
Correcting for Decorrelation Due to Atmospheric Phase ErrorsM.A. Holdaway and F.N. OwenNational Radio Astronomy ObservatorySocorro, NM 87801September 20, 1995AbstractWe explore how image reconstruction degrades with uncorrected phase errors and howcorrections can be made for the mean decorrelation even when we cannot correct for theactual phase errors. Correcting the visibility amplitude for the mean decorrelation as afunction of baseline length improves the reconstructed image. Deconvolving the dirty imageby a point spread function which includes the statistical e�ects of the phase errors as well asthe e�ects of the incomplete Fourier plane sampling results in superior images. The lattertechnique permits very good image reconstruction even in the presence of phase errors ashigh as 70 degrees, and permits some sort of reconstruction in the presence of 105 degreerms phase errors. The MMA's phase error speci�cations need to be reevaluated in light ofthese new imaging techniques.1 IntroductionAtmospheric phase errors cause trouble for millimeter interferometers: systematic phase er-rors result in gross positional errors; systematic and random phase errors limit the imagequality; random phase errors limit the sensitivity through decorrelation of the visibilities; timedependent decorrelation results in ux scale errors; and since the phase errors (and hence decor-relation) grow worse with baseline, atmospheric phase errors limit the possible resolution of anarray. The best line of defense against this tropospheric menace is to avoid the issue entirelyby observing on a good site, on short baselines or at low frequencies where the phase errors willbe lower. Since the science demands observations on long baselines and at high frequencies, weare pushed to use an active phase calibration technique which limits the residual phase errorsto an acceptably low level. We have written about a speci�cation of 30 degree rms residualphase error per baseline for any such exotic phase calibration technique (Holdaway, 1992). Wethink the strongest justi�cation for this speci�cation is the amplitude loss due to decorrelationgiven by e��2�=2 (Thompson, Moran, and Swenson, 1986), where �� is the rms phase error pervisibility in radians. Hence, 30 degree rms phase errors will decrease the amplitude of the vis-ibilities by 0.87. If the time scale of the phase uctuations is larger than the integration time,the image ux will be down by 0.87, and the phase uctuations will scatter ux through the1



image. However, this 13% loss in sensitivity is fairly modest, and we would probably be willingto live with a higher loss in sensitivity if we were performing exploratory observations at veryhigh frequencies and we could somehow correct for the e�ects of the decorrelation. Hence, weshould ask what level of phase errors will still permit reasonable imaging, and can anything bedone to correct for the image errors caused by baseline dependent decorrelation?2 Correcting for DecorrelationHoldaway (1992) investigated image quality as a function of phase error magnitude for pointsources and concluded that even with 30 degree rms phase errors, reasonable imaging withdynamic range of about 200:1 was still possible. In considering a more complex source, a morerealistic atmospheric model with baseline dependent phase errors should be employed, as in theatmospheric simulations of Holdaway (1991). The particular atmospheric phase screen modelused in the simulations described below results in phase errors which increase as the baselineraised to the 0.33 power, which is seen during good conditions on the potential MMA sites.During poorer conditions, the phase errors usually increase more steeply with baseline length,at least out to baselines of 300 m, but the basic conclusions derived from this work should beindependent of the details of the phase structure function. Simulations were performed with arandom circular array of 1 km maximum baseline. Samples on the (u; v) tracks were calculatedfor 5 s integrations, the standard M31 HII region model image was Fourier transformed anddegridded into the simulated (u; v) points. We assumed no decorrelation occurred on timescales less than 5 s. The entire simulated data set was 18 minutes long, or ten atmosphericcrossing times of the array's longest baseline. The amplitude of the phase screen was scaled asrequired, the phase screen was \blown" over the array with frozen turbulence at a velocity of10 m/s, and the phase errors were then applied to the antennas below, thereby corrupting thephase of the visibilities. No other errors were added to the visibilities.For the purpose of representing the typical level of phase uctuations graphically, we param-eterize each of the scaled atmospheres in the rms phase error calculated over the full 18 minuteobservation, averaged over all baselines. Hence, a model atmosphere with mean rms phase of35 degrees will have some baselines with phase errors as high as 50 degrees.We have imaged the corrupted visibilities in three di�erent ways:� we have imaged the source without any decorrelation correction, Fourier transformingthe uniformly weighted gridded visibilities and deconvolving using the maximum entropymethod (MEM) of Cornwell and Evans (1984).� we have corrected the amplitudes of the target source visibilities based on the decorrela-tion observed in the calibrator source, followed by the Fourier transform and deconvolu-tion.� we have imaged the source by Fourier transforming the uncorrected visibilities and thendeconvolving with a beam which includes both the e�ects of the sampling in the Foureirplane and the statistical e�ects of the phase errors.2



