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ABSTRACT. The process of digitizing a stochastic signal introduces systematic distortions into the resulting
digitized data. Further processing of these data may result in the appearance of unwanted artifacts, especially
when the input signal was generated by a nonstationary stochastic process. In this paper the magnitude of these
distortions are calculated analytically and the results are applied to a specific example found in pulsar signal
processing. A pulsar signal is an excellent example of a nonstationary stochastic process. When analyzing pulsar
data, the effects of interstellar medium (ISM) dispersion must be removed by digitally filtering the received
signal. The distortions introduced through the digitization process cause unwanted artifacts to appear in the final
“dedispersed” signal. These artifacts are demonstrated using actual 2-bit (4-level) digitized data of the pulsar
PSR B0833—45 (Vela). Techniques are introduced that simultaneously minimize these artifacts and maximize
the signal-to-noise ratio of the digitized data. The distortion analysis and artifact removal techniques described
in this paper hold for an arbitrary number of input digitization thresholds (i.e., number of bits). Also presented
are tables of the optimum digitizer thresholds for both uniform and nonuniform input threshold digitizers.

1. INTRODUCTION

Digital signal processing (DSP) techniques are used widely
in the scientific community. Such techniques represent a con-
tinuous signal as a sequence of discrete time points with quan-
tized values. Standard analyses of DSP algorithms are primarily
concerned with the discrete time aspect of the digital signal.
Relatively little attention has been given to the effects of quan-
tization since many applications use a large number of discrete
amplitude levels (i.e., many bits) to reduce any digitization
artifacts. However, in applications that emphasize high time
resolution over dynamic range and fidelity, a small number of
discrete amplitude levels are often required.

One important example of such an application is baseband
signal recording in radio pulsar astronomy. This technique re-
cords a representation of the electric field vector incident upon
aradio telescope. Conventional techniques record only the total
power received, hence loosing vital information about the
source of the field and the intervening medium. As recording
technology continues to become faster and cheaper, baseband
recording will be the method of choice for most pulsar obser-
vations. Baseband signal recording is also used in VLBI
observations.

Due to finite recording rates, there is a trade-off between
bandwidth, B, and the total number of bits used to represent
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the recorded signal. The bandwidth is usually maximized to
increase the signal-to-noise ratio. Therefore, baseband record-
ing systems are designed with a small number of bits. Unfor-
tunately, digitization distortion increases as the number of bits
decreases. Thus, an accurate analysis of the distortion is
necessary.

The effects of digitization on nonstationary stochastic signals
are analyzed in this paper. A nonstationary stochastic signal is
a stochastic signal whose statistical properties change with time.
Throughout this paper, the existence of a small timescale over
which the statistics are stationary is assumed, thus allowing
estimates of the power spectrum and total signal power at dif-
ferent moments in time to be made. These estimates are used
to correct the distortions that are introduced by the digitization
process.

The digitization process is described in § 2 along with a
method for setting the “input thresholds” and the “output
levels.” In § 3, the power spectrum of the digitized signal is
calculated. Using this power spectrum, the magnitude of two
important artifacts, which arise when removing effects of in-
terstellar medium (ISM) dispersion from a digitized pulsar sig-
nal, are calculated in § 4. Techniques for minimizing these
artifacts are also described. The fractional loss in the signal-
to-noise ratio (SNR) due to the digitization process is calculated
in § 5. Also presented are the optimum values for the digiti-
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zation thresholds that simultaneously minimize both the SNR
loss and a particular class of digitization artifacts. In § 6, the
general techniques described in this paper are applied to the
specific case of a 2-bit, 4-level, digitizing scheme.

2. OPTIMUM DIGITIZATION

The process of digitizing a signal involves sorting the analog
input signal, (t), into a finite number of ranges, N. A digitizing
scheme is defined by specifying the N + 1 end points or thresh-
olds, x,, of the N input ranges and the corresponding output
levels, y,, for each input range. Hence, when x, < v(f) < x;.,
then o(¢) = y,, where 0(¢) is the digitized signal. In this paper,
two types of level-setting schemes are discussed: a fixed output
level scheme and a dynamic output level scheme. The fixed
output level scheme is the standard approach to the digitization
problem and it works well with statistically stationary input
signals. When digitizing nonstationary signals, this method
may introduce unwanted artifacts when processing the digital
data. Section 4 describes such artifacts for the particular case
of pulsar signal dispersion removal.

