MMA Memo 199: Cost-Benefit Analysis for the
Number of MMA Configurations

M.A. Holdaway
National Radio Astronomy Observatory
949 N. Cherry Ave.
Tucson, AZ 85721-0655

email: mholdawa@nrao.edu

February 27, 1998

Abstract

We perform a new sort of cost/scientific-benefit analysis to determine the optimal num-
ber of configurations the MMA should have. We trade the costs of building extra configura-
tions, moving antennas among them, and lost observing time, against the loss of sensitivity
which results from tapering when a specific image resolution different from the natural res-
olution of the array is required. With our assumptions, we find that the optimal number of
configurations is between five and eight, depending upon what fraction of the time tapering
is required. However, four configurations is fairly close to the optimum.

1 Introduction

Up until now, we have assumed that the MMA, like the VLA, will have four different major
configurations, with minor modifications of these configurations to enhance observing to the
far north or far south. However, no justification has been given for four configurations, rather
than three or five or six. With between 32 and 100 antennas, it would be possible to do many
observations with a single configuration; however, to achieve high brightness sensitivity at low
resolution, one would have to taper the array rather dramatically. Obviously it is more efficient
to build multiple arrays which produced the desired resolutions. But what resolutions do the
astronomers want? There will clearly be a wide distribution of resolutions, and we probably
cannot settle on just a few required resolutions. If we build a wide variety of array configurations
to cater to everyone’s desired resolution, we also suffer from inefficiencies, as we will spend an
inordinate amount of money to build the vast number of antenna pads and cabling, and will
waste an unfortunate amount of time moving the antennas among the configurations.

This memo seeks to find that compromise between the few configurations (which require
much tapering) and the many configurations (which require much construction and moving)
which will optimize the integrated sensitivity, and hence the scientific output, of the MMA.



2 Cost-Benefit Approach

The cost-benefit approach we take in addressing the issue of the number of configurations
required for the MMA assumes that we can trade off the extra costs associated with config-
urations (ie, pads, cables, antenna moving costs) for scientific benefit in the form of usable
sensitivity (ie, instead of buying configuration, we buy more antennas).

In order to proceed, we will need to know a very lot about the Millimeter Array and how
it will be used. Table 1 lays out the symbols for each quantity, what the quantity is, and our
current estimate for that quantity.

3 Calculating the Observing Efficiency ¢,

3.1 Array Design

We assume that the array configurations are bounded by a most compact array with approxi-
mately filling factor f,.;, of 40%, and by a most extended array with maximum baselines b,,,..
of 10* m. Further, we assume that all configurations except the most compact are basically
ring arrays, and that the resolution of adjacent arrays are related by a resolution scale factor
5. The maximum baseline of the compact array is given by

bcompact = Da\/Na/fmin- (1)

However, because the average baseline is shorter in this array than in a ring array, this array
will have the same resolution as a ring array about 70% as large. Then, S is related to the
number of configurations N. and b4 and beompact by

§ = RYWNem1), (2)
or In R
n
N, N +1, (3)

where R is defined to be the ratio of the largest array and smallest array effective baselines,

bmaac/(o-?bcompact)-

3.2 Assumptions About Array Use

We need to assume the density of required resolutions for the MMA. To first order, we assume
that the required resolutions will be constant in logrithmic bins. Since the array configura-
tions have been designed with a constant resolution scaling factor S, this implies that each
configuration will have the same proposal pressure. The VLA, which also has constant 5 con-
figurations, finds very similar observing pressure on each of its four configurations, though the
lowest resolution array has been slightly more oversubscribed than the other configurations for
the last several years. While there are more sources which can be detected from the compact
arrays, it will take longer to detect the fewer sources in the large arrays, so array use sort of
balances out.

