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Abstract— We discuss the criteria affecting the choice of optical
configuration for the MMA antennas. Receiver bands will be
separated in the focal plane so the selection of Cassegrain
parameters is influenced by the acceptable size and separation
of the feeds and the associated aberrations.  The secondary
mirror size is determined by blockage restrictions and by
nutation requirements.  Specifications for the nutation of the
secondary need to be carefully considered since the dynamics
and aberrations are very strongly influenced by beam-throw
and nutation frequency requirements. A set of design
parameters is derived which is a reasonable compromise among
the various constraints.

I. INTRODUCTION

With the decision to build 12-m antennas we need to
revise the optical parameters for the antenna Request for
Proposal. Some of the dimensions may need to be iterated on
with the antenna manufacturer so we present here the relevant
points which need to be considered. On the basis of these we
can limit the parameter space and recommend an optimum
starting geometry.

The Cassegrain geometry is defined by four parameters
(Section II). In choosing these we need to consider the
implications on the RF performance (field of view, blockage,
spillover) and the structure (receiver location, secondary
support stiffness, nutating secondary dynamics). The RF
performance should ultimately be evaluated by G/T, where G
is the antenna gain, and T is the system temperature.

The current plan assumes that the antenna is a
conventional design (i.e., not shaped for uniform
illumination). This is essentially imposed by the wish to have
the different receiver bands share the focal plane so that
selecting the receiver band requires simply re-pointing the
antenna [1]. Aberrations related to these off-axis feeds are
dealt with in Section III. If array receivers are installed in the
future the same considerations will apply.

Diffraction effects at the secondary, including efficiency
loss and spillover, are covered in Section IV.

The prototype antenna will have a nutating secondary for
single dish total power measurements—a decision will be
made later whether or not to equip all antennas in the array.
Tradeoffs between the optical and mechanical constraints are
discussed in Section V.

II.  ANTENNA PARAMETERS

We will choose the following four parameters to define
the Cassegrain geometry (Fig. 1):

Primary mirror diameter, D

Primary focal length, f

Secondary mirror diameter, d

Magnification, M

Other parameters may be derived from these as follows:

Primary focal ratio, f/D

Focal length of equivalent paraboloid, F = Mf

Secondary focal ratio, F/D

Eccentricity of secondary, 
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MDf

DMfMd
f s 16

)16)(1( 22 −+=

Distance of secondary focus behind primary (back focal
distance), zf = fs – f

Half-angle subtended by primary, θp = 2 atan(D/4f)

Half-angle subtended by secondary, θs = 2 atan(D/4f)
15 January 1999
Owens Valley Radio Observatory, California Institute of Technology, Big
Pine, CA 93513, USA
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Fig.  1. Parameters for Cassegrain geometry as used in the text. The
different receiver bands are separated in the focal plane.
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 We will assume that the antenna diameter is fixed at
12 m. The remaining parameters should be determined with
the following considerations in mind.

Primary focal length: Close packing of antennas; stiffness
and resonances of the secondary mirror support; aberrations.

Secondary diameter: Aberrations; location of focus (and
receivers); dynamical requirements for nutation; weight at
prime focus; blockage, efficiency and spillover losses due to
edge diffraction.

Magnification: Aberrations; focal plane plate scale (spot size,
physical layout of receivers); location of focus.

III. OFF-AXIS FEED ABERRATIONS

Padman [2] gives some useful expressions for the
aberrations in the focal plane of a Cassegrain antenna. The
principal effects are coma, astigmatism and field curvature.
Using the expressions for the wavefront errors in [2] we can
calculate the effect on aperture efficiency for the
corresponding wavefront errors. If a feed is moved off axis a
distance ∆rf to give a beam squint on the sky of α = ∆rf /F,
the corresponding fractional reductions in aperture efficiency
are

  Astigmatism: 4

23

16
α

λ
πη 





=∆

Mfd

D
ast (1)

  Coma: 2

2

22

3

962

1 α
λ

πη 





=∆

fM

D
com (2)

  Curvature: 4

23

163

1 α
λ

πη 





=∆

fd

D
cur (3)

Uniform aperture illumination was assumed in deriving these
equations, so lower losses will result from a tapered aperture
field.

