
What Fourier Plane Coverage is Right for theMMA?M.A. HoldawayNational Radio Astronomy ObservatoryTucson, AZ 85721July 9, 1996AbstractSimulations of various abstract Fourier plane distributions indicates that a moderatelycentrally condensed (u; v) coverage has much better noise characteristics upon tapering thana uniform (u; v) coverage, but still maintains a very nearly Gaussian beam. To achieve thesame untapered resolution, an array with centrally condensed (u; v) coverage will requiremaximumbaselines which are about 25-35% longer than the maximumbaselines in an arraywith uniform (u; v) coverage. Due to the larger sidelobes of its synthesized beam, imagesproduced from a uniform Fourier plane distribution may have lower dynamic range thanimages produced from an intrinsically tapered Fourier plane distribution, though prelimi-nary results are con
icting. The largest three out of four MMA con�gurations are currentlydesigned to be some sort of ring, either an ellipse or a Reuleaux triangle, which will resultin approximately uniform Fourier plane coverage. I argue that we should consider a mod-erately centrally condensed Fourier plane distribution for all of the MMA con�gurations,with the possible exception of the largest array.1 IntroductionEarly work in designing the optimal array con�gurations for the MMA (Cornwell, 1984) andfor the SMA (Keto, 1992) assumed that the (u; v) points should be uniformly distributed acrossthe part of the Fourier plane which was to be sampled. This assumption led to ring-like arrays.This is intuitive since the autocorrelation of a ring is a uniform disk with a delta function atthe origin. However, the arguments for a uniform Fourier plane distribution have not been onground as solid as the methods which have been created to give us arrays resulting in uniformcoverage.Radio astronomers, especially in the VLBI community, have struggled for years to getsomething for next to nothing, reconstructing images from poorly sampled Fourier plane data.Given an arbitrarily complex object, we must have complete (u; v) coverage, sampling theFourier plane at the Nyquist rate. The MMA's most compact con�guration has essentiallycomplete Fourier plane coverage (out to its maximum baseline) in a snapshot, and its a good1



thing too, since each �eld of the mosaics it makes will often be �lled with complicated structureon all scales. When you don't completely sample the Fourier plane for an arbitrarily complexobject, you are trying to solve for more independent resolution elements than you have in-dependent data measurements. Fortunately, most astrophysical sources are not \arbitrarilycomplex", but rather vary in some reasonable manner. Algorithms such as MEM are thereforeable to construct reasonably good images even in ill-determined problems due to MEM's biastowards simple images, and image quality degrades gracefully as the imaging problem becomesless well-determined.On the other hand, there are many objects which are simple enough to permit high qualityimaging with relatively poor sampling of the Fourier plane. For example, even without asupport constraint explicitly forbidding emission from being reconstructed outside some regionof the image, a point source can be imaged well with only a few measured visibilities. Objects ofintermediate complexity can be imaged with high quality with moderate Fourier plane coverage,especially if a strong support constraint holds, limiting the emission to a small part of theprimary beam.The desire to design an interferometric array which produces nearly uniform Fourier planecoverage derives from the quest to obtain complete Fourier plane coverage, or as nearly com-plete Fourier plane coverage as is allowed by the number of antennas in the array. However,this goal does not properly address the kinds of objects which the array will be imaging orthe reconstruction algorithms which are currently in use. It may be a dangerous activity tohypothesize how an array will be used based on our current knowledge of the universe, but itmay also gain us a great deal if our estimates of the array use are correct. For example:� If the MMA were only to observe very bright and complicated sources such as the planets,the sun, and nearby continuum sources, at the full natural resolution of each con�guration,striving for uniform Fourier plane coverage might be a good strategy.� If the MMAwere to observe mainly sources which were marginally detectable (and indeed,astronomer's optimism will result in many sources not being detected at the full resolutionof the con�guration in which they were observed), then we would not be so acutelyconcerned with the ability to achieve extremely high quality images, but with the abilityto optimally pull images out of our noisy data.These two situations place very di�erent demands on the Fourier plane distributions, andbecause the MMA will often �nd itself squarely in each of these situations, some compromisebetween these competing demands is warranted.2 Tapering the MMAWe will want to taper the MMA's Fourier coverage in at least two common situations:� we simply don't have the SNR to see what we want to, and tapering will increase the sur-face brightness sensitivity. (For uniform coverage, doubling the linear beam size increases2