Many observers will simply take the natural resolution of the array configuration they
observed in. An extreme case of this is the observation of a point source, which can be



Symbol  What it Means Guess the Numbers

Array Design

N, Number of Antennas 36

D, Diameter of Antennas 10m

N, Number of Configurations 2-12

S Resolution scale factor 2-100
between adjacent configurations

N, Number of Ants that don’t move 3
between adjacent configurations

binax Size of the largest array 3000 m

foin Filling factor of compact array 0.4

Ny Number of Transporters 3

Costs

Cy cost of a fully outfitted antenna $3.55M

) cost of an antenna pad $40k

C. cost of cabling to a pad $10k

Cy cost of one transporter $1M

o number of workers to move antenna 4

Cu cost of worker for 1 hour $20

Chry cost to run and maintain the $200
transporter per move

Chn cost to move one antenna Ny Ty Cw + Crt

Operational Assumptions

tm Time required to move one antenna 2 hour

tw Time each day available for outdoor work 10 hour

fr Fraction of total reconfiguration 0.5
which is not science-usable

0 Angular resolution

p(0) Density of angular resolutions (see below)
from array observing pressure

fo fraction of time configuration 0.0 or 0.5
requires no tapering

P(6) distribution of array sensitivity (see below)
considering tapering

€ observing efficiency: how much
sensitivity is lost to tapering?

€ reconfiguring efficiency: how much
sensitivity is lost to reconfiguring?

€ total efficiency €o6r



observed in any configuration large enough to avoid confusion. So, one component of the
density of required resolutions is a set of delta functions at the full resolution of each array
being considered.

However, sources which are not point sources have a maximum resolution at which they
may be profitably observed. The astronomer is playing off resolution and brightness sensitivity.
The resolution of one array may not be high enough to see what the astronomer needs to see,
but the brightness sensitivity of the next larger array may not be high enough to permit the
astronomer to see anything. Hence, in addition to the set of delta functions, there is also a
continuous component of the density of required resolutions. Most observers who take an array’s
natural resolution (ie, the delta function crowd) are actually part of this continuous distribution,
but allow themselves to be lumped into the delta function out of convenience. They might
actually benefit from slightly higher resolution or slightly higher brightness sensitivity (and
lower resolution), but there is no array configuration which can provide this, so they take the
nearest configuration.

And finally, there are people who absolutely need images at non-standard resolutions. One
fundamental analysis method used in millimeter astronomy is comparing lines of different
molecular species, or different transitions of the same molecular species. In general, these will
be at different frequencies and hence different resolutions. While the VLA was designed to be
scalable for multi-frequency comparisons (ie, spectral index maps between 15 GHz in C array,
5 GHz in B array and 1.4 GHz in A array), the number of specific frequencies and resolutions
which are important to the MMA is too large to optimize the configurations for just a few.
Rather, we need to accept that astronomers will be making images of arbitrary resolution, and
will have to taper sometimes to get the resolution they require.

We assume that some fraction of observations, f,, will require no tapering (the delta func-
tion crowd), and the remaining observations for the 7" configuration will have a required
resolution distribution of

pi(0) = ((Ne — D)l §) 7407, (1)

The factor ((N. — 1)In.S)~! normalizes p;(#) for the coordinate convention that # = 1 is the
natural resolution of the array and S is the resolution scaling factor between arrays, or the
most one would ever taper. This expression considers all resolutions greater than the resolution
of the most compact configuration. The most compact configuration will also require tapering,
but since the configuration is constrained by the close packing, there are no options open to
consideration, and it should not be included in this optimization attempt.

One complication arises in the case of extreme tapering (ie, by more than a factor of
595). Imagine we are comparing two different line maps, and we want to make the resolutions
identical. Further imagine that to get the same resolution in the second line as we have in the
first, we need to observe in the B array and taper almost all the way back to the C array. From a
sensitivity point of view, it is actually much more advantageous to observe the second line in the
C array and just mildly taper the first line map. Of course, the case becomes more complicated
when more than two lines are included in the astrophysical analysis and an extreme tapering
event (ETE) cannot always be avoided. However, for calculational purposes, lets assume that
most extreme tapering events can be avoided, and that we only need to consider tapering up
to SP” where p is 0.5. Then we only consider p;(6) between normalized # of 1 and S for each



configuration, and the new normalized form of p;(6) is given by
pi0) = (N = 1)pln(§))7107" (5)

