
MMA memo 188:Another look at anomalous refraction on ChajnantorBryan ButlerNRAONovember 5, 1997AbstractIn MMA memo #186 (Holdaway 1997), Mark Holdaway pointed out the important contri-bution of atmospheric anomalous refraction to the pointing error budget for the proposed MMAantennas. He derived expressions for the magnitude of the e�ect of anomalous refraction on thepointing of antennas of di�erent sizes, and calculated values for proposed MMA antenna sizesfor the particular atmospheric characteristics of the Chajnantor site. I think Mark got the storyright, in that his conclusion was that the pointing error due to anomalous refraction is smallerin absolute magnitude for larger antennas, but larger as a fraction of beamwidth. However, it isnot clear that he got the absolute values of the numbers right in the non{zenith case. He deriveda pretty unwieldy equation for the anomalous refraction for this case (his equation 12), whichhas some very non{physical terms in it, and I am not convinced that this equation is correct. Ihave derived what I think is the correct formula for the non{zenith case. This formula is muchsimpler, and is (see below for notation):� = qDl(d sec z)d psec z = Cl d�=2�1 [sec z](�+1)=2 : (1)I'll present this derivation and some numerical examples in this memo. It turns out that mynumbers have a slightly weaker dependence on elevation than Mark's do, e.g., at 20� my num-bers are about 10% smaller than his (I derive a smaller rms pointing error due to anomalousrefraction). The intent of this memo is not to imply that Mark did something egregious, butmerely to present this simpler formula, and the new values obtained from it. Again, he got thebasic story right in memo 186.GeometryTurbulent uctuations in the troposphere give rise to di�erences in electrical path lengthacross an antenna surface. These di�erences can then be thought of as wedges of physical1



material with an index of refraction greater than the surrounding air between the points on theantenna surface. The excess electrical path length (�p) and the physical wedge height (�h) arerelated via: �h = �pn0 � 1 ; (2)where n0 is the relative index of refraction of the wedge (the ratio of the true index of refractionof the wedge to the index of refraction of the surrounding medium [air]). This is the way thatMark approached the problem, and I use the same physical model here. These virtual wedgesof material cause plane waves to be redirected as they travel through, and the net e�ect overthe entire antenna surface is to produce a pointing error. Another e�ect is a broadening ofthe antenna primary beam. Such e�ects have been noted for several antennas on di�erent sites(Altenho� et al. 1987; Downes & Altenho� 1990; Church & Hills 1990; Coulman 1991; Zylka etal. 1992; Zylka et al. 1995).Zenith caseFigure 1 shows a upwardly propagating plane wave incident on a wedge of length �x andheight �h, both in physical units. The propagation direction vector of the wave is anti{parallelto the normal of the wedge lower edge, appropriate for the zenith direction. Passage throughthe wedge, which has index of refraction n0 relative to the surrounding medium, causes the wavephase velocity to decrease. The di�erent thicknesses through the wedge traversed by di�erentportions of the wave then cause a bending of the wave front, which is equivalent to a changeof direction of the propagation vector of the wave. The angle between the original propagationdirection vector and the redirected one ( ) is the e�ective pointing error. This angle can befound by considering the time it takes a wave crest to cross the distance �h at the thickestpoint of the wedge: t1 = �hv1 ; (3)where v1 is the phase velocity of the wave in the wedge. This phase velocity is given by:v1 = von0 ; (4)with vo the phase velocity in the surrounding medium. In time t1, the wave crest just beyondthe point of the wedge travels a distance:lo = vo t1 = vo �hv1 = �hn0 : (5)2



Figure 1. Geometry of virtual wedge for anomalous refraction (zenith)The angle  is given by: tan = �l�x ; (6)where �l = lo ��h. So, tan = �h (n0 � 1)�x ; (7)which for small values of  reduces to: = �h (n0 � 1)�x = �p�x : (8)At any one time, there will be a complicated variation of excess path length vs position acrossthe projected surface of the antenna. If the excess path length correlation function is only afunction of radial distance from point to point in the atmosphere, then a 1{D cut through the2{D distribution across the projected surface of the antenna is a good statistical representativeof the entire distribution. This 1{D cut can then be broken up into small intervals (�x), eachof which has an e�ect which is approximated by the wedge treatment above. The propagationdirection vector for the net wave which emanates from the antenna is then given by a vector sumof each of the propagation direction vectors for the individual wedges. For each small wedge,3



the propagation vector is decomposed into 2 orthogonal components, one along the directionparallel to the antenna surface (the x{axis), and the other perpendicular to it (the y{axis). Foran antenna of diameter d, we have N = d=�x small wedges, and there are values of the excesselectrical path length �pi at N + 1 locations. For the ith wedge, the two components of thepropagation direction vector are: kxi = sin i ; (9)and kyi = cos i : (10) i is the angle given in equation 8, i.e.,  i = (�pi � �pi+1)=�x. The propagation directionvector for the net wave ( ) is then (for small  ): = PNi=1 sin iPNi=1 cos i : (11)If the  i are small angles (which they should be), then = PNi=1  iPNi=1 1 = �p1 ��pN+1N �x = �p1 ��pN+1d : (12)If there are values of the �pi at M locations (M > N + 1), then the time averaged behavior ofthe atmosphere owing over the antenna can be simulated by virtually sliding the values of the�pi over the antenna, i.e., there are then M � N + 1 values of the net propagation directionvector, each with pointing error:  j = �pj ��pj+Nd : (13)The rms value of  over the M �N + 1 distributions is:� = vuutPM�N+1j=1  j2M �N �  PM�N+1j=1  jM �N !2 : (14)The mean value of the  j should be 0 for atmospheric turbulence, which leaves:� = vuutPM�N+1j=1  j2M �N = vuutPM�N+1j=1 (�pj ��pj+N )2M �N 1d2 : (15)This is directly related to the excess path length structure function, which is de�ned as themean{squared di�erence of path length over some distance r (e.g., Tatarski 1961):Dl(r) =< (�p(ro)��p(ro + r))2 > : (16)4