Comatic losses rise as the square of the off-axis angle
rather than the fourth power and will therefore dominate at
small angles. However, we find that for typical values of F
and λ, as we increase α the astigmatic and curvature errors
exceed the comatic ones when the magnitudes are still small
(at the ½% level or less), so coma can generally be neglected.
(Note that the aberration given by Padman includes a small
pointing offset. (2) includes the pointing correction which
reduces the loss by a factor of 9).

Astigmatism and curvature have the same dependence on
α and we find the ratio of the loss due to astigmatism to that
due to curvature to be 3/M2. Although the loss due to
curvature will exceed that due to astigmatism for M > ~1.7
the wavefront error due to curvature may be almost
completely removed, either by moving the feed forward from
the nominal focal plane, or by refocusing the secondary
mirror. This will in fact also reduce the astigmatic loss since
we can effectively put the feed mid-way between the two line

foci. The amount the feed has to be moved in the focal plane
can be calculated from the Petzval surface [3]. Since the
curvature of the Petzval surface is the sum of the inverse
focal lengths of all the focusing elements it is determined
principally by the secondary mirror. We find that a good
approximation for the radius of curvature of the Petzval
surface is

D

f
dRPetz = (4)

For typical primary focal ratios RPetz will therefore be a half
to a third of the secondary mirror diameter.

Since the dominant aberration is astigmatism, from (1) we
would like to maximize the secondary diameter, the primary
focal length, and the magnification. Coma and curvature will
also be reduced with longer primary focal lengths, and the
coma benefits from a higher magnification.

The size of the feeds will scale with the secondary focal
ratio, F/D, as will the feed separation for a given beam squint.

IV.  SECONDARY MIRROR DIFFRACTION

Diffraction by the secondary mirror is proportional to the
illumination at its edge and the square root of the mirror
diameter in wavelengths. For a Gaussian illumination, the
expression for diffraction efficiency given by Kildal [4] may
be simplified to
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and A0 is the field amplitude at the secondary edge relative to
the center. For an edge taper of 12 dB this gives an efficiency
reduction of ~2% for a 200 wavelength reflector (e.g.
600 mm at 3-mm wavelength). Spillover will be less than half
of this. Numerical evaluations for a 750-mm secondary
predicted 1 K of diffraction spillover noise at 4 mm
wavelength [5].

The diffraction from the edge of the secondary causes the
illumination at the primary to have some ripple towards the
edge of the aperture [3]. Closer to the rim the illumination
drops exponentially and is –6 dB of its geometrical optics
value at the edge of the aperture. The scale size of the
diffraction pattern at the primary (taken to be the period of
the ripple) is about 0.5 m at a wavelength of 3 mm. The
decay distance outside the primary (spillover) is on this scale.
Adding a skirt outside could put this on cold sky, but a 75%
reduction would require a 0.5 m radius skirt. At higher
frequencies a smaller skirt could be used, and it may be
reasonable to have a 0.3 m shield to reduce the 1-mm
spillover by this amount.
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If the feed is offset or the secondary rotated to tilt the
beam, the aperture illumination pattern is displaced on the
primary. Typically the distance it is shifted is comparable to
the diffraction pattern scale and the change in spillover loss is
less than the geometrical calculation would indicate.

Since diffraction loss varies inversely as the square root
of the secondary diameter in wavelengths it is not a
significant factor in the diameter choice.

V. SECONDARY MIRROR NUTATION

Nutation of the secondary mirror may be used to rapidly
chop the beam on the sky [6]. For point sources it is
necessary to go only about three beamwidths off source, but
larger throws are sometimes specified for extended sources.
For observing regions much larger than a beamwidth a
differential measurement is made [7]. At 3-mm wavelength
the beamwidth is about 1 arcmin so that a ±1.5 arcmin throw
is sufficient for point sources. The use of beam switching in
the test antenna and possibly the array needs to be defined so
that appropriate specifications are set.

A. Switching Parameters

Movement of the telescope beam on the sky is produced
by rotating the secondary through angle θs about an axis that
is zc from the prime focus (Fig. 2). The required secondary tilt

for a given angle on the sky, θsky, is a function of this
distance, M, f, and fs. The ratio of the two is
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This is a linear function of zc, and it has a zero when the
center of rotation is at the paraxial center of curvature of the
secondary, -fs/(M-1). Rotation about the prime focus gives

β = -fs/F.