the beam area by a factor of 4, reduces the number of baselines by a factor of 4, andincreases noise by a factor of 2. Hence, Tb noise goes down by 1/2.) Since we have a factorof 4 in size between arrays, this will be done often as people try to observe in the highestresolution con�guration just barely possible, and �nd out that the longest baselines arejust a bit too long. Tapering the velocity resolution is an alternative to tapering the spa-tial resolution, at least for spectral line observations. Tapering the spatial resolution ismore e�ective at increasing the brightness sensitivity, but the tradeo�s between taperingthe velocity resolution and the spatial resolution depend upon the scienti�c objectives ofthe observations.� many studies will compare di�erent molecular transitions at di�erent frequencies, andhence, at di�erent resolutions. An accurate comparison requires the same resolution, soN-1 out of N compared images will be tapered to some extent. Since the con�gurationsizes are quantized in factors of about 4, signi�cant tapering will often be required.Quantities derived from molecular transition comparisons will also be limited by thethermal noise of the input images, so optimal noise behavior upon tapering will buy uslower noise in these derived quantities.Since the images will often be limited by thermal noise, designing antenna con�gurations whichgive good imaging and low noise both at full resolution and when tapered will increase thescienti�c throughput of the MMA.3 Noise Behavior of Di�erent Fourier Plane Distributions WhenTaperedFigure 1 shows the radial Fourier plane distributions which are obtained with a ring array anda �lled array. The central peak in the case of the ring array is inevitable for a large number ofantennas. The radial Fourier plane distribution of the ring array is basically uniform, as thecentral peak does not cover very much of the 2-D (u,v) area. Hence, we justify approximatingthe ring array as a uniform Fourier plane coverage. The �lled array gives a centrally condensedFourier plane coverage which we approximate as a function which decreases linearly with (u; v)distance.I have simulated (u; v) data with abstract Fourier plane distributions, ie, Fourier coverageswhich are not associated with any physical distribution of antennas, and investigated some ofthe properties of these Fourier plane distributions. The radial pro�les of uniform and centrallycondensed (linearly decreasing) Fourier plane distributions are shown in Figure 2. To makethe comparison more fair to the uniform Fourier distribution case, we stretched the centrallycondensed distribution by 30% so the naturally weighted beam would be the same size as forthe uniform distribution. (If we make the maximum baseline of the two distributions the same,rather than the resolution, the relative increase in SNR of the centrally condensed Fourier planedistribution upon tapering is exaggerated.) 3



Other moderately centrally condensed Fourier plane distributions have been studied andgive similar noise curves after normalizing the width of the distribution to give the same naturalresolution. I made simulations of 28,000 random (u; v) points which were consistent with thesedistributions. On a 128 by 64 Fourier plane grid, essentially every cell within the maximum(u; v) distance had one or more (u; v) samples for each of these distributions. These simulated(u; v) data sets were gridded with natural weighting, tapered to the desired resolution, andFourier transformed to yield the synthesized beam. Untapered robust and uniform weightingswere also investigated. I explored tapers as large as 4 times the full resolution beam. (Largertapers won't be used often, as they provide the same resolution as the next smaller arraycon�guration, but much less e�ciently.)The two features of the synthesized beam which we study here are the amount of sensitivitylost in the tapering, and the level to which the main lobe of the synthesized beam conformsto a Gaussian. The extent to which the beam mimics a Gaussian is important to imaging andanalysis algorithms but is not fundamental. Since almost every radio astronomical researcherconvolves their clean components or maximum entropy images with a Gaussian beam, we willassume that a Gaussian beam is desirable. If the synthesized beam falls o� faster than aGaussian, the sensitivity on the longer baselines is wasted as we convolve with a Gaussian withwider wings. On the other hand, a highly centrally condensed Fourier plane distribution, suchas is obtained from the VLA, causes a synthesized beam with very broad wings which resultsin imaging problems since most of the array sensitivity is on very short spacings.Figure 3 illustrates the point source sensitivity loss as a function of taper for the uniformand centrally condensed distributions. Consistent with intuition, the centrally condensed dis-tribution does not lose sensitivity with taper as quickly as the uniform distribution. At 4 arcsectaper (almost a factor of 2 lower resolution than naturally weighted), the uniform distributionhas 16% higher noise than the centrally condensed case; at 6 arcsec taper, the uniform dis-tribution has 21% higher noise than the centrally condensed case. The upturned spurs at thehigh resolution end of Figure 3 are the robust and uniformly weighted results. While the cen-trally condensed Fourier plane distribution su�ers much in sensitivity when robust or uniformweighting are used, it is able to achieve much higher resolution than its naturally weightedcase. With uniform Fourier plane coverage almost no increase in resolution and little loss ofsensitivity occur.Figure 4 shows the fractional di�erence between the integrals of the synthesized beam and itsbest �t Gaussian, down to the 0.10 level of the Gaussian. Both uniform and centrally condenseddistributions show signi�cant departures from Gaussian beams at the highest resolution, butthe uniform distribution produces much higher deviations. When the Fourier distribution ishighly tapered, both beams are very similar to a Gaussian, the uniform distribution being a fewtenths of a percent away from Gaussian and the centrally condensed distribution being about1% away from Gaussian. The nearly Gaussian beams which result upon tapering indicate thatthe relative noise improvements of the centrally condensed Fourier plane coverage over theuniform Fourier plane coverage are not at the expense of imaging quality.4