In the fixed output level scheme, input thresholds and output
levels are chosen so that the “distortion” is minimized. Given
the output signal #(t), the distortion, X7, is defined as

x* = (fw) = fO)F), 1)
where angle brackets represent an ensemble average. Hence,

Xk+1

N
Xt = Z f [£() = f)F P(w) dv, @)
where x,,, = %, x, = —, P(v) is the probability density func-

tion for the values of the analog signal v(¢), and f(v) is a
continuous function of v. When f(v) = v, the corresponding
levels are called “voltage optimized” levels since the expected
value of the digitized signal, (0), equals the expected value of
the undigitized signal, (v). A more important set of levels are
obtained when f(v) = v*. These levels are called “power op-
timized” levels since (?) = (). In general, one can show from
equation (6) below that (f(9)) = (f(v)). The thresholds and
levels (i.e., x, and y,) are set so that x* is minimized for a given
f(). The necessary conditions for a minimum in x* are

3 x* = [f(0) = fe-))F P(x) 3)
= [f(x) = fO)F P(x) =0 (2<k<N),

X+ 1

dx* = — f 2[f(v) = fOlf () C))

Xk

xP(v)dv =0 (1<k<N),

where f'(v) = df(v)/dv. These conditions yield the following
set of equations:

+ k—1
o = 102 f0)

[ f(x)P(x)dx
[ P(x)dx

2<k<N), %)

fo) = (I1<k<N). (6)

For stationary signals, these coupled equations are solved
simultaneously to obtain the optimum values for x, and y,.
Based on a similar approach, J. Max (1976) describes a nu-
merical algorithm for calculating these critical values and pres-
ents the results for the case of f(v) = v. From now on, this
paper will consider only power optimized levels [ f(v) = v°]
since the final result will be a time series of power measure-
ments and the simplest way to obtain unbiased power meas-
urements is to use power optimized levels.

3. THE POWER SPECTRUM OF THE DIGITIZED
SIGNAL

The process of digitizing a signal distorts the signal’s power
spectrum. Using the fact that the power spectrum and the
autocorrelation function are Fourier transform pairs, the
autocorrelation function is calculated first since it is analytically
easier to compute. The discrete time autocorrelation function
of the original signal may be expressed as

@ + D) = o’p(l), @)

where i and [ are integers, v(i) = v(iAt), p(l) is the normalized
autocorrelation function, and o? is the average total power (i.e.,
(*)). Given a set of input thresholds, x,, and output levels, y,,
o and p may be related to their digitized counterparts ¢ 2 and
p. The digitized total power is given by

N
5= y? f P(v, 6*)dv, ®)

where P(v,0%) is the probability density for the values of v
explicitly parameterized by the undigitized total power o>. The
above equation yields a functional relationship between ¢ 2 and
0. For example, it was shown in § 2 for the case of power
optimized levels that 2 = ¢°.

Calculation of the normalized autocorrelation function,
p(l), for the digitized signal requires a knowledge of
P(u(i),v(i + I),0(])), the joint probability distribution for v(i)
and (i + 1), which is parameterized by the undigitized
autocorrelation function p(). By defining v = »(i) and
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Fi6. 1.—Plot of the autocorrelation function of a digitized signal, p, vs. the signal’s undigitized autocorrelation function, p, for 2-, 3-, 4-, and 5-bit systems.

Voltage optimized levels were used along with a Gaussian-distributed input signal.

this one.

v = v(i + 1), it follows that

{8y + b))
p(l) = T ®
1 N N Xg+1 Xj+1
= ?; El f f Yy P, ¥, p(D)dvd.  (10)
£
L ]

Given p(l), equation (10) produces the corresponding p(l).
From this, one obtains p(p). Alternatively, one can use simu-
lated random data to numerically calculate p(p) for a given
joint probability distribution function.