B. Aberrations

In addition to tilting the aperture wavefront to give the
desired beam throw, the rotated secondary produces
undesirable aberrations. These are primarily coma and
astigmatism. Comatic aberrations (measured as a path error)
are proportional to θs producing a gain degradation quadratic
in θs. Astigmatic errors are proportional to θs

2 with a gain
degradation proportional to θs

4. Generally the aberrations are
dominated by coma, but when the center of rotation is close
to the prime focus the coma due to the secondary virtually
cancels the coma due to the primary and the astigmatic term
dominates even for small beam throws. Overall aberrations
are smallest for this condition.

 We have carried out some detailed calculations of the
various parameters using ray-tracing to obtain the aperture
field. Fig. 3 shows the equivalent surface error (RMS half
wavefront error) as a function of the location of the rotation
center. Weighting the result by the aperture illumination
generally has a relatively minor effect except where
astigmatism dominates. This is because the astigmatic errors
are greatest at the edge of the aperture where they are given
low weighting by the illumination taper.

The effective surface error is comparable to or exceeds
the total budget of 25 µm for the antenna. It is a common-
mode wavefront error for all antennas, but since it has a large
spatial scale and is stable and predictable, it should be

focus
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s

Fig.  2. Geometry and parameters for beamswitching by nutating the
secondary mirror.
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possible to calibrate it out for extended source measurements.
For point sources it leads to an inevitable loss of sensitivity.

Fig. 4 shows the influence of secondary diameter on the
aberrations for a maximum beam throw of ±3 arcmin. Since
the dependence is weak, the diameter of the secondary can be
chosen mainly on mechanical considerations.

C. Dynamics

For a given torque, T, the minimum time, tb, to tilt the
secondary through an angle θs is given by

T

I
 = t stot

b

θ
2  (8)

where Itot is the moment of inertia of the secondary and any

counterweights. For a given θsky, θs will be found from (7). T
will depend on the motor and servo, and Itot on the
considerations given below.

We can compute the peak and average power required for
the drives. If there is no recovery of power in the braking part
of the cycle, the peak power will be
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while, for a switching frequency of fsw, the average power
will be
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For a fixed duty-cycle, (2fsw tb)
-1, the average power is

proportional to fsw
3.

D. Moments of Inertia

The intrinsic moment of inertia of the secondary, Is0,
depends on its geometry, material, and diameter. For a given
design, a linear scaling of all the dimensions changes the
moment of inertia according to

5
ss0 d I ∝ (11)

indicating the importance of using a small diameter. If the
center of rotation is not coincident with the center of mass the
moment of inertia will be

sss0s mr+I = I 2 (12)

where ms is the mass of the secondary and rs the distance of
the center of rotation from the center of mass. There is
therefore some penalty for moving the rotation center away
from the center of mass of the secondary. In addition, a
counterweight is required for static balancing of the mirror1.
The counterweight will have a smaller moment of inertia than
the secondary, and it will add proportionally to the drive
requirement. The moment of inertia of the counterweight
around the rotation axis is

cwcwcwcw mrII 2
0 += (13)

where rcw is the distance of mass mcw from the rotation axis,
and Icw0 is moment of inertia of the counterweight about is
center of mass. The mass is found from

scwscw rrmm /= (14)

For large rcw the second term dominates in (13). As rcw is
decreased the second term drops but Icw0 increases, so that
(13) has a minimum for some value of rcw. Using the
expressions for a sphere of density ρ leads to the analytical

                                                          
1 “Static balance” is used to mean that there are no net reaction forces on the
support when the reflector is chopped. “Dynamic balance” implies that there
are no residual torques.
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Fig.  4. Dependence on effective surface error on secondary diameter for
f = 4.8 m,  M = 20, zc = 150 mm, θsky = 3 arcmin.
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result that

25.025.1
min, )(96.0 −= ρsscw rmI (15)

The optimum value will typically result in an increase of
the moment of inertia of up to ~60% over the secondary
alone.

Nutating at high frequencies and beam throws may
demand that the secondary is dynamically balanced, which
will double the inertia and drive power requirements.

