ALMA Memo 386
ALMA-+ACA Simulation Tool

J. Pety, F. Gueth, S. Guilloteau
IRAM, Institut de Radio Astronomie Millimétrique
300 rue de la Piscine, F-38406 Saint Martin d’Heres

August 13, 2001

Abstract

This memo describes the February 2001 version of the ALMA+ACA simu-
lation tool that has been developed and implemented in the GILDAS package.
It was used to compute the simulations presented in the ALMA memo 387.

This simulation tool includes the following capabilities: single-dish ob-
servations, ACA observations, ALMA observations, pointing errors, thermal
and phase noise, multi-configuration, mosaic simulation, CLEAN-based de-
convolution. A deconvolution method allowing us to reduce an heterogeneous
dataset (such as observations from ALMA+ACA) has been developed. The
simulator is controled via a simple window interface; a pipeline mode is also
available.

1 Introduction

With the prospect of Japan joining the ALMA project in a 3-way partnership, it is
necessary to explore what are the best scientific options for the possible extensions
of the baseline ALMA proposal. These include a compact array of smaller antennas
(the ALMA Compact Array — ACA), which would hopefully provide enhanced wide-
field imaging capabilities by measuring the short spacings poorly or not sampled by
ALMA.

To properly assess the impact of ACA on the imaging capabilities of the combined
array, it is necessary to perform realistic simulations, including noise and pointing
errors. This document describes the simulation tools that have been developed at
IRAM during the last few months for that purpose.

2 Simulation tool

The simulation package was developed and implemented in the GILDAS environ-
ment, used for the data reduction softwares of the IRAM instruments. It runs using
the MAPPING software, under HPUX, Linux (RedHat), or Windows. Starting from
the existing tools, a number of new algorithms were developed and implemented,



=| ALMA+ACA Simulation ==

Figure 1: Control window of the simulation package.

as e.g. the simulation of single-dish measurements, pointing errors models, the es-
timation of visibilities in presence of pointing errors, or the deconvolution of data
taken with an heterogeneous array. In addition, several existing tasks were im-
proved, either to be more flexible, and/or to save some memory space, and/or to
speed up the computation time. For that purpose, part of the MAPPING software
code was translated from FORTRANT77 to FORTRAN90, which allows an easier
implementation of mathematical algorithms.

In order to use the various tasks and commands involved in the simulation,
flexible procedures as well as a window interface were also written. Fig. 1 shows
the control window of the simulator. Several buttons are available, each of them
corresponding to a procedure to be executed. Clicking on the “parameters” button
opens up a new window (an example is shown in Fig. 2) which allows the user to
modify the default input parameters of the procedure. The following list describes
the action of each button/procedure (a more detailed description of the critical steps
is given in the next section):

PREPARE reads the model image, which features the sky brightness distribution,
and defines several critical parameters. Depending on the source and primary
beam size, the simulator will switch between single field and mosaic modes, and
automatically compute the field(s) position(s). Input parameters: declination
and size of the source, observing frequency, bandwidth, size of the region to
be observed.

SINGLE DISH simulates single-dish observations of the source, to be used for short
spacings computation. Calibration and thermal noise can be added. Input pa-
rameters: antenna diameter, sampling criteria, pointing errors model, weight-



Figure 2: Window obtained by clicking on the “parameter” button in the main
window, allowing the user to modify the default parameters (here, of the ACA
procedure).



ing parameters (e.g. Tgys). Note that the system temperature is automatically
computed from the frequency, but can be modified by the user.

ALMA simulates observations with the ALMA array, including pointing errors, phase
noise, and thermal noise. Input parameters: configuration to be used, hour
angle range, pointing error model, weighting parameters. It is possible to run
this procedure several times in a row and write the result in the same output
uv table. This provides a simple way to simulate multi-configuration use of
the ALMA array.

ACA simulates observations with the ACA array. As compared to the previous pro-
cedure, the only additional parameter is the antenna diameter (6, 7, or 8
meters...). Note that all input parameters (hour angle range, pointing errors,
etc.) can differ from the ALMA case. Note also that the ACA and ALMA
arrays are simulated independently, which implies that the hybrid correlations
are not computed and thus not considered by the imaging procedure.

