to provide the basic communication layer.

Revision: 2.0 Page 49

ALMA ALMA Common Software Architecture

The following table provides a trace of all requirements expressed in [RD01] into this
document.

A Release column specifies when the described requirement will be implemented. Four
releases have been taking into consideration:

* 0.0 is the first prototype release

* 1.0 is the first production release, that should implement all basic functionality

* 1.1 is a bug fixing release (after a 6 month cycle), providing no new functionality

* 1.2 is the following real release (after a 1 year cycle), providing extensions to the core
functionality

When only partial functionality if implemented in a release, the release number is put in
parenthesis. Some requirements (like 2.3, 3.1.1 and so on) are at the core of the whole
ACS and therefore it does not make any sense to specify a release for implementation. In
this case the release is marked as Not Applicable (N/A).

Item in ACS Technical Requirements ACS Architecture Release
[RDO1]

2.3. Reference Architecture 1.3 N/A
3.1.1. Scope. 1.2 N/A

.3.1.2. esign 11.2, 2.1 N/A
3.1.3. Use. 1.2 N/A
f 3.2.1. ...Users. 1.2 N/A

3.2.2. Value retrieval. 3.6.3 1.0

3.2.3. Value setting. 2.5.11.2 __ 0.0

3.2.4. Local and central operation. 2.2 :0 ..

3.2.5. Remote access. 2.2 1.0
3.3.1. Size. 4.4 0.0

3.3.2. Serialization. 3.5.3.1, 3.5.5 1.2

3.3.3. Migration. 3.5.6 1.2

3.3.4. Simulation. 3.5.91.2
4.1.1. Direct value retrieval. 3..11.10.0

4.1.2. Indirect value retrieval. 3__.6.3 1.0

4.1.3. Rate 3.5.12.2, 3.5.12.3 1.0
4.1.4. Transparency. 3.6.3 j 1.0

4.1.6. Data channel. 3.6 1.0
4.1.7. Quality. Change request to

Sremove requirement
_ submitted

............................... . .(A LM A SW 2001080). __ _

4.2.11 Configuration Database. 3.5.3, 3.13.14 (0.0) 1.2
4.2.2. Database design. 3.5.3.2 1.0........................; ; ;'';';';;;;;';;';';';''''

Revision: 2.0

(

5.1.1. FraEmework. 3.18.1 1.2

Page 50

ALMA ALMA Common Software Architecture

5.1.2. Procedures. 3.11.1 .2
5.1.3. Browser. 3.11.10 1.0
5.1.4. Analysis tool. 3.15.5 1.0
5.2.1. Scripts. 3.17.11 3.17.2. _0.).
5.2.2.Functionality. 3.17.3.0.0

5.3.1. Time conversion 3.9.3.1 1.
5.3.2. Mathematics 3.19 1.2
5.3.3. Astrometry 3.10 11.2
61.1 Messages 3.13.3 (0.0) 1.0
6.1.2. Commands. 3.13.1 0.0
6.1.3. Syntax Check. 3.13.2 1.2
6.1.4. Validation. 3.13.2 1.0
6.1.5. Programmatic use. 3.13.7, 3.13.14 (1.0)1.2
6.1.6. Command delivery.
6.1.7. Mode. 13.13.3 (0.0) 1.0
6.1.8. Timeout.13.13.3 (0.0) 1.0

6.1.9. Intermediate replies.

6.2.2. ersistency. 83_ 6 .1.2

6.23. Filtering. 3.811 (0.0)1.0
6.3.1. Definition. 3.7.6 N/A

6.3.2. Tracing. 3.7.3 1.0_

6.3.3. Severity. 3.7.10 1.0
6.3.4. resentation. [3.7.8 (0.0) 10

S6.3.5.Configurati on. 3.7.9 1.2
6.3.6. Scope. 3.7.2 1 0.0
6.4.1. Definition. 3.14 N/A
6.4.2. Behavior. f3.14.4 1.2
6.4.3. Severity. [3.14.4 41.2
6.4.4. State. (3.14.4j1.2
6.4.5. Hierarchy. 13.14.5 1.2
6.4.6 Alarm logging. .114.3 1 .0
6.4.7. Configuration. 3.14.4 1.2
6.4.8. Bindin. 3.14.6 1.2
7.1 Bulk data transfer 3.19.1 1.2
7.1.1. Image pipeline 3.19.1 1.2
7.2.. FITS format shall be supported. 3.192
8.1.1. Standard. 3.9.2 1.0
8.1.2. API. j3.9.3.1 1.0
[81.3. Distributed timing. 3.9.1
8.1.4. Services. [3.9.3.3 1.0
8.1.5. Resolution. (3.9.5 1.0

