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Abstract A simplified method is used to derive the quantization efficiency
(that is, the fractional loss in signal-to-noise ratio) resulting from quantization
for eight or more levels. The method is based on the estimation of the increase in
the variance of the signal waveform by the addition of quantization errors. The
accuracy appears to be approximately 0.1% for eight-levels and should improve
as the number of levels is increased.

Digital samples with three or more bits per sample (eight or more
quantization levels) have been suggested as a possible format for IF signals that
would be digitally filtered before input to the delays and correlator of the MMA.
Since such signals would have to be truncated to no more than four levels before
entering the correlator, use of more levels in the initial quantization would keep
the overall loss of sensitivity similar to that for a single quantization without
subsequent truncation. For consideration of such a scheme it is necessary to
know the quantization efficiency factors for the larger numbers of levels, that
is, the fractions by which the signal-to-noise ratio at the correlator output is
degraded by the quantization. The quantization efficiencies for two, three, and
four levels have been calculated by a number of authors: see e.g. Cooper (1970),
Hagen and Farley (1973) or the review of methods and results in Thompson et
al. (1986). These methods involve calculation of the mean and mean-squared
outputs of the correlator and become somewhat cumbersome when applied to
larger numbers of levels. This memorandum explores the possibility of using
a simpler approximation for cases where the number of levels 1s large, and
consequently the loss in sensitivity is small. The principle of the method is to
calculate the fractional increase in the variance of a signal that results from
the quantization. The signal-to-noise ratio at the correlator output is inversely
proportional to this variance.
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Figure 1. A representation of the Gaussian probability distribution of
amplitude of the IF signal, with quantization thresholds for nine-level sampling
shown by the vertical lines. The figures along the bottom indicate the digitized
levels (weights) assigned to the signals that fall within the corresponding levels.
The width of each quantization level is as within the range +41ac of signal
voltage. Signal levels outside of this range fall within the small shaded areas
under the curve and are assigned quantized values of —4 or +4.

Figure 1 shows a piecewise-linear approximation of the Gaussian probability
distribution of a signal from one antenna. This approximation simplifies
the mathematics without significantly degrading the results. Quantization
thresholds for nine-level representation of the signal are indicated by the vertical
lines. The widths of the levels are ao in voltage, that is, o in units of o where
o? is the unquantized variance. We consider here the case where the number of
levels is odd, and the central level is centered on zero volts. The probability that
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any one sample will fall between the two consecutive thresholds at (m — 3)ac

and (m + %)aa, where m is an integer, is
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Consider, for example, the level for which m = 3. Any voltage that falls within
this level is encoded as amplitude 3, although it can be anywhere between 2%
and 3% in units of ae. The mean increase in the variance resulting from this
representation is
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Note that this is exact for the piecewise-linear probability curve in Fig. 1.
The same increase in variance resulting from quantization applies to the range

of signal levels from —4%0[0 to —1—4%(10. The fraction of the area under the
Gaussian probability curve that lies between these levels is

— 2lde = =
ao Jq 3

9 [ool? 1(0[0)2.

4-8ag 4.50[)’ @)

1 2 2
_— —e?/20% 10— opf [ 222
€ r = €r
\/277 ~/—4.50z0 (\/5




Thus the variance resulting from quantization for signals between —4%0[0 to

—|—4%a0 1s
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We shall assume that the quantization error is essentially uncorrelated with the
unquantized signal. In the extreme case of two-level sampling the quantization
error 1s essentially the same as the unquantized signal, so the treatment used
here would not apply. Consider, however, the case of multilevel quantization
as in Fig. 1. If the signal voltage is increased steadily, the quantization error
decreases from a maximum at each quantization threshold to zero when the
voltage is equal to the mid point of two thresholds. At each threshold the
quantization error changes sign and the cycle repeats. This behaviour effectively
destroys any correlation between the quantization error and the signal waveform.

