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In reviewing the Correlator section of the design study (Millimeter Array Design Con-
cept, section VI.4, NRAO, Jan. 1988), I noticed several minor errors in the cost equation,
as follows:

1. The output of the analog filters is a real signal, and sampling at the rate 2B/J will
produce enough data for only B/JK length-K complez FFTs per unit time, not 2B/JK.
Assuming that the factor Cr is the cost of a complex butterfly per unit time, the second
term in the cost equation is too high by a factor of 2.

2. The above error carries over to the third term, in that there are only half as many
products required per unit time. But these are now full complex products, requiring 4
real multiplies and 4 real adds each. The factor N? for the number of real correlators per
lag (assuming that C'x refers to the cost of a real correlation per unit time) follows from
assuming two real correlators per product (sine and cosine or positive and negative lags).
Thus, the two errors cancel and the third term is correct.

3. The third term does not account for the additional cross correlations needed if
polarization is to be measured. This can be handled by assuming, in accord with our usual
practice, that the spectral resolution or bandwidth will be degraded by a factor of 2 when
full polarization is required, so that the rate of cross correlation remains the same. Notice
that polarization measurement constrains the number of filters J to be even.

Tt is also useful to insert a filter shape factor 8 as was done by Weinreb in EDIR #248.
This is the factor (ratio of non-overlapped bandwidth to Nyquist sampled bandwidth) by
which the analog filter bandwidths will overlap in order to construct a smooth spectrum.
Letting the final spectral resolution be b (to the 2/7 points), the cost equation becomes

Ciot = Cr N J + Cr N BB log,(BB/bJL) + Cx 2N*LSB,

where BB/bJL = K is the FFT length. Correction 1 above also requires that the optimum
values of L and J be reduced by factors of 2:
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There are a few problems with the linear optimization that yields the latter two equa-
tions. First, the parameters L, J, and K are constrained to be positive integers. If we find
Lopt < 1 formally, as happens in practical cases, then rounding up to L = 1 will cause
Ciot greatly to exceed its formal minimum. Next, for convenient FFT implementation, K
should be highly composite, preferably a power of 2, and must not be too small; K > 32
is a reasonable constraint. Finally, the bandwidth may be filtered into several channels for
reasons independent of this optimization (e.g., dual band operation, bandwidth synthesis,
polarization), forcing additional constraints on J.

The cross correlation cost rate C'x deserves special attention, in that it depends strongly
on the dynamic range and organization of the numbers to be correlated. In the case F =1



(no FFTs, an “XF” correlator), the data is coarsely quantized (1 or 2 bits) and each cross
multiplier can always be associated with the same integration register; furthermore, the
data is real, simplifying the multiplier organization (although the real correlation rate per
frequency channel is the same as for a complex correlator). Otherwise (for an “FX” cor-
relator), the potential dynamic range increases in proportion to log K'; successive products
must be accumulated in separate registers (because they represent different frequencies or
baselines); and the numbers are complex. The net result is that Cx is much larger in the
latter case. For example, I estimate that an XF correlator using the NFRA chip (2-bit
real signals) would yield Cx = Cx; = 110 $/GHz, whereas an FX correlator using the
VLBA chip (5,5,4 complex floating point signals) would yield Cx = Cx, = 2160 $/GHz.
The VLBA chip is designed primarily to compute FFT butterflies, so the same technology
might yield a lower cost factor if tailored to the cross-correlation task.

The value of Cx used in the design study was 500$/GHz. This is based on the VLA
correlator, which is an XF type with 3-level signals. The use of more modern technology
would reduce this (e.g., to the estimated 110 $/GHz mentioned above), and it was thought
that this would compensate for the extra complexity of the cross correlations required with
the FX architecture. It now appears that the cost of the extra complexity is much larger
than this. Using the values of C'x; and Cx, given above (details of their derivation to be
given in a later memo), the costs in Table 1 of the design study (page 64) become:

J K L Chot
14 72 1 $16,400k Optimum FX, Cx=2160$/GHz
128 1 8 10,240k Optimum XF, Cx=110$/GHz
8 128 1 16,460k FX with minimum practical J
8 1 128 90,400k XF with minimum practical J
The last case has been added for comparison. In all these cases, N = 40, B = 2GHz,
= 2MHz, Cr = 9008$, and Cr = 4200$/GHz. I took 8 = 1 for simplicity. To find the
optimum XF correlator, Cy,; is minimized under the contraint K = 1; in that case,

Jopt(XF) = BB+/2NCx /bCp.

The FX costs in the table are dominated by the cross-multiplication term (85%); formally,
Lopt = .035, so rounding forces this term to be 28.5 times the formal minimum.

It might seem surprising that the XF correlator appears cheaper for the MMA. For the
VLBA case (B = 128MHz, B/b = 8192, N = 20), using the same cost factors, one finds
that FX wins by a wide margin. To gain some insight into the dependencies, consider the
formal optimum cost obtained by inserting Jopts Kopty Lopt into the cost equation:

NCrCxs )J
1.040C7% ) |’

Copt(XF) = 2NBB+/2Cx,CrN/b.

Notice that the optimum cost is just proportional to the total bandwidth in both cases. The
antenna number and frequency resolution dependencies are weaker for the FX (< Nlog N/b)
than for the XF (o« N4/N/b), so the FX will win for sufficiently many antennas or small
resolution, other things being equal. I do not see a simple way to describe the cost factor
dependencies, so each case must be evaluated separately. Remember also that these formal
optima may not be achieved when rounding and other constraints are considered.

Copt(FX) = NBBCy [2.884 + log, (