We expound on the two correction techniques below.2.1 Visibility Amplitude CorrectionWe have simulated calibrator observations which look through the same model atmosphereas the target source, but removed by more than 10 degrees on the sky. The details of theatmospheric phase time series detected by the calibrator are not applicable to the target source,and the target source visibilities have not been corrected for these phase errors. This is thetypical state of current interferometer observations: the calibration is not fast enough to trackthe atmospheric phase errors. We average the calibrator visibilities to determine the extent ofthe decorrelation. The statistics of the phase errors on each baseline of the calibrator will besimilar to the statistics of the phase errors on the target source, and the level of decorrelationwill be comparable. Ignoring the phase of the averaged calibrator data, we can make a tableof baseline based amplitude corrections given bygi;j = 1:0=AMP (1=Nt NtXk Vi;j(tk)): (1)We then average the target source visibilities to the same extent, increase the averaged targetsource visibilities' amplitudes by gi;j , Fourier transform and deconvolve by the standard Fouriersampling based point spread function.Averaging the visibilities in time will result in smaller phase errors, but will also limit the�eld of view, so this method will only work on smallish sources. The extent of the decorrelationand the resulting images will depend upon the averaging time used. In order to correct forthe full exp��2�=2 decorrelation, we must average the visibilities over several baseline crossingtimes. The short baselines in our simulations are maximally decorrelated after averaging for aminute, while the 1 km baselines require averaging over the full 18 minute observation.2.2 Statistical Deconvolution of Phase ErrorsIn radio astronomy, the Fourier transform of the sampled visibilities with no phase errors yieldsthe dirty image ID(x) =XV (ui;j)ei2�ui;j �x (2)ID(x) = FT (V (u)S(u)); (3)where V (u) is the visibility function and S(u) is the sampling function. By the convolutiontheorem, multiplication by the sampling function S(u) leads to a convolution of the true imageby a point spread function which is given by the Fourier transform of S(u). In the presence ofantenna based phase errors �i,ID(x) =XV (ui;j) � ei(�i(t)��j(t))ei2�ui;j�x; (4)ID(x) = FT (V (u)S(u)T (u)); (5)3



where T (u) represents the combined e�ects of the phases in the Fourier plane. Hence, the dirtyimage will be the true image convolved with a point spread function given byPSF (x) = FT (S(u)T (u)) = FT (S(u)) � FT (T (u)): (6)The problem with this formalism is that we do not know T (u).There is a nice analog to this approach in optical astronomical imaging, in which theresolution is limited by phase uctuations in the atmosphere which are generally too fastto correct. A typical optical �eld of view contains several bright stars, and the pro�les ofthese stars can be used to derive an e�ective point spread function representing the statisticale�ects of the atmosphere. The phase errors are occurring so quickly that we have thousands ofindependent instantiations of the phase errors, and even though the phase errors are not knownin any detail, the form of T (u) can be determined. Some degree of superresolution can thenbe achieved by deconvolving the e�ects of this point spread function from the entire image.The situation at millimeter frequencies is di�erent from the optical situation in two respects:we will have tens of crossing times of the turbulence over our aperture instead of thousands,and it will be rare to encounter bright point sources in the �eld of interest (Holdaway, Owen,and Rupen, 1994). Holdaway and Owen (1995) have recently analized the residual phase errorswhich result from imperfect atmospheric cancellation when switching between the target sourceand a nearby calibrator. Phase uctuations which occur faster than the switching time scalecannot be corrected, and will result in signi�cant decorrelation if the residual phase errors areabout 30 degrees or larger. However, it is possible to use the statistics of the phase errors asmeasured on a calibrator to simulate an e�ective point spread function which would includethe e�ects of both the incomplete Fourier sampling and the phase jitter. We can determine thephase structure function from the calibrator phase time series, which allows us to construct amodel phase screen which will have the same statistical properties as the actual atmosphere,but which will not have the correct detailed phases. Hence, deconvolving with the pointspread function which includes phase errors from this model atmosphere can correct for thedecorrelation, as can the amplitude correction scheme. As in the amplitude correction scheme,details of the phase time series derived from the model atmosphere will be wrong, so errorswill be made. However, on average, the model phases will a�ect the point spread function in amanner which is representative of how the actual target source phase errors scatter ux in thetarget source. We found that superior results were achieved when we calculated the e�ectivepoint spread function, including phase errors, from several (ten) di�erent model atmospheres,averaged the di�erent model point spread functions, and then deconvolved the dirty image withthis e�ective point spread function.This method, or the statistical deconvolution of phase errors, is quite similar to correctingthe decorrelated amplitudes. After averaging several e�ective PSF's, the phases will be small, sothe e�ective PSF will be dominated by the Fourier sampling and the amplitude decorrelation.Consider the case of perfect Fourier sampling, so the e�ective PSF is due entirely to theamplitude decorrelation. Deconvolving by this function is equivalent to dividing the Fouriertransform of the image by the Fourier transform of the e�ective PSF, or boosting up theamplitudes of the outer visibilities as performed when correcting the decorrelated amplitudes.4



