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Imaging of weak sources with compact arrays
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Introduction

Selfcalibration [1] of an array requires that the correlated
visibility on most baselines in an array be greater than the noise per
antenna in the coherence time [2]. If this is not true then the errors in
the final selfcalibrated image will be amplified or, in the worst case,
false sources may be manufactured. There appears to be no way to avoid
this limit if the phase of an antenna changes completely after one
coherence time. However, this is not always so and hence it may be
possible to design a selfcalibration algorithms to exploit this fact in
the selfcalibration of weaker sources. In this note I will examine the
limits on selfcalibration imposed by the physics underlying the
calibration problem; I will assume that an algorithm can be designed to
approach these limits [see e.g. VLBA memo 25 by Schwab]. The discussion,
for reasons which will be apparent, is most appropriate for compact
arrays. I will also discuss two alternatives to selfcalibration.

Selfcalibration : some ‘general arguments

Let us consider the most, and least perverse behaviour of the
atmosphere above a compact array such as the VLA D-configuration.
Worst of all for selfcalibration would be an atmosphere which twinkles,
changing the path length above an antenna discontinuously every Tt
seconds, say. The sequence of path lengths for the array be completely
uncorrelated both in space and time. One expects this picture to be
appropriate when looking through a phase screen containing many
different cells and, indeed, in some senses this decribes the atmosphere
above an optical telescope. Selfcalibration fails if the gain error per
antenna is still comparable to a radian after correction since coherent
integration is not then possible. It is easy to show that for an
approximately unresolved source this constrains the flux F such that :

F >> °V/ (N-2)1/2 (1)

where OV is the error in the visibility after 1 seconds of integrationm,

and there are N antennae in the array. By comparison, the detection limit
for a fully coherent array is :

F > (oy/N). (/)2 (2)

where T is the total integration time.
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Best of all would be a frozen atmosphere which merely drifts over
the array at some constant velocity. The benefit to selfcalibration
depends upon a number of parameters : the characteristic diameter of path
length variations in the atmosphere d, the wind speed ¢, and the
configuration of the array relative to the wind, especially the
characteristic antenna spacing £. We will describe some of the possible
points in this "phase space” in terms of the effective coherence time T,
which we will define as the length of time over which the path lengths
can be predicted to better than a radian. To calculate the approximate
flux limit after selfcalibration one simply inserts the relevant SOy for

that coherence time into equation (1). For a well filled, two dimensional
array of total diameter L : »

d<< g :1=d/c
d=z¢ :12=1L/c
d> 2 :1=2d/c
In the case of a one dimensional array the wind direction is important.
d<< g :1=d/c

d L/c

R

£, wind | agray : 1t

[}
R

d = ¢, wind L array : © = d/c

d> ¢ : 1t=d/c

Thus, in the most favourable circumstances the effective coherence
time is increased by a factor L/d and the flux limit (viz. equation (1))

is decreased by a factor (d/L)l/z. Since the VLA configuration falls
somewhere between these two extremes, one would expect that at least one
arm of the Y would make such a large angle to the wind that
selfcalibration would be difficult. The problem of whether this simple
frozen screen picture is appropriate for the millimetre array can only be
settled by experiment.

We do have some information about the atmosphere. Sramek (1983) has
made \1.3-cm D-conf. observations of calibrator sources. The main
finding is that the structure function of the phase errors is, on average

D(r) = llo.ro'36 degrees at 22 GHz. (3

where r is the baseline length in kilometers. To orient ourselves note
that this corresponds to a phase error of one radian on a one kilometer
baseline at 90 GHz. This can be translated into the temporal domain if we
assume that the frozen screen model applies (Sramek shows some evidence
that this may be the case : the r.m.s. phase error on a baseline of 1Km
seems to increasely approximately linearly with wind velocity). If v is
the wind velocity : :
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D(t) = 14.(v.t.sin(9))0'36 degrees at 22 GHz. (4)

To illustrate the relative importance of receiver phase noise and
atmospheric phase noise I have plotted these quantities in Figure 1 as
functions of wind integration time, wind velocity and source flux. The
approximate sensitivity of the mm. array will be about 0.3 radians of
phase error per antenna for a one Jansky source in one second. The
optimum integration time is such that the phase errors are equal. It is
clear that long baseline observations at short wavelengths will only be
possible on very good days e.g. 1Km phase at 22Ghz < 5-10 degrees. One
simple and particularly illuminating observation concerns the
correlation of the ANTSOL solutions for antennarpairs having the same
separation but lying on different arms of the Y; we hope that the peak
correlation would be greatest for the arm pointing closest to the wind
direction. Note also that the examination of the lags at which the
correlation functions peak on each arm should triangulate the wind vector
reasonably well.

