
MMA Memo 220Quantization E�ciency for Eight or moreSampling LevelsA. R. ThompsonJuly 9, 1998Abstract A simpli�ed method is used to derive the quantization e�ciency(that is, the fractional loss in signal-to-noise ratio) resulting from quantizationfor eight or more levels. The method is based on the estimation of the increase inthe variance of the signal waveform by the addition of quantization errors. Theaccuracy appears to be approximately 0:1% for eight-levels and should improveas the number of levels is increased.Digital samples with three or more bits per sample (eight or morequantization levels) have been suggested as a possible format for IF signals thatwould be digitally �ltered before input to the delays and correlator of the MMA.Since such signals would have to be truncated to no more than four levels beforeentering the correlator, use of more levels in the initial quantization would keepthe overall loss of sensitivity similar to that for a single quantization withoutsubsequent truncation. For consideration of such a scheme it is necessary toknow the quantization e�ciency factors for the larger numbers of levels, thatis, the fractions by which the signal-to-noise ratio at the correlator output isdegraded by the quantization. The quantization e�ciencies for two, three, andfour levels have been calculated by a number of authors: see e.g. Cooper (1970),Hagen and Farley (1973) or the review of methods and results in Thompson etal. (1986). These methods involve calculation of the mean and mean-squaredoutputs of the correlator and become somewhat cumbersome when applied tolarger numbers of levels. This memorandum explores the possibility of usinga simpler approximation for cases where the number of levels is large, andconsequently the loss in sensitivity is small. The principle of the method is tocalculate the fractional increase in the variance of a signal that results fromthe quantization. The signal-to-noise ratio at the correlator output is inverselyproportional to this variance. 1



Figure 1. A representation of the Gaussian probability distribution ofamplitude of the IF signal, with quantization thresholds for nine-level samplingshown by the vertical lines. The �gures along the bottom indicate the digitizedlevels (weights) assigned to the signals that fall within the corresponding levels.The width of each quantization level is �� within the range �412�� of signalvoltage. Signal levels outside of this range fall within the small shaded areasunder the curve and are assigned quantized values of �4 or +4.Figure 1 shows a piecewise-linear approximation of the Gaussian probabilitydistribution of a signal from one antenna. This approximation simpli�esthe mathematics without signi�cantly degrading the results. Quantizationthresholds for nine-level representation of the signal are indicated by the verticallines. The widths of the levels are �� in voltage, that is, � in units of � where�2 is the unquantized variance. We consider here the case where the number oflevels is odd, and the central level is centered on zero volts. The probability thatany one sample will fall between the two consecutive thresholds at (m � 12)��and (m + 12 )��, where m is an integer, is1p2�� �e�(m� 12 )2�2=2 + e�(m+ 12 )2�2=2��2 : (1)Consider, for example, the level for which m = 3. Any voltage that falls withinthis level is encoded as amplitude 3, although it can be anywhere between 212and 312 in units of ��. The mean increase in the variance resulting from thisrepresentation is 2�� Z ��=20 x2dx = 13���2 �2: (2)Note that this is exact for the piecewise-linear probability curve in Fig. 1.The same increase in variance resulting from quantization applies to the rangeof signal levels from �412�� to +412��. The fraction of the area under theGaussian probability curve that lies between these levels is1p2� Z 4:5���4:5�� e�x2=2�2dx = erf�4:5�p2 �; (3)2



Thus the variance resulting from quantization for signals between �412�� to+412�� is 13���2 �2erf�4:5�p2 �: (4)We shall assume that the quantization error is essentially uncorrelated with theunquantized signal. In the extreme case of two-level sampling the quantizationerror is essentially the same as the unquantized signal, so the treatment usedhere would not apply. Consider, however, the case of multilevel quantizationas in Fig. 1. If the signal voltage is increased steadily, the quantization errordecreases from a maximum at each quantization threshold to zero when thevoltage is equal to the mid point of two thresholds. At each threshold thequantization error changes sign and the cycle repeats. This behaviour e�ectivelydestroys any correlation between the quantization error and the signal waveform.It is also necessary to take account of the e�ect of counting all signals below�412�� as level �4, and those above +412�� as +4. To make an approximateestimate of this e�ect we divide the range of signal level outside of �412�� intointervals of width ��. Consider, for example, the interval centered on 6��. Theprobability of the signal falling within this level is equal to the correspondingarea under the curve, which for the piecewise-linear approximation is12 �p2� �e�(5:5�)2=2 + e�(6:5�)2=2�: (5)The square of the mean error resulting from quantization of the signal withinthis range is [(6� 4)��]2, so the total variance of the quantization error forsignals outside the range �412�� is�3�2p2� 15Xm=5 (m � 4)2�e�(m� 12 )2�2=2 + e�(m+ 12 )2�2=2�: (6)The upper limit of the summation in (6) is chosen to be large enough thatincreasing it does not signi�cantly change the result. The quantization errorresulting from the truncation of the signal values outside the range �412��clearly has some degree of correlation with the unquantized signal level.However, this is not large because the fraction of samples for which thesignal lies outside �412�� is less than 1:5% for nine-level quantization, anddecreases as the number of quantization levels increases. We shall thereforetreat the quantization error resulting from the truncation of the signal peaksas uncorrelated with the signal, but bear in mind that this assumption mayintroduce a small uncertainty into the calculation.The variance of the quantized signal is equal to the variance of theunquantized signal (�2) plus the variance of the quantization errors in (4) and(6), that is,�2 + 13���2 �2erf�4:5�p2 �+ �3�2p2� 15Xm=5 (m � 4)2�e�(m� 12 )2=2�2 + e�(m+ 12 )2�2=2�:(7)If the variance is the same for both signals at the correlator input, and if thecorrelation of the two signals is small, the signal-to-noise ratio at the correlator3