3.1 Interpretation of Taper ResultsWhat is the optimal Fourier plane distribution? Assuming a Gaussian beam in the �nal imageis desired to aid in the interpretation and analysis of the image, it is clear that a uniformFourier distribution is NOT optimal. Figure 5 shows cuts through the uniform distribution'sbeam (very nearly a J1 Bessel function) and its \best �t" Gaussian. The Gaussian has muchbroader wings than the uniform distribution's beam, or the uniform distribution has too manylong baselines to yield a nice beam. If the uniform coverage is tapered to produce a beam whichis more Gaussian, about 30% of the sensitivity is lost. While I can't say at this point whichFourier plane distribution is optimal, I can say that the uniform distribution is sub-optimalwith respect to resulting beam shape and noise behavior upon tapering.3.2 CaveatsAll of our reasoning has been based on the assumption that we have so many antennas and(u; v) samples that every cell which needs to be sampled can be sampled, and we are thendealing with the issue of where the extra (u; v) samples should go. The conclusions we drawfor the 40 element MMA, for which this will often be true, will be quite di�erent from theconclusions that might be drawn from a 6 element instrument, which is really stretching to�ll as many cells as possible. A typical MMA �eld observed with the D array will be �lledwith complicated structure and requires complete (u; v) coverage. The centrally condensedFourier plane distribution which results from the requirement of maximum surface brightnesssensitivity in the D array also meets the complete (u; v) coverage requirement. In C array,either uniform or the linear distributions will usually �ll most cells, permitting good imagingof complex objects. If typical �elds observed by the MMA's larger con�gurations are not �lledwith complicated structure, but are splattered with regions of complicated structure, we mayrelax the goal of putting a (u; v) sample in absolutely every cell, and we may instead ask wherewe should put the (u; v) samples to do the most good.4 A Global View of the MMA's Multiple Con�gurationsMany astronomers will want images with the highest angular resolution which will still giveadequate brightness sensitivity in the amount of time the scheduling committee has grantedthem to observe their source. (There are exceptions to this statement, researchers lookingfor microwave background 
uctuations of a certain scale, for example.) There is a naturaltradeo� between resolution and brightness sensitivity. This tradeo� can be made continuouslyby tapering a single array con�guration, or more e�cient from an operational standpoint butless e�cient from a scienti�c standpoint, discretely by switching among arrays of di�erentsize.1 The combined e�ect of tapering and switching among di�erent array con�gurations1Another means of making this tradeo� is by observing for di�erent amounts of time in di�erent arrays. Ingeneral, all the MMA's con�gurations will have some very short spacings, permitting good single con�gurationimaging, but some experiments will require multi-con�guration observations.5