Consider a stationary Gaussian noise process with a nor-
malized autocorrelation function, p(l). The joint probability dis-
tribution function is given by

Pl(@)0(i + Do) (1)

_ _ v(i)* + v + D — 20(Dv()v(i + 1)
—exp 21— o) o

x [27021 = p()? ").
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The corresponding plot for power optimized levels is indistinguishable from

Using equations (10) and (11), Cooper (1970) worked out
o(p) analytically for a 4-level (2-bit) digitizer. Since the ana-
lytical method becomes cumbersome for a large number of
levels, a Monte Carlo technique is use to analyze 8-, 16-, and
32-level systems (3-, 4-, and 5-bit systems, respectively). Figure
1 shows p versus p for each such system. In all cases p(p) is
extremely linear until p = 0.9. At this point, the curves quickly
rise toward p(1) = 1. This property of p(p) is utilized in order
to calculate the power spectrum of the digitized signal.

In order to calculate the digitized signal power spectrum,
p(p) is approximated by the following form:

p() = Ap(D) + (1 — A)5(1 — p(D)). (12)

Here

_ 1, x=0,
8(x) = 0. x %0, (13)
and
0

A=— 14
2 | (14)

Figure 2 plots both the exact p(p) and approximate form of
o(p) for a 4-level system with Gaussian statistics. For systems
with more levels, the agreement is even better. In practice, the
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F16. 2.—Comparison of the exact form of p(p) with its approximate form
(see eq. [12]) for a 2-bit voltage optimized scheme with a Gaussian input
signal. The corresponding plot for power optimized levels is indistinguishable
from this one.

normalized autocorrelation function of the undigitized data
rarely goes above 0.5 except at! = 0, where it is 1 by definition.
Hence, this first-order approximation is sufficient for almost
any conceivable real data.

Using the approximate form of p(p), the power spectrum of
the digitized signal is given by

. lM—l )
Py =4~ E e“5(1) (15)
1 M—1 '
=5 2 e [Ap(l) + (1 — A)(1 — p(1))}  (16)
A2 IM_l il &2
=¢2A ﬁ;e ‘o] + (1= A) (17
G2 G2
=A;;P(w,‘)+(1—-A)ﬁ, (18)

where equation (12) is substituted into equation (15) to obtain
equation (16) and it is assumed that p(l) = 1 only at/ = 0 to
arrive at equation (17). Here w, = 2wk/M, M is the number of
time samples in the data segment, and i = V=1. In order to
keep the mathematics as clear and concise as possible, equation
(18) is derived for the case of real sampled data. One can show
that equation (18) also holds for the case of ideal complex
sampled data.

4. PULSAR SIGNAL DISPERSION REMOVAL

High time resolution observations of radio pulsars have re-
vealed that a pulsar signal may be modeled as amplitude mod-
ulated noise (Rickett 1975; Cordes 1975; Jenet et al. 1998).
Hence, a pulsar signal is a good example of a nonstationary
noise process. As the pulsar signal travels through the ISM,
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F1G. 3.—(Solid line) Plot of A vs. the normalized total power o%/gd;, where
o is the background noise level. (Dashed line) Plot of the digitized total power
normalized to the total power level vs. the normalized total power (ie.,
G */a* vs. a*/a?). Four level (2-bit) power optimized input thresholds and output
levels were used to calculate these graphs. Notice that when the power level
changes from o? to 202, A changes by only 3%, while & %/¢® changes by 37%.
Thus, A is relatively insensitive to total power fluctuations.

higher frequencies propagate faster than lower frequencies.
Hence, the radio signal “sweeps” through the observed band-
width, arriving at higher frequencies first. In order to obtain a
signal that best represents the pulsar signal before propagation
through the ISM, this dispersive effect must be removed by
filtering the data.