In both the amplitude correction and the statistical deconvolution of phase errors schemes,the results are dependent upon the post observation averaging time in a complicated mannerwhich has not yet been fully explored.2.3 Comparing the MethodsWe can compare the success of these various imaging pathways on a wide range of simulateddata through standard measures of imaging success such as the dynamic range and �delityindex, or more subjectively through looking at the �nal reconstructions side by side. The�delity image, �rst introduced by Cornwell, Holdaway, and Uson (1993) to measure the successof image simulation, is an image of the quantity one over the fractional pixel error. The �delityindex, renamed here as the median �delity, is the median pixel value of the �delity image afterclipping the low �delity points which occur in very faint pixels and pixels whose �delity is veryhigh by chance. Since most pixels in our model images are fairly low brightness, the median�delity emphasizes the great sea of low brightness pixels. A reconstruction with a median�delity of 20 is considered highly successful. For the current investigation, we further de�nethe �rst moment of the �delity, which is the mean �delity weighted by the pixel value raisedto the �rst power. The �rst moment �delity is less sensitive to errors in the low brightnesspixels and better gauges the success of the reconstruction of the bright, compact features inthe image. Both �delities measure the quality of image reconstruction on source, while thedynamic range measures the level of error o� source relative to the brightest reconstructedfeature.Figure 1 shows the images of a series of simulations with 17�, 35�, 70�, and 105� rms phaseerrors, reconstructed with no correction, with the statistical phase deconvolution, and with thethe visibility amplitudes corrected. As can be seen in the �rst column, as the phase errorsincrease, the detailed structure of the source gets smeared and the ux scale goes down. In thetwo correction techniques, the right ux scale is maintained even in the presence of the largestphase errors. However, inconsistencies in the amplitude corrected data scatter ux all over theimage, limiting the dynamic range as well as the �delity of the image. The statistical phasedeconvolution method appears to be superior and results in a very good reconstruction evenwith 70 degree rms phase errors. Note that the point spread function used in the statisticalphase deconvolution method embodies both the loss in resolution and the loss in sensitivity sincethe phase errors are spreading the beam about and even cancelling part of the beam ux. Theresolution and sensitivity loss are represented as a function of phase error in Figure 2. Finally,the dynamic range and �delities are plotted for each reconstruction scheme as a function ofrms phase error in Figure 3.3 Implications for the MMAUnder the assumption of baseline independent Gaussian residual phase errors, such as mightexist if Welch's total power monitor scheme or Woody's water vapor spectrometer schemewere employed, a simpler decorrelation correction might su�ce. If the residual phase errors5