output is inversely proportional to the variance. Thus the quantization e�ciencyfactor is�(2N+1) = n1 + 13��2 �2erf� (N + 12)�p2 �+ �3p2� N+20Xm=N+1 (m �N )2�e�(m� 12 )2�2=2+e�(m� 12 )2�2=2�o�1:(8)Here the equation has been generalized for for 2N + 1 levels. The result fromEq. (8) for nine-level quantization is �9 = 0:968 for � = 0:547. The value of �was chosen to maximize �9. These values can be compared with results for nine-level quantization computed by F. R. Schwab using the more precise methodsmentioned above. For nine levels this involves evaluation of � 92=2 probabilityintegrals. Schwab obtained �9 = 0:969 for � = 0:534. The quantizatione�ciency varies only slowly with �, and the di�erence in the two � values abovemakes no signi�cant change in �9. The value of �9 from Eq. (8) agrees withthe value obtained by Schwab to within � 0:1%, or � 3% in the degradationfactor (1 � �9). This agreement veri�es the present method within these limitsof accuracy.
Figure 2. Representation of the Gaussian probability distribution of theamplitude of the IF signal, as in Fig. 1, but for an even number of quantizationlevels (eight shown in the �gure). The quantization thresholds are shown bythe vertical lines, and the zero level for signal input coincides with the centralthreshold, rather than with the center of a level as in Fig. 1. Again the �guresalong the bottom indicate the digitized levels (weights) assigned to the signalsin that fall within the corresponding levels. In this case there is no zero level.Signal levels outside the range �412�� fall within the the shaded areas.For quantization with an even number of levels, as shown in Fig. 2, thecentral threshold level is at zero signal volts, and the the expression for thequantization e�ciency is�(2N) = n1 + 13��2 �2erf�N�p2 �+ �3p2� N+20Xm=N+1 (m �N )2�e�(m�1)2�2=2+e�m2�2=2�o�1:(9)Results from Eqs. (8) and (9), evaluated using Mathcad, are given in Table 1for 8, 9, 16, and 32 levels. 4



TABLE 1. Calculations of Quantization E�ciency andOther Parameters.No. ofLevels N � P �8 4 0.604 0.016 0.9609 4 0.547 0.014 0.96816 8 0.399 0.0067 0.98832 16 0.189 0.0025 0.996The second column of Table 1 gives the value of N which indicates therange of quantized values. The third column of the Table gives P , which is thefraction of samples for which the signal amplitude is greater than �(N + 12)��for odd numbers of levels or greater than �N�� for even numbers of levels.P is the fraction of signal samples that contribute to the variance in (6). Thevalues of P are less than 1.6% in all cases listed in Table 1, and decrease as thenumber of levels increases.With values of quantization e�ciency approaching unity other e�ects, suchas the departure of the bandpass responses from the ideal rectangular shape,become limiting factors. These should be borne in mind if the absolute valuefor � is critical. An interesting point about the treatment here is that it showsthe connection between the quantization e�ciency and the quantization errorsrather more clearly than other methods.Thanks are due to F. Schwab for permission to quote his unpublished resultsand for discussion of the memorandum in draft.REFERENCESCooper, B. F. C., Correlators with Two-Bit Quantization, Aust. J. Phys., 23, 521-527, 1970.Hagen, J. B. and D. T. Farley, Digital Correlation Techniques in Radio Science, Radio Sci.,8, 775-784, 1973.Thompson, A. R., J. M. Moran, and G. W. Swenson, Interferometry and Synthesis in RadioAstronomy, Wiley, NY, 1986, and reprinted by Kreiger, Malabar, FL. 1991, 1994. (seeCh. 8).
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