4.1. Digitization Artifacts

When one digitizes the signal before removing the dispersive
effects, unwanted systematic artifacts are introduced into the
data. Figure 4a displays an average pulse profile of the Vela
pulsar (PSR B0833—45). The data were complex sampled and
digitized with 2-bits using thresholds of (—o, 0, ) and power
optimized fixed output levels. Approximately 200 individual
pulses were averaged together. Pulse-to-pulse variations in am-
plitude and temporal structure were large for this segment of
data. The total power level in the dispersed data remained below
approximately twice the background noise power level for the
entire stretch of data. The “negative” dips to either side of the
average pulse profile are due to the first term in equation (18):
A6 *P(w,)/o*. Both A and 6 % are nonlinear functions of the total
undigitized power o2. As the pulsar signal enters the band of
interest, ¢ increases. If the thresholds and output levels are
kept constant, Ag %/ decreases. This decrease is mainly due
to o 2 since A is relatively insensitive to total power fluctuations
(see Fig. 3). Hence, the digitized signal underestimates the total
power in the undigitized signal. When Ag */0? decreases, it can
be seen from equation (18) that the power at all frequencies
decreases. Hence, the decrease will occur even at frequencies
where the pulsar signal is not present. Figure 45 shows a gray-
scale plot of the frequency structure of the dispersed signal that
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F1G. 4—Average pulse profiles of the Vela pulsar (PSR B0833—45) and the corresponding gray-scale images of the average pulse frequency structure. The
pulse profiles are magnified to show the digitization artifacts. The gray-scale images are all plotted using the same color stretch. The figures were calculated using
power optimized output levels and (a, b) no dynamic level setting or scattered power correction, (¢, d) dynamic level setting only, or (e, f) dynamic level setting
and the scattered power correction. The data were complex sampled and digitized with 2-bits using thresholds of (—a, 0, ¢). The narrowband artifacts at 22 MHz
in the gray-scale images are due to external interference. The remaining artifacts in (e, f) are due to nonideal image rejection in the complex sampling process

prior to digitization.

was used to calculate the folded profile shown in Figure 4a.
The background noise level is seen at t < —4 ms and ¢ > 5 ms.
At t = —4 ms, the pulse enters the band, hence reducing the
factor AG */a”. Notice that the power at frequencies where the
pulse is not present is reduced below the off-pulse noise level.
When these channels are added together so as to account for
dispersion, the power just before and after the pulse will be
underestimated, thus creating the dips seen in Figure 4a.

Since A is insensitive to variations in ¢?, the problem of
power underestimation may be resolved by finding a level-
setting scheme such that 6> = ¢2. In the next section, a “dy-
namic” level-setting scheme in which 2= o? is described.
This will effectively remove the off-pulse dips. Once these dips
are removed, the next-order artifact that becomes apparent in
the average pulse profile is a shallow increase in power on
either side of the pulse profile (see Fig. 4c). This artifact is
caused by what is known as the “quantization noise” power.
As the pulsar signal enters the frequency band of interest, a
fraction of this increased power is “scattered” uniformly across
the entire band as can be seen in Figure 4d. The magnitude of
the scattered power is given by the second term in equation
(18): (1 — A)é M.

The magnitude of the dedispersed profile distortions can be
calculated using equation (18). The total digitized power far
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from the pulse is given by

Pu=2 Blw) =62, (19)

where ¢ 2 is the digitized off-pulse noise power. After correcting
for dispersion, the total power just before and after each in-
dividual pulse is approximately given by

22
Py = 2 Plwy) = Al0®) ‘;— o2 +[1 - A(@))] 63 (20)

where 0° and ¢° are the digitized and undigitized dispersed
on-pulse power, respectively. The following dimensionless
quantity, D, is defined as a measure of the dedispersed pulse
distortion for a given level-setting scheme:

D= PdiE—Poff @2n
Pnl‘f
NS o [6?
=A==~ 1+l —A@)]|= -1 (22
o‘o; g,

For an ideal digitizing scheme, D = 0. It can be seen from
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equation (22) that if ¢ 2 varies linearly with o7, then the first
term is zero. The remaining distortion is due to the scattered
power since it vanishes for A = 1. When using a constant level-
setting scheme, D # O since o * varies nonlinearly with ¢* and
A # 1. This results in the artifacts seen in Figure 4. The next
section discusses both a dynamic level-setting scheme that
keeps 0> =~ ¢ and a technique that reduces the effects of the
scattered power on the dedispersed pulse profile.

4.2. Artifact Minimization Techniques: Dynamic Level
Setting and the Scattered Power Correction

For the purposes of this paper, dynamic level setting is the
process of adjusting the output levels in order to maintain a
near linear relationship between the undigitized power and the
corresponding digitized power. This correction is performed
after the data has been recorded with fixed input thresholds.
Using a model for the statistics of the input signal and the
values of the fixed input thresholds, the undigitized power level
may be estimated from the data. Using this estimate, the output
levels may be chosen in order to maintain a linear power re-
sponse. There are many possible choices. In this paper, equation
(6) with f(v) = v* is used to obtain the output levels. This
minimizes X’ for the data segment with the constraint of fixed
input thresholds. For illustrative purposes, Appendix B com-
pares this with an alternative prescription.