were antenna dependent or time dependent, then one of the decorrelation correction methodsdescribed here might improve the imaging.In the case of fast switching, the residual phase errors are equal to the square root of thephase structure functionqD�(�) for short baselines � and saturate at a value ofqD�(vt=2 + d)for baselines longer than the e�ective switching length vt=2 + d (Holdaway and Owen, 1995).Since the decorrelation is baseline dependent under fast switching, the decorrelation correctionmethods described above would be helpful.Currently, it is believed that reasonable imaging with the 40 element mma should be possi-ble with 30 degree rms phase errors, assuming the phase errors do not maintain some systematicvalue over long times. The 30 degree rms phase error per baselines speci�cation comes frompoint source simulations (dynamic range = 200:1; Holdaway, 1992) and from sensitivity argu-ments (down to 0.87). These simulations show that the MMA will be able to make high �delity,moderate dynamic range images of complex sources with rms phase errors of 70 degrees perbaseline (the worst baselines in this simulation actually had rms phase errors of 100 degrees).The 70 degree phase errors will result in a sti� penalty in sensitivity since the decorrelation isdown to 0.47 on the typical baseline. A modest resolution loss of 17% also occurs.We propose that we have two levels of phase error speci�cations:� The primary phase error speci�cation of 30 degrees rms per baseline will permit excellentimaging with almost no loss in sensitivity from decorrelation. This should be the primarygoal of our phase correction schemes.� The secondary phase error speci�cation of 70 degrees rms per baseline will still permitvery good imaging with a loss of 50% in sensitivity (a factor of four in time). Thissecondary phase error speci�cation reminds us that atmospheric conditions which donot allow us to meet the primary phase error speci�cation are not lost. This will beparticularly important for an instrument which is built on a suboptimal site and forobservations at very high frequencies.In Table 4 we explore what the 30 degree and 70 degree phase error speci�cations mean forobserving on a 300 m baseline at Chajnantor in Chile without any phase calibration. We list thephase stability quartiles measured on the NRAO 300 m, 11.2 GHz site test interferometer forthe month of June 1995, and then determine what frequency can be observed with 30 degreeand 70 degree phase errors. Fast switching can achieve an e�ective calibration baseline vt=2+dof about 50 m (Holdaway and Owen, 1995), and typical phase structure function power lawexponents are 0.7, so the post-calibration phase errors would be (50=300)0:7 = 0:29 lower thanthe rms phase errors measured on the 300 m baseline. These lower phase errors would pertainto all baselines longer than 50 m, and would boost the peak observing frequencies given inTable 4 by a factor of 3.5. 6
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Figure 1: Three di�erent reconstruction techniques (columns) applied to four di�erent magni-tudes of phase errors (rows). Column 1: imaging without any decorrelation correction. Column2: imaging with the statistical phase deconvolution. Column 3: imaging with correction of theamplitudes only. Row 1: 17 degree rms phase errors. Row 2: 35 degree rms phase errors. Row3: 70 degree rms phase errors. Row 4: 105 degree rms phase errors. The statistical phasedeconvolution technique is superior for large phase errors.8



Figure 2: The phase errors will degrade the resolution as well as the sensitivity. These �guresillustrate how the resolution and sensitivity at the highest resolution degrade with increasingphase errors in our simulations. The sensitivity curve is consistent with exp��2�=2 when weconsider that the phase errors at the highest resolution are higher than the mean phase errorswe plot. Also, the beam �tting is ill-conditioned in the high phase error case, which explainswhy the resolution seems to atten out at the right side of the graph.9



Figure 3: Three measures of image quality for the three imaging methods compared in thismemo: (a) Dynamic Range, de�ned as the image peak divided by the o�-source rms, (b)Median Fidelity, de�ned in the text, and (c) First Moment Fidelity, de�ned in the text.10



Fraction of �� � at which � at whichtime at 11.2 GHz �� = 30� �� = 70�0.75 2.95� 113 GHz 266 GHz0.50 1.61� 209 GHz 487 GHz0.25 0.93� 361 GHz 843 GHz0.10 0.66� 509 GHz 1190 GHzTable 1: How high a frequency could you operate the MMA in Chile if 30 degree rms phaseerrors were required, and if 70 degree rms phase errors were required? We present here thevery conservative estimates based on the NRAO 300 m, 11.2 GHz site test interferometer datataken for the month of June 1995. The phase at 11.2 GHz was better than 2.95 degrees 75% ofthe time, indicating that 113 GHz observations would have phase errors of less than 30 degreesmore than 75% of the time, and 266 GHz observations would have phase errors of less than70 degrees more than 75% of the time. This table does not consider any form of calibrationaside from the decorrelation corrections described in this memo. Active phase calibration couldincrease the maximum frequencies quoted in this table by a factor of 3.5.
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