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Abstract

There are in use at present three different ways of deducing the receiver
noise temperature TR from the measured Y-factor, each resulting in a different
value of TR. The methods differ in the way the physical temperatures of the hot
and cold loads, Th and Tc (usually room temperature and liquid nitrogen), are
converted into radiated power "temperatures" to deduce TR from Y. Only one of
these methods is consistent with Tucker's quantum mixer theory and the
constraints of Heisenberg's uncertainty principle. The paper also examines the
minimum system noise temperatures achievable with single- and double-sideband
receivers.

Introduction

After talking to people at the 1996 Symposium on Space Terahertz
Technology, it was clear that there was some confusion, or at least difference
of opinion, on how to deduce the noise temperature of a receiver from the
measured Y-factor. There was also disagreement on the fundamental quantum noise
limit of single- and double-sideband mixer receivers. With the (DSB) noise
temperatures of the best SIS receivers now approaching 2hf/k (~30 K at 300 GHz),
these questions need to be resolved. This paper compares the three
interpretations of the Y-factor measurement currently in use, and discusses the
fundamental quantum limit on the sensitivity of coherent receivers.

The Y-factor Method

In a Y-factor measurement, two noise sources are connected individually to
the receiver input, and the ratio, Y, of the receiver output powers is measured.
From the Y-factor the intrinsic noise of the receiver can be deduced, either as
an equivalent input noise power or as an equivalent input noise temperature.
While noise temperatures are most commonly used, the discussion will be clearer
if we consider noise powers initially.
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Let Pn be the equivalent input noise power of the receiver in a bandwidth
B, the measurement bandwidth. B is defined by a bandpass filter at the receiver
output (for a coherent receiver (e.g., amplifier or mixer) an input filter is
unnecessary). With a power Pin incident on the receiver in bandwidth B, the

measured output power of the receiver , where G is the gain ofPout � G P n
� Pin

the receiver. With hot and cold loads in front of the receiver the measured Y-
factor is:

The equivalent input noise power is found by inverting this equation:

Frequently the hot and cold loads are simply black-body radiators (well matched
waveguide or free-space loads) heated or cooled to accurately known physical
temperatures Thot and Tcold.

Power Radiated by a Black Body

The Planck radiation law is often used to calculate the thermal noise power
in a bandwidth B about frequency f (B << f), radiated into a single mode (e.g.,
a waveguide mode), by a black body at physical temperature T:

where, h and k are the Planck and Boltzmann constants. In the present context,
a more complete description is given by the dissipation-fluctuation theorem, or
generalized Nyquist theorem, of Callen & Welton [1]:

This is simply the Planck formula with an additional half photon per Hz, hfB/2,
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and it is this additional half photon, the zero-point fluctuation noise, that is
the source of some confusion. Some authors believe that the zero-point
fluctuations should be excluded from consideration of noise powers because they
do not represent exchangeable power. However, the view of Devyatov et al. [2]
is that, although the zero-point fluctuations deliver no real power, the receiver
nevertheless "...develops these quantum fluctuations to quite measurable
fluctuations..." at its output. The zero-point fluctuations, they argue, should
be associated with the incoming radiation and not with the receiver itself: at
the receiver input "...one can imagine two zero-point fluctuation waves
propagating in opposite directions..." with no net power flow.

It is interesting to note [3] that in the limit of small hf/kT, it is the
Callen and Welton formula (4) which gives the Rayleigh-Jeans result P = kTB,
while the Planck formula (3) gives P = kTB - hfB/2, half a photon below the
Rayleigh-Jeans result.

Noise Temperatures

The noise power Pn in a bandwidth B is conveniently represented by a noise
temperature Tn = Pn/kB. The noise temperature is simply a shorthand notation for
the noise power per unit bandwidth. The noise temperature of a black body
radiator at physical temperature T is obtained from the noise power (3, 4) as:

These expressions differ by the zero-point fluctuation noise temperature, hf/2k,
whose magnitude is 0.024 K per GHz. In the Rayleigh-Jeans limit of small hf/kT,
the noise temperature based on the Callen & Welton formula approaches the
physical temperature of the black body (TC&W

� T), while the noise temperature
based on the Planck formula is half a photon below the physical temperature
(TPlanck

� T — hf/2k). Fig. 1 shows Tn evaluated according to (5) and (6), as
functions of the physical temperature T of the black body, for a frequency of 230
GHz. Also shown are the differences between TPlanck, TC&W, and TRJ.