UV—MAP computes the maps from the observations simulated in the previous steps.
It can process the ALMA array and/or the ACA array. The user can also
choose to add the short spacing information to the data: in that case, pseudo-
visibilities are computed from the single-dish observations, and added to the
interferometric uv table(s) before Fourier Transform.

DECONVOLUTION makes the deconvolution of the image computed at the previous
step, using the CLEAN algorithm (or one of its variant). It can process an
heterogeneous array (ALMA+ACA), using a CLEAN-based multi-scale algo-
rithm.

COMPARE performs the comparison between the model image and the result of the
simulation. The comparison is done by resampling the original model on the
grid of the simulated image, and by convolving it with the clean beam. The
difference and the fidelity image can thus be easily computed. Image indicators
such as the recovered flux or the fidelity range are also derived.

DISPLAY plots the original model together with the simulated, difference, and fidelity
images. It also presents the cumulated histogram of the fidelity.

BEAM plots the dirty beam of the observations, as well as the position of the antenna,
and the radial distribution of the weights in the uv plane.

The input parameters of the simulation and the intermediate results are stored
in files, thus allowing the user to re-run part of the simulation using previously
computed data, i.e. without starting from the very beginning. The amount of time
needed to perform a simulation depends on the size of the problem. On a 800 MHz
Pentium-III PC with 756 Mbytes of memory, the simulation of a 7-fields mosaic
observed with ALMA takes about 15 minutes. The simulation of ALMA+ACA is
somewhat longer, ~25 minutes, because the deconvolution of an heterogeneous array
is quite slow. As a rule, the imaging part (Fourier Transform and deconvolution) is
always the time-consuming step of the simulation.



Finally, a pipeline was written to run automatically all the procedures and save
the results. This allows us to run a large number of simulations to assess the impact
of the different input parameters (e.g. short spacings addition, noise level, pointing
errors, etc.) on the images quality.

3 Simulation methods

This section describes in more details each step of the simulation.

3.1 The PREPARE procedure

The original model is first plunged into an image whose size in pixel is a power of
two. The header is then edited to modify the pixel size so that the angular size of
the image corresponds to that required by the user; the declination of the source
can also be modified.

Depending on the image and ALMA primary beam size, the simulator switches
between the single-field and mosaic modes. In the latter case, the number and
positions of the fields are automatically computed following an hexagonal pattern,
sampled at half the primary beam width.

3.2 The SINGLE DISH procedure

This task simulates on-the-fly observations performed with single-dish antennas, to
be used later on as short spacing information. The model image is convolved by
the antenna lobe (via Fourier Transform) and the intensity is then estimated at (%)
the position of the mosaic fields, and (ii) on an extended grid — with typically 3
pixels per beam. If the required position does not coincide with a pixel center, an
interpolation from the neighbour pixels is performed.

Pointing errors can be simulated by estimating the intensity at a slightly wrong
position. The same kind of pointing error models as for the interferometric obser-
vations (see below) are used.

Thermal noise can then be added to the data, and the corresponding weight
is stored. Finally, a calibration noise can be simulated: the observed intensities
are multiplied by a random factor whose mean value (# 1 if a systematic error is
present) and rms can be specified.

3.3 The ALMA and ACA procedures

The simulations of the ALMA and ACA observations are actually done using the
same procedure. The uv coverage is derived from the antenna locations (read from an
input ascii file), the source declination, and the hour angle range of the observations.
The integration time corresponding to a Nyquist sampling is used if it does not
exceed 300 seconds.

For a mosaic, the procedure assumes that the fields are observed in a loop (i.e.
in a snapshot mode), each visibility dump corresponding to another position in the
sky. The total integration time is truncated so that an integer number of cycles is
observed.



Visibilities computation

In the absence of errors, the result of the simulation depends on the accuracy
of the simulation process, and on the quality of the imaging methods. Calibration
errors (phase and amplitude, but mostly pointing errors) greatly influence the im-
age quality and are often the major limiting factor. These are inherently statistical
errors, thus requiring several simulations to provide a representative sample of prob-
lems. Hence, computational speed becomes an issue. We have thus chosen a fast,
but approximate, method to simulate the visibilities from an input model image and
a required uv coverage.