3.3 Sensitivity after Tapering

I argued in MMA Memo 156 (Holdaway, 1996) that since tapering would be so important for
the MMA, we should design each configuration such that it performed optimally with respect
to tapering, losing a minimum of sensitivity. Filled arrays meet this requirement, while ring-
like arrays, with their more uniform Fourier plane coverage, lose more sensitivity when tapered
to a given resolution. Since then, imaging simulations (Holdaway, unpublished; Morita, in
preparation) indicate that ring arrays provide superior imaging quality in spite of their large
sidelobes. However, the superior imaging quality is not due to the ring array’s “uniform”
Fourier plane coverage, but due to the fact that the ring array has much shorter shortest
baselines than the filled array (and quite a lot of them, too), and the image quality in the
simulations is being dominated by the very short baseline distribution. At this point, I am
ready to move ahead with ring-like arrays, though there are investigators who still favor filled
arrays (Kogan, 1997). Recently, Kogan (private communication) has produced arrays which
are fat rings, or donut arrays. They produce a partially tapered Fourier plane distribution, and
so will lose less sensitivity upon tapering than the pure ring-like, uniform coverage arrays. The
approach taken in this memo is more global: to design the entire set of array configurations to
perform optimally with respect to tapering.

For a ring-like array with approximately uniform Fourier plane coverage, increasing the
resolution by a factor a will require tapering, leaving a fraction of a=2 of the visibilities. Since
the sensitivity is proportional to the square root of the number of visibilities, the residual
sensitivity after tapering will be proportional to a~!. Hence, we define the sensitivity function,
intended for use between a tapered resolution # between 1 and 5

wo) =6 (6)

3.4 Observing Sensitivity

We now define the normalized observing sensitivity, integrated over all resolutions between the
natural resolution of the largest and the smallest configuration, based on the above considera-
tions as

Ne—1

SP
€ = LA(-5) Y [ p@we (7)

N.-1 gp
= ot (L= fo) 0 ((Ne= pla(s)) ™ [ 072a (®)
= ot (1= L)) (1= (5)7) ©)
= fot(1-1f) (]chn_Rl) (1 - R—p/Wc—”) (10)

If everyone were happy with the natural resolution of the array configuration, f, would be 1,
and ¢, would be 1. Table 1 considers the case were R = 45 (ie, 3000 m/(.7 - 95 m) ) fo =0



NC €O

12 0.92

10 0.90
0.88
0.83
0.80
0.74
0.64
0.45

N W =~ Ot Oy OO

Table 1: Observing efficiency ¢, as a function of number of configurations N, assuming R =
45 and f, = 0 (nobody doesn’t taper).

(nobody doesn’t taper), but with tapers only out to S%% (ie, p = 0.5), for a variety of N..
Hence, to get as much as 0.80 of the sensitivity of the MMA when observers always tapered
with a distribution like p(#) = 871, you would need 6 different array configurations. Or, with
the 4 proposed MMA configurations, you end up with 0.70 of the sensitivity. We remind here
that the observing efficiency depends strongly on f,.

4 Reconfiguration Efficiency and Configuration Costs

4.1 Time Lost to Reconfiguration
For reconfiguring the array, we assume:

e t{,,, the time to move one antenna, is 1 hr (see MMA Memo 147, Holdaway and Owen

1996).
o 1, the time available each day for outdoor work, is 10 hr.
e we will be in each of the N, configurations twice a year.

e some of the time spent reconfiguring will permit useful science. However, sensitivity will
be lost while antennas sit during the day, after they have been moved and before pointing
and baseline determinations have been made at night. Also, we assume that the scientific
demand for the oddly configured hybrid array may not be 100%. Lumping all these
factors together, we assume that a fraction f, of the time spent during reconfiguration
will not be useful for scientific purposes.

Then the time lost to the array, in days per year, will be about
QNC(Na_NO)tme/(Nttw)v (11)
and the normalized reconfiguration efficiency ¢, is given by

¢ = (1= No(Ny = NVt [/ (365Nt ))° (12)



4.2 Costs of Reconfiguration

In the cost-benefit analysis, we sum the monetary costs of reconfiguring and trade the money for
antennas. We can then ask if it is better to have a few more antennas and fewer configurations,
or more configurations and somewhat fewer antennas.