Once an appropriate output level-setting prescription is
adopted, the dynamic level-setting technique will generate a
time series such that o > ~ . Dynamic level setting does not
attempt to assign optimum values for the input thresholds. Sec-
tion 5 describes how to obtain a set of optimum input thresholds
by maximizing the signal-to-noise ratio of the data.

As described above, dynamic level setting keeps o * = o by
estimating the undigitized power and setting the output levels
according to a chosen prescription. In order to implement this
procedure, the digitized data is divided up into several small
overlapping or nonoverlapping segments each containing L
points. The total undigitized power, ¢, within each segment
is estimated by inverting the following relationship:

Xn

l 2, 2
¢ = e qy, 23
\/2#0[ @3)

Xt

where ¢ is the observed fraction of samples that fall within
the range x, to x, and Gaussian statistics are assumed. Given
this estimate for o2, the values of the output levels are calculated
using equation (6) with f(v) = v* and

1 :
P(v) = —=e™"". (24)
vimo

Using these output levels, appropriate numerical values are

assigned to each sample in the current data segment. This pro-
cedure is repeated for each set of L points. Once the data has
been completely “unpacked,” the digitized total power, 6 %, may
be calculated from the resulting time series. In Appendix A, it

is shown that
1
" )
7’=o0 4-(4—
L

for dynamic level setting. Hence, this method asymptotically
approaches the ideal response, 6> = o2, as L — . Figures 4c
and 4d were produced using this scheme with nonoverlapping
segments, and, as these figures indicate, the dips have been
removed. The remaining digitization artifacts are due to the
scattered power.

The scattered power may be removed when dedispersing the
data with an incoherent filter bank. An incoherent filter bank
takes a band-limited (bandwidth B) time series and divides it
into M time series, or channels, wherein each channel is a
measure of the total power of the signal within a small band
Af = B/M (Jenet et al. 1997). After calculating the power in
M frequency channels, the scattered power, (1 — A)d %/M, may
be subtracted from each channel before the channels are time
shifted by the dispersion delay and added as usual. Note that
MAt should be as large as possible to decrease the effects of
the O(1/M) term while remaining less than the smallest time-
scale of interest (e.g., the dispersion smearing time), where At
is the sampling time. Figures 4¢ and 4f show the pulse profile
and the frequency structure of PSR B0833—45 calculated using
both dynamic level setting and the scattered power correction,
respectively. For these data, A was held constant at its value
for the background noise, A = A(c?). In general, one could
dynamically set the value of A according to the local power
level but this was unnecessary for these data since the total
power never rose above approximately twice the system noise
power level (see Fig. 3).

With both dynamic level setting and the scattered power
correction in place, the remaining distortion, D, may be esti-
mated. The off-pulse power is now given by

(25)

P = A(a?)a?, (26)

and the power just off pulse but in the distorted region is now
given by

Py, = A(0®)a2. v4))
From the definition of D (see eq. [21]),

_A®)

D=3

1. (28)

Since A is relatively insensitive to changes in ¢, D is small. In
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FiG. 5.—Total distortion, D, due to power underestimation and scattered
power effects vs. 0?/a? for both the power optimized fixed level-setting scheme
(uncorrected response) and the dynamic level-setting scheme with the scattered
power correction (corrected response). The curves were calculated for a 2-bit
system.

Figure 5, plots of D versus o*/6? are shown for both the un-
corrected power-optimized level-setting scheme (i.e., constant
output levels with no scattered power correction) and the cor-
rected scheme using both dynamic level setting and the scat-
tered power correction.

5. SIGNAL-TO-NOISE LOSS AND OPTIMUM
THRESHOLDS

As stated in the previous section, the dynamic level-setting
scheme specifies only the values of the output levels given a
set of input thresholds. Here it is shown how to set the input
thresholds such that both the remaining distortion, D, and the
fractional loss in the signal-to-noise ratio are minimized.