Let r = d, and assume a discrete distribution for �p withM �N values at intervals �x = d=N ,then the discrete form of the structure function is:Dl(d) = PM�Nj=1 (�pj ��pj+N )2M �N ; (17)which is the form in equation 15. Substituting this in gives:� = qDl(d)d : (18)This then is the rms pointing error due to anomalous refraction in an atmosphere with thespeci�ed excess path length structure function, and is the same as what Mark derives in hisequation 9.The structure function may be written:Dl(d) = C2l d� ; (19)where Cl and � are measured quantities which characterize the atmosphere for a given location.Given this substitution, the rms pointing error at zenith for an antenna of diameter d due toanomalous refraction is given by: � = Cl d�=2�1 : (20)This means that the absolute value of the anomalous refraction rms pointing error gets smalleras antenna size gets larger for all values of � < 2. However, since the width of the primary beamis proportional to d�1, the rms pointing error as a fraction of primary beam width gets largeras antenna size gets larger (for � > 0). Mark correctly pointed this out.Non{zenith caseConsider now the case where the same structure of excess path length exists above theantenna, but it is observed at some angle from the zenith z. In this case, the time to travelthrough the thickest part of the wedge (analagous to equation 3) is given by:t01 = �h0v1 ; (21)where the path length through the wedge material is now increased to:�h0 = �h sec z : (22)5



Proceeding just as in the zenith case gives for the net pointing error: j = (�pj ��pj+N 0) sec zd ; (23)where N 0 = d sec z=�x, reecting the fact that the projected size of the antenna on the loweredge of the turbulent layer is increased by sec z over its intrinsic size. Again, proceeding as inthe zenith case, the rms pointing error is then:� = qDl(d sec z)d psec z = Cl d�=2�1 [sec z](�+1)=2 : (24)This has the same dependence on antenna size as the zenith case, so the conclusions about theabsolute and relative value of the pointing error vs antenna size in the zenith case also holdhere.The physical basis for the (� + 1)=2 = �=2 + 1=2 dependence on sec z in equation 24 can beunderstood as the combination of two e�ects. The �rst is that the physical path length throughthe turbulent atmosphere has increased by sec z, and hence the accumulation of excess pathlength is larger by that same amount. This means that the amplitude of the structure functionis increased by that amount, and hence the rms increases by psec z giving rise to the 1/2 term.The second, as mentioned above, is that the projected size of the antenna on the lower edge ofthe turbulent layer is larger by a factor of sec z, so the structure function needs to be evaluatedon that larger spatial scale, giving rise to the �=2 term. The fact that both of these e�ects mustbe taken into account was noted (and derived) by Taylor (1975). The increase in the amplitudeof the structure function by sec z (and hence an increase in the rms by psec z) has been notedby many previous workers (see e.g., Lutomirski & Buser 1974; Tatarski 1961; Kolchinskii 1957).Kolchinskii (1957) also noted that when di�erent sets of actual observed variations were �tto a power law in sec z there were many which had a power law exponent > 0:5, which wasunexpected by him. This was most likely the manifestation of the �=2 term from the argumentof the structure function. Note also that as pointed out by Treuhaft & Lanyi (1987), the sec zincrease in the amplitude of the structure function is only valid for baseline lengths much lessthan the height of the troposphere (the baseline length is equivalent to the antenna diameterhere). For larger baseline lengths, the increase is sec2 z. This has no bearing on the problem ofanomalous refraction for millimeter antennas, however, since the antenna diameters are alwaysmuch smaller than the height of the troposphere.6



Numerical valuesFor Chajnantor, the median value of � is 1.2, from Mark's memo. Using this value, andthe values of qDl(d) for median conditions from Table 1 of that memo, the values for the rmspointing error due to anomalous refraction can then be calculated. These values are shown inTable 1 for di�erent antenna sizes and di�erent elevations at Chajnantor. The rms pointingerrors relative to the primary beam size are not shown in Table 1, nor are the values for theother quartiles of atmospheric conditions. The equivalent values from Mark's memo are shownin parentheses in Table 1, for comparison. It seems that my numbers are very slightly smallerthan his, as the dependence on elevation I've derived is somewhat weaker than his.Table 1. Anomalous refraction pointing error for median atmospheric conditions at Chajnantor(in arcsec; values in parentheses are from Holdaway [1997]).ant diam elev angle(m) 90� 50� 30� 20� 10�8 0.46 (0.47) 0.62 (0.64) 0.99 (1.07) 1.51 (1.65) 3.18 (3.55)10 0.42 (na) 0.57 (na) 0.91 (na) 1.38 (na) 2.92 (na)12 0.39 (0.39) 0.53 (0.55) 0.84 (0.90) 1.28 (1.40) 2.70 (3.02)15 0.36 (0.36) 0.48 (0.49) 0.77 (0.82) 1.17 (1.27) 2.47 (2.76)50 0.22 (0.22) 0.30 (0.31) 0.48 (0.51) 0.72 (0.79) 1.53 (1.70)Notes on assumptionsThe derivation presented here assumes that geometric optics is appropriate to describe thepropagation of the wave through the turbulent atmosphere. When the wave optics treatmentis included, the dependence is roughly as I've derived here, but is more complicated (see e.g.,equation 24 of Taylor [1975] [where he uses the Rytov method, which should be valid for mm-submm wavelengths at Chajnantor] and note that the pointing error can be directly relatedto the phase structure function [or phase correlation function] as easily as to the path length7
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