As an example we consider a 750-mm diameter mirror
with a mass of 5.7 kg and an intrinsic moment of inertia of
0.175 kg m2. These are in fact low values, but still feasible.
Fig. 5 illustrates how the moment of inertia of the secondary
varies with zc. Also shown is the inertia for the mirror plus an
optimum static balance counterweight. Compared to nutation
about the center of mass, we find that the moment is more
than doubled when we tilt around the prime focus.
Furthermore, β increases by ~50%. Both effects contribute to
an increase in the drive requirements. From the plot of peak
required drive power (Fig. 6) we see that the minimum is not
for rotation about the center of mass but for an axis shifted
towards the vertex, since β is reduced. The average power is
ten percent of the peak for a 95% duty-cycle. As an extreme
case, for zc = 0, tb = 10 ms, and θsky = ±6 arcmin, the peak
power required jumps to 4 kW!

It is clearly very important to decide on the nutation
frequency, duty-cycle, and beamthrow to finalize the decision
on optics. We recommend switching close to the center of
mass at a switching rate of 5 Hz or less and 90% duty-cycle,
and statically but not dynamically balancing the mirror.

VI. CHOICE OF PARAMETERS

We can now try to determine an optimum set of
parameters from the above arguments. Since the primary
focal length does not have a strong influence on the
performance we will take a value of 4.8 m giving a primary
focal ratio of 0.4. This is appropriate for the OVRO antenna

design [8] and is consistent with close packing of antennas.
Note that longer focal lengths help to reduce aberrations. In
particular the astigmatic losses which are the most significant
limit are reduced as the square of the focal length.

The magnification and diameter of the secondary will
then be driven by all the considerations of the previous
sections. There are two other physical constraints, which
should be added. We would like to specify that the receivers
are behind the primary vertex by an amount zf. Furthermore,
we would like to prescribe a maximum off-axis distance for
the feeds to limit the size of the hole in the primary, and more
importantly for a large antenna, the size of the dewar.

At the secondary focus the effective focal ratio determines
the focal spot size and the feed offset for a given beam squint.
We can assume that there is some arrangement of feeds in the
focal plane which accommodates all the bands (e.g., as given
in [1]) and can be scaled linearly with the focal spot size. The
receiver size then scales with the focal ratio. There is no
particular lower limit for the focal ratio from this, but at high
f-numbers the windows in the dewar become large. Since the
minimum window thickness increases as the second or third
power of the area for a given strength, the dielectric losses (at
room temperature) become serious. (We can use re-imaging
optics to get around this, which will be discussed in a later
Memo.)

Following d’Addario [9], let the diameter of the window
in the dewar be

DFw /5λ= (16)

and also let the dewar diameter be

max3wd dewar = (17)

(c.f. [1]). wmax is the window size at the longest wavelength
which we take to be 4 mm. Putting requirements that
w < 160 mm and ddewar < 600 mm gives us f-numbers of <8
and <10 respectively.

The requirement of having the receivers and therefore
secondary focus a distance zf behind the secondary means that

DF

zf
d

f

/

+
> (18)

giving d > 725 mm for F/D = 8 and zf = 1 m. Minimizing
aberrations also favors a larger secondary diameter.

Upper limits on the secondary diameter come from the
nutation and blockage requirements. If we specify an
effective blockage area of <1% for a 12 dB Gaussian taper
then the secondary diameter should be less than 850 mm. As
discussed in Section V, the high power dependence on
diameter of the dynamics of a nutating secondary require
minimizing the size.

From the above considerations, the parameters shown in
Table I are recommended for the 12-m antennas.

The maximum window size using (16) is then 160 mm at
a wavelength of 4 mm. The dewar diameter would be
~480 mm from (17), so that the outermost feed would be
centered 200 mm off axis. The Petzval surface at this off-axis
distance is about ~80 mm above the nominal focal plane. The
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feed could be located there or, the secondary mirror could be
refocused by 1/M2 of this (~0.2 mm).

However, if we arrange to have the lowest band at the
edge of the dewar the wavefront curvature loss will be < 1%
without refocusing for frequencies less than 120 GHz. The
shorter wavelength bands would be closer to the optical axis

and the loss reduced in proportion to 42/1 fr∆λ . This is more

favorable than the arrangement in [1], which for which the
curvature loss would have been very significant [10]. In
practice, the antenna would be focused for the band being
observed, and the small losses at the low-frequency band
used for phase calibration would be tolerable.