For a single field, the observed visibility is the Fourier Transform of the sky
brightness distribution multiplied by the primary beam of the antenna, i.e. the
convolution of the Fourier Transform of the sky brightness by the Fourier Transform
of the antenna primary beam. For rapidly varying pointing errors, this quantity has
to be computed for each visibility dump. To fasten this process, we use a “gridded
convolution”: the visibilities are estimated by the convolution of the FFTs, i.e. of two
already-gridded distributions (note that one could in theory correct for this gridding
effect later on). Furthermore, the convolution is approximated by a weighted sum
of the neighbour points: this is a local operation in the uv plane, to be performed
at each required uv position.

Using images of 4096x4096 pixels, we obtain a precision of the order of 0.3%.
This limits the fidelity of the final image to 300:1, but this is acceptable since
pointing errors contribute more significantly. Note also that a 1% calibration error
would limit the image fidelity to 100:1...

For a mosaic, the same algorithm is used, the field offset being added to the
pointing error. The resulting uv table is then sorted to get one table per field.

Pointing errors models

The task simulating the visibilities can generate random uncorrelated pointing
errors but it can also read an input pointing error table. This allows us to run
more sophisticated pointing error models to produce such a table. The model we
developed takes into account different timescales and amplitudes for the pointing
errors due to the following effects:

e errors of measurement at each pointing calibration (e.g. every 30 minutes)
e tracking uncertainty (timescale: 1 sec)

e bearing error (timescale: a few minutes)

e antenna structure change due to temperature variation (timescale: 1 hour)
e wind (timescale: 1 sec)

The wind and thermal errors are assumed to be correlated among antennas (the
correlation factor can be adjusted).



Noise

Adding thermal and phase noise to the simulated uv table(s) is an easy task. The
thermal noise is derived from Ty (taking into account the variation with elevation),
the integration time, and the bandwidth. The corresponding weight is also stored, to
be used in the imaging process. As of today, our simulator only includes a constant
phase noise, independent of the baseline length. Another limitation is the lack of
any calibration error.

3.4 The UV—MAP procedure

The ALMA and/or ACA simulated uv tables are Fourier transformed using classical
gridding and FFT algorithms. The size and number of pixels are automatically
computed. Natural weighting is used by default. For a mosaic, this process is done
for each field.

Short spacings

If the short spacing information is to be used, it is added to the uv table before
imaging. The following method is used (assuming here that the single-dish antennas
have a 12-m diameter):

e If only the ALMA array is processed, only the zero spacing (the total flux) can
be added to the interferometric data. In that case, the flux measured by the
12-m antennas at each pointing position is written into the ALMA wwv table.

e If the ACA array is processed (together with ALMA or not), then short spac-
ings can be estimated:

— The on-the-fly single-dish measurements are re-gridded and Fourier trans-
formed in the uv domain.

— The data are corrected for the single-dish lobe by division by its Fourier
Transform (truncated to the antenna diameter).

— The data are Fourier transformed back to the image plane and the ACA
primary lobe is applied (multiplication).

— The visibilities are then estimated on a regular grid after yet another
Fourier Transform.

— In the case of a mosaic, the two last operations are performed for each
pointing center.

— Note that applying the ACA primary beam is a convolution in the uv
plane, i.e. a local average. It can therefore be estimated only in the
central region, up to an uwv radius equal to the difference of the two
antenna diameters.

e In both cases, a scaling factor can be applied to the natural weights of the
zero- or short-spacings visibilities.



3.5 The DECONVOLUTION procedure

The deconvolution algorithms are based on CLEAN. The default is to use the
Clark method, but other variants (Hogbom, Steer-Dewdney-Ito, multi-resolution)
are available within the MAPPING software.