It should be emphasized that these speculations delineate the range
of possibilities for selfcalibration of the millimeter array. Questions
of algorithms and practicability are very dependent upon what we learn
about the atmosphere.

Without selfcalibration ?

Even if the effective coherence time is still too short to allow a
particular source to be selfcalibrated it will still be possible to
integrate only the amplitude information. Fourier transforming the
square of the amplitude will yield the autocorrelation of the true image,
convolved with the dirty beam ( in that order ). We could then use
Fienup's algorithm [3] to restore the phase and to deconvolve. For simple
sources there should be enough constraints to allow a reasonably accurate
reconstruction. Of course, the noise only decreases with the fourth root
of the number of independent visibility samples ( i.e. after as much
coherent integration as possible ) but, in principle, imaging of
arbitrarily weak sources is possible. The flux limit for this type of
processing is :

F > (o,/N/%). (T4 %)

Constraints upon T come mainly from the telescope scheduling committee.
This approach is closely related to speckle interferometry but we have
the luxury of direct access to the visibility, rather than the Fourier
transform in which redundant spacings are intermingled. Consequently
averaging over many speckles is not necessary except to beat down the
noise.

Imaging from the intensity only is probably not of much interest
since the signal-to-noise only increases with the fourth root of the
number of coherent integrations. Thus to improve the signal to noise by a
factor 10 we have to observe for 10,000 coherence times as opposed to 100
coherence times if phase information can somehow be used. It seems
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therefore that improving selfcal by a relatively small factor will
produce a better payoff.

Seeing disks )

Imaging of arbitrarily weak sources is, of course, possible with
optical telescopes much larger than the atmospheric coherence patch.
Each coherence patch acts as an independent telescope with its own
resolution and collecting area, and the images formed by these telescopes
are added to produce the overall image. Thus both resolution and
sensitivity are degraded below that obtained in the absence of phase
errors.

F. Owen has suggested that the seeing ‘disk concept may be
applicable to compact radio arrays. We will now examine this point. It is
easily shown that the seeing disk is the Fourier transform of the
exponential of (minus one halfth) the structure function. For an unfilled
aperture the seeing disk is modified by convolution with the point spread
function of the aperture. Hence, roughly speaking, only antennae in the
same coherence patch can be used together coherently. Correlations with
antennae outside the coherence patch merely add in noise and thus should
be discarded. It should then be clear that, given a fixed number of
antennae, the optimum configuration has all antennae in the same
coherence patch. The resolution is then the same but the sensitivity is
greater since all antennae add coherently.

Summary

The most basic question concerning the selfcalibration of weak
sources concerns the predictability of the phase variations over the
array. The effective coherence time is that interval for which the phase
variations can be reliably predicted; this, in turn, constrains the
weakest source that can be selfcalibrated. Filling in these numbers
requires some more experimental work. For sources too weak for
selfcalibration reconstruction from the amplitudes alone is feasible, if
time consuming. Finally, it should be noted that the possibility of low
signal to noise selfcalibration must affect the design of compact arrays.

References

[1] Schwab,F.R., "Adaptive calibration of radio interferometer data",
SPIE, 231,18-24, 1980.

[2] Cornwell,T.J., "An error analysis of calibration”, VLA scientific
memorandum 135, 1981.

[3] Fienup,J.R., Opt. Lett., 3,27-29, 1978.



T B i FEECEEERIEEE
1 Il |
11 _“ . 4 m_ +4
= i., - SEERRERE e i nun
3 - & = =
P
» u@-ﬂu e i
i W,
I AT o H s
5 “ i Py
; S : -
{ £
Resct
TH
1S
e
E PR
{ar .%.
oaah:
I mEEEES
- u ZaR
» _".
: | o

e .

WEN NI IAVH TOD Y3ISST B 1344N3AM
1281 9% J Wo sz X 8 USLIWILNGD FHL 0L 01 X of %M