It is also necessary to take account of the effect of counting all signals below
—4%0[0 as level —4, and those above —|—4%a0 as +4. To make an approximate

estimate of this effect we divide the range of signal level outside of :I:4%oz0 into

intervals of width ao. Consider, for example, the interval centered on 6. The
probability of the signal falling within this level is equal to the corresponding
area under the curve, which for the piecewise-linear approximation is
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The square of the mean error resulting from quantization of the signal within
this range is [(6 — 4)ac]’, so the total variance of the quantization error for
signals outside the range :|:4%0z0 1s
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The upper limit of the summation in (6) is chosen to be large enough that
increasing it does not significantly change the result. The quantization error
resulting from the truncation of the signal values outside the range :|:4%0z0
clearly has some degree of correlation with the unquantized signal level.
However, this is not large because the fraction of samples for which the
signal lies outside :I:4%oz0 is less than 1.5% for nine-level quantization, and
decreases as the number of quantization levels increases. We shall therefore
treat the quantization error resulting from the truncation of the signal peaks
as uncorrelated with the signal, but bear in mind that this assumption may
introduce a small uncertainty into the calculation.

The variance of the quantized signal is equal to the variance of the
unquantized signal (¢%) plus the variance of the quantization errors in (4) and

(6), that is,
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If the variance is the same for both signals at the correlator input, and if the
correlation of the two signals is small, the signal-to-noise ratio at the correlator



output is inversely proportional to the variance. Thus the quantization efficiency
factor is
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Here the equation has been generalized for for 2N + 1 levels. The result fI'(()H)l
Eq. (8) for nine-level quantization is ng = 0.968 for & = 0.547. The value of «
was chosen to maximize 7. These values can be compared with results for nine-
level quantization computed by F. R. Schwab using the more precise methods
mentioned above. For nine levels this involves evaluation of ~ 9%/2 probability
integrals. Schwab obtained 79 = 0.969 for @ = 0.534. The quantization
efficiency varies only slowly with «, and the difference in the two « values above
makes no significant change in ng. The value of ng from Eq. (8) agrees with
the value obtained by Schwab to within ~ 0.1%, or ~ 3% in the degradation
factor (1 — ng). This agreement verifies the present method within these limits
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of accuracy.
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Figure 2. Representation of the Gaussian probability distribution of the
amplitude of the IF signal, as in Fig. 1, but for an even number of quantization
levels (eight shown in the figure). The quantization thresholds are shown by
the vertical lines, and the zero level for signal input coincides with the central
threshold, rather than with the center of a level as in Fig. 1. Again the figures
along the bottom indicate the digitized levels (weights) assigned to the signals
in that fall within the corresponding levels. In this case there is no zero level.
Signal levels outside the range +4iac fall within the the shaded areas.

For quantization with an even number of levels, as shown in Fig. 2, the
central threshold level i1s at zero signal volts, and the the expression for the
quantization efficiency 1s
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Results from Eqs. (8) and (9), evaluated using Mathcad, are given in Table 1
for 8, 9, 16, and 32 levels.




TABLE 1. Calculations of Quantization Efficiency and
Other Parameters.

No. of

Levels N a P N
8 4 0.604 0.016 0.960
9 4 0.547 0.014 0.968
16 8 0.399 0.0067 0.988
32 16 0.189 0.0025 0.996

The second column of Table 1 gives the value of N which indicates the
range of quantized values. The third column of the Table gives P, which is the
fraction of samples for which the signal amplitude is greater than +(N + %)aa
for odd numbers of levels or greater than +Nao for even numbers of levels.
P is the fraction of signal samples that contribute to the variance in (6). The
values of P are less than 1.6% in all cases listed in Table 1, and decrease as the
number of levels increases.

With values of quantization efficiency approaching unity other effects, such
as the departure of the bandpass responses from the ideal rectangular shape,
become limiting factors. These should be borne in mind if the absolute value
for i is critical. An interesting point about the treatment here is that it shows
the connection between the quantization efficiency and the quantization errors
rather more clearly than other methods.

Thanks are due to F. Schwab for permission to quote his unpublished results
and for discussion of the memorandum in draft.
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