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Abstract The main requirements for �ne adjustment of the variable
delays required for the MMA are considered. A system using delay incre-
ments of 1/16 of the Nyquist sampling interval, as used for the VLA, would
be a good solution. The rate of delay adjustment would be approximately
once every 32 ms for a maximum east-west baseline of 2 km or 6.4 msec for
10 km. Reduction in sensitivity and errors in the visibility phase are consid-
ered. The possibility of compensating for the delay errors after correlation,
as in most VLBI arrays, is also considered. With the latter method, oper-
ation in the phased-array mode su�ers a sensitivity loss of approximately
13% (in voltage) with the full 16 GHz bandwidth, but becomes acceptable
if the phased-mode bandwidth is no more than 8 GHz.

In a synthesis array it is necessary to provide adjustable instrumental
delays for the signals from each antenna to compensate for the changes in
the geometrical path lengths to the antennas for an incoming wavefront,
as the antennas track a source across the sky. The signals are sampled at
the Nyquist rate before reaching the correlator. These samples are spaced
at time intervals of 1=2�� which, if used by itself for delay adjustment,
results in rather too much loss in sensitivity. In the VLA, for example,
further adjustment is provided by shifting the phase of the sampler clock in
increments of 1/16 of a cycle which provides timing adjustment in increments
of 1=32��, where �� is the bandwidth. In VLBI, correction for �ne delay
errors is commonly made after correlation.

Delay Adjustment by Sampler Clock Phasing

Consider a minimum delay increment �0. If the delay is adjusted by one
increment every time the magnitude of the delay error reaches �0=2, then
the probability distribution for the delay error for any one antenna takes the
form of a rectangular (constant amplitude) function of width �0 centered on
zero error. In general the rate of change of the geometrical delay will be
di�erent for each antenna, so for any pair of antennas the times at which the
delay adjustments occur will be unrelated. Thus the probability distribution
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of the combined error for any antenna pair will be a triangular function of
width 2�0 centered on zero. The rms delay error for a pair of antennas is
then �0=

p
6. The corresponding phase errors in the visibility values depend

upon the signal frequency at which the delay is inserted. The baseband IF
that is sampled extends from approximately zero to the IF bandwidth ��.
The rms value of the frequency for this range is ��=

p
3. For continuum

observations the rms value of the phase errors is the product of the rms
values of the delay errors and the baseband frequency which is

��rms =
2����0

3
p
2

radians: (1)

For spectral line observations the frequency of the spectral channels within
the baseband varies from approximately zero to ��. Thus in the worst case
the rms phase errors are those for the highest baseband-frequency channel
and are

p
3 greater than in expression (1).

To determine the loss in sensitivity resulting from phase errors, the
signals from two antennas can be represented by V1e

�1 and V2e
�2 at the

correlator inputs, where the � terms are the phase errors. The correlator
output is

R = hV1e�1V �

2 e
�2i; (2)

where the brackets hi represent time averaging. Then if �� = (�1 � �2) is
the phase error we have

R = V1V
�

2
[hcos��i+ jhsin��i]: (3)

Since the probability distribution of �� is an even function with zero mean
the time average of the sine term has an expectation of zero. If the phase
errors are small so that fourth-power terms in �� can be neglected, we have

R = V1V
�

2 [1� 1

2
h��2i]: (4)

From expression (1) we obtain for the mean squared phase errors

h��2i = 2(����0)2

9
rad2: (5)

Thus the sensitivity is reduced by a factor

[1� (����0)
2=9]: (6)

For the VLA, �0 = 1=32��, that is, the timing of the sampler pulses can
be varied in increments of 1/16 of the sample interval. Thus the rms phase
error resulting from the �nite increments in delay setting is �=(48