The monetary cost to move one antenna is estimated to be

Cr = oyt Cy + Cht, (13)
so the cost to move N, — N, antennas through N, configurations in a year will be
Ne(Ng — No )yt Coy + Cry). (14)
Meanwhile, the cost of making the configurations will be
Ne(Ny, — No)(Cp + Co). (15)

Now, since operating expenses and capital costs will come from different sources for the MMA
we can’t really trade one off against the other. But for the cost-benefit analysis, lets add up
the move costs for a 20 year period. Then the total cost of the configurations plus moves will
be

Ne(Ny — No) (20(nyt, Coy + Crt) + (Cp 4+ Co)) (16)

5 Results

We have calculated the various efficiencies subject to both tapering and reconfiguration for
numbers of configurations V. ranging from 2 to 12, for 36 10 m antennas, assuming f, = 0.5
(see Table 2). Even for a very large number of configurations, the efficiency lost to reconfiguring
the array is negligibly small, and it would seem that the choice would be to make many
configurations

We have also calculated the additional costs that extra configurations impact upon the
array. Under our assumptions, the extra costs are linear with the number of configurations,
and are equivalent to 1.57 antennas per configuration. In order to compare N. = 6 on an equal
footing with N. = 4, we must keep the total cost of the two options equal; in other words,
we must take the $10M which was spent on the two extra configurations out of the antenna
budget, implying we building 3 fewer antennas and our sensitivity is down. To reflect this, we
correct the total efficiency of the 6 configuration option by (N, — 3)/N,. This corrected total
efficiency is reported as € in Table 2.

We plot both the total efficiency and the corrected total efficiency for the f, = 0.5 case in
Figure 1, and for the f, = 0 case in Figure 2. Most remarkably, the results do not come out too
differently from the presumed N, = 4 option. In the f, = 0.5 case, the optimal N, is about 5,
but 4 and 6 are also extremely close to the optimal €. If a larger fraction of the observations
will require tapering, ie, if f, = 0, the optimal number of configurations will shift upwards to
about N, = 8, but even in this case, the N. = 4 case is still just about 7% below the optimal
€.

References



N, ¢, € € Config Moving Total Lost €

Cost Cost Cost  Antennas

[MS$] [MS$] [MS$]
2 0.72 0.99 0.72 3.3 1.0 4.3 -1.2 0.74
3 0.82 0.99 0.81 5.0 1.4 6.4 -0.6 0.83
4 0.87 0.99 0.86 6.6 1.9 8.5 0.0 0.86
5 0.90 0.98 0.88 8.2 2.4 106 0.6 0.87
6 0.92 0.98 0.90 9.9 2.9 12.8 1.2 0.87
7 0.93 0.98 0.91 11.6 3.3 149 1.8 0.86
8 0.94 0.98 0.91 13.2 3.8 17.0 24 0.85
9 0.94 0.97 0.92 148 4.3 19.1 3.0 0.84
10 0.95 0.97 0.92 16.5 4.8 21.3 3.6 0.83
11 0.96 097 0.92 18.1 5.2 23.4 4.2 0.82
12 0.96 0.96 0.92 19.8 5.7 25.5 4.8 0.80

Table 2: Ifficiencies and costs for various numbers of array configurations assuming f, = 0.5.

N, ¢, € € Config Moving Total Lost €

Cost Cost Cost  Antennas

[MS$] [MS$] [MS$]
2 045 0.99 044 3.3 1.0 4.3 -1.2 0.46
3 0.64 0.99 0.64 5.0 1.4 6.4 -0.6 0.65
4 0.74 0.99 0.73 6.6 1.9 8.5 0.0 0.73
5 0.80 0.98 0.78 8.2 2.4 106 0.6 0.77
6 0.83 0.98 0.82 9.9 2.9 12.8 1.2 0.79
7 0.86 0.98 0.84 11.6 3.3 149 1.8 0.80
8 0.88 0.98 0.85 13.2 3.8 17.0 24 0.80
9 0.89 0.97 0.87 14.8 4.3 19.1 3.0 0.79
10 0.90 0.97 0.87 16.5 4.8 21.3 3.6 0.79
11 0.91 097 0.88 18.1 5.2 23.4 4.2 0.78
12 0.92 0.96 0.88 19.8 5.7 25.5 4.8 0.77

Table 3: Ifficiencies and costs for various numbers of array configurations assuming f, = 0.0.
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