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Abstract

Simulations of various abstract Fourier plane distributions indicates that a moderately
centrally condensed (u, v) coverage has much better noise characteristics upon tapering than
a uniform (u, v) coverage, but still maintains a very nearly Gaussian beam. To achieve the
same untapered resolution, an array with centrally condensed (u,v) coverage will require
maximum baselines which are about 25-35% longer than the maximum baselines in an array
with uniform (u,v) coverage. Due to the larger sidelobes of its synthesized beam, images
produced from a uniform Fourier plane distribution may have lower dynamic range than
images produced from an intrinsically tapered Fourier plane distribution, though prelimi-
nary results are conflicting. The largest three out of four MMA configurations are currently
designed to be some sort of ring, either an ellipse or a Reuleaux triangle, which will result
in approximately uniform Fourier plane coverage. I argue that we should consider a mod-
erately centrally condensed Fourier plane distribution for all of the MMA configurations,
with the possible exception of the largest array.

1 Introduction

Early work in designing the optimal array configurations for the MMA (Cornwell, 1984) and
for the SMA (Keto, 1992) assumed that the (u, v) points should be uniformly distributed across
the part of the Fourier plane which was to be sampled. This assumption led to ring-like arrays.
This is intuitive since the autocorrelation of a ring is a uniform disk with a delta function at
the origin. However, the arguments for a uniform Fourier plane distribution have not been on
ground as solid as the methods which have been created to give us arrays resulting in uniform
coverage.

Radio astronomers, especially in the VLBI community, have struggled for years to get
something for next to nothing, reconstructing images from poorly sampled Fourier plane data.
Given an arbitrarily complex object, we must have complete (u,v) coverage, sampling the
Fourier plane at the Nyquist rate. The MMA’s most compact configuration has essentially
complete Fourier plane coverage (out to its maximum baseline) in a snapshot, and its a good



thing too, since each field of the mosaics it makes will often be filled with complicated structure
on all scales. When you don’t completely sample the Fourier plane for an arbitrarily complex
object, you are trying to solve for more independent resolution elements than you have in-
dependent data measurements. Fortunately, most astrophysical sources are not “arbitrarily
complex”, but rather vary in some reasonable manner. Algorithms such as MEM are therefore
able to construct reasonably good images even in ill-determined problems due to MEM’s bias
towards simple images, and image quality degrades gracefully as the imaging problem becomes
less well-determined.

On the other hand, there are many objects which are simple enough to permit high quality
imaging with relatively poor sampling of the Fourier plane. For example, even without a
support constraint explicitly forbidding emission from being reconstructed outside some region
of the image, a point source can be imaged well with only a few measured visibilities. Objects of
intermediate complexity can be imaged with high quality with moderate Fourier plane coverage,
especially if a strong support constraint holds, limiting the emission to a small part of the
primary beam.

The desire to design an interferometric array which produces nearly uniform Fourier plane
coverage derives from the quest to obtain complete Fourier plane coverage, or as nearly com-
plete Fourier plane coverage as is allowed by the number of antennas in the array. However,
this goal does not properly address the kinds of objects which the array will be imaging or
the reconstruction algorithms which are currently in use. It may be a dangerous activity to
hypothesize how an array will be used based on our current knowledge of the universe, but it
may also gain us a great deal if our estimates of the array use are correct. For example:

o If the MMA were only to observe very bright and complicated sources such as the planets,
the sun, and nearby continuum sources, at the full natural resolution of each configuration,
striving for uniform Fourier plane coverage might be a good strategy.

e If the MMA were to observe mainly sources which were marginally detectable (and indeed,
astronomer’s optimism will result in many sources not being detected at the full resolution
of the configuration in which they were observed), then we would not be so acutely
concerned with the ability to achieve extremely high quality images, but with the ability
to optimally pull images out of our noisy data.

These two situations place very different demands on the Fourier plane distributions, and
because the MMA will often find itself squarely in each of these situations, some compromise
between these competing demands is warranted.