p
2) =
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4:63� 10�2 radians or 2.65�. The corresponding loss in sensitivity, i.e., loss
in amplitude, is 0.11%. Phase errors resulting from the delay errors depend
upon the number of times that the delay is reset during the averaging time
at the correlator output. This number could be as high as a few hundred for
the longest baselines, and for such cases the rms phase error in the visibility
can be less than that of the individual delay-induced errors by an order
of magnitude or more. However, the rate of change of delay with time is
proportional to the east-west component of the baseline as projected onto the
sky, which goes through zero as the baseline vector crosses the v axis. In the
worst case the visibility error is then the product of the baseband frequency
and the maximum delay error of �0, can which occur if the delay errors of
the two antennas are of magnitude �0=2 and of opposite sign. (Although the
probability of occurrence of the delay error goes to zero at �0, the probability
becomes signi�cant for slightly smaller errors since the error distribution is
triangular, not Gaussian.) For continuum observations the corresponding
visibility error is equal to �0 multiplied by the mean intermediate frequency
��=2, which for the VLA is �=32 rad, or 5.6�. For spectral line observations
the phase error varies with the baseband frequency corresponding to the
spectral channel, and for the high end of the baseband can be twice the
error for continuum, i.e., 11.2�. The table below gives the rms phase error
(before averaging), the loss in sensitivity from (6), and the maximum phase
error for a spectral line channel at the high end of the baseband. The top
line corresponds to the VLA system.

�0�� RMS Phase Loss in Maximum
Error Sensitivity Phase error

1/32 2.65� 0.11% 11.2�

1/16 5.3� 0.43% 22.4�

1/8 10.6� 1.71% 44.8�

The loss in sensitivity is certainly acceptably small for �0�� equal to
1/32 and 1/16, and possibly also for 1/8. The maximum visibility phase
errors are more serious, although in principle they could be corrected after
averaging since the delay settings are known. This would only need to
be done for cases where the number of delay settings within the averaging
interval is small. However, this is hardly necessary for �0�� = 1=32, and
this would be a good choice for the MMA.

The rate of change of delay for a pair of antennas is equal to !exEW cos �=c
where !e = 7:29 � 10�5 rad/s is the angular velocity of the earth, x

EW
is

the east-west component of the baseline (equal to u times the wavelength),
� is the declination of the phase reference position, and c is the velocity of
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light. For the MMA (original speci�cation) the longest east-west baseline
component is 2 km. The corresponding rate of change of delay for the ce-
lestial equator is 4.86�10�10 (seconds of delay per second of UT). For the
maximum MMA baseband bandwidth of 2 GHz and �0�� = 1=32 (for which
�0 = 1:56 � 10�11), the corresponding delay adjustment rate is once every
32.1 msec. With the combined MMA and LSA the longest baselines might
be � 10 km, in which case the corresponding maximum rate of delay ad-
justment is once every 6.4 msec. However, in an array each antenna's delay
is adjusted individually with respect to a common reference position on the
ground. If the reference position is chosen to be the center of the array, then
each of the two antennas of a 2 km east-west pair would be adjusted at a
rate corresponding to a 1 km baseline, so the actual rates of change of delay
could be half those in the example just given.

Delay Adjustment After Correlation

Instead of adjusting the phase of the sampler clock to obtain the �ne delay
steps it is possible to apply a correction for delay errors after cross corre-
lation. This is the method commonly used in VLBI. The correlated data
are transformed to the frequency domain and the phases are incremented
linearly with frequency to correct for the e�ect of the variation in the ge-
ometrical time delay. (In VLBI this procedure is known as the fractional
bit-shift correction, see, e.g., TMS pp. 302{303). The correlator output
has to be dumped at regular intervals to allow for this procedure. It must
be dumped rapidly enough that the signal is not signi�cantly reduced by
averaging over the changing phase.

Over a short time period the phase at the correlator output varies lin-
early with time as a result of the changing geometric delay. Let �d be the
increment in the geometric delay between correlator dumps. The e�ective
delay error over this period has a probability distribution that is uniform
from ��d=2 to �d=2, and the rms error is �d=(2

p
3). For a frequency �0 within

the baseband the corresponding rms phase error is

��rms = ��d�
0=
p
3: (7)

For continuum observations we should use the rms value of �0 over the band-
width ��, which is ��=

p
3. Let X% be the loss in continuum sensitivity

that can be tolerated. From (4), ��rms =
p
2X=10. So we have

�d =
3
p
2X

10���
: (8)
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Now suppose that we can accept a loss of X = 1%. Then with �� = 2 GHz
we obtain �d = 6:75� 10�11 s.

As calculated earlier, the rate of change of delay for a 2-km, east-west
baseline 4.86�10�10. The corresponding correlator dump interval for �d =
6:75� 10�11 s is 139 ms. For a 10-km, east-west baseline the dump interval
is 28 ms. For spectral line observations the sensitivity loss varies with the
baseband frequency. For the highest frequency channel we should use �0 =
�� (instead of �0 = ��=

p
3 as above), in which case the dump intervals

just calculated would result in a sensitivity loss of 3%. Note that the dump
interval is proportional to

p
X , so to reduce the sensitivity loss further by a

factor of three the dump intervals would be reduced by a factor of
p
3.