The 33-45 GHz observing band and potentially a 22 GHz
water vapor radiometer band have not been considered
explicitly. The former would most easily be incorporated
with a mirror that could be switched in front of the other
optics. A 22 GHz water vapor radiometer would be much
harder to accommodate than a 183 GHz one. However it
could be located beside the main dewar with a mirror to bring
the beam as close to the axis as possible. The aberrations
would not affect the performance, but a major problem is the
size of the feed. Using the criterion in (16) results in a system
with a 500-mm diameter focusing mirror. If the hole in the
primary is smaller than the secondary mirror there will be
only 135 mm outside the circle enclosing the observing band
feeds. It is probable that it could overlap some part of this
circle, but would still necessitate enlargement of the central
hole by about 200 – 400 mm  on one side.

TABLE I: PARAMETERS FOR CASSEGRAIN ANTENNA

Parameter Symbol Value
Primary diameter D 12.00 m

Primary focal length F 4.8 m
Secondary diameter d 750 mm

Magnification M 20
Secondary eccentricity e 1.10526
Equivalent focal length F 96.00 m

Primary focal ratio f/D 0.40
Secondary focal ratio F/D 8.00

Secondary interfocal length fs 6.177 m
Half-angle of primary θp 64.01°

Half-angle of secondary θs 3.58°
Back focal distance zf 1.38 m

Radius of Petzval surface Rpetz 300 mm
Rotation center for secondary zc 150 mm

Beam throw θsky ±1.5 arcmin
Beamswitch frequency fsw 5 Hz

Blanking time tb 10 ms

VII.  CONCLUSIONS

The optical parameters of the Cassegrain have been
determined on the basis of focal plane aberrations, focal spot
size, blockage, and feasibility of implementing a nutating
secondary. The secondary diameter has a maximum size of
850 mm based on a 1% effective area blockage. The
requirement of not having too large a focal spot and
correspondingly large dewar window, combined with a need
to place the receivers some distance behind the primary
effectively limit the smallest secondary diameter to 725 mm.

Within this range there is some latitude for variation
according to other criteria. Nutation of the secondary is one
which is made significantly easier for small diameters. Other
criteria such as edge diffraction are minor considerations.

A diameter of 750 mm seems to best satisfy these points.
If the secondary nutation is not likely to be incorporated in
the final array antennas then the size may be increased. This
would allow the dewar window diameter to be reduced (for
the same receiver location). If the secondary position is kept
fixed, Md will be roughly constant so that astigmatism
remains unchanged. Coma will increase, but still be
acceptably low, and curvature loss will be reduced.
Diffraction loss and spillover are also slightly less.

ACKNOWLEDGEMENTS

I would like to thank John Payne for checking many of
the calculations and equations. Peter Napier and David
Woody also made some useful suggestions on the content.

REFERENCES

[1] J. Lugten and J. Welch: “A suggested receiver layout for the MMA
antenna,” Memo 183, NRAO MMA Memo Series, Sep. 1997.

[2] R. Padman: “Optical fundamentals for array feeds,” Multi-Feed
Systems for Radio Telescopes, (D. T. Emerson and J. M. Payne, Eds),
ASP Conference Series, vol. 7, 1995.

[3] M. Born and E. Wolf: Principles of Optics, Oxford: Pergamon Press,
1980.

[4] P-S. Kildal: “The effects of subreflector diffraction on the aperture
efficiency of a conventional Cassegrain antenna—An analytical
approach,” IEEE Trans. Antennas Propagat., vol. AP-31, no. 6, pp.
903-909, Nov. 1983.

[5] J. W. Lamb and A. D. Olver: “Gain loss and noise temperature
degradation due to subreflector rotations in a Cassegrain antenna,”
Proc. Int. Conf. Antennas Propagat. 85, April 1985.

[6] J. M. Payne: “Switching subreflector for millimeter wave radio
astronomy,” Rev. Sci. Instrum., vol. 47, pp. 222-223, 1976.

[7] D. T. Emerson, U. Klein, and C. G. T. Haslam: “A multiple beam
technique for overcoming atmospheric limitations to single-dish
observations of extended radio sources,” Astron. Astrophys., vol. 76,
pp. 92-105, 1979.

[8] D. Woody and J. Lamb: “Yet another design for MMA antennas,”
Internal Memo., March 1998.

[9] L. d’Addario, E-Mail Memo, November, 1998.
[10] B. Shillue: “Gain degradation in a symmetrical cassegrain antenna due

to laterally offset feeds,” Memo 175, NRAO MMA Memo Series, Jun.
1997.