2 This definition of receiver noise temperature is now generally accepted in the millimeter and submillimeter
receiver community.  There are two older definitions of receiver noise temperature which are based on hypothetical
measurements rather than on the simple Y-factor measurement:  (i) The physical temperature of the input
termination of a hypothetical noise-free device, which would result in the same output noise power as the actual
device connected to a noise-free input termination.  (ii) The physical temperature of the input termination required to
double the output noise of the same receiver with its input termination at absolute zero temperature.  Using either of
these older definitions causes further complications, beyond the scope of this paper.  This question was dealt with at
length in [5]. 
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Fig.1.   Noise temperature vs physical temperature for black body radiators at 230 GHz, according to the
Rayleigh-Jeans, Planck, and Callen & Welton laws.  Also shown (broken lines) are the differences between the
three radiation curves.  The Rayleigh-Jeans curve converges to the Callen & Welton curve at high temperature,
while the Planck curve is always hf/2k below the Callen & Welton curve.

Receiver noise temperature from the Y-factor

Equation (2) for the equivalent input noise power of a receiver can be
written in terms of noise temperatures using Tn = Pn/kB. Thus the equivalent
input noise temperature2 of the receiver,

Three different interpretations of this equation are in use at present. They
differ in the values of and assumed for the hot and cold loads atT n

hot T n
cold
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physical temperatures Thot and Tcold. Most often, the Rayleigh-Jeans formula is
used, in which and are equal to the physical temperatures. SomeT n

hot T n
cold

workers use the Planck formula (5), while others use the Callen & Welton formula
(6). The three approaches result in three different values of TR

n, which we
denote TR

RJ, TR
Planck, and TR

C&W:

and

It will become clear in the following sections that only eq.(10) gives a receiver
noise temperature consistent with quantum mixer theory [4] and the constraints
of the uncertainty principle.

For a given value of Y, the difference between the Planck and Callen &
Welton formulas (9, 10) is just half a photon:

This constant half photon difference is independent of the hot and cold load
temperatures. The difference between the Rayleigh-Jeans and Callen & Welton
formulas (8, 10) depends on the physical temperatures of the hot and cold loads,
and on frequency. Fig. 2 shows the receiver noise temperature, calculated
according to eqs. (8-10), as a function of Y-factor for a 230 GHz receiver,
measured with hot and cold loads at physical temperatures 300 K and 77 K. The
small difference between the Rayleigh-Jeans and Callen & Welton results is shown
by the dashed curve and referred to the right-hand scale. The negative receiver
noise temperatures correspond to physically impossible values of the Y-factor.
The physical limits on TR

n will be discussed below.

The difference between receiver noise temperatures obtained using the
Rayleigh-Jeans and Callen & Welton laws is not always as small as in the example
in Fig. 2. Only if hf/kT << 1 for the hot and cold loads will K . ForT RJ

R T C&W
R

example, if a 230 GHz receiver were measured using 4 K and room temperature
loads, hf/kTcold = 2.8, and is ~2.3 K larger than . Another example isT RJ

R T C&W
R

an 800 GHz receiver measured using 77 K and room temperature loads; then hf/kTcold

= 0.5, and would be ~2.0 K larger than .T RJ
R T C&W

R

So far there has been no mention of single- or double-sideband operation.
That is because the above discussion applies to both SSB and DSB receivers; a Y-
factor measurement on a SSB or DSB receiver gives, via equation (7), the SSB or
DSB receiver noise temperature.
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Fig. 2.  Receiver noise temperature as a function of Y-factor for a 230 GHz receiver measured with Thot = 300 K
and Tcold = 77 K.  The Rayleigh-Jeans curve is obtained when the hot and cold load noise temperatures are equal
to their physical temperatures.  The Planck and Callen & Welton curves are obtained using equations (5) and(6)
for the hot and cold load noise temperatures.  The small difference between the Rayleigh-Jeans and Callen &
Welton curves is indicated by the dashed line (right-hand scale).