is shown schematically in Figure 6 for the cases of uniform and centrally condensed Fourierplane distributions. The solid straight line represents the brightness sensitivity as a function ofresolution for some constant amount of observing time which would result if the MMA antennascould be continuously recon�gured to any resolution. The letters A, B, C, and D indicate whereon this \optimal" line the resolution and brightness sensitivity of the actual arrays lie (assumingthe resolution of each is separated by a factor of 4.0). The dashed, discontinuous lines indicatethe result of tapering each array, ie, trading resolution for brightness sensitivity. The topdashed lines illustrate how a uniform Fourier plane distribution responds to tapering, and thelower dashed lines illustrate how a centrally condensed Fourier plane distribution respond totapering. We do not consider tapering to a resolution lower than that of the next smaller array.As each smaller array enters in, we get a large improvement in surface brightness sensitivity asno tapering is used at full resolution. These lines represent the limits of detection, and sourceswith TB below the lines will not be detected. The heavy curves represent the surface brightnessas a function of resolution for three Gaussian sources of the same 
ux but of sizes 0.2, 0.5, and1.0 arcseconds. To the right, each source is unresolved. As each source is observed at higherresolution, it eventually becomes undetectable, or \resolved out", by the arrays.We assume that there is no a priori source size which is more likely or more importantthan other source sizes. Under this assumption, we would desire that our discrete array con-�gurations be able to come as close to the solid straight line as possible. We can do this bymaximizing the number of con�gurations which are �nancially and operationally feasible, andby optimizing the way in which the array sensitivity degrades as we taper to lower resolution.We now compare the brightness sensitivity of the uniform and centrally condensed Fourierplane distributions for the same amount of observing time. Observing in a \C" con�guration(resolution of about 1.1 arcsec), all three sample sources are �rmly detected at full resolutionand there is little di�erence between the two Fourier plane distributions. When the 1 arcsecGaussian source is observed with the uniform \B" con�guration (resolution of about 0.28 arc-sec), it is basically undetected at all tapers. However, the 1 arcsec source is detected by thecentrally condensed \B" array at beams larger than 0.6 arcsec. Either \B" con�guration willdetect the 0.5 arcsec source at full resolution. Both the uniform and condensed \A" con�g-urations require some tapering to detect the 0.2 arcsec source, but the centrally condensedcon�guration requires less tapering, and can therefore image the 0.2" source at somewhathigher resolution than the uniform con�guration.5 Dynamic Range of ImagesAbove, we have addressed the issue of noise performance with respect to tapering the beam,which is pertinent for imaging weak sources. Another consideration in choosing a Fourier planedistribution for the MMA is the image dynamic range which can be achieved for very brightsources. Interferometric images of very bright sources are not limited by thermal noise, but byother systematic errors. VLA images of sources dominated by a single bright unresolved sourceare dynamic range limited at the level of a few 100,000:1 by unknown systematic e�ects. VLA6



images of more complicated sources dominated by extended emission are typically dynamicrange limited at the level of 10,000:1, presumably due to deconvolution errors. It seems likelythat we can design the MMA con�gurations to give high dynamic range deconvolution. TheFourier plane distribution of an array determines the character of the sidelobes in the pointspread function, and a point spread function with small sidelobes encourages a high dynamicrange deconvolution. Such reasoning would indicate that the uniform Fourier plane coveragewould result in poorer images than the tapered coverage.Simulations using the abstract Fourier plane coverages mentioned above without addingthermal noise have given con
icting results. I have simulated observations of our standardMMA source model, a planet model, and a random collection of point sources. The simu-lated data were naturally weighted, gridded, Fourier transformed, and deconvolved using bothCLEAN and MEM. Uniform Fourier plane distribution results in images with dynamic rangeat full resolution which is 10-50% than images made from a centrally condensed Fourier planedistribution. As the visibilities are tapered, the uniform distribution images become compara-ble to the centrally condensed images after the resolution is degraded by 50-100%. However,Morita (private communication) has performed simulations using abstract uniform and mod-erately centrally condensed Fourier plane distributions which have been imaged using uniformweighting. Morita �nds that the uniform Fourier plane coverage results in higher dynamic rangeimages. These con
icting results are not necessarily in con
ict since the uniform weighting willup-weight the sparsely sampled long baseline (u; v) points of the tapered Fourier distribution,possibly resulting in larger image reconstruction errors.6 Antenna Based ErrorsWe have not investigated the di�erence of the e�ects of antenna based errors on images formedfrom uniform and centrally condensed Fourier plane distributions. It has been argued that sincethere is more 
ux, and since the visibility function is changing faster, on short baselines, anerror on a short baseline will have a larger e�ect on the resulting image's quality than a similarfractional error incurred on a long baseline. By this argument, we might achieve better imagesif we give a measure of redundancy on the shorter baselines to reduce the e�ects of these errorsby averaging. However, since there are more short spacings than in the uniform case, any givenantenna based gain error will a�ect more short baselines than in the case of a uniform Fourierplane distribution. If the centrally condensed Fourier plane coverage is taken seriously, weshould perform simulations to determine which distribution is superior with respect to antennabased gain errors.7 Recommendations for MMA Con�gurationsThe argument which drives the D con�guration antenna layout is to maximize the surfacebrightness sensitivity, which requires a centrally condensed Fourier plane distribution, achievedby placing the antennas as close together as possible. No change in the current design is7