The scattered power introduced by the digitization process
is a source of incoherent noise that reduces the signal-to-noise
ratio. By defining a renormalized power spectrum S(w;) =
62P(w;)/AG 2, it follows from equation (18) that

_ 2
S(w,) = P(w;) + % % . (29)

Consequently, it can be seen that S is the undigitized power
spectrum plus the “quantization” noise power spectrum. The
total quantization noise power, N,, is obtained by summing the
last term in the above equation over all w;:

N, = o’ (30)

The signal-to-noise ratio for the digitized signal, v, may be
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expressed as

Y= (€29}
N +N,
N

~ 7(1 - 7\,*) (32)

where v is the undigitized SNR and N is the undigitized noise
power. The fractional loss in the SNR, I, is defined as

=X (33)
Y

Substituting equation (32) this becomes,

N
= 7\/1 (34)
From equation (30) and N = o7,
1—Ad?
1= = (35)

Taking o to be the largest value of the undigitized dispersed
power, the above expression for [/ is an upper bound on the
fractional loss in the SNR.

From the expressions for I and D (eqgs. [35] and [28], re-
spectively), it is apparent that maximizing A(o;?) simultaneously
minimizes the remaining distortions in the data and the frac-
tional loss in the SNR. Hence, the input thresholds should be
set so that A(g?) is a maximum, where o7 is the background
noise power level. Assuming Gaussian statistics, one can show
from the definition of A (see eq. [14]) and equation (11) that

_ 1
2702

$ Lo (222 — o (=201
Yilexp 207 — exp Py (36)

k=1 n

The output levels are set according to equation (6) with

f0) = o,

Xie+1

(37

Y= [azerf( o )___Zxo,, exp(— i)]
T V2o Vor 20,

-1

A=)

Table 1 presents the optimum input thresholds, x,, for 2—8-bit
digitizers with arbitrarily spaced input thresholds. These values
were calculated using the multidimensional downhill simplex

Xk

X
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TABLE 1
OPTIMUM INPUT THRESHOLDS

2-Bit 3-Bit 4-Bit 5-Bit 6-Bit 7-Bit
0.0 0.0 0.0 0 1.127 0 0.5412 1.146 1945 00 02691 0.5464 0.8385 1.157 1520 1968 2611
09674 0.4893 0.2514 0.1282 1296 0.06484 06119 1231 2.077 0.0326 0.3033 05819 0.8766 1.199 1.571 2.033 2.721
1.040 05152 02605 1478 0.1315 0.6837 1319 2222 0.0661 03375 0.6177 09151 1243 1.622 2102 2844
1740 07928 0.3948 1.679 0.1986 0.7567 1410 2.384 0.0998 0.3719 0.6537 09541 1.287 1675 2.174 2983
1.093 0.5317 1906 0.2660 0.8310 1.506 2.571 0.1335 04064 0.6900 0.9935 1331 1730 2251 3.144
1432 0.6721 2.171 03339 09069 1.606 2.794 0.1673 0.4411 0.7266 1.033 1.377 1.786 2331 3.339
1.839 0.8171 2.503 0.4023 09846 1712 3.078 0.2011 04760 0.7636 1.074 1.424 1844 2418 3.591
2397 0.9681 2974 0.4714 1.064 1.824 3492 0.2351 05111 0.8009 1.115 1472 1905 2510 3.962

8-Bit
0.0 0.2708 0.5491 0.8425 1.163 1.528 1980 2.633
0.01637 02879 0.5669 0.8616 1.184 1.554 2013 2.688
0.03318 03050 0.5848 0.8808 1.205 1.579 2.046 2.746
0.05003 0.3222 0.6027 09001 1.227 1.603 2.081 2.807
0.06694 03394 0.6207 09195 1.249 1631 2116 2.872
0.08384 03567 0.6387 0.9390 1.271 1.657 2.152 2.941
0.1008 03740 0.6569 0.9586 1.293 1.684 2.189 3.015
0.1177 03913 0.6751 09784 1316 1.712 2227 3.095
0.1346 04086 0.6933 09983 1.338 1.739 2.266 3.183
0.1516 04260 0.7117 1.018 1.361 1.768 2.307 3.279
0.1686 0.4435 0.7301 1.039 1.384 1796 2.348 3.387
0.1855 0.4609 0.7486 1.059 1.407 1826 2392 3.510
0.2025 04785 0.7672 1.079 1431 1.855 2436 3.654
02196 04961 0.7859 1.100 1455 1.885 2482 3.829
02366 05137 0.8047 1.121 1479 1916 2531 4.056
02537 05314 0.8236 1.142 1504 1948 2.581 4.395
NoTEs. —Listing of the optimum thresholds that minimize the scattered power, hence maximizing the signal-to-noise ratio. These thresholds were calculated for