Consider phasing the array to provide a single output signal (equivalent
to the \analog sum" of the VLA). Since, for the case under consideration, we
cannot adjust the sampler timing, the �nest delay steps are those provided
by the sample interval. Suppose that the required bandwidth is reduced
from the maximum of 2 GHz for any baseband signal by a factor � that is
an integral power of two. Then if the sampling rate remains that for the
full bandwidth, the signal is oversampled by a factor �. The time interval
between samples is 1=2�� where �� is the full bandwidth of 2 GHz. For
the �ne delay adjustment we pick the sample nearest the correct sample
time, so the maximum delay error is �1=4��. For each individual antenna
the probability distribution of the delay errors is a rectangular (constant
amplitude) function of width 1=2�� centered on zero. Now consider one
antenna of the MMA correlated with a signal from an antenna that is not
part of the array, as in VLBI. The delay errors are those resulting from the
�nite delay resolution of the MMA. When the MMA is used in the phased
array mode for VLBI, then the result can be considered as the sum of cross
correlations of this type over the individual antennas of the MMA.

With delay error � the correlator output for the case just outlined is
proportional to

1

2��=�

Z
��=�

���=�
cos(2���)d� =

sin(2����=�)

2����=�
: (9)

Here it has been assumed that with the reduced bandwidth ��=� the sig-
nal at the sampler input has a baseband spectrum, that is, extending from
near zero to ��=� in frequency. To obtain the average output as the de-
lay changes by the interval 1=2�� between samples we integrate the sinc
function in Eq. (9) over the delay range 0 to 1=4��:

4��

Z
1=4��

0

sin(2����=�)

2����=�
d� =

�
1� x2

18
+

x4

600
� x6

35; 280
+ : : :

�
; (10)

where x = �=2� and we have used the usual series expansion for the sine.
(Tabulated values of the sine integral Si(x) could also be used to evaluate
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the integral). In the case where � = 1 the expression on the right hand side
becomes 1�0:1371+0:0101�0:00043+ : : := 0:873, so from the progression
of the values one can see that the result is good to better than 0:1%. Thus
with an array of MMA antennas in which the phased sum of the signals is
correlated with a signal from an independent antenna, the loss in sensitivity
due to MMA delay increments that correspond to the Nyquist sample rate
is 12:7%, when the full bandwidth is used. Note that in terms of the sum of
the phased signals this is the loss in voltage and the power loss is 1� 0:8732

which is 23:8%. The Table below gives the results for several values of �.

� Voltage Loss Power Loss

1 12.7% 23.8%
2 3.4% 6.7%
4 0.86% 1.71%

Since there are eight baseband signals of width 2 GHz planned for each
antenna of the MMA, the total bandwidth available in phased sum form is 8
GHz with � = 2, and 4 GHz with � = 4. These bandwidths would probably
su�ce for a long time into the future, so the need to operate in the phased
array mode does not rule out the possibility of delay adjustment after corre-
lation. The advantage of correcting for the delay errors after correlation is
that a common 4 GHz clock could be used for all of the samplers required for
the array, whereas with sampler phasing a separate phased clock is required
for each antenna. However, the phased clock signals are technically not di�-
cult to generate. One way to produce a phased clock would be to phase-lock
a 4 GHz oscillator to a reference signal and insert the phase increments in
the IF of the phase-locked loop. With a loop IF of, say, 10 MHz the IF
reference with the required phase o�sets could be generated digitally. Note
that the additional hardware for phasing the sampler clock is required on
a per-antenna basis, whereas the additional computing power for correction
after correlation is required on a per-baseline basis.

Appendix

An equivalent way to approach the numerical result given in Eq. (10) is to
consider the mean squared phase error. The rms delay error is

��rms = 1=4
p
3��; (11)
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where �� is the full bandwidth. For the case where the reduced bandwidth
is in the form of a baseband with lowpass cuto� at ��=�, rms value of the
frequency is ��=

p
3�. To obtain the rms phase error we multiply the delay

error in Eq. (11) by 2� times the rms frequency, and obtain

��rms = �=6�: (12)

Then from Eq. (4) the sensitivity resulting from delay errors is [1� 1

2
(�=6�)2],

which is identical to the �rst two terms on the right-hand side of (10), the
other terms having been omitted in the cosine expansion in (4).
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