suggested for the D con�guration. Until now, the antenna con�guration for the larger arrayshas been driven by the desire to provide uniform Fourier plane coverage, a desire which has notbeen supported by any analysis. I argue that the larger con�gurations should have moderatelycentrally condensed Fourier plane coverages to provide better shaped naturally weighted beamsand better noise performance with respect to tapering. One possible exception is the largestarray, which might be a ring-like array to get the most sensitivity at the resolution of thelongest baselines.The argument which drives the D con�guration antenna layout is to maximize the surfacebrightness sensitivity, which requires a centrally condensed Fourier plane distribution, achievedby placing the antennas as close together as possible. No change in the current design issuggested for the D con�guration. Until now, the antenna con�guration for the larger arrayshas been driven by the desire to provide uniform Fourier plane coverage, a desire which has notbeen supported by any analysis. I argue that the larger con�gurations should have moderatelycentrally condensed Fourier plane coverages to provide better shaped naturally weighted beamsand better noise performance with respect to tapering. One possible exception is the largestarray, which might be a ring-like array to get the most sensitivity at the resolution of thelongest baselines.Does the MMA still need four con�gurations? Absolutely! Even for the centrally condensed(linearly decreasing) Fourier plane distribution studied here, the C array will have a factor of3 better sensitivity than the B array tapered to the C array's full resolution. An even morehighly centrally condensed coverage would not lose sensitivity so quickly, but will result in avery bad synthesized beam with a wide plateau at its base, indicating that there is not enoughsensitivity on the long baselines, and is undesirable.Antennas randomly distributed over a circular region with a uniform deviate will give (u; v)coverage which approximates the centrally condensed distribution which we've been using.Some of the inner antenna pads for a given array may be common with the outer pads ofthe next smaller array. Even with tricks like this, the con�gurations with centrally condensed(u; v) coverage will require much more road and cables than the ring-like arrays currently underconsideration. Tim Cornwell once suggested that the MMA arrays be built out of concentricrings of antenna stations, with two adjacent rings being populated each with half the antennasto produce a tapered (u; v) coverage. To obtain a monotonically decreasing Fourier planedensity as a function of baseline, each array would have to be 3.0 times larger than its adjacentsmaller array, which would require 5 di�erent arrays to span from the smallest to the largestarray. Such an array falls right in between the uniform and the centrally condensed linearlydecreasing distribution for sensitivity loss as a function of taper, but due to sharp corners init's three tiered \wedding cake" Fourier distribution, the image �delity su�ers a great deal insimulations. To what extent can the sharp edges be rounded o� by a careful layout of theantennas on the two rings? We need to study this further.For the future, we need to debate the merits of uniform and centrally condensed Fourierplane coverage for the MMA, clarify the shape of the optimal beam, clarify the use of mul-tiple con�gurations in the MMA's imaging, further explore the various options for centrallycondensed Fourier plane distributions, and design antenna con�gurations which result in the8



desired centrally condensed Fourier plane distribution and permit economical road, power, andcommunications layouts. Furthermore, we need to investigate the possibility of 
exible layoutof antenna pads which would permit arrays with several Fourier plane distributions.
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Figure 1: Radial Fourier plane distributions from actual ring and �lled circle antenna con�gu-rations 10



Figure 2: The uniform and centrally condensed (linearly decreasing) Fourier plane distributionsused in this study. The radial cuts have been plotted such that the integral over the 2-D Fourierplane is the same for both distributions. Just arguing from geometry, trading a little bit ofbaseline density in the expansive outer part of the plane buys us a lot of baseline density inthe cozy inner plane. 11



Figure 3: How does point source sensitivity degrade as we taper the Fourier plane coverage? Weplot the point source sensitivity, normalized to full array sensitivity, as a function of resolutionfor uniform and linearly decreasing Fourier plane distributions. The upraised spurs at thehighest resolutions are for robust and uniform weighting.12



Figure 4: But will these Fourier plane distributions give me a nice beam? We plot the fractionaldi�erence of the beam integral and the integral of the �t Gaussian beam as a function oftapered beam size for the uniform and centrally condensed (linearly decreasing) Fourier planedistributions. Uniform Fourier coverage gives us a highly non-Gaussian beam at full naturalresolution, due to its excess of long baselines. Uniformly weighted beams for both uniform andcentrally condensed distributions are highly non-Gaussian.13



Figure 5: What's wrong with the uniform distribution's beam? Here are the radial pro�lesof the naturally weighted uniform Fourier distribution's beam and its best �t Gaussian. Theuniform Fourier distribution has much too many long baselines to yield a good Gaussian beam.Conversely, in order to get a good Gaussian beam, the long baselines need to be tapered down,resulting in a loss of about 30% of the sensitivity.14



Figure 6: Schematic Log-Log plot of brightness sensitivity as a function of resolution for anin�nitely recon�gurable array (solid straight line), uniform Fourier plane distribution versionsof A, B, C, and D arrays subject to tapering (top dashed line), and centrally condensed Fourierplane distribution versions of A, B, C, abd D arrays (lower dashed line). The heavy curvesrepresent surface brightness as a function of resolution for Gaussian sources of di�erent sizes.The sources are detected when their curves lie above the array sensitivity lines.15