Gaussian statistics and are in units of g,. Due to the implied symmetry about 0, only thresholds >0 are given.

method described in Press et al. (1992). Table 2 presents the
corresponding extremum values of A and [ for ¢ = ¢?. Since
most commercial digitizers only allow uniformly spaced thresh-
olds, Table 3 lists the optimum values of the threshold spacing
and the corresponding values of A and / calculated with this
added constraint.

6. A SPECIFIC EXAMPLE: 2-BIT DIGITIZATION

As a particular example, consider dynamic level setting for
the case of a 2-bit system. Assuming Gaussian statistics with

TABLE 2
OPTIMUM VALUES OF A AND /'
Bits A 1
2 . 0.8808 0.1353
3 ... 0.9650 0.0363
4...... 0.9904 0.0097
5 ... 0.9975 0.0025
6...... 0.9994 0.0006
7. 0.9998 0.0002
8 ...... 0.99996  0.00004

Notes.—The values of A
and / that correspond to the op-
timum threshold values given

in Table 1.

zero mean, the optimized thresholds are given by
X,=—x, =1, (38)

and
% =0. (39)

The value of ¢ is obtained from either Table 1 or Table 3. From
equation (6) with f(v) = 2%, the output levels are

—12/20
=—y == 40
74 \/ \/' 1 — erf(d/ V2 20)’ “0)

g 2 —12202
=—y, == - 41
» t \/7 \/—erf(t/\ f20)° @b
where
t / 2 [ —x2m02
erfl—| = — | e *"*dx, 42
E(x/io) WZL )

and y, is in units of z. For this 4-level system A takes the
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TABLE 3
OPTIMUM INPUT THRESHOLD SPACING FOR A
UNIFORM DIGITIZER

Bits Spacing A 1

2 ... 0.9674 0.8808 0.1353
3. 0.5605 0.9635 0.0379

4 ... 0.3188 0.9890 0.0111

5. 0.1789 0.9967 0.0033

6 ...... 0.09925 0.9990 0.0010

7. 0.05445 0.9997 0.0003

8 ... 0.02957 0.99992 0.00008

NoTtEes.—The optimum threshold spacing in units of o and
the corresponding A and [ values for a digitizer with uniformly
spaced levels. By symmetry, the central threshold is zero.

following form (see eq. [36]):

5 [ys[1 — exp (—*/20%)|+y, exp (—1%/20%)}
™ 2 — yerf(\20) + y2

A= (43)

The undigitized power, ¢, may be estimated from a set of
digitized data samples by measuring the fraction of samples,
&, between x, and x,,

X4

1 2, 2
&= 0y 44
Vomo f e 44
= erf(;) (45)
V2o

We recommend that L > 100 and LAz < T, where L is the
number of points used to measure ®, At is the sample time
and T, is the dispersion smearing time across the narrowest

frequency band of interest (i.e., a scintillation band). This con-
straint allows for a reasonably accurate measurement of a2 over
a timescale for which the signal is stationary.

7. DISCUSSION

The process of digitizing a nonstationary stochastic signal
will introduce systematic distortions into the statistics of the
resulting digitized data. These distortions may be investigated
analytically by approximating the autocorrelation function of
the digitized signal with a form that can easily be transformed
into the corresponding power spectrum. Once the form of the
digitized power spectrum is known (eq. [18]), the resulting
artifacts that may arise from further data processing can be
calculated. This technique was applied specifically to the case
of dispersion removal from a recorded pulsar signal. The re-
sulting profile distortion is given by equation (22). This dis-
tortion is large for standard fixed output level digitization
schemes. A dynamic output level scheme was introduced that,
to a specified accuracy, removes the power underestimation
effects leaving only the effects of the scattered power. In ad-
dition, proper setting of the input thresholds will simultaneously
reduce the scattered power distortion and the fractional SNR
loss since they are caused by the same phenomenon. With the
dynamic level-setting technique, the data may be dedispersed
using coherent or incoherent dispersion techniques. In cases
where the scattered power is large (i.e., for bright pulsars like
Vela), a technique was presented that further reduces the scat-
tered power when incoherently dedispersing the data.