9.2.1. All humany and machine safety 4.2 1 0.0
9.2.2. The use of software limits shall be 4.2 1.0Ssupported I..

Revision: 2.0

C,

Page 51

ALMA ALMA Common Software Architecture

------- - ---- --- -- ------- --- - --------- ------- ---- ------ ----- --- --- --

9.3 Reliability .31.
9.4 Performance _ . 14 .4 0.0

10.3.1. RTOS. 5.1.1 0.0
10.3.2. High level operating ystem. 5.1.1 0.0
10.3.3. Compiled Languages. 2.2, 5.1.1 0.0
10.3.4. IDL. 3.13.1.2 0.0
10.4.1. CORBA. 3.13.1 0.0

10.4.2. ORB independence. 3.5.8 0.0

10.4.3. LAN. 1.3 0.0
10.4.4. Backbone. 1.3 0.0
10.4.5. Field-bus. 1.3 0.0
10.5.3. RTOS 3.4.2, 5.1.1 0.0
10.5.4. OS 3.4.2 0.0

10.5.5. Configuration DB 0..3.0.0 f 1F.0
10.5.6. Scripting anguage 2.2, 3.17.4 (0.0) 1.
10.5.7. Analysis and plotting 3.15.5 1.0
10.5.8. CORBA ORB 3.5.8 0.0

10.5.9. Data transfer 4.4 0.0 1.0
10.5.10. The XML format 3.5.5 (0.0 1.0
10.5.11. LAN 1.3 0.0
10.5.12. Field-bus 1.3, 3.4.1 0.0
11. Life cycle aspects 5 0.0
11.1.1. Prototyping 5 0.0

12.1.1. Portability 3.16.1.2 0.0
12.1.2.Extendedportability 3.16.1.2, 3.16.1.3 (0.0) 1.0
12.1.3. Tools 3.16.2 0.0
12.1.4. Modularity 3.16.4 0.0
12.1.5. ACS GUIs 3.16.3 (0.0) 1.0

12.1.6. Location 2.2 1.0
12.2.1. Hardware interfaces 3.4.1 (0.0) 1.0
112.3.1. The ACS shall be integrated and 5.1 (0.0) 1.0
tested._______________
13.1.1. Distributed Objects and [2.1, 3.5, 3.5.1.5, 0.0
Commands. 3.13.1
13.1.2. Standard methods. 3.5.4 1.2" " " " " ; ; ; ; ; ''' ~'~'~~ ; ' " ' ; ; ; "~ ; ; " " ' '~~"~- ----- ---------- ----------- -------- ii ----
13.1.3. Groups. Change request to

remove requirement
submitted

4(ALMASW200079). ?

13.1.9. ynamc Co cnfi uration.3.5.3.5 1.0

14.1.13. States 3.5.4 1.2

Revision: 2.0

te C

Page 52

ALMA ALMA Common Software Architecture

Notes:

* Requirements in sections [RDO1 - 10.1 Standards and Procedures], [RDO1 - 10.2.
Computer hardware standards] and [RD01 - 10.3 Software] are mostly not directly traced
in the document. They are in any case taken into account and satisfied by the choices
done for the reference products listed in [RDO1 - 10.5 Reference products].

* Requirement's section [RD01 - 14. Requirements for applications] is in principle N/A to
this document, since states requirements for applications and not for ACS. Nevertheless,
ACS will try to support as much as possible applications in satisfying these requirements.
For this reason a few sub-sections are directly traced in the document.

* Requirements [RD01 - 6.1.6 Commnand Delivery] and [RD01 - 6.1.9 Intermediate reply]
are not satisfied by ACS. As discussed during the review phase, they are left for the time
being to the responsibility of applications.

* The concepts of quality[RDO 1 - 4.1.7 Quality] and groups [RDO1 - 13.1.3 Groups] has
been removed and a change request has been submitted for the requirements document.

* The following table provides a trace of the requirements on ACS expressed in TICS
Design Concept [RD26] into this document.

Item in TICS Design Concept[RD26] ACS Architecture f Release
6. Data Channel 3.6 1.0

[7. Configuration.Database 3. ... (0.0) 1.2

8.3 G Us 3.1..............

9.3. Time System 3.9 1.0

10.5.1. Device 1 3.5 0.0
[11.1. Monitor point collecting 13.12 j0.0......
14.1.Logging 13.8. 1.0
4.2. Errors 1 3.7 .

14.3. Alarms 13.14 1(1.0) 12

Revision: 2.0

C'

Page 53