Mosaic deconvolution

The mosaic deconvolution is done using a CLEAN-based method developed for
the IRAM Plateau de Bure interferometer (see e.g. the chapter on mosaicing in the
proceedings of IRAM millimeter interferometry summer school). In short: the dirty
mosaic is reconstructed as a linear combination of all dirty maps,

B;
2

2z h
J = 72 B2
2
2
where F; and B; are the dirty map and the primary beam of each field, respectively.
The mosaic is thus homogeneous to the sky brightness distribution, but the noise
level is not uniform and strongly increases at the edges of the field of view. As a
consequence, using the classical CLEAN method can be dangerous, as noise peaks
might be selected as CLEAN components. The method used for Plateau de Bure
data consists in selecting the CLEAN components on a modified mosaic: the initial
mosaic is normalized by the noise level distribution. Hence, this distribution is
homogeneous to the signal-to-noise ratio.
The algorithm turns out to give excellent results, both in terms of image fidelity
and convergence speed. It has been used during the last years to deconvolve the
mosaics observed with the Plateau de Bure interferometer.

i g

Deconvolving an heterogeneous array

We developed a CLEAN-based method to deconvolve interferometric data ob-
served with an heterogeneous array such as ALMA+ACA. The algorithm takes as
input the two dirty maps, and uses a multi-scale approach: at each iteration, the
CLEAN components are found on one or the other map, depending on which has
the highest signal-to-noise ratio. Note that the hybrid correlations are not taken
into account in such a method.

Starting from two uwv tables corresponding to the observations of the same source
with two arrays, the following operations are performed:

1. Fourier Transform of the data, and reconstruction of the two mosaics. The
fields positions do not need to coincide in the observations performed by the
two arrays (although this is the case with the current version of our simulation
package).

2. Major cycles are performed, in which CLEAN components are identified in
the residual image with the highest signal-to-noise ratio. A very satisfactory
method (in terms of image quality and convergence speed) is to use the Clark
method if the components are to be found on the ALMA image, and the
Steer-Dewdney-Ito approach if they are to be found on the ACA image.



3. The components found in each major cycle are removed from both maps. If
they were identified on the ALMA image, a compression is used to re-sample
them on the ACA grid. However, the components found on the ACA image
need a more tricky method, in order to make sure that the same quantity is
removed from both images (otherwise the method would diverge): we first
derive from each ACA component a set of positions on the ALMA grid, such
that they cover exactly the area of pixel of the ACA grid; these components
are then removed from the ALMA map; they are also compressed — via Fourier
Transform — back to the ACA grid, to be removed from the ACA image. This
back-and-forth method allows us to get rid of the uncertainties that would

occur if the ACA components would have been directly interpolated on the
ALMA grid.

4. Finally, the CLEAN components identified by the methods are convolved by
the ALMA clean beam (highest angular resolution), and the weighted residuals
are added.

This CLEAN-based algorithm adapted to heterogeneous arrays could still be
improved in several ways, e.g. by constraining the number of components to be
found in each image, by using a smoother kernel to derive the ALMA components
from the ACA components, etc.

3.6 The COMPARE procedure

The comparison between the simulated and original image is done by resampling the
original model on the grid of the simulated map, and by convolving it with the clean
beam. Hence, the two images are directly comparable, and registration or scaling
problems are avoided.

Estimating the quality of the simulated image as compared to the original model
is not an easy task: the actual criteria to estimate the observation quality depends
on the science that is to be done!

Fidelity

The COMPARE procedure computes the so-called fidelity of the simulation. It is
defined as the ratio of the input model by the difference (model—simulated image).
The higher the fidelity, the better the simulated image. In practice, the very high
fidelity points due to value coincidence between the model and simulation have to
be flagged out, because they do not reflect the accuracy of the simulation. For that
purpose, the lowest values of the difference image are truncated, and the fidelity
image is thus computed as:

i 1
fidelity — input mode

max(difference, 0.7 x rms(difference))

The DISPLAY task plots the fidelity image as well as a cumulated histogram of the
fidelity values, i.e. the number of pixels whose values are larger than a given fidelity.
It also computes the median fidelities, taking into account only the pixels whose
intensity in the initial model image is higher than 0.3, 1, 3 or 10% of the peak.



Fidelity range

Having one single number to quantify the accuracy of the simulated image is very
convenient when doing a large number of simulations: this allows a global estimate
of the effect of one of the parameters (e.g. pointing errors) on the simulation results.
We used the “fidelity range” defined by L.Kogan:

max(abs(model))

fidelit =
CHLY Tange rms(difference)

10