We would like to thank Shri Kulkarni, Tom Prince, Patrick
Brady, and David Nice for helpful discussions. This research
was supported by the National Science Foundation under grant
ASC-9318145.

APPENDIX A
THE VARIANCE OF THE DIGITIZED SIGNAL

In this Appendix, it is shown that

&2=02+O(—) (Al)

for dynamic level setting where o * and o? are the digitized and undigitized total power, respectively. When dynamically setting
the levels for a set of L points, an estimate of the undigitized power of these points must be made. This may be done by measuring
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the fraction of samples, ¢, which fall within a range of thresholds. The expected value of ® is

Xh

(®) = j P(v)dv. (A2)

In general, (®) = g(o?). Inverting this relationship to obtain an estimate of o for a given realization of ¢ yields
o* =g (D). (A3)

This value of ¢ is used to set the levels for the L points in question. In order to calculate the corresponding digitized power,
a2, the function f(®P) is defined as

Xi+1

f(®) = ._§y3(<1>> f P(v)dv. (A4)

Xi

Here x; and y, are the input thresholds and output levels, respectively. Notice that the output levels are functions of é. The expected
value of A®) is the digitized power ¢ %

6% =(f(®) = 2 P®)f(D), (45)

where P(®) is the discrete probability distribution for ®. This probability distribution is given by a binomial distribution:

L!

P® = GonL =0

(@) (1 — (B))Ha-*, (46)

The binomial distribution is highly peaked at & = (). Approximating f(®) by a Taylor series about & = (®) and performing the
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Fi6. 6.—Total distortion, D, due to power underestimation and scattered power effects vs. 0*/o? for the two dynamic level-setting methods compared in Appendix
B. These curves would be indistinguishable if plotted with the same scale as in Fig. 5.

distortion parameter, D(0?), for both methods using two bits. As the signal power increases, the distortion in method II grows
slightly faster with the input signal power than does method I. At 6%/0? = 2, the relative distortion in method I is 4% smaller than
method II.

In practice, the two methods are essentially the same. As expected, method I removes the distortions slightly better than method
II, while method II has a slightly better SNR. Since this paper deals with the removal of systematic digitization artifacts, method

I is used as the optimum level-setting scheme.
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sum in equation (A5) results in
- 1 :
20 SFOUBN(@ — @), (A7)

The various moments, {(® — (®))’), of the binomial distribution can be calculated from the following relationship:

o2 (22,

One derives this relationship directly from equation (A6). Using this, one finds that

(@) = @y + 2 By o( L‘) (49)

where (3; is a constant that depends on the moment in question. From equation (A9) and the following identity

Jj

1l
(@ = @) = 2 5o @)@ D, (A10)
the moments take the following form:
Lot LB U\ imig i
@- @) =2 [ T E) (@D (ALD)
14 o 1
=7 20 TR BLEY (=) + O(E)' (A12)

From this relationship it is seen that for j> 1 all moments ((® — ($))’) go as l/L in leading order. Using this, equation (A7)
becomes

A CORD) %f“’((@»«@ = (@) (AL3)
=f(@) + O(%) (Al4)

Since f((®)) = o? for the adopted level-setting prescription, this is desired result.

APPENDIX B
COMPARISON OF LEVEL-SETTING TECHNIQUES

For illustrative purposes, this Appendix compares an alternative dynamic level-setting technique to the one presented in the text.
The method described in the text (method I) uses equation (6) with f(v) = v* to set the output levels and constrains the remaining
degrees of freedom (i.e., the input thresholds) by maximizing A. The alternative method (method II) sets the output levels by
forcing 6> = o and maximizing A is a function of the output levels with fixed thresholds. The input thresholds are set so that A
is at an absolute maximum when ¢* is equal to the background noise level.

Since method I is based on minimizing X, it should correct distortions better than method II. Method II should have a better
signal-to-noise ratio since it is based almost entirely on maximizing A. Numerically, method II yields A(o?) = 0.8825, while
method I yields A(o;) = 0.8808 for a 2-bit system. This corresponds to a 1.6% improvement in the SNR. Figure 6 plots the
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