Single- and Double- Sideband Mixer Receivers

Mixer receivers can operate in several modes, depending on the
configuration of the receiver and the nature of the measurement. In single-
sideband operation, the receiver is configured so that, at the image sideband,
the mixer is connected to a termination within the receiver. There is no
external connection to the image frequency, and the complete receiver is
functionally equivalent to an amplifier followed by a frequency converter. In
double-sideband operation, on the other hand, the mixer is connected to the same
input port at both upper and lower sidebands. A DSB receiver can be used in two
modes: (i) to measure narrow-band signals contained entirely within one sideband
— this is SSB operation of a DSB receiver. For detection of such narrow-band
signals, power collected in the image band of a DSB receiver degrades the
measurement sensitivity. And (ii), to measure broadband (or continuum) sources
whose spectrum covers both sidebands — this is DSB operation of a DSB receiver.
For continuum radiometry, the additional signal power collected in the image band
of a DSB receiver improves the measurement sensitivity.

A Y-factor measurement on a DSB receiver, interpreted according to eq. (7),
gives the so-called DSB receiver noise temperature. This is the most commonly
quoted noise temperature for mixer receivers because it is easy to measure. It
is also common to derive a SSB noise temperature (for a DSB receiver) by



3 For simplicity, we assume there is no significant conversion of higher harmonic sideband signals present at the
input port.  If the receiver gain is not negligible at frequencies nfLO ± fIF, n > 1, then additional terms of the form Gn/Gs
must be added in the parentheses on the right side of eq. (12).
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measuring the sideband gains, and referring all the receiver noise to a single
sideband, the signal sideband. Then, for the DSB receiver,

where Gs and Gi are the receiver gains at the signal and image frequencies3,
measured from the hot/cold load input port. If the upper and lower sideband

gains are equal, = 2 . If Gi << Gs, the Y-factor measurement directlyT n
R,SSB T n

R,DSB

gives . When a DSB mixer receiver is used to receive a narrow-band signalT n
R,SSB

contained entirely within one sideband, noise from the image band contributes to
the output of the receiver. The overall SSB system noise temperature

where Ts
n and Ti

n are the noise temperatures of the signal and image terminations.

Fundamental Limits on TR

The fundamental limits imposed by the Heisenberg uncertainty principle on
the noise of amplifiers, parametric amplifiers, and mixer receivers have been
studied by a number of authors over the last thirty five years, and their work
is reviewed, with particular attention to mixer receivers, in [5] and [6]. The
following general statement can be made: The minimum output noise power of a
measurement system using a mixer receiver, SSB or DSB, is hf (i.e. one photon)
per unit bandwidth, referred to one sideband at the receiver input. Hence, the
minimum system noise temperature is hf/k referred to one sideband at the receiver
input — exactly the same result as for a system incorporating an amplifier. The
origin of this quantum noise has been much discussed [7, 3, 5, 6], and will be
explained with the aid of Figs. 3 and 4, which depict four minimum-noise
measurement systems using mixer receivers.

Fig. 3 shows two SSB receivers, 3(a) with a short-circuited image, and 3(b)
with an image-frequency termination equal to the signal source resistance. For
both 3(a) and 3(b), Tucker's quantum mixer theory predicts [4, 5, 8] a minimum
receiver noise temperature of hf/2k. In 3(a) the zero-point fluctuations
associated with the input termination (at 0 K) contribute half a photon (hf/2k)



8

to the overall system noise temperature, and the mixer contributes the remaining
half photon , which can be shown to originate in the electron shot noise in the
mixer. In (b), the zero-point fluctuations associated with the signal source and
(internal) image termination each contribute half a photon, which accounts for
all the system noise; the mixer itself contributes no noise, which is exactly the
result obtained from mixer theory. Here, the down-converted components of the
mixer shot noise exactly cancel the IF component, with which they are correlated,
a result well known in classical mixer theory.