2 Tapering the MMA

We will want to taper the MMA’s Fourier coverage in at least two common situations:

e we simply don’t have the SNR to see what we want to, and tapering will increase the sur-
face brightness sensitivity. (For uniform coverage, doubling the linear beam size increases



the beam area by a factor of 4, reduces the number of baselines by a factor of 4, and
increases noise by a factor of 2. Hence, T} noise goes down by 1/2.) Since we have a factor
of 4 in size between arrays, this will be done often as people try to observe in the highest
resolution configuration just barely possible, and find out that the longest baselines are
just a bit too long. Tapering the velocity resolution is an alternative to tapering the spa-
tial resolution, at least for spectral line observations. Tapering the spatial resolution is
more effective at increasing the brightness sensitivity, but the tradeoffs between tapering
the velocity resolution and the spatial resolution depend upon the scientific objectives of
the observations.

e many studies will compare different molecular transitions at different frequencies, and
hence, at different resolutions. An accurate comparison requires the same resolution, so
N-1 out of N compared images will be tapered to some extent. Since the configuration
sizes are quantized in factors of about 4, significant tapering will often be required.
Quantities derived from molecular transition comparisons will also be limited by the
thermal noise of the input images, so optimal noise behavior upon tapering will buy us
lower noise in these derived quantities.

Since the images will often be limited by thermal noise, designing antenna configurations which
give good imaging and low noise both at full resolution and when tapered will increase the
scientific throughput of the MMA.

3 Noise Behavior of Different Fourier Plane Distributions When
Tapered

Figure 1 shows the radial Fourier plane distributions which are obtained with a ring array and
a filled array. The central peak in the case of the ring array is inevitable for a large number of
antennas. The radial Fourier plane distribution of the ring array is basically uniform, as the
central peak does not cover very much of the 2-D (u,v) area. Hence, we justify approximating
the ring array as a uniform Fourier plane coverage. The filled array gives a centrally condensed
Fourier plane coverage which we approximate as a function which decreases linearly with (u, v)
distance.

I have simulated (u,v) data with abstract Fourier plane distributions, ie, Fourier coverages
which are not associated with any physical distribution of antennas, and investigated some of
the properties of these Fourier plane distributions. The radial profiles of uniform and centrally
condensed (linearly decreasing) Fourier plane distributions are shown in Figure 2. To make
the comparison more fair to the uniform Fourier distribution case, we stretched the centrally
condensed distribution by 30% so the naturally weighted beam would be the same size as for
the uniform distribution. (If we make the maximum baseline of the two distributions the same,
rather than the resolution, the relative increase in SNR of the centrally condensed Fourier plane
distribution upon tapering is exaggerated.)



Other moderately centrally condensed Fourier plane distributions have been studied and
give similar noise curves after normalizing the width of the distribution to give the same natural
resolution. I made simulations of 28,000 random (u, v) points which were consistent with these
distributions. On a 128 by 64 Fourier plane grid, essentially every cell within the maximum
(u,v) distance had one or more (u,v) samples for each of these distributions. These simulated
(u,v) data sets were gridded with natural weighting, tapered to the desired resolution, and
Fourier transformed to yield the synthesized beam. Untapered robust and uniform weightings
were also investigated. | explored tapers as large as 4 times the full resolution beam. (Larger
tapers won’t be used often, as they provide the same resolution as the next smaller array
configuration, but much less efficiently.)

The two features of the synthesized beam which we study here are the amount of sensitivity
lost in the tapering, and the level to which the main lobe of the synthesized beam conforms
to a Gaussian. The extent to which the beam mimics a Gaussian is important to imaging and
analysis algorithms but is not fundamental. Since almost every radio astronomical researcher
convolves their clean components or maximum entropy images with a Gaussian beam, we will
assume that a Gaussian beam is desirable. If the synthesized beam falls off faster than a
Gaussian, the sensitivity on the longer baselines is wasted as we convolve with a Gaussian with
wider wings. On the other hand, a highly centrally condensed Fourier plane distribution, such
as is obtained from the VLA, causes a synthesized beam with very broad wings which results
in imaging problems since most of the array sensitivity is on very short spacings.

Figure 3 illustrates the point source sensitivity loss as a function of taper for the uniform
and centrally condensed distributions. Consistent with intuition, the centrally condensed dis-
tribution does not lose sensitivity with taper as quickly as the uniform distribution. At 4 arcsec
taper (almost a factor of 2 lower resolution than naturally weighted), the uniform distribution
has 16% higher noise than the centrally condensed case; at 6 arcsec taper, the uniform dis-
tribution has 21% higher noise than the centrally condensed case. The upturned spurs at the
high resolution end of Figure 3 are the robust and uniformly weighted results. While the cen-
trally condensed Fourier plane distribution suffers much in sensitivity when robust or uniform
weighting are used, it is able to achieve much higher resolution than its naturally weighted
case. With uniform Fourier plane coverage almost no increase in resolution and little loss of
sensitivity occur.

Figure 4 shows the fractional difference between the integrals of the synthesized beam and its
best fit Gaussian, down to the 0.10 level of the Gaussian. Both uniform and centrally condensed
distributions show significant departures from Gaussian beams at the highest resolution, but
the uniform distribution produces much higher deviations. When the Fourier distribution is
highly tapered, both beams are very similar to a Gaussian, the uniform distribution being a few
tenths of a percent away from Gaussian and the centrally condensed distribution being about
1% away from Gaussian. The nearly Gaussian beams which result upon tapering indicate that
the relative noise improvements of the centrally condensed Fourier plane coverage over the
uniform Fourier plane coverage are not at the expense of imaging quality.



3.1 Interpretation of Taper Results

What is the optimal Fourier plane distribution? Assuming a Gaussian beam in the final image
is desired to aid in the interpretation and analysis of the image, it is clear that a uniform
Fourier distribution is NOT optimal. Figure 5 shows cuts through the uniform distribution’s
beam (very nearly a J1 Bessel function) and its “best fit” Gaussian. The Gaussian has much
broader wings than the uniform distribution’s beam, or the uniform distribution has too many
long baselines to yield a nice beam. If the uniform coverage is tapered to produce a beam which
is more Gaussian, about 30% of the sensitivity is lost. While I can’t say at this point which
Fourier plane distribution is optimal, I can say that the uniform distribution is sub-optimal
with respect to resulting beam shape and noise behavior upon tapering.

3.2 Caveats

All of our reasoning has been based on the assumption that we have so many antennas and
(u,v) samples that every cell which needs to be sampled can be sampled, and we are then
dealing with the issue of where the extra (u,v) samples should go. The conclusions we draw
for the 40 element MMA, for which this will often be true, will be quite different from the
conclusions that might be drawn from a 6 element instrument, which is really stretching to
fill as many cells as possible. A typical MMA field observed with the D array will be filled
with complicated structure and requires complete (u,v) coverage. The centrally condensed
Fourier plane distribution which results from the requirement of maximum surface brightness
sensitivity in the D array also meets the complete (u,v) coverage requirement. In C array,
either uniform or the linear distributions will usually fill most cells, permitting good imaging
of complex objects. If typical fields observed by the MMA’s larger configurations are not filled
with complicated structure, but are splattered with regions of complicated structure, we may
relax the goal of putting a (u, v) sample in absolutely every cell, and we may instead ask where
we should put the (u,v) samples to do the most good.

4 A Global View of the MMA’s Multiple Configurations

Many astronomers will want images with the highest angular resolution which will still give
adequate brightness sensitivity in the amount of time the scheduling committee has granted
them to observe their source. (There are exceptions to this statement, researchers looking
for microwave background fluctuations of a certain scale, for example.) There is a natural
tradeoff between resolution and brightness sensitivity. This tradeoff can be made continuously
by tapering a single array configuration, or more efficient from an operational standpoint but
less efficient from a scientific standpoint, discretely by switching among arrays of different

size.! The combined effect of tapering and switching among different array configurations

! Another means of making this tradeoff is by observing for different amounts of time in different arrays. In
general, all the MMA’s configurations will have some very short spacings, permitting good single configuration
imaging, but some experiments will require multi-configuration observations.



is shown schematically in Figure 6 for the cases of uniform and centrally condensed Fourier
plane distributions. The solid straight line represents the brightness sensitivity as a function of
resolution for some constant amount of observing time which would result if the MMA antennas
could be continuously reconfigured to any resolution. The letters A, B, C, and D indicate where
on this “optimal” line the resolution and brightness sensitivity of the actual arrays lie (assuming
the resolution of each is separated by a factor of 4.0). The dashed, discontinuous lines indicate
the result of tapering each array, ie, trading resolution for brightness sensitivity. The top
dashed lines illustrate how a uniform Fourier plane distribution responds to tapering, and the
lower dashed lines illustrate how a centrally condensed Fourier plane distribution respond to
tapering. We do not consider tapering to a resolution lower than that of the next smaller array.
As each smaller array enters in, we get a large improvement in surface brightness sensitivity as
no tapering is used at full resolution. These lines represent the limits of detection, and sources
with T below the lines will not be detected. The heavy curves represent the surface brightness
as a function of resolution for three Gaussian sources of the same flux but of sizes 0.2, 0.5, and
1.0 arcseconds. To the right, each source is unresolved. As each source is observed at higher
resolution, it eventually becomes undetectable, or “resolved out”, by the arrays.

We assume that there is no a priori source size which is more likely or more important
than other source sizes. Under this assumption, we would desire that our discrete array con-
figurations be able to come as close to the solid straight line as possible. We can do this by
maximizing the number of configurations which are financially and operationally feasible, and
by optimizing the way in which the array sensitivity degrades as we taper to lower resolution.