Fig. 4 shows a DSB mixer receiver used in two different measurement modes:
4(a) to measure a signal present only in one sideband (the SSB mode for a DSB
receiver), and 4(b) to measure a broadband signal present in both sidebands (the
DSB or continuum mode). In 4(a), zero-point fluctuations associated with the
input termination (at 0 K) contribute half a photon (hf/2k) in each sideband,
and the mixer need contribute no noise, consistent with mixer theory. The same
is true in 4(b), in which the presence of the signal in both sidebands doubles
the signal power at the output of the system, and the signal-to-noise ratio at
the output is twice that of the SSB receivers in Fig. 3. It is this apparent
doubling of the receiver gain that leads to the concept of the DSB gain, GDSB =
2G (provided the signal and image gains are equal, i.e., Gs = Gi = G).

It is clear from Figs. 3 and 4 that the minimum receiver noise temperatures
for SSB and DSB receivers are, respectively, hf/2k and zero. The minimum system
noise temperature, on the other hand, depends on the nature of the particular
measurement; for SSB measurements using either SSB or DSB receivers, the minimum
system noise temperature is hf/k, while for broadband continuum measurements
using a DSB receiver, the minimum (DSB) system noise temperature is hf/2k.

From the discussion above, it is clear that in all computations of receiver
or system noise temperatures, the zero-point fluctuations associated with
resistive terminations at the signal and image frequencies must be included.
Equations (4) and (6) must therefore be used in calculating noise powers or
temperatures, and the receiver noise temperature must be obtained from the Y-
factor according to eq.(10), in which the Callen & Welton law is used for the
noise temperature of hot and cold loads.

It is appropriate here to address the question of how to compare SSB and
DSB receivers: should a DSB receiver be judged against a SSB receiver by
comparing their SSB and/or DSB receiver noise temperatures (for the DSB receiver

with equal sideband gains, = 2 )? The answer depends on theT n
R,SSB T n

R,DSB

application. The mode of the measurement (i.e., narrow-band or broadband) must
be specified, and in the case of broadband measurements, also
the source noise temperature at the signal and image frequencies. This enables
the appropriate system noise temperatures to be calculated and compared. When
the context is broadband (continuum) radiometry, simply comparing the (SSB)
receiver noise temperature of an SSB receiver with the DSB receiver noise
temperature of a DSB receiver is appropriate, but when narrow-band (SSB) signals
are to be measured no such simple comparison is meaningful.
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Fig. 3(a)

Fig. 3(b)
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Fig. 4(a)

Fig. 4(b)
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Conclusion

Tucker's quantum mixer theory predicts a minimum receiver noise temperature
of hf/2k for a SSB receiver, and zero for a DSB receiver, results which are
consistent with the limitations imposed by the Heisenberg uncertainty principle.
With signal (and image) sources at absolute zero temperature, the minimum
receiver output noise, referred to the input (and, in the case of a DSB receiver,
referred to one sideband) is hf/k, twice the zero-point fluctuation noise. To
be consistent with this, the Callen & Welton law (eq.(6)) and not the Planck law
(eq.(5)) must be used in deriving the required source noise temperatures. This
ensures that the zero-point fluctuation noise associated with the source is
included at the input, and in both sidebands in the case of a DSB mixer.

For many practical cases, the Rayleigh-Jeans law is a close approximation
to the Callen & Welton law, and eq. (7) with Tn = T can often be used with
insignificant error. When using liquid nitrogen and room temperature black-
bodies in measuring the Y-factor, little error is incurred at frequencies up to
~ 1 THz. Use of the Planck law (eq.(5)) for the hot- and cold-load noise
temperatures in deriving receiver noise temperatures from measured Y-factors, is
inappropriate, and results in receiver noise temperatures higher by half a photon
(hf/2k) than they should be (7.2 K at 300 GHz).

In comparing SSB and DSB receivers, the particular application must be
considered. When the context is broadband (continuum) radiometry, the (SSB)
receiver noise temperature of an SSB receiver can be meaningfully compared with
the DSB receiver noise temperature of a DSB receiver, but when narrow-band (SSB)
signals are to be measured no such simple comparison is meaningful and the
overall system noise temperatures for the intended application must be
considered.
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