We now compare the brightness sensitivity of the uniform and centrally condensed Fourier
plane distributions for the same amount of observing time. Observing in a “C” configuration
(resolution of about 1.1 arcsec), all three sample sources are firmly detected at full resolution
and there is little difference between the two Fourier plane distributions. When the 1 arcsec
Gaussian source is observed with the uniform “B” configuration (resolution of about 0.28 arc-
sec), it is basically undetected at all tapers. However, the 1 arcsec source is detected by the
centrally condensed “B” array at beams larger than 0.6 arcsec. Either “B” configuration will
detect the 0.5 arcsec source at full resolution. Both the uniform and condensed “A” config-
urations require some tapering to detect the 0.2 arcsec source, but the centrally condensed
configuration requires less tapering, and can therefore image the 0.2” source at somewhat
higher resolution than the uniform configuration.

5 Dynamic Range of Images

Above, we have addressed the issue of noise performance with respect to tapering the beam,
which is pertinent for imaging weak sources. Another consideration in choosing a Fourier plane
distribution for the MMA is the image dynamic range which can be achieved for very bright
sources. Interferometric images of very bright sources are not limited by thermal noise, but by
other systematic errors. VLA images of sources dominated by a single bright unresolved source
are dynamic range limited at the level of a few 100,000:1 by unknown systematic effects. VLA



images of more complicated sources dominated by extended emission are typically dynamic
range limited at the level of 10,000:1, presumably due to deconvolution errors. It seems likely
that we can design the MMA configurations to give high dynamic range deconvolution. The
Fourier plane distribution of an array determines the character of the sidelobes in the point
spread function, and a point spread function with small sidelobes encourages a high dynamic
range deconvolution. Such reasoning would indicate that the uniform Fourier plane coverage
would result in poorer images than the tapered coverage.

Simulations using the abstract Fourier plane coverages mentioned above without adding
thermal noise have given conflicting results. I have simulated observations of our standard
MMA source model, a planet model, and a random collection of point sources. The simu-
lated data were naturally weighted, gridded, Fourier transformed, and deconvolved using both
CLEAN and MEM. Uniform Fourier plane distribution results in images with dynamic range
at full resolution which is 10-50% than images made from a centrally condensed Fourier plane
distribution. As the visibilities are tapered, the uniform distribution images become compara-
ble to the centrally condensed images after the resolution is degraded by 50-100%. However,
Morita (private communication) has performed simulations using abstract uniform and mod-
erately centrally condensed Fourier plane distributions which have been imaged using uniform
weighting. Morita finds that the uniform Fourier plane coverage results in higher dynamic range
images. These conflicting results are not necessarily in conflict since the uniform weighting will
up-weight the sparsely sampled long baseline (u,v) points of the tapered Fourier distribution,
possibly resulting in larger image reconstruction errors.

6 Antenna Based Errors

We have not investigated the difference of the effects of antenna based errors on images formed
from uniform and centrally condensed Fourier plane distributions. It has been argued that since
there is more flux, and since the visibility function is changing faster, on short baselines, an
error on a short baseline will have a larger effect on the resulting image’s quality than a similar
fractional error incurred on a long baseline. By this argument, we might achieve better images
if we give a measure of redundancy on the shorter baselines to reduce the effects of these errors
by averaging. However, since there are more short spacings than in the uniform case, any given
antenna based gain error will affect more short baselines than in the case of a uniform Fourier
plane distribution. If the centrally condensed Fourier plane coverage is taken seriously, we
should perform simulations to determine which distribution is superior with respect to antenna
based gain errors.

7 Recommendations for MMA Configurations

The argument which drives the D configuration antenna layout is to maximize the surface
brightness sensitivity, which requires a centrally condensed Fourier plane distribution, achieved
by placing the antennas as close together as possible. No change in the current design is



suggested for the D configuration. Until now, the antenna configuration for the larger arrays
has been driven by the desire to provide uniform Fourier plane coverage, a desire which has not
been supported by any analysis. I argue that the larger configurations should have moderately
centrally condensed Fourier plane coverages to provide better shaped naturally weighted beams
and better noise performance with respect to tapering. One possible exception is the largest
array, which might be a ring-like array to get the most sensitivity at the resolution of the
longest baselines.

The argument which drives the D configuration antenna layout is to maximize the surface
brightness sensitivity, which requires a centrally condensed Fourier plane distribution, achieved
by placing the antennas as close together as possible. No change in the current design is
suggested for the D configuration. Until now, the antenna configuration for the larger arrays
has been driven by the desire to provide uniform Fourier plane coverage, a desire which has not
been supported by any analysis. I argue that the larger configurations should have moderately
centrally condensed Fourier plane coverages to provide better shaped naturally weighted beams
and better noise performance with respect to tapering. One possible exception is the largest
array, which might be a ring-like array to get the most sensitivity at the resolution of the
longest baselines.

Does the MMA still need four configurations? Absolutely! Even for the centrally condensed
(linearly decreasing) Fourier plane distribution studied here, the C array will have a factor of
3 better sensitivity than the B array tapered to the C array’s full resolution. An even more
highly centrally condensed coverage would not lose sensitivity so quickly, but will result in a
very bad synthesized beam with a wide plateau at its base, indicating that there is not enough
sensitivity on the long baselines, and is undesirable.

Antennas randomly distributed over a circular region with a uniform deviate will give (u, v)
coverage which approximates the centrally condensed distribution which we’ve been using.
Some of the inner antenna pads for a given array may be common with the outer pads of
the next smaller array. Even with tricks like this, the configurations with centrally condensed
(u, v) coverage will require much more road and cables than the ring-like arrays currently under
consideration. Tim Cornwell once suggested that the MMA arrays be built out of concentric
rings of antenna stations, with two adjacent rings being populated each with half the antennas
to produce a tapered (u,v) coverage. To obtain a monotonically decreasing Fourier plane
density as a function of baseline, each array would have to be 3.0 times larger than its adjacent
smaller array, which would require 5 different arrays to span from the smallest to the largest
array. Such an array falls right in between the uniform and the centrally condensed linearly
decreasing distribution for sensitivity loss as a function of taper, but due to sharp corners in
it’s three tiered “wedding cake” Fourier distribution, the image fidelity suffers a great deal in
simulations. To what extent can the sharp edges be rounded off by a careful layout of the
antennas on the two rings? We need to study this further.

For the future, we need to debate the merits of uniform and centrally condensed Fourier
plane coverage for the MMA, clarify the shape of the optimal beam, clarify the use of mul-
tiple configurations in the MMA’s imaging, further explore the various options for centrally
condensed Fourier plane distributions, and design antenna configurations which result in the



desired centrally condensed Fourier plane distribution and permit economical road, power, and
communications layouts. Furthermore, we need to investigate the possibility of flexible layout
of antenna pads which would permit arrays with several Fourier plane distributions.



Radial Fourier Plane Distributions
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Figure 1: Radial Fourier plane distributions from actual ring and filled circle antenna configu-
rations
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Figure 2: The uniform and centrally condensed (linearly decreasing) Fourier plane distributions
used in this study. The radial cuts have been plotted such that the integral over the 2-D Fourier
plane is the same for both distributions. Just arguing from geometry, trading a little bit of
baseline density in the expansive outer part of the plane buys us a lot of baseline density in
the cozy inner plane.
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Noise behavior of different (u,v) distributions with tapering
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Figure 3: How does point source sensitivity degrade as we taper the Fourier plane coverage? We
plot the point source sensitivity, normalized to full array sensitivity, as a function of resolution
for uniform and linearly decreasing Fourier plane distributions. The upraised spurs at the
highest resolutions are for robust and uniform weighting.
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Beam behavior of different (u,v) distributions with tapering
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Figure 4: But will these Fourier plane distributions give me a nice beam? We plot the fractional
difference of the beam integral and the integral of the fit Gaussian beam as a function of
tapered beam size for the uniform and centrally condensed (linearly decreasing) Fourier plane
distributions. Uniform Fourier coverage gives us a highly non-Gaussian beam at full natural
resolution, due to its excess of long baselines. Uniformly weighted beams for both uniform and
centrally condensed distributions are highly non-Gaussian.
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Differences Between Uniform Distribution’s Beam and a Gaussian
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Figure 5: What’s wrong with the uniform distribution’s beam? Here are the radial profiles
of the naturally weighted uniform Fourier distribution’s beam and its best fit Gaussian. The
uniform Fourier distribution has much too many long baselines to yield a good Gaussian beam.
Conversely, in order to get a good Gaussian beam, the long baselines need to be tapered down,
resulting in a loss of about 30% of the sensitivity.
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Brightness Sensitivity of Arrays, Three Sample Sources
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Figure 6: Schematic Log-Log plot of brightness sensitivity as a function of resolution for an
infinitely reconfigurable array (solid straight line), uniform Fourier plane distribution versions
of A, B, C, and D arrays subject to tapering (top dashed line), and centrally condensed Fourier
plane distribution versions of A, B, C, abd D arrays (lower dashed line). The heavy curves
represent surface brightness as a function of resolution for Gaussian sources of different sizes.
The sources are detected when their curves lie above the array sensitivity